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Abstract 

We observe that the computational model of olfactory cortex given by Ambros-Ingerson, 
Granger and Lynch [I] is closely related to multistage vector quantization. Variations of the 
architecture and learning rules are given. We evaluate the performance of the various models 
applied to encode and classify vowels extracted from spoken letters. 

1 Introduction 

Based on physiological and anatomical studies, as well as simulations of a biologically faithful 
model, Ambros-Ingerson et al. [I] propose an abstract model of the computation carried out in 
olfactory bulb and cortex. This paper identifies that computation as a neural implementation of 
multi-stage vector quantization [2, 31. Using speech data, we compare the performance of this 
scheme with a neural tree-search quantizer and with a traditional competitive learning algorithm. 
The learning rule is enhanced with a conscience mechanism to insure that neural resources are 
efficiently used. The biological model posits a constancy of olfactory bulb activity. Although 
not discussed in [I], it is reintroduced here as a pattern resealing, and is shown to lead to  noise 
immunity. 

2 Models and Learning Rules 

2.1 The Biological Model 

In the biological model [I, and references therein], layer I and I1 cortical cells receive input from 
the olfactory bulb via the lateral olfactory tract (LOT), and from more ros t rdy  located cortical 
cells. Local inhibitory interneurons divide the cortex into patches. Within each patch, cells 
compete for activation resulting in winner(s)-take-all activity. 

Cues (odors) are sampled repetitively. At each sampling cycle, the synapses to winning cells 
are incremented according to  an LTP rule. Feedback from cortex to bulb selectively inhibits the 
activity of those bulb (mitral) cells that contribute to the cortical activity. Thus during the next 
several samples of the same odor, a different set of LOT axons are active and cortex is presented 
with a different view of the same environmental cue. In addition, an excitatory-inhibitory 
network maintains roughly constant bulb activity. 

'T.L. and M.W. are supported by the Office of Naval Research under contract N00014-90-1349. T.L receives 
additional support under DARPA grant MDA 972-88-J-1004. S.R. is supported by a Wilson Clark fellowship. 



2.2 Multi-stage Vector Quantization 

The abstract model discards many of the details of its biological counterpart, but retains the 
features of repetitive sampling, competition, synaptic plasticity, and bulb inhibition through 
feedback from the cortex. The most striking feature retained by the abstract model is its 
hierarchical organization. 

The system consists of a set of subnets S;, i = 1 . . . D. Each cell within subnet i has an 
associated weight vector w!), j = 1.. .mi where m; is the number of cells allocated to  Sj. Input 
patterns seen by cells in S; are represented by vectors x(;) E RN. The first subnet is given the 
raw environmental input x(l) = x (representing the signal from the olfactory bulb). 

At the ith sample of a cue, cells within S; compete for activation. The winning weight 
vector is given by 

w$k = arg min d(wy), x(')), 
"Ji 

where d(. , .) is the Euclidean (or other appropriate) distance measure 2. The winning weight 
vector is moved in the direction of the pattern, 

where a is the learning rate. At the i + lth sample of the cue, subnet is fed the input 

and weights in Si+1 compete according to  (1) and update according to  (2). Subnet S; performs 
vector quantization on the patterns x(;). The signal x(;+l) passed to subnet S;+l is just the 
quantization error from subnet S; . Thus each subnet quantizes the quantization errors from the 
previous subnet. 

In the signal-processing literature, this scheme is called multi-stage vector quantization 
[2, 31. It was introduced to ameliorate the computational requirements of high bit-rate vector 
quantization. 

2.3 Tree-Search Quantization 

If the original data is naturally clustered (e.g. according to classes), then the above procedure 
can be interpreted as a hierarchical clustering scheme. In this case it is desirable to be able to 
partition clusters independently. The above architecture does not have this capability. To see 
this, consider two disjoint clusters C1 and C2 in the original data space. Assume that at  S1, 
each cluster is "won" by a different weight wl tt C1, w2 tt C2. After convergence of wl and 
w2, the cells in S2 see the union of C1 and C2 with their centroids translated to the origin, i.e. 
two superimposed clusters. Thus these cluster are not independently partitioned by S2 and later 
subnets. 

