
MetaMP: A Higher Level Abstraction for 
Message-Passing Programming 

Steve W. Otto 

Oregon Graduate Institute 
Department of Computer Science 

and Engineering 
19600 N.W. von Neumann Drive 

Beaverton, OR 97006- 1999 USA 

Technical Report No. CSlE 9 1-003 

March, 1991 



MetaMP: A Higher Level Abstraction for 
Message-Passing Programming 

Steve W. Otto 
Dept of Computer Science and Engineering 

Oregon Graduate Institute of Science and Technology 
19600 NW von Neumann Dr, Beaverton, OR, 97006-1999 USA 

otto0cse.ogi.edu 
503-690-1486 

January 15, 1991 

Abstract 

The potential performance of distributed-memory parallel comput- 
ers is very high, but their programming has proven to be difficult. The 
only successful approach so far has been to program them directly in 
the message-passing system of the machine. To a large extent this 
forms the "assembly language" of the computer. 

Higher level programming abstractions are available, such as ver- 
sions of parallel Fortran, but it has proven difficult to compile these 
to efficient distributed-memory code. Here, we propose a slightly 
more modest approach, whereby useful abstractions are supported by 
a compiler and run-time system (MetaMP), but these constructs are 
within a message-passing framework. The user still writes a message- 
passing program, but the MetaMP compiler understands distributed 
data structures and is therefore able to help in powerful ways. 

A preliminary version of MetaMP has been written which supports 
simple multi-dimensional arrays. Extensions to more complex data 
structures (e.g., unstructured meshes, dynamically changing arrays) 
are planned. MetaMP programs have proven to be succinct and more 
understandable than their "assembly language" counterparts. The per- 
formance of MetaMP programs is close to that obtainable by manual 
programming. 

Currently, MetaMP compiles down to Express, a commercial mes- 
sage-passing system developed at Caltech and available on many par- 
allel computers. 



Objectives and Relation to Other Work 

Parallel computers such as the Intel Touchstone, the Ncube 11, and the 
Meiko Computing Surface form a class of MIMD machines which can be 
termed "message-passing." The processors inside these systems are, to a 
first approximation, conventional microprocessors with a "large" amount of 
memory (.5 to  16 Mbytes in 1990) and an interface to a hardware message 
passing system. Though the programming of these machines remains prob- 
lematical, they have been successfully used in many specific cases. The po- 
tential performance is very high, since this architecture can be easily scaled 
to large numbers of processors. 

To a great extent, these machines have been manually programmed, 
using the message-passing calls provided by the system directly. A funda- 
mental property of message-passing machines is that message passing times 
are one to  three orders of magnitude slower than fundamental floating point 
operation times. This necessitates a style of programming in which commu- 
nications are carefully scheduled so that: the correctness of the program is 
preserved; the communications occur infrequently; and many data items are 
transferred per message. Message-passing programming has often been com- 
pared to  assembly language programming. Intricate details of distributed 
data structures must be managed by the programmer. 

The question naturally arises: "Can message-passing programming be 
abstracted to  a more understandable form without losing much of the per- 
formance of custom programming?" Many parallel languages and compilers 
have been proposed and implemented on MIMD computers [I-161. These 
systems often allow the programmer an extremely clean and simple model 
of the parallel computation. Typically, all elements of an array are acces- 
sible by any processor (shared memory), and synchronization is provided 
automatically by the compiler (e.g., the programmer just writes doall). 
Unfortunately, it appears to be difficult to compile from a parallel language 
such as this to  a message-passing computer, with the restriction that the 
resultant code be efficient. 

The research proposed here concerns a set of language extensions and a 
compiler called MetaMP. In contrast to the systems mentioned previously, 
MetaMP has a somewhat less ambitious goal. MetaMP does not attempt 
to  completely hide the message passing nature of the underlying hardware. 
This makes the compiler implementable while preserving the efficiency of the 
resultant code. The programmer is still given a message-passing view of the 
hardware, but it is an abstract, minimalist one. The user still writes a mes- 



sage passing program, but the MetaMP compiler understands distributed 
data structures and is therefore able to help in powerful ways. Programs 
written in this language have proven to be more compact and understand- 
able than those written directly in the underlying message passing system. 

Scientific computing focuses on programs which construct and manipu- 
late large, multi-dimensional arrays. Our first version of MetaMP provides 
support for these types of programs. The MetaMP compiler introduces 
auxiliary data structures which describe the shapes, sizes, offsets, etc., of 
distributed multi-dimensional arrays. Different arrays can be distributed 
(or "decomposed") in different ways and MetaMP keeps track of each de- 
composition. Abstract loop constructs similar to doall are available and 
release the programmer from having to remember the decomposition details 
of each array. Communications are more easily expressed since the compiler 
understands the shapes of arrays and spread and reduction operations can be 
succinctly written. Array sections of different sizes from one processor to the 
next are completely supported by MetaMP. This means that the problem of 
"odd sizes" (array dimensions not exactly conforming to the machine size) 
can be removed. As we will demonstrate in our examples below, programs 
which handle any size problem on any size machine can be written, yet they 
are still succinct. 

Locality often plays a large role in scientific computing. In solving a set 
of partial differential equations for example, arrays (or meshes) representing 
spatial locations are distributed across the parallel computer. The locality 
of the differential operator reflects itself in the fact that the required commu- 
nications are of the "nearest neighborn type. Such algorithms require array 
elements from a narrow boundary strip (or face in three dimensions) in the 
array sections of neighboring processors. MetaMP provides full support for 
this. Guard strips, that is, extra array elements which map to neighboring 
array sections, can be specified within MetaMP. It turns out that there is an 
elegant way to  do this which makes the extra, guard elements transparent 
to the programmer. This will be discussed later in the context of a two 
dimensional elliptical PDE solver. 

The MetaMP language consists of two components: 

- normal, sequential C (or Fortran) containing for loops that run over the 
multi-dimensional arrays, 

- MetaMP directives which modify the meaning of the sequential f o r  loops 
to their parallel, distributed-memory counterparts. 



The directives always appear between "%" delimiters, that is, they look 
like this: % directive Y,. Compile time checking is done to ensure that the 
directives to distribute for loops make sense. Loop indices have associated 
ranges and these are compared with the allowable ranges of the distributed 
arrays. This checking catches most simple types of programming error, 
such as mixing up array subscripts or combining distributed arrays in an 
incompatible way. A dependency analysis can also be done to check if the 
semantics of the loops has been altered by the parallel directives. This is 
planned, but is not done in this first version of MetaMP. Currently, if the 
user inserts a directive to distribute a for loop, MetaMP does it, even if the 
meaning of the program is altered. 

