
Distribution Independent Programming and the
Saxpy

Steve W. Otto

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006- 1999 USA

Technical Report No. CSiE 9 1-004

March, 1991

Distribution Independent Programming and the

Steve W. Ot to
Dept of Computer Science and Engineering

Oregon Graduate Institute of Science and Technology
19600 NW von Neumann Dr, Beaverton, OR, 97006-1999 USA

ottoQcse.ogi.edu
503-690-1486

February 28, 1991

Abstract

We show how to use MetaMP's object-oriented features to write
distribution independent programs. This facilitates the construction
of a distributed-memory, MIMD, software library such as Linpack or
the BLAS.

Introduction

It is generally agreed that distributed-memory parallel computers have the
potential for very high performance. In specific applications this perfor-
mance has been realized. In many cases, however, the parallel programs are
far from matching the functionality of their sequential counterparts. Though
there doesn't seem to be fundamental obstacles to using distributed mem-
ory, MIMD machines for large-scale scientific and engineering computations,
the machines and their associated software environments have proven to be
idiosyncratic and problematical.

To achieve widespread usage, a natural approach to consider is to build
large software libraries of highly functional, optimized components. In some
domains at least, this approach seems to be workable.

In another paper [I], we introduced MetaMP, a set of compile time di-
rectives and a run time system which supports multi-dimensional arrays dis-
tributed on a MIMD machine. MetaMP compiles down to C and Express,

and so is portable across many parallel machines. Here, we wish to con-
centrate on some of MetaMP's ob ject-oriented features and how these may
be applied toward writing distribution independent programs. By this we
mean programs which, at their high level description, remain the same (and
remain correct) as different choices are made for the distribution strategy
of the arrays involved. Distribution independent programs and subroutines
are much more suitable for the construction of a software library.

In this paper we will show how to write MetaMP functions and their
calling programs so that they are distribution independent. As an example,
we illustrate the method with the saxpy0 routine, one of the members of
the BLAS library [2]. We show how this routine can function correctly in a
variety of distribution environments and how this can be embedded within
a distribution independent Gaussian elimination program.

The Saxpy

The saxpy0 is a member of the BLAS library used to add to a vector a
constant times another vector. That is, let y and x be vectors and a some
scalar. Then saxpy (alpha, y , x) computes the assignment:

y; t ax; + y;, V i .

Figure 1 shows a simple sequential program which reads in two vectors,
prompts the user for a, applies saxpy(), and prints out the result. Some of
the options of the real saxpy0 have been left out for clarity (e.g., non-unit
strides), but the essential operations remain.

Figure 2 gives the MetaMP equivalent of figure 1. A brief description of
each of the MetaMP directives appearing in the program follows.

The vectors are distributed across all of the nodes of the machine (this
program is written with the number of processors, 4, wired into the
code). The vectors themselves have length M, and the declaration and
distribution of the vectors is accomplished with:

float X[M:41; % distribute %
float Y[M:4] ; % distribute %

The vectors are allocated at the MetaMP statement:

#include <stdio.h>
*define IlAX 64
int H;
float X [HAXI , Y [HAXI ;

rain ()
inti,tmp;
float alpha;
FILE *fp;
printf ("8-ax-py demo progran. Enter alpha\nU);
scanf ("%f",talpha) ;
fp = fopen("testVecs2","r") ;
f scanf (f p ,"%d" ,&H) ;
for (i=O; i<M; ++i)

fscanf(fp,"%f",tXCiI);
fscanf (fp,"%d",ttmp) ;
if (tap != U) perror("vector size mismatch") ;
for (i=O; i<H; ++i)

fscanf (fp,w%f",&YCil);
fclose(fp);

saxpy(alpha. Y, x, U);

printf("Resu1t vector is:\nU);
for (i=O; i<M; ++i)

printf ("W .3f " .Y ti]) ;
printf ("\nW) ;
exit(0) ;

1

saxpy (alph, y, x, size)
float alph,*y,*x;
int size;
{ int i;

for (i=O; i<size; ++i) {
y [i] += alph x [i] ;

>
>

Figure 1: saxpyS . c: sequential saxpy (1.