This problem can be solved by specifying a tree structure on the subnets. Each weight 
wf) in S;, has a specified set of children in S;+l. If weight w:) in S; wins, then only its 
designated children in Si+l enter the competition. This architecture ensures that clusters can 
be independently partitioned, though at the cost of increased storage requirements. 

21n the original formulation, the competition is based on the inner product [w,i, = arg max,, w j  - z]. The 
choice in (1) is more compatible with the weight update (2). Kohonen [4] discusses metric compatibility between 
competition and learning rules. 



2.4 Conscience 

The unequal use of cells, particularly the occurrence of "dead cells" (cells that do not win on 
any input pattern), is problematic in competitive learning schemes. To alleviate this difficulty, 
various schemes have been suggested to ensure that each of the cells is utilized. Kohonen7s 
self-organizing feature map [4, 51 overcomes the problem by collecting cells into neighborhoods 
that are moved about as groups by the learning rule. Grossberg [6] suggests the use of variable- 
thresholds to  overcome the problem. 

Here we adopt the frequency-sensitive competitive learning technique given by Ahalt et al. 
[7]. The competition is based on the modified distance 

where ny) is the number of times w?) has won the competition. Cells which dominate the 
competition acquire large n and are, by (4), effectively farther from the patterns. In this way 
cells which consistently win are removed from the competition, implementing a "conscience-like" 
mechanism [8]. 

This embellishment insures that cells (here cells within each subnet) win with roughly equal 
frequency. In a flat quantizer this maximizes the output entropy and, in the limit of large input 
dimension, minimizes the quantization distortion [7, and references therein]. 

2.5 Constant Bulb Activity and Pattern Rescaling 

In the biological model, each sampling cycle produces roughly constant bulb activity. This 
implies that the spatial pattern of active LOT axons has about the same number of points for 
each cue. Taking neurons and synapses as slightly noisy, a useful effect of this constancy is to 
represent cues on the LOT with similar signal-to-noise ratios. 

In the abstract model, repetitive sampling is represented by (3), in which each subnet 
receives as input the quantization error of the previous subnet. As the weights in the first several 
subnets converge to  their optimal values, the signals fed to subsequent subnets will become 
successively smaller. With noiseless neurons and connections, and arithmetic of sufficiently high 
precision this is not a problem. It is, however, unacceptable for analog hardware implementations 
or for digital hardware implementations using low-precision arithmetic. 

The constancy of bulb activity in the biological model can be reintroduced into the abstract 
model by rescaling the vectors (3) presented to each subnet, before competition and learning. 
To evaluate this notion we map the original data onto the unit hypersphere. Then a convenient 
family of invertible3 scaling functions is given by 

with 

and E a positive constant. As E -+ 0, T,(x) + l/((x(I ; i.e. rescaling to unit magnitude. As 
E -+ 00, r,(x) -+ 1; i.e. no rescaling. For finite positive E, (5) maps vectors with norm in (0,l)  
to  vectors of larger magnitude, still in (0,l). 

3To use the system as a vector quantizer, the rescaling must be invertible so that codewords can be assigned 
to points in the input space. If the rescaling is not invertible, as is likely in the biological system, one can still 
use the system for encoding and clustering 



To simulate noise and low-precision arithmetic, we perturb calculations (2) and (3), by 
the addition of a random vector. The competition (1) is perturbed by adding a random vector 
to (w - x) before calculating d(w,z). The components of the random vectors are uniformly 
distributed in [-P, PI, with P an experimental parameter. 

3 Experimental Results 

Experimental data consists of vowels extracted from spoken letters [9]. The data base contains 
52 utterances of the letters of the English alphabet, spoken by 150 native English speakers. The 
data base is divided into five equal parts, each corresponding to 30 speakers. Subsets of the first 
three are used for training, the fourth and fifth are used for testing the trained networks. The 
utterances in the test sets are from speakers not included in the training set. As both test sets 
gave similar results, we report results from only one here. 

Each utterance was digitized to 16 bit accuracy at 16kHz sampling rate. A DFT was 
computed over a 10 ms sampling window, at 3 ms time increments. Our final pattern vectors 
are the lowest 32 DFT coefficients, time-averaged over the central 113 of the vowel. These 
coefficients span the frequency range from 0 to 4 kHz. The experiments reported here were 
conducted on the vowels from utterances of the letters A, E, F, 0, and R. 