A first version of MetaMP has been developed and non-trivial programs 
have been written in the language. The current version compiles down 
to  a commercially available parallel message passing system, Express. The 
programs can be executed on actual parallel hardware. There is good reason 
to  believe that efficiencies close to that obtained by manual programming 
are being achieved, though these have not yet been measured. The syntax 
and semantics of the MetaMP directives seem to be clean; the programs 
succinctly state what is happening in the parallel machine. We will discuss 
our plan of development for MetaMP in a later section. First we will describe 
a bit more thoroughly what MetaMP is through the use of a few examples. 

Examples of MetaMP 

A few, relevant example programs are discussed below. A detailed explana- 
tion of these can be found in the user's guide [17]. 

Global Combine 

A common operation needed for parallel programs is the global combine. 
In a global combine, a datum from each processor is combined to form a 
single, global quantity whose value appears in all processors. An example 
of this is a global sum. Each processor has a value and we would like to 
compute the global sum of these and distribute the result to all processors. 
MetaMP has a compact syntax for this operation. Suppose val is a variable 
containing the processor's local value which we wish to  globally combine. 
Let gval be the variable which will contain the result of the global combine. 



*include <stdio.h> 
int I; 
int vec[l:4] ; X distribute X 

main0 
C int i,sum,gsum; 

printf("Enter the number of elements to be sumed\nW); 
scanf ("%dM.tl) ; 
X Alloc X 
printf ("Enter Xd ints\nW ,l) ; 
scanii("Xd", vec) ; 

sum = 0; 
for ( i d ;  i<l; ++i) XC X splitFor on veer*] X 

sum += vec[il ; 
X3 
gsum Xint +a% sua; 

printf("Result:\n"); 
frulti(stdout) ; 
~rintf ("Xd %d\n",gsur,sud ; 
exit (0) ; 

> 

Figure 1: sum.mmp: sum an input list of integers. 

The MetaMP syntax for global combine is: 

gval %type op = % val; 

The type field refers to  the data type of the quantities to  be combined. For 
example, if val  is an i n t ,  then type should be i n t .  The op  field refers to what 
combining operator is desired. This binary operator must be associative so 
that the global result does not depend upon the order in which local values 
are combined. MetaMP 1.0 supports the following operators: + (add), max 
(take maximum of two operands), min (take minimum of two operands), 
and I , & (logical OR, AND of two operands). The user can also add his or 
her own combining functions. 

Fig 1 is a simple example program demonstrating global combine usage. 
This program reads in a list of integers which is distributed by treating the 
items as elements of a distributed vector. The goal of the program is to 
compute the sum of the input list. This is accomplished by first computing 
the local sum in each processor, and then globally combining these partial 
results with the operator +. 

MetaMP is told to distribute the vector across 4 processors by the dec- 
laration syntax: 



i n t  vecCN:41; % d i s t r i b u t e  X 

The directive, % s p l i t F o r  on vec [*I %, tells MetaMP to distribute the 
f o r  loop across the parallel machine. Each processor loops over only those 
members of vec which it actually holds. 

The 1/0 routines p r i n t f  0 and scanf () are those taken from the under- 
lying Cubix system of Express. The routine s c a n I i 0  is a MetaMP library 
routine which is used to  scan a 1 dimensional array of ints .  We will not 
discuss the details of 1/0 in this document. The reader is referred to  [17] 
for further details. 

It is worth emphasizing at this point that the program shown in Fi 
is a complete program. It is compiled and run on a four processor para el 
machine as follows. 

i 
iliamnaX make sum 
nnp sum.=p > SU.C 
netcc -c sum.c 
netcc -0 sum sum.0 -IMP -kplotix 
iliama1 cubix -n4 sum 
Allocated 4  nodes, origin at 0, process id 0. 
Loading file sum to nodes 0-3 . . . . 
Enter the number of elements to be summed 
13 
Enter 13 ints 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  
Result : 
91 10 
91 18 
91 36 
91 27 
System 0:14 User 0:36 
CUBIX: exit status 0  

Matrix Multiplication 

In this section we discuss a program which reads in two matrices, A and B, 
computes their product and prints out the result. B is an L x N matrix, A is 
M x L, and the result, C, is M x N. There are no restrictions on M, N, or L. 
In particular, the "odd size" case, where these dimensions are not exactly 
divided by the number of processors, is dowed. 

We derive the parallel algorithm in two stages. First, we begin with 
a simple sequential program, such as that shown in Fig 2. The addition 
of a few MetaMP directives gives us the parallel program of Fig 3. The 
arrays C and A have been distributed across the four processors along their 
row directions. That is, each processor holds elements of C and A which 
correspond to all of the columns of each of these matrices, but only some 



#include  <s td io .h> 
*define MAX 64 
i n t  A [MAXI CMAXl ; 
i n t  BCMAX] [UAXI ; 
i n t  CCUAX] CHAX] ; 

m a i n 0  
( i n t  L ,H, l ;  

i n t  i , j , k , l ;  
pr in t f ("This  m u l t i p l i e s  an MxL matr ix  i n t o  an Lxl matr ix \nU);  
pr in t f ("For  a  r e s u l t a n t  MxI matr ix . \nW);  
p r i n t f  ("Enter M ,  L, l \n")  ; 
scanf ("Xd %d Xd" ,HM.HL,&E) ; 
~ r i n t f  ("Enter a  %dx%d matr ix  (A) ( i n t s ) \ n M  ,M,L) ; 
f o r  (i=O;i<H;++i) 

f o r  (j=O; j<L;++j)  
scanf ("Xdu,&A[i1 Cj]) ; 

~ r i n t f  ("Enter a %dx%d matr ix  (B) ( i n t s ) \n8 '  ,L.K) ; 
f o r  (i=O;i<L;++i) 

f o r  (j=O; j<K;++j)  
scanf ("%d",&BCil Cjl)  ; 

f o r  (i=O;i<M;++i) ( 
f o r  ( j=O;j<K;++j) { 

CCilCjl = 0 ;  
f o r  (k=O;k<L;++k) ( 

C [i] [jl += A C i ]  [k] B Ckl Cjl ; 
1 

1 
1 
~ r i n t f  ("The r e s u l t  matr ix  (c) is: \n") ; 
f o r  (i=O;i<M;++i) { 

f o r  ( j 4 ;  j< l ;++ j )  
p r i n t f  ("X4d ".C[il Cjl) ; 

p r i n t f  ("\nW) ; 
1 
p r i n t f  ('a\n'') ; 
e x i t  (0) ; 

1 

Figure 2: mats. c: sequential matrix multiplication. 



