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Abstract

The self�organization of recurrent feature�discovery networks is
studied from the perspective of dynamical systems
 Bifurcation
theory reveals parameter regimes in which multiple equilibria or
limit cycles coexist with the equilibrium at which the networks
perform principal component analysis


� Introduction

Oja �	��� made the remarkable observation that a simple model neuron with an
Hebbian adaptation rule develops into a �lter for the �rst principal component of
the input distribution
 Several researchers have extended Oja�s work� developing
networks that perform a complete principal component analysis �PCA�
 Sanger
�	���� proposed an algorithm that uses a single layer of weights with a set of
cascaded feedback projections to force nodes to �lter for the principal components

This architecture singles out a particular node for each principal component
 Oja
�	���� and Oja and Karhunen �	���� give a related algorithm that projects inputs
onto an orthogonal basis spanning the principal subspace� but does not necessarily
�lter for the principal components themselves


In another class of models� nodes are forced to learn di�erent statistical features
by a set of lateral connections
 Rubner and Schulten �	���� use cascaded lateral
connections� the ith node receives signals from the input and all nodes j with j � i

The lateral connections are modi�ed by an anti�Hebbian learning rule that tends
to de�correlate the node responses
 Like Sanger�s scheme� this architecture singles
out a particular node for each principal component
 Kung and Diamantaras �	����
propose a di�erent learning rule on the same network topology
 Foldiak �	����
simulates a network with full lateral connectivity� but does not discuss convergence




The goal of this paper is to help form a more complete picture of feature�discovery
models that use lateral signal �ow
 We discuss two models with particular empha�
sis on their learning dynamics
 The models incorporate Hebbian and anti�Hebbian
adaptation� and recurrent lateral connections
 We give stability analyses and derive
bifurcation diagrams for the models
 Stability analysis gives a lower bound on the
rate of adaptation the lateral connections� below which the equilibrium correspond�
ing to PCA is unstable
 Bifurcation theory provides a description of the behavior
near loss of stability
 The bifurcation analyses reveal stable equilibria in which the
weight vectors from the input are combinations of the eigenvectors of the input
correlation
 Limit cycles are also found


� The Single�Neuron Model

In Oja�s model the input� x � RN � is a random vector assumed to be drawn from
a stationary probability distribution
 The vector of synaptic weights is denoted �
and the post�synaptic response is linear� y � x � �
 The continuous�time� ensemble
averaged form of the learning rule is

�� � � xy � � � y� � �

� R� � �� � R�� � �	�

where � � � � � denotes the average over the ensemble of inputs� and R �� xxT �
is the correlation matrix
 The unit�magnitude eigenvectors of R are denoted
ei� i � 	 � � �N and are assumed to be ordered in decreasing magnitude of the
associated eigenvalues �� � �� � � � � � �N � �
 Oja shows that the weight vector
asymptotically approaches �e�
 The variance of the node�s response is thus max�
imized and the node acts as a �lter for the �rst principal component of the input
distribution


� Extending the Single Neuron Model

To extend the model to a system ofM � N nodes we consider a set of linear neurons
with weight vectors �called the forward weights� �� � � � �M connecting each to the
N�dimensional input
 Without interactions between the nodes in the array� all M
weight vectors would converge to �e�


We consider two approaches to building interactions that force nodes to �lter for
di�erent statistical features
 In the �rst approach an internode potential is con�
structed
 This formulation results in a non�local model
 The model is made local
by introducing lateral connections that naturally acquire anti�Hebbian adaptation

For reasons that will become clear� the resulting model is referred to as a min�
imal coupling scheme
 In the second approach� we write equations of motion of
the forward weights based directly on �	�
 The evolution of the lateral connection
strengths will follow a simple anti�Hebbian rule


��� Minimal Coupling

The response of the ith node in the array is taken to be linear in the input

yi � x � �i� ��



The adaptation of the forward weights is derived from the potential
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where C is a coupling constant
 The �rst term of U generates the Hebb law�
while the second term penalizes correlated node activity �Yuille et al� 	����
 The
equations of motion are constructed to perform gradient descent on U with a term
added to bound the weight vectors�
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Note that �i refers to the weight vector from the input to the ith node� not the ith

component of the weight vector


Equation ��� is non�local as it involves correlations� � yi yj �� between nodes
 In
order to provide a purely local adaptation� we introduce a symmetric matrix of
lateral connections