The various models were trained on 449 vowel samples. Convergence was tracked by record- 
ing the quantization mean square error (mse) every 10 epochs. The learning rate was initially 
set at cr = 0.01 and the networks trained to convergence. The learning rate was then dropped 
to a = 0.001 and training continued to convergence. In general 5 100 total epochs sufficed. As 
an alternative, one could decrease the learning rate according to the requirements of stochastic 
approximation theory [lo]. 

3.1 Quantization Performance 

We report results for networks with three different branching ratios for the tree and multistage 
architectures. These are compared with a standard one-stage (flat) competitive learning algo- 
rithm with equal number of quantization points. Both the tree and multistage networks are 
three levels deep with branching ratios of 3, 4, and 5. Table 1 gives the quantizer performance 

Table 1: Quantizer Performance 

Architecture 

Flat 
Tree 

Multistage 
Flat 
Tree 

Multistage 
Flat 
Tree 

Multistage 

on the training data and on one set of 150 test vectors. Table entries with (20) error bounds 
are the means of six experiments with different initial random weight vectors. The remaining 
entries are from a single experimental run. 

Points Training Test 
mse entropy mse entropy 

27 0.532f 0.007 4.751f 0.003 
27 0.568f 0.005 4.7473~ 0.003 
27 0.756f 0.004 4.501zk0.025 
64 0.370 5.992 
64 0.406 5.987 
64 0.646 5.567 
125 0.260 6.946 
125 0.294 6.939 
125 0.547 6.570 

0.614f 0.014 4.684f 0.012 
0.656f 0.018 4.596f 0.026 
0.797f 0.009 4.439f 0.045 
0.502 5.742 
0.549 5.677 
0.671 5.409 
0.481 6.197 
0.486 6.246 
0.582 6.216 



The table gives both the quantization mse and the output entropy 4. For branching ratio 3, 
the tree and multistage topologies have 27 quantization points. The maximum output theoretical 
entropy is 4.755 bits. For branching ratios 4 and 5, the networks have 64 and 125 quantization 
points, with maximum output entropies of 6.0 and 6.966 bits. 

The tree structure gives consistently lower mse than the multistage topology by a large 
margin, but slightly higher mse than the flat topology. The output entropy of both the flat and 
tree structures approaches the theoretical maximum quite closely, indicating nearly equal use of 
the quantization points. The output entropy for the multistage structure is somewhat lower, as 
is consistent with the higher mse. The differences between the multistage and flat/tree results 
seem less pronounced in the test data than in the training data, perhaps indicating differences 
in generalization. 

3.2 Classification Performance 

The vowel data has a natural cluster structure, indicated by scatter plots of the first several 
principal components. Given this, and the presumed discriminatory function of olfactory cortex, 
it is natural to  evaluate the classification power of the different models. 

To use the structure as a classifier each quantization point is assigned the class of the 
majority of training data points that are mapped to  it. This class assignment is then used 
to assign classes to the test data points. A problem arises when classifying test data points 
that fall into a quantization cell not assigned a class by the training process (this typically 
happens in the multistage architecture). In this case, we pick one of the "hierarchically closest" 
quantization cells, and use its assigned class. A quantization cell corresponds to a sequence of 
winning weights. The hierarchically closest cell to a given cell is the one that shares that longest 
prefix with that sequence. Results are given in table 2. Classification performance follows the 

Architecture Points Training Test 
Flat 27 11.804f 2.623 12.444*2.514 
Tree 27 15.999f 1.133 13.222f 0.916 

Multistage 1 27 16.481f 0.257 17.222f 0.497 
Flat ( 64 5.568 10.667 

6.667 
9.333 

6.013 8.667 
Tree 125 6.236 6.667 

14.000 

Table 2: Classifier Performance (% error) 

trend in mean square error and output entropy; for any number of quantization points, the 
flat architecture performs best, closely followed by the tree architecture, with the multistage 
architecture a distant third. In the table above the tree architecture occasionally outperforms 
the flat architecture, but this occurs only in the single runs of the 4 x 4 x 4 and 5 x 5 x 5 tree 
architectures; this result did not reappear with another test set, or in the greater number of runs 
of the 3 x 3 x 3 architectures. 