#include <stdio.h> 
int L,II,I; 
int C[II:4] [MI ; % distribute % 
i n  : 4  I ; % distribute X 
int B [LI [MI ; % replicate X 

main0 
{ int i,j,k,l; 

int startk; 
printf("1his multiplies an HxL matrix into an LxI matrix\nW); 
~rintf("For a resultant IIxI matrix.\nU); 
printf ("Enter H, L. M\nU) ; 
scanf ("Xd Xd %dl' ,all ,tL,LM) ; 
X Alloc % 
printf("Enter a XdxXd matrix (A) (ints)\nU,H,L); 
scan2i("%d" ,A) ; 
print2i("%4d ".A) ; 
printf("Enter a XdxXd matrix (B) (ints)\nM,L,I); 
scan2i("Xd" ,B) ; 
print2i("X4d ",B) ; 
for (i=O; i<R; ++i) XC X splitFor on C[*I [I % 

for (j=O; jq1; ++j) { 
CCilCjI = 0; 
for (k=O; k<L; ++k) { 

CCilCjl += ACilCkI BCklCjl; 
1 

1 
XI 
printf("The result matrix (C) is:\nU); 
print2i("%4d ".C); 
exit (0) ; 

> 

Figure 3: matmult 1 .ramp: parallel matrix multiplication. 



Figure 4: Decomposition for matmult 1 . mmp. C and A are distributed along 
rows, while B is replicated. 

of the rows. The matrix B is replicated on the processors, that is, each 
processor holds a complete copy of B. The decompositions for matmult 1 .mmp 
are illustrated in Fig 4. 

A simple spl i tFor  directive on the outermost loop has produced an 
effective parallel program. Each processor computes some number of rows 
of C. The processor has all the data it needs to do this; no inter-processor 
communications are necessary. For some choices of matrix sizes and machine 
memory, this is the optimal parallel program. 

There is one problem with this algorithm, however. The difficulty con- 
cerns the replication of B. If the matrices become large (which they are likely 
to  do in a parallel context), then the storage of all of B in each processor 
forms a severe memory bottleneck, one which does not scale with the rest of 
the algorithm. To remove this bottleneck, we wish to distribute B also [18]. 
This decomposition is shown in Fig 5, while the program is given in Fig 6. 

As before, each processor holds all of the elements of A which it requires 
to  compute it's portion of C. This implies that no communication of A is 
required. As for B, each processor holds only some of the elements it needs. 
In fact, each processor must eventually hold every element of B to  complete 
the matrix multiplication. The technique employed is to roll or shift B 
around the processors (treating them as a ring). At each step of the shifting, 
the newly arrived elements of B are combined with the correct elements of A 



Figure 5: Decomposition for matmult2 .mp. All three matrices are dis- 
tributed. 

to contribute to C. The algorithm is complete when B has rolled completely 
around the processors and has landed back in it's original configuration. 
The four roll cycles for the four processor case are diagrammed in Fig 7. 
Shown there is the dataflow of B and, for each step, the portion of A which 
is to be multiplied into it. 

The directive which causes the correct communications to happen is: % 
roll on BC*] [I %. The notation [*I [I specifies to MetaMP the direction 
of the roll. 

This discussion of matmult2.mp has been quite brief; again, more de- 
tail may be found in [17]. Though matmult2 .mmp may appear complex, it is 
quite an improvement over versions written directly in the underlying mes- 
sage passing system [la, 191. matmult2.mmp is an effective parallel matrix 
multiplier. There are no bottlenecks within the algorithm and it will scale 
correctly as the machine and the matrices are scaled. Finally, this program is 
correct for any choice of M, N, or L. The way in which this is accomplished 
is discussed in a later section. 



tinclude C8tdio.h) 
int L,H,I; 
int CCH:41 M ; X distribute X 
int A[H:4] [L] ; % distribute X 
int BCL:4] [I1 ; X distribute X 

main () 
< inti,j,k,l; 

int startk; 
printf("1his multiplies an llxL matrix into an LxI matrix,\nm); 
printf ("f or a resultant llxl matrix .\n") ; 
printf ("Enter M, L, I\nU) ; 
scanf("Xd Xd XdU.Lll.&L,&I); 
X Alloc X 
printf("Knter a XdxXd matrix (A) (ints)\nM,ll,L); 
scan2i ("Xd" ,A) ; 
print2i("%4d *',A) ; 
printf ("Enter a XdxXd matrix (B) (ints)\nU ,L,I) ; 
scan2i("%dM ,B) ; 
print2i("X4d ",B) ; 
for (1~0; l<env.nprocs; ++I) f // the four roll cycles 

for (i=0; i<R; ++i) X< X splitFor on CC*] [I X 
for (j=O; j<I; ++j) < 

if (1 == 0) CCiICj] = 0; // set only in 1st cycle 
for (k=O; k<L; ++k) Xf X splitFor on BC*lCl X 

CCil Cjl += ACilCkl BCklCjl; 
X) 

> 
X) 
X roll on BC*l C1 X 

1 
printf("The result matrix (C) is:\nW); 
print2i("%4d ".C) ; 
exit (0) ; 

> 

Figure 6: matmult2 .mmp: parallel matrix multiplication, no memory bottle- 
neck. 



Figure 7: The four shift cycles for matrix multiplication on four processors. 
Arrows denote the direction of dataflow of B, the shading represents the cur- 
rently active parts of A. 1 refers to the index in the program, matmult2 .mmp. 

Locality and Guard Strips, Laplace Solver 

In this section we will discuss a problem in which array locality is extreme. 
The problem is that of solving the elliptical system, 

in two dimensions. We will do this via Jacobi relaxation. The strategy 
of the Jacobi algorithm is extremely simple (and of course, non-optimal). 
Discretize the problem with a homogeneous, rectangular mesh. One begins 
with some initial guess for # which satisfies the boundary conditions. This 
could be random numbers; it can simply be 0 .0  at  all grid points. Set eld 

to this initial value. Then cycle through all the mesh points (a "sweep") 
setting a new field, 4, as: 

At the end of each sweep, re-enforce the given boundary conditions. Now 
set @'Id to this new value. Continue sweeping until the fields stop moving. 
At this point the algorithm has converged and the system is solved. 