#include <stdio.h>
int H;
float X[H:4l; X distribute X
float Y[H:4]; X distribute X

main0
{ int tmp;

float alpha;
FILE *fp;
printf ("0-ax-py demo program. Enter alpha\nU) ;
scanf ("Xf" ,&alpha) ;
fp = f0pen(*~tastVecs2","r") ;
f scanf (fp,"Xd0 ,&H) ;
% Alloc %
fscanlf(fp,"Xf". X) ;
fscanf(fp,"XdU,&tmp);
if (tap != H) Perr~r("~e~tor size mismatch");
fscanlf(fp,"Xf", Y) ;
f close(fp) ;

printf("Resu1t vector is:\nU);
printlf("X8.3f ", Y) ;
exit (0) ;

>
saxpy(alph, y, x)
float alph;
float *y.+x;
X{{ X setDcmp of y ,x X

int i ;
for (i*; i<X gsize of y[*] %; ++i) %{ X splitFor on yC*] X

y Cil += alph x Cil ;
X)

Figure 2: saxpy . mmp: parallel saxpy () , first version.

% Alloc %

MetaMP creates, along with a distributed array, an associated data
structure (the Dcmp structure) which gives the run time attributes
of the array. Each processor has a copy of this structure and it is
computed at allocation time. The attributes are such things as: the
starting and ending points of this processor's portion of the array, for
each dimension of the array; the global sizes of the array; whether or
not the array has associated guard strips; and so on. Some of the
attributes vary from processor to processor.

The data for the vectors are read in by the MetaMP library routine
f scanlf 0. We do not wish to discuss I/O here; it is covered in detail
in the user's guide [3].

The actual call to saxpy0 is made much like that in the sequential
case. The one difference is that the size of the vectors is not supplied
as an argument. Since the vectors are MetaMP objects, their sizes
are available from the Dcmp structure. But which Dcmp structure?
After all, in the specification of saxpy0, y and x are merely dummy
arguments. The MetaMP directive, % setDcmp of y , x %, answers
this question. When saxpy () is called, setDcmp associates the correct
Dcmp structure with y and x. This means that, within saxpy0, one
can query the Dcmp structure for attributes of the argument arrays.

The statement, % g s i z e of yC*l %, is precisely such a query. This
one says to return the global size of the array y in it's 1st dimension.
That is, writing this is equivalent to writing M. By the way, calling this
a "query" may cause one to suspect that this is a slow operation, but
this isn't true. MetaMP inline expands such queries to a simple access
of memory.

At this point, the f o r within saxpy0 is a loop over the entire vector,
y. The final directive, spl i tFor on YE*], turns this into a parallel
loop. It causes each processor to loop over only those members of y
which are stored in this processor. Again, this is done efficiently - the
upper limit of the loop is modified to this processor's % s i z e of y [*I
% attribute.

This complete our discussion of saxpy .mmp. As specified, the saxpy0
routine can be used on any vector object. In many linear algebra contexts,

however, we wish to run the routine on rows or columns of a distributed
matrix.

Using the Saxpy in Other Contexts

In a real linear algebra application, for instance, Gaussian elimination, we
need to run the saxpy0 on two vectors, where the vectors are rows of a
matrix. The sequential program in figure 3 shows the sort of operation we
need to perform. X and Y are set to point at the beginning of the rows of A,
they are fed into saxpy0, and it works.

Now let's look at how we would do this in MetaMP. We begin by dis-
tributing the matrix, A, in the row direction. We will treat the other cases
(column-wise and two-dimensional distribution) later. Figure 4 gives the
correct MetaMP analog of saxpyS2. c. Let us discuss the new MetaMP
directives in order:

The declarations,

f l o a t X [N] ; % r ep l i ca te %
f l o a t Y [N] ; % r ep l i ca te %
f l o a t A[M:4] [NI ; % d i s t r i b u t e %

distribute A row-wise across the machine, and give each processor a
copy of X and Y.

The directives,

X = A[5] ; % s e t t o subarray AC51 [*I, copy t o a l l %
Y = A[2] ; % s e t t o subarray A121 [*I %

cause the following to happen. In the processor which contains A C51 [*I
(row 5 of A), the pointer X is set to point at it, and the s e t ? attribute
of X is assigned TRUE. In other processors, the s e t ? attribute of X is
assigned FALSE. In the processor which contains AC21 [*I (row 2 of
A), the pointer Y is set to point at it, and the s e t ? attribute of Y is
assigned TRUE. In other processors, the s e t ? attribute of Y is assigned
FALSE.