We emphasize that this is an unsupervised learning paradigm and the classification re- 
sults merely reflect the fact that the vowel data is clustered somewhat according to class. In 

*MSE is the mean of the individual quantization errors, calculated using squared Euclidean distance. Output 
entropy views the quantizer as a source, and is given by - C p ( y ) l o g z ( p ( y ) ) ,  where the sum is over all quantization 
points, y, and where p ( y )  is the probability of y being emitted. 



comparison, single and multi-layer perceptrons score at = 3% error rate on the same test data. 

3.3 Resource Requirements 

From an engineering standpoint, we would like to optimize the performance relative to a given 
cost. Therefore, it is instructive to compare various architectures which are equal, not in the 
number of quantization points, but in the space resources required. For each architecture, the 
storage required is proportional to the number of weights in the network. 

The flat topology defines M quantization points using M+1 weights5. A tree with branching 
ratio B and depth D gives M = BD at a cost of (BD+' - l ) / (B - 1) weights. In comparison, 
to define M = BD quantization points, the multistage topology uses only B x D + 1 weights. 

Table 3 compares the performance of the three topologies with (roughly) equal numbers of 
weights. The multistage architecture has a clear advantage with respect to mse as expected; it 
generates the most quantization points for the number of weights. (Note that the 133 multistage 
net generates 2197 quantization points, or roughly 5 times as many quantization cells as training 
data points.) On the test data, the multistage data show an anomalously high classification error 
compared to mse. This may be related to our error scoring procedure. 

Table 3: Performance - Equal Resource 

3.4 Noise Immunity 

Training Test 
mse class error % mse class error % 
0.658 16.704 0.715 12.00 
0.858 22.049 0.929 18.667 
0.547 10.468 0.582 14.000 
0.601 11.804 0.581 14.000 
0.568f 0.005 15.9993~ 1.133 0.656f  0.018 13.2223~ 0.916 
0.317 2.227 0.394 13.333 

Architecture 

Flat 
2 x 2 x 2 Tree 

5 x 5 x 5 Multistage 
Flat 

3 x 3 x 3 Tree 
13 x 13 x 13 Multistage 

To determine the effect of constant bulb activity on immunity to noise, we performed experi- 
ments in which varying amounts of noise were injected into the system, and varying amounts 
of rescaling were done. For these experiments, the input data was initially normalized to lie on 
the unit sphere. Computations were perturbed by noise with components uniformly distributed 
in [-2-k, 2-k], as described above. With vectors in the unit ball, this simulates the use of fixed 
point arithmetic with k bits of precision. 

Our initial experiments indicate that the rescaling prescription is indeed effective. Without 

weights 

15 
15 
16 
41 
40 
40 

rescaling the rnse deteriorates gradually with increasing noise, with an abrupt increase at a 
noise level corresponding to about 4-5 bits of precision. At a precision level of 6 bits, rescaling 
(with 6 = 0) reduces the rnse by about a factor of 2 relative to no rescaling. Choices for 6 

ranging between 0 and 10.0 provide intermediate amounts of noise immunity. For a noise level - - 

corresponding to 4 bits of precision, rescaling does provide an improvement in mse, however the 
algorithm remains severely crippled at this noise level. Our experiments have also shown that - 

choice of rescaling functions, including no rescaling, doesn't affect the convergence time, just the 
quality of the final result. This may depend somewhat on the weight vector initialization. 

'The flat structure is implemented as a tree of depth one with a single weight in the first level and branching 
ratio M. For simulator convenience, the other architectures also have a single weight at the first level. 



4 Conclusions 

This study demonstrates the efficacy of neural implementations of multistage and tree-search 
quantization. For fixed branching ratio we have seen that the tree-search quantizer consistently 
outperforms the multi-stage structure, though at considerable resource cost. For networks with 
equal neural resource, the multistage architecture returns significantly lower mse than the flat 
and tree-search architectures. Finally, experiments show that pattern rescaling offers a degree of 
noise immunity. It is intriguing to us that a model based on physiology is so closely related to an 
important signal processing technique and that the biological system has apparently developed 
an architecture of great efficiency. 
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