t i n c l u d e  <s td io .h>  
#def ine  H 11 
*define I 11 
f l o a t  phi[H] [f ; 
f l o a t  phio [HI [HI ; 
i n t  bndy [HI [I] ; 
main ( ) 
{ i n t  i , j , n u n , l ;  

f l o a t  tmp; 
FILE *fp; 
f o r  ( i d ;  i<H; ++i) { 
f o r  ( j d ;  j<H; ++j) C 

bndy Cil [ jl = 0 ;  
phi[i] [j] = phioci]  [j] = 0 .0 ;  

3 
3 
printf("Reading i n  bndy d a t a  from bdata  ... \ nu ) ;  
f p  = fopen("bdataW ,"r") ; 
f s can f  (fp,"XdW ,hum) ; 
f o r  (110; l<num; ++I)  ( 

fscanf(fp,"%d Xd %fM,ki.kj .ktmp);  
bndy [i] [jl = I ; 
phio[i] [j] = tmp; 

3 
fc loseCfp) ;  
while (1) { 

pr in t f ("Enter  number of i t e r a t i o n s  (neg en t ry  ends run)\nl'); 
scanf ("Xd" .hum) ; 
if ( n u  <= 0)  break; 
f o r  ( 1 ~ 0 ;  l<num; ++I)  { 

f o r  ( i = l ;  i<H-1; ++ i )  { 
f o r  ( j = l ;  j<I-I; ++j)  { 

phi[i]  [j] = 0.25 ( phior i - I ]  [jl + phio[ i+l l  [jl + 
phio [i] [j-11 + phio[i] [ j+ l l  ) ; 

3 
3 
f o r  Ciao; i<H; ++i) C 
f o r  (j=O; j < I ;  ++j) C 

if ( !bndy[il[ j l  ) 
phio[ i l  [j] = p h i c i l  [ j ] ;  

> 
1 

I 
f o r  (i=O; i<H; ++i)  C /* P r i n t  out  */ 

f o r  (j=O; j < I ;  ++j) 
p r i n t f  ("X5.3f " ,phio[il  [ j l )  ; 

p r i n t f  ("\nu) ; 
3 
p r i n t f  ("\nu) ; 

3 
e x i t  (0) ; 

3 

Figure 8: laplaces . c: laplace solver, sequential version. 

13 



We start off with a sequential program, l ap l aces  . c, shown in Fig 8. ph i  
is the field 4, phio is @ l d .  The parallel version of this, l ap l ace  .mmp, is given 
in Fig 9. This program is very similar in structure to l ap l aces  . c. For 
the most part, the arrays are decomposed and C f o r  loops are distributed 
with s p l i t F o r  directives. One new feature of this program is the use of a 
"guard strip" for the phio array. The idea is this. A look at the inner com- 
putation loop of 1aplaceS. c shows that the only need for inter-processor 
communication occurs when phio is accessed one step outside of the proces- 
sor's portion of phio. This "nearest neighbor" communications pattern is a 
common problem in parallel programming and MetaMP provides a solution. 
The first thing to do is to add a guard strip to  phio. The statement, 

in the phi0 declaration directive tells MetaMP to allocate an extra strip of 
storage, of width 1, all around the edges of the processor's portion of phio. 
This insures that memory locations such as phioCi-11 Cjl actually exist for 
all legal values of i and j. This is illustrated in Fig 10. The guard strip 
values are meant to map across to the values of phio at the corresponding 
location in the neighboring processor. How are these set? The answer is the 
statement, 

X updateGuard f o r  phio % 

The meaning of this is to perform all the necessary communications so as to 
update all of the guard strips associated with the array phio. The mapping 
of the guard strips and the operation of updateGuard is shown in Fig 11. 

It is important to  note that the guard strips of phio are transparent to 
the programmer. That is, phi0 still behaves as an array of the same size 
and shape as phi,  even though phi  has no guard strip. The guard values are 
located at "illegal" locations of phio, such as phio C-11 [j] , phio [i] [-I] , 
and phio [i] [% s i z e  of phio [I [*I %I. For more details of how the guard 
strips are accomplished in this transparent manner, the reader is referred to 

~ 7 1 .  
The final decision is: "where to put the updateGuard?" The correct 

location is at  the top of the while as shown in Fig 9. This insures that the 
phio guard values will always have their most current values before being 
used. 

Again, there are no restrictions on the problem sizes that can be solved 
by this parallel program. Boundary values can be placed anywhere in the 



*include <s td io .h> 
i n t  H . l ;  
f l o a t  phi[H:2] [I:2] ; X d i s t r i b u t e  X 
f l o a t  phio[H:2] [1:2] ; X d i s t r i b u t e ,  guardStr ip=l  % 
i n t  bndy[H:2] [1:2]; % d i s t r i b u t e  % 
m a i n 0  
{ i n t  i , j , n r u , l ;  

f l o a t  t a p  ; 
FILE *fp;  
pr in t f ("Laplace  Solver f o r  an Hxl region.  Enter  n , l \ n o 4 ) ;  
scanf ("Id Xd" ,&H,U) ; 
% Alloc X 
f o r  (i=O; i<H; ++ i )  %{ % s p l i t F o r  on phi[*] [I X 
f o r  (j=O; j < l ;  ++ j )  %C % s p l i t F o r  on phi[] [*I X 

bndy[i][j] = 0; 
phi[i]  [jl = phio[ i l  [j] = 0 . 0 ;  

XI 
X) 
~ r i n t f  ("Reading i n  bndy d a t a  from bdata .  . .\nl') ; 
f p  = fopen("bdata","r"); 
f scanf  (f  p ,"XdW , & n u )  ; 
f o r  (l=O; l < n u ;  ++I)  f 

fscanf(fp."%d Xd Xf",ki.&j ,&tap) ;  
bndy [i] [j] = I ; X mineonly X 
phio[i] [jl = tmp; X mineonly % 

> 
f c lose ( f  p) ; 
while (1) { 

pr in t f ("Enter  number of i t e r a t i o n s  (nag en t ry  ends run) \nW);  
scanf("Xd",&num); 
if (num < 0)  break; 
f o r  (l=O; l<num; ++I) { 

X updateGuard f o r  phio % 
f o r  ( 1  ; - 1  ; i %{ X s p l i t F o r  on phi[*] % 
f o r  ( 1 ;  1 j %{ X s p l i t F o r  on phi[] [*I X 

ph i c i ]  [j] = 0.25 ( phio[i-I] [j] + phioCi+ll  [jl + 
phio[i] [j-I] + phioCi1 [ j + l l  ) ; 

X3 
X3 
f o r  (i=O; i<H; ++ i )  %f % s p l i t F o r  on ph i  [*I [I % 
f o r  (j=O; j < l ;  ++ j )  %f X s p l i t F o r  on phi[][*] X 

if ( !bndy [i] [j] ) 
~ h i o [ i ]  [j] = p h i c i l  [j] ; 

XI 
X3 

1 
p r i n t 2 f  ("X6.31 " , phio) ; 

1 
e x i t  (0) ; 

3 

Figure 9: laplace .mmp: laplace solver, parallel version. 