�ij i� j � 	� � � � � M

�ii � ��

These evolve according to

��ij � �d � �ij � C � yi yj � �

� �d � �ij � C �i �R�j � ���

where d is a rate constant
 In the limit of fast adaptation �large d�

�ij � �C � yi yj � �

With this limiting behavior in mind� we replace ��� with

��i � � xyi � �
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Equations ��� and ��� specify the adaptation of the network


Notice that the response of the ith node is given by �� and is thus independent of
the signals carried on the lateral connections
 In this sense the lateral signals a�ect
node plasticity but not node response
 This minimal coupling can also be derived
as a low�order approximation to the model in x�
 below




����� Stability and Bifurcation

By inspection the weight dynamics given by ��� and ��� have an equilibrium at

X� � ��i � ei� �ij � ��� ���

At this equilibrium the outputs are the �rst M principal components of input vec�
tors
 In suitable coordinates the linear part of the equations of motion break into
block diagonal form with any possible instabilities constrained to �� � sub�blocks

Details of the stability and bifurcation analysis are given in Leen �	��	�
 The prin�
cipal component subspace is always asymptotically stable
 However the equilibrium
X� is linearly stable if and only if

d � d� �
��i � �j�

� ��i � �j�

��i � ��j
���

C � C� �
	

�i � �j
� 	 � �i� j� �M� ���

At C� or d� there is a qualitative change �a bifurcation� in the learning dynamics
 If
the condition on d is violated� then there is a Hopf bifurcation to oscillating weights

At the critical value C� there is a bifurcation to multiple equilibria
 The bifurcation
normal form was found by Liapunov�Schmidt reduction �see e
g
 Golubitsky and
Schae�er 	���� performed at the bifurcation point �X�� C��
 To deal e�ectively with
the large dimensional phase space of the network� the calculations were performed
on a symbolic algebra program


At the critical point �X�� C�� there is a supercritical pitchfork bifurcation
 Two
unstable equilibria appear near X� for C � C�
 At these equilibria the forward
weights are mixtures of eM and eM�� and the lateral connection strengths are
non�zero
 Generically one expects a saddle�node bifurcation
 However X� is an
equilibrium for all values of C� and the system has an inversion symmetry
 These
conditions preclude the saddle�node and transcritical bifurcations� and we are left
with the pitchfork


The position of stable equilibria away from �X�� C�� can be found by examining
terms of order �ve and higher in the bifurcation expansion
 Alternatively we exam�
ine the bifurcation from the homogeneous solution� Xh� in which all weight vectors
are proportional to e�
 For a system of two nodes this equilibrium is asymptotically
stable provided

C � Ch � min

�
��� � ���	������

		��

�
� �	��

If �� � ���� then there is a supercritical pitchfork bifurcation at Ch
 Two stable
equilibria emerge from Xh for C � Ch
 At these stable equilibria� the forward
weight vectors are mixtures of the �rst two correlation eigenvectors and the lateral
connection strengths are nonzero


The complete bifurcation diagram for a system of two nodes is shown in Fig
 	
 The
upper portion of the �gure shows the bifurcation at �X�� C��
 The horizontal line
corresponds to the PCA equilibrium X�
 This equilibrium is stable �heavy line� for



C � C�� and unstable �light line� for C � C�
 The subsidiary� unstable� equilibria
that emerge from �X�� C�� lie on the light� parabolic branches of the top diagram

Calculations indicate that the form of this bifurcation is independent of the number
of nodes� and of the input dimension
 Of course the value of C� increases with
increasing number of nodes� c
f
 ���


The lower portion of Fig
 	 shows the bifurcation from �Xh� Ch� for a system of two
nodes
 The horizontal line corresponds to the homogeneous equilibrium Xh
 This
is stable for C � Ch and unstable for C � Ch
 The stable equilibria consisting of
mixtures of the correlation eigenvectors lie on the heavy parabolic branches of the
diagram
 For networks with more nodes� there are presumably further bifurcations
along the supercritical stable branches emerging from �Xh� Ch�� equilibria with
qualitatively di�erent eigenvector mixtures are observed in simulations


Each inset in the �gure shows equilibrium forward weight vectors for both nodes in
a two�node network
 These con�gurations were generated by numerical integration
of the equations of motion ��� and ���
 The correlation matrix corresponds to an
ensemble of noise vectors with short�range correlations between the components

Simulations of the corresponding discrete� pattern�by�pattern learning rule con�rm
the form of the weight vectors shown here
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Figure 	� Bifurcation diagram for
the minimal model

Fig � Regions in the ���� ��� plane cor�
responding to supercritical �shaded� and
subcritical �unshaded� Hopf bifurcation


��� Full Coupling

In a more conventional coupling scheme� the signals carried on the lateral connec�
tions a�ect the node activities directly
 For linear node response� the vector of
activities is given by

y � �	� ���� �x � u� x �		�

where y � RM � � is the M �M matrix of lateral connection strengths and � is an
M � N matrix whose ith row is the forward weight vector to the ith node
 The
adaptation rule is

�� � � yxT � � Diag�� yyT ��� �	�

�� � D� � C � yyT �� �ii � �� �	��



whereD and C are constants andDiag sets the o��diagonal elements of its argument
equal to zero
 This system also has the PCA equilibrium X�
 This is linearly stable
if

D � � �	��

C � C� �
D

�i � �j
�

��i � �j�
�

��i � ��j
� �	��

Equation �	�� tells us that the PCA equilibrium is structurally unstable without the
D� term in �	��
 Without this term� the model reduces to that given by Foldiak
�	����
 That the latter generally does not converge to the PCA equilibrium is
consistent with the condition in �	��


If� on the other hand� the condition on C is violated then the network undergoes a
Hopf bifurcation leading to oscillations
 Depending on the eigenvalue spectrum of
the input correlation� this bifurcation may be subcritical �with stable limit cycles
near X� for C � C��� or supercritical �with unstable limit cycles near X� for
C � C��
 Figure  shows the corresponding regions in the ���� ��� plane for a
network of two nodes with D � 	
 Simulations show that even in the supercritical
regime� stable limit cycles are found for C � C�� and for C � C� su�ciently
close to C�
 This suggests that the complete bifurcation diagram in the super�
critical regime is shaped like the bottom of a wine bottle� with only the indentation
shown in �gure 
 Under the approximation u 	 	 � �� the super�critical regime is
signi�cantly narrowed


� Discussion

The primary goal of this study has been to give a theoretical description of learning
in feature�discovery models� in particular models that use lateral interactions to
ensure that nodes tune to di�erent statistical features
 The models presented here
have several di�erent limit sets �equilibria and cycles� whose stability and location
in the weight space depends on the relative learning rates in the network� and
on the eigenvalue spectrum of the input correlation
 We have applied tools from
bifurcation theory to qualitatively describe the location and determine stability of
these di�erent limiting solutions
 This theoretical approach provides a unifying
framework within which similar algorithms can be studied


Both models have equilibria at which the network performs PCA
 In addition� the
minimal model has stable equilibria for which the forward weight vectors are mix�
tures of the correlation eigenvectors
 Both models have regimes in which the weight
vectors oscillate
 The model given by Rubner et al� �	���� also loses stability
through Hopf bifurcation for small values of the lateral learning rate


The minimal values of C in ��� and �	�� for the stability of the PCA equilibrium
can become quite large for small correlation eigenvalues
 These stringent conditions
can be ameliorated in both models by the replacement

d �ij � ��y�i � � �y�j �� �ij �

However in the minimal model� this leads to degenerate bifurcations which have not
been thoroughly examined




Finally� it remains to be seen whether the techniques employed here extend to similar
systems with non�linear node activation �e
g
 Carlson 	��	� or to the problem of
locating multiple minima in cost functions for supervised learning models
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