Figure 10: The guard strip for phio. Shown here is one processor's portion 
of phio. 

Figure 11: The guard strip mapping and the actions of updateGuard. 



two dimensional mesh, leading to  the possibility of solving highly irregular 
problems with this program. It is striking how much the MetaMP version 
of the laplace solver maps directly to the sequential C version. This isn't a 
general feature of all MetaMP programs, but it is reassuring that it's true for 
this conceptually straightforward parallel algorithm. What we do hope is a 
general feature of MetaMP is it's compactness. It is instructive to compare 
Fig 9 with the direct message passing versions given in Chapter 7 of [18] 
and in [19]. 

A BLAS-2 Routine 

In this section we will present the parallelization of one of the routines from 
the BLAS-2 library [20, 21, 221. Figure 12 shows the sequential program 
mvS. c which will be our template. This program performs the operations 
of s-ge-mv 0 ,  the BLAS-2 matrix-vector multiplier. Some of the options 
of s-ge-mv0 have been left out for clarity (e.g., non-unit strides), but the 
essential operations remain. s-ge-mv0 takes two vectors, x and y, and a 
matrix, A ,  as arguments and performs the assignment, 

Y; + aA;jxj + py;, Vi. 

mvS . c reads in a matrix and two vectors, prompts for a and P, loops over y 
computing the assignment, and prints out y before exiting. A is an M x N 
matrix, x is of length N, and y is of length M. The only slight complication 
arises from the cases: /3 = 0.0, or p = 1.0. In order to avoid needless floating 
point operations, these cases are treated specially by the program. 

The parallel, MetaMP version of this, mv.mmp, is given in figure 13. The 
fundamental decision to make is: "How should the data be distributed?" A 
simple choice is shown in figure 14. The matrix, A, is distributed along it's 
rows, that is, each processor contains all the columns of A. Since there is 
a direct correspondence between y7s subscript and the row subscript of A,  
we decompose y in the same way as the rows of A. This means that each 
processor will be entirely responsible for the computation and assignment 
to  it's elements of y. 

The final choice is the distribution of x. We decide to simply replicate x 
in each processor. This is the correct choice in terms of time, since no inter- 
processor communication of sections of x will be necessary. As for space 
considerations, this really doesn't form a memory bottleneck, in contrast to 
the situation with matmult 1 .mrnp. The reason is that x is not the leading 



#include <stdio.h> 
sdef ine MAX 64 
int M,1; 
float XCMAX] ,Y [NU] ; 
float A [HAXI [HAXI ; 
main0 
{ int i,j,tmp; 

float tmpf.alpha.beta; 
FILE *fp; 
printf("s-ge-mv demo program. Enter alpha, beta\nU); 
scanf("Xf XfU,kalpha,kbeta); 
fp = fopen("testMat","r") ; 
fscanf (fp,"Xd Xd" ,kN,kI) ; 
for (i=O; i<H; ++i) 

for (j=O; j<I; ++j) 
fs~anf(fp,~Xf",kACilCjl); 

f close(f p) ; 
fp = fopen("testVecs","r") ; 
fscanf(fp,"Xd",ktmp); 
if (tmp != 1) 

perror("vector size <-> matrix size mismatch"); 
for (j=O; j<I; ++j) 

fscanf (fp."Xf",kX[jl); 
fscanf (fp,"%dU ,ktmp) ; 
if (tmp != II) 

perror("vector size <-> matrix size mismatch"); 
for (i=O; i<n; ++i) 

fscanf(fp,"Xf",kY[i]); 
fclose(fp) ; 

if (beta != 1.0) 
if (beta == 0.0) 

for (id; i<M; ++i) { 
YCil = 0.0; 

> 
else 

for (i=O; i<H; ++i) 1 
Y [i] = beta*Y [i] ; 

1 
for (i=O; icn; ++i) { 

tmpf = 0.0; 
for (j=O; j<1; ++j) 

tmpf += ACilCj] XCj]; 
Y [i] += alpha tmpf ; 

3 
printf ("Result vector is:\nl') ; 
for (i=O; i<H; ++i) < 

printf ("%8.3f ",Y [i]) ; 
> 
printf ("\nW) ; 
exit(0) ; 

> 

Figure 12: mvS. c: BLAS-2 matrix-vector multiplier, sequential version. 

18 



#include <stdio.h> 
int H,I; 
float XI11 ; X replicate X 
float Y[H:41; X distribute % 
float A[II:4] [I] ; X distribute % 
main () 
{ int i.j,tmp; 

float tmpf,alpha,beta; 
FILE *fp; 

printf("s-ge-mv demo program. Enter alpha, beta\nM); 
scanf("%f %fW,kalpha.kbeta); 
fp = fopen("testHat" ."r") ; 
f scanf (fp ,"Xd Xd" . kH ,Ll) ; 
x Alloc X 
fscan2f(fp,"Xf", A); 
f close (f p) ; 
fp = fopen("testVecs"."r") ; 
fscanf(fp,"Xd",ktmp); 
if (tmp != I) 

perror("vector size <-> matrix size mismatch"); 
fscanlf (fp."Xf", X) ; 
fscanf (fp,"Xd",ktmp) ; 
if (tip != H) 

perror("vector size <-> matrix size mismatch"); 
fscanlf(fp,"%f". Y ) ;  
fclose(fp); 

if (beta != 1.0) 
if (beta == 0.0) 

for (i-0; i<l; ++i) X{ % splitFor on YE*] X 
YCi] = 0.0; 

X) 
else 

for (i=O; i<H; ++i) X{ X splitFor on Y[*I X 
Y [i] = beta*Y [i] ; 

X) 
for (i-0; i<H; ++i) X {  X splitFor on YC*] % 

tmpf = 0.0; 
for (j=O; j<I; ++j) 

tmpf += A[i][jl * XCj]; 
Y [i] += alpha * tmpf ; 

X) 

printf("Resu1t vector is:\nU); 
printif ("X8.3f ", Y) ; 
exit (0) ; 

> 

Figure 13: mv .romp: BLAS-2 matrix-vector multiplier, parallel version. 



Figure 14: The decomposition for mv . mmp. 

term in the expression for the space complexity of the algorithm (A is), and 
the storage cost of replicated x is of the same order as the storage cost of A. 

Once the data distribution has been decided (and specified in the top few 
lines of mv .mmp), the rest of the parallelization is almost trivial. Conventional 
1/0 primitives are replaced by their MetaMP analogs, and the outer loop 
over the members of y is "split" or made parallel by the usual s p l i t F o r  
directive. 

The transformation of mvS. c to mv.mmp literally took only 20 minutes 
and the program functioned correctly the first time. 

That is the good news. Now here is a little bad news. The above 
discussion might lead one to conclude that we have completely succeeded in 
providing a parallel version of the BLAS-2 routine s-ge-mv0. The truth 
is, for realistic cases, mv .mmp as given in figure 13 is inadequate. The root of 
the problem is the choice of decompositions which were made. If we imagine 
mv .mmp to  be converted into a subroutine and embedded within some larger 
linear algebra program, we quickly realize that A, x, and y, will be coming 
from other parts of the program and may not be distributed appropriately. 

The key need is to write distribution independent programs and libraries. 
This is possible to do (at least to a large extent) by exploiting some of 
MetaMP's ob ject-oriented features. We leave this discussion and refer the 
reader to our companion paper on the subject [23]. 



MetaMP as an Object-Oriented System 

MetaMP has some of the attributes of an object-oriented system. When a 
programmer declares a MetaMP data type (i.e., a distributed or replicated 
array), the compiler creates auxiliary variables associated with the array and 
it also emits code that sets the variables a t  run time. These variables specify 
various attributes of the arrays, such as the global and local sizes of the array 
in each dimension, how to map global subscripts to local subscripts (and the 
reverse), whether or not the array is decomposed (for each dimension), and 
so on. Each processor gets a copy of the associated variables. Some of the 
attributes are the same in each processor (such as global sizes), while others 
are distinct from processor to processor (an example is the mapping of global 
to local subscripts). 

Attributes are passed into functions using the s e t  Dcmp directive dis- 
cussed in [23, 171. Attributes are also moved along with array sections as 
they are communicated from processor to processor. For instance, at  the % 
r o l l  . . % statement of matmult2.mmp, the attributes of B are communi- 
cated along with the actual contents of B. This is how the program functions 
correctly for any choice of array sizes. The loops recieve their limits from 
the array attributes; these are changing as the array is moved. This allows 
the loops to dynamically adjust to the current array section size. 

The attributes associated with a MetaMP associated array allows it to 
function much like a c l a s s  in C++. MetaMP directives such as s p l i t F o r  
and r o l l ,  act on instances of the c l a s s  and have access to the p r i v a t e  
data of the c lass .  They are analagous to the mthods or member functions 
of the c lass .  

Instead of implementing the MetaMP directives as a set of classes and 
associated member functions, we have made a (simple) compiler. Why do 
this? Why not implement MetaMP as a set of C++ classes? One answer is 
that the current MetaMP seems to  be easier to learn. One can often start 
with a sequential program (as was done for the programs appearing in this 
paper), decide upon an array distribution strategy, and then add MetaMP 
directives which accomplish the distribution and parallelization. MetaMP 
programs still have the look of their sequential specifications. Because of 
this, their exists the intriguing possibility of a semantics checker (for exam- 
ple, dependency analysis in loops) which could tell the user whether or not 
the meaning of the sequential program has been altered by the MetaMP 
additions. 

There is a bad aspect to MetaMP as a compiler, however. If a user wants 



to  change the way MetaMP operates or add a new attribute to  a MetaMP 
type, he or she cannot. MetaMP is, currently, a "hard-wired" compiler. For 
this reason, we wish to make future versions of MetaMP re-configurable. 
Users will be able to augment the default MetaMP classes and methods 
with their own. 



Figure 15: A 3D, hierarchical decomposition needed for PIC codes, as dis- 
cussed in [24]. 

Plan of Development 

A preliminary version of MetaMP offering support for simple, multi-dimen- 
sional arrays is functional and compiles down to a message passing system 
available on a wide variety of parallel computers. The development plan for 
MetaMP includes the following: 

r Extending MetaMP to include unstructured meshes, hierarchical de- 
compositions such as that shown in Fig 15, scattered decompositions, 
and dynamically changing meshes. This is essential for the support 
of scientific computation. The plan is to motivate the development 
of MetaMP by implementing large, realistic scientific programs in it. 
Currently, the largest program written in MetaMP is a Jacobi Eigen- 
solver taken from Numerical Recipes [25]. 

r Investigation of other message-passing "back ends." Compiling down 
to a shared memory machine is interesting, since even shared memory 
computers achieve higher performance when locality is exploited [26]. 

A Fortran version of MetaMP is straightforward to  implement (MetaMP 
is not a full compiler so this change is less drastic than it sounds). A 



study of the relation between CM Fortran and MetaMP is planned. 

a Currently, MetaMP produces a log file telling the user what trans- 
formations have been done by the compiler. This information can 
be presented to  the user in a more digestible form. An X/Motif-based 
browser tool is being developed which will present the transformations 
clearly. 

Displaying the meaning of distributed loops graphically, such as in 
Fig 7, can be automated and built into MetaMP. This is planned to 
combine with the code browser mentioned above. 

a MetaMP already has some object-oriented features. We need to expose 
these features to the user so that he or she can customize or enhance 
them. 

a Understanding the performance of MetaMP programs versus custom 
programmed codes is essential. It is thought that near-optimal perfor- 
mance is achievable, since the programmer still has control over the 
scheduling of communications. 

Acknowledgements 

I would like to thank both Rik Littlefield of Batelle Pacific Northwest Lab- 
oratories and David Walker of Oak Ridge Nat'l Lab for making many useful 
suggestions helpful to  this research. 

References 

[I] D. Callahan and K. Kennedy. Compiling programs for distributed mem- 
ory multiprocessors. The Journal of Supercomputing, 2:151-69, 1988. 

[2] A.H. Karp and R.G. Babb 11. A comparison of 12 parallel Fortran 
dialects. IEEE Software, 5(5):52-67, 1988. 

[3] E.L. Lusk and R.A. Overbeek. A minimalist approach to portable, par- 
allel programming. In L.H. Jamieson, D.B. Gannon, and R.J. Douglas, 
editors, The Characteristics of Parallel Algorithms, pages 351-62. MIT 
Press, 1987. 



[4] L.H. Hamel, P.J. Hatcher, and M.J. Quinn. An optimizing C* compiler 
for a hypercube multicomputer. In Languages, Compilers, and Run- 
Time Environments for Distributed Memory Machines. Elsevier. To 
appear. 

[5] P. Mehrotra and J. Van Rosendale. The BLAZE language: A parallel 
language for scientific programming. Parallel Computing, 5(3):339-61, 
1987. 

[6] R. Miller and Q.F. Stout. An introduction to  the portable parallel pro- 
gramming language Seymour. In Proceedings of the Thirteenth Annual 
International Computer Software and Applications Conference. IEEE 
Computer Society, 1989. 

[7] A.P. Reeves. Parallel Pascal: An extended Pascal for parallel comput- 
ers. Journal of Parallel and Distributed Computing, 1:64-80, 1984. 

[8] G.W. Sabot. The Paralation Model. MIT Press, 1988. 

[9] A. Rogers and K. Pingali. Process decomposition through locality of 
reference. In Proceedings of the SIGPLAN '89 Conference on Pro- 
gramming Language Design and Implementation, pages 69-80, 1989. 
SIGPLAN Notices 24, 7. 

[lo] M. Rosing, R.B. Schnabel, and R. Weaver. Dino: Summary and ex- 
amples. In The Third Conference on Hypercube Concurrent Computers 
and Applications. ACM Press, 1988. 

[ l l ]  V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive 
environment for data partitioning and distribution. In D .W. Walker 
and Q.F. Stout, editors, Proceedings of the Fifth Distributed Memory 
Computing Conference, pages 1160-70. IEEE Computer Society Press, 
1990. 

[12] J. Li and M. Chen. Index domain alignment: Minimizing cost 
of cross-referencing between distributed arrays. Technical Report 
YALEU/DCS/TR-725, Dept of Computer Science, Yale University, 
1989. 

[13] H.P. Zima, H.J. Bast, and M. Gerndt. SUPERB: A tool for semi- 
automatic mimd/simd parallelization. Parallel Computing, 6:l-18, 
1988. 



[14] E. Gabber. Developing a portable parallelizing Pascal compiler in Pro- 
log. In L. Sterling, editor, The Practice of Prolog. MIT Press, 1990. t o  
be published. 

[15] L. Snyder. Parallel programming and the Poker programming environ- 
ment. IEEE Comput. Mag., 17(7):27-36, July 1984. 

[16] E. Felten and S. Otto. Coherent parallel C. In The Third Conference on 
Hypercube Concurrent Computers and Applications. ACM Press, 1988. 

[17] S.W. Otto. MetaMP users guide. Technical report, Oregon Graduate 
Institute of Science and Technology, 1991. document in preparation. 

[18] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. 
Solving Problems on Concurrent Processors, volume 1. Prentice Hall, 
Englewood Cliffs, NJ, 1988. 

[19] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concur- 
rent Processors, volume 2. Prentice Hall, Englewood Cliffs, NJ, 1990. 

[20] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra 
subprograms for Fortran usage. ACM Trans. Math. Softw., 5:308-23, 
1979. 

[21] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended 
set of Fortran basic linear algebra subprograms. Technical Report 41, 
Mathematics and Computer Science Division, Argonne Nat'l Lab, 1986. 
Available from net 1ibQornl. gov. 

[22] J. Dongarra and D. Sorensen. Linear algebra on high-performance com- 
puters. In U. Schendel, editor, Parallel Computing 85. North Holland, 
1986. 

[23] S. Otto. Distribution independent programming and the saxpy. Tech- 
nical report 91-004, Dept of Computer Science, Oregon Graduate In- 
stitute, 1991. 

[24] P.M. Campbell, E.A. Carmona, and D.W. Walker. Hierarchical domain 
decomposition with unitary load balancing for electromagnetic partic- 
le-in-cell codes. In D.W. Walker and Q.F. Stout, editors, Proceedings of 
the Fifth Distributed Memory Computing Conference. IEEE Computer 
Society Press, 1990. 



[25] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vettering. Nu- 
merical Recipes in C. Cambridge University Press, 1988. 

[26] C. Lin and L. Snyder. A comparison of programming models for shared 
memory multiprocessors. In 1990 International Conference on Parallel 
Processing. The Pennsylvania State University Press, 1990. 

Appendix: A Jacobi Eigensolver 

For those who have not yet had enough, here is a listing of a Jacobi eigen- 
solver written in MetaMP. The solver is adapted from Numerical Recipes 
in C, the main, driver program is taken from Numerical Recipes, Example 
Book (C). 

Itinclude <ra th .h> 
Itinclude <malloc.h> 
Itinclude <s td io .h>  

void j a c o b i o  ; 
void I n t e r a c t  0 ; 

// This  is a complete HetaHP vers ion of jac0biS.c 
// Driver  Program, taken from Iumerica l  Recipes Example Book 

f l o a t  r [lo] ; 
i n t  I P ;  
Itdef i ne  IHAT 3 
f l o a t  d CIP : 41 ; % d i s t r i b u t e  % 
f l o a t  v[IP][IP:4]; % d i s t r i b u t e  X // s t o r e  complete columns of v 
f l o a t  e[IP:4][IP]; % d i s t r i b u t e  % // s t o r e  complete rows of matr ix  
f loa teeCIP:4][ IP] ;  % d i s t r i b u t e %  

i n t  *workList ; 
i n t  *readVorkLis to ;  
typedef s t r u c t  -apar t  { 

f l o a t  rowClO1 ,col  [I01 ; 
) PARTICLE; 
PARTICLE p a r t  [IP:4] ; % d i s t r i b u t e  % 
PARTICLE space[IP:4] ; % d i s t r i b u t e  % 

Itdef i n e  Hypos partDcmp->me [O] 

main ( ) 
C 

i n t  i , j , k , l , n r o t ;  
s t a t i c  i n t  num[4] = {0,3,5,10); 
f l o a t  tmp ; 
FILE *fp;  



for (i=l; i<=mAT; ++i) 
IP = numCi1; 
X Alloc X 
uorkList = readYorkList(!lyPos,"worklist4"); 

for (j=O; jc % gsize of eC*l Cl %; ++j) C 
for (k=O ; k< X gsize of e Cl [*I X ; ++k) I 

fscanf(fp,"Xf",&tmp); 
e Cjl Ckl a tmp ; X mineonly X 
ee[j] [k] = e[j] [k] ; % mineonly % 

1 
1 
jacobi(ee ,nunCi] ,d.v.&nrot) ; 
printf ("matrix number %2d\nm ,i) ; 
printf ("number of jacobi rotations : X3d\n1' ,nrot) ; 
printf("eigenvalues:\n"); 
fmulti(stdout) ; 
for (j=O; j<IP; ++j) %I X splitFor on dC*l X 

printf("X12.6f",dCjl); 
X) 
f singl(stdout) ; 
printf("\neigenvectors:\n"); 
fmulti(stdout) ; 
for (j=O; j<IP; ++j) %{ % splitFor on vcl [*I % 

printf("number X3d \nn,j); 
for (k=O; k<IP; ++k) %I X splitFor on vC*ICl X 
printf (1QX12.6f1',vCkl Cjl) ; 
X) 
printf ("\nu) ; 

X) 
fsingl(stdout); 

// eigenvector test 
fmulti(stdout) ; 
for (j=O; j<lP; ++j) Xi X splitFor on v[I [*I % 

for ( 1 4 ;  1<1P; ++I) X{ X splitFor on eC*ICI % 
r[l] = 0.0; 
for (k=O; k<IP; ++k) X{ X splitFor on eC]C*l X 

r [ll += e C11 Ckl *vCkl C jl ; 
XI 

X) 
printf ("vector nwber %3d\n", j) ; 
printf (" X11s X14s %10s\n","vector","mtrx*vec.", "ratio"); 
for (1x0; l<IP; ++I) X{ X splitFor on eC*] [I X 
printf("E1em lo %2d X12.6f X12.6f %12.6f\n",l, 

v C U  Cjl ,rCll ,rCU/vCll Cjl); 
XI 

X) 
fsingl(stdout); 

printf("Press RETURI to continue ... \nu); 
getchar0 ; 

X Free X 
free(workList); 
> 
fclose(fp); 
exit (0) ; 



int loclrot,iter; 
#define DOTRowCol(sum,ml ,i ,m2, j) sum=0.0; \ 

for (di=O; di<n; ++di) ( \ 
sum += ml [i] [di]+m2[dil [j] ; \ 

> 
void jacobi(a,n,d,v,nrot) 
float **a,d[] ,**v; 
int n,*nrot; 
// 
// Cyclic Jacobi, Factored Form 
// Taken partially from lumerical Recipes, suggestions 
// from R. Littlefield and Y. Eggers. 
// Computes all eigenvalues and eigenvectors of a real symmetric 
// matrix a[O..n-l][O..n-11. On output, a is destroyed. 
// This is in contrast to the routine in lumerical Recipes. 
// d[O..n-11 returns the eigenvalues of a. 
// v[O. .n-11 [O. .n-I] is a matrix whose columns contain, on 
// output, the normalized eigenvectors of a. nrot returns the 
// number of Jacobi rotations that were required. 

X(( X setDcmp of a,v % 
X shape a[lP:41 LIP] ,V[IP] [IP :41 % 

int j,iq.ip.i,di,num; 
int 1; 

// Init V to identity 
for (ip=O; ip<lP; ++ip) XC X splitFor on vC*lCI X 
for (iq=O; iq<lP; ++iq) X C  X splitFor on vC1 [*I X 

if (iq == ip) // subtle!Ieed to get HHP to complain!!! 
v[ipl[iql = 1.0; 

else 
v[ipl[iql = 0.0; 

XI 
X) 

// Copy a and v to row and col of particles 
// Part i stores the ith row of a, ith c01 of v 

for (i=O; i<IP; ++i) XI X splitFor on part [*I X 
for (j=O; j<lP; ++j) %{ X splitFor on vC*l Cl X 

part[il .rov[jl = a[il Cjl; 
part [il .col[jl = v[jl [il ; 

X) 
XI 
loclrot = 0; 
for (iter=l; iter<=lO; ++iter) { 

// normal triang loop within processor 
for (i=O; i<lP; ++i) X{ X splitFor on part[*] X 

for (j=i+i; j<X size of part[*] X; ++j) %( X range of j is IP:4 X 
Interact(kpart [i] ,&part [jl) ; 

X) 
X) 

// the P-1 cycles of the L W - l C  Alg 



for (1~0; l<env.nprocs-I; ++I) C 
computeInterYithProc(~yPos,workList~ll); 

3 
3 

// Copy particles back to a and v 
// Part i stores the ith rou of a, ith col of v 

for (i=O; i<lP; ++i) XC X splitFor on part[*] X 
for (j=O; j<lP; ++j) XC X splitFor on vC*I C1 X 

aCi1 Cjl = part Cil . rouCj1; 
vCjl Cil = partCi1 .colCjl ; 

XI 
%I 

// set returned eigenvalues 
for (ip=O; ip<lP; ++ip) XC X splitFor on dC*l X 

DOTRouCol(dCip] ,a, ip,v .ip) X leave alone X 
X3 
loclrot Xint +=% loclrot; // turn into a global 
enrot = loclrot; 
return; 

X)3 

#define ROTATEcol(p1, j ,p2,1) g=pl->col[j] ; h=p2->colC11 ; \ 
pl->col [j]=g-s+(h+g*tau) ; \ 
p2->col [l]=h+s*(g-h*tau) ; 

#define DOTRouColPart(sum,pl,p2) sum=0.0; \ 
for (di=O; di<lP; ++di) { \ 

sum += pi->row[di] *p2->colCdil; \ 
3 

void Interact(part1 ,part2) 
PARTICLE *partl,*part2; 
C 

float tresh,theta,tau.t,s,h,g,c; 
float a-pq,a-pp,a-qq; 
int di. j ; 

tresh = 0.0; 
DOTRowColPart (a-pq,parti ,part2) 
~ ~ ~ ~ o w ~ o l ~ a r t ( a - p p . p ~ , p ~ t I )  
~0~~ouColPart(a-qq,part2,part2) 
g = 100.0 f abs(a-pq) ; 
if ( (iter>4) tt (fabsca-pp)+g == fabs(a-pp)) 

Lt (fabs(a-qq)+g == fabs(a-qq)) ) { 

3 
else if (fabsca-pq) > tresh) { 

h = a-qq-a-pp; 
if (fabs(h)+g == fabs(h)) { // t = 1/(2*theta) 

t = a-pq/h; 



1 
else C 

theta = 0.5+h/(a-pq); // 11.1.10 
t = 1 .O/(fabs(theta)+sqrt(l.O+theta*theta)); 
if (theta < 0.0) t = -t; 

> 
c = l.O/sqrt(l+t*t); // error in 11.1.11 
s = t*c; 
tau = s/(l.O+c); 
for (j=O; j<IP; ++j) { // update V'tA and V together 

ROTATErorr (part 1 , j ,part 2, j ) 
ROTATEcol(part1, j ,part2. j) 

> 
++locIrot; 

1 
1 