The second directive on X in the above, copy t o a l l , causes the set
X to be copied to all other replicas of X, that is, a broadcast occurs to

t i n c l u d e <s td io .h>
i n t H , I ;
f l o a t KC#]; X r e p l i c a t e X
f l o a t Y C I] ; X r e p l i c a t e X
f l o a t A[ll:4] [a ; X d i s t r i b u t e %

r a i n 0
{ i n t i . tmp.origin;

f l o a t a lpha ;
FILE *fp;
p r i n t f ("s-ax-py demo program. Enter alpha\nm) ;
scanf ("Xf",kalpha) ;
f p = f open("testllat","r") ;
f s can f (fp,"Xd Xd",kll,kI);
X Alloc X
f scan2f (fp , "Xf" , A) ;
f c l o s e (f p) ;

X = A[5] ; % s e t t o subarray A[5] [*I , copy t o a l l %
Y = A[2]; % s e t t o subarray A[2l [*I %
saxpy (alpha, Y , X) ;

pr in t f (" l e su1 t vec to r i s : \ n U) ;
p r i n t I f (" U . 3 f ". Y);
e x i t (0) ;

>
saxpy(a lph , y , x)
f l o a t a lph;
f l o a t *y,*x;
%(C % SetDcmp of y .x %

i n t i ;

if (X y s e t ? X k t % x s e t ? %) C
f o r (i=O; i < X g s i z e o f y[*l X ; ++i) XC X s p l i t F o r on YE*] X

y [i] += alph * x[i l ;
XI

>
XI)

Figure 4: saxpy2 .mp: MetaMP version of saxpyS2. c.

tinclude Cstdi0.h)

int H , J ;
float X[1:4]; % distribute %
float Y[1:4] ; % distribute %
float ACH] [J:a ; X distribute %

... Tho rest is the same

Figure 5: saxpy3. mmp: column-wise version of saxpy2. mmp.

all the replicas so that each processor has row 5 of A. This is done so
that some processor actually contains both X and Y. Doing this as a
broadcast is appropriate - in Gaussian elimination, for example, one
is running a saxpy() of one row of the matrix with all the rows of
the matrix below it. The copy also has the effect of setting the set?
attribute of X to TRUE in all processors.

Finally, we wish to run the saxpy() only in those processors in which
both X and Y have been set, that is, where they are both valid. This
is accomplished inside the routine by the statement:

if (% y set? % && % x set? %)

Other Data Distribution Choices

The methods employed in saxpy2 .mmp have given us distribution indepen-
dence. We can now vary the distribution of the matrix and still have correct
behavior.

Column-wise Distribution

To change saxpy2 . m p to a column-wise distribution, the array declarations
need to be modified to that shown in figure 5. With these declarations, the
distribution is column-wise and the program is still correct. Here are a few
comments about this case.

Processors no longer contain entire rows, and so, each processor has
only apa r t of X and Y.

i n t R , l ;
f l o a t X[I:2] ; % d i s t r i b u t e on [I [*I, r e p l i c a t e on [*I [I %
f l o a t Y[l:2]; % d i s t r i b u t e on [I [*I, r e p l i c a t e on [*I [I %
f l o a t A[H:2][1:2]; % d i s t r i b u t e %

. . . The r e s t is t h e name

Figure 6: saxpy4 .mmp: two-dimensional version of saxpy2 .mmp.

There is no need to replicate the vectors, and there is no problem
in getting the valid X and Y together in the same processor. This,
in turn, implies that a broadcast (the copy t o a l l directive) isn't
necessary. MetaMP knows this, however, since it knows how the arrays
are distributed. Therefore, even though the copy t o a l l directive
remains in the program, no code to actually do a broadcast is emitted
by the MetaMP compiler.

The saxpy0 routine continues to function correctly.

Two-Dimensional Distribution

Now we wish to distribute the matrix in both the row direction and the col-
umn direction. Figure 6 gives the declaration syntax for this case. Notable
features of this case are listed below.

In this case, the vectors are distributed in the column direction but
need to be replicated in the row direction. A mixed directive like this
is available in MetaMP and shown in figure 6. The directions are
specified with the usual [I [*I, [*I [I, notation.

The copy t o a l l directive now causes a broadcast to occur only to
the set of replicas of X. That is, a broadcast in the row direction is
emitted by the MetaMP compiler.

Again, the saxpy0 routine functions correctly.

Actual Runs
To show that these are real programs, we give the output of them operating
on some test data. Here is the test data and the result of running the

sequential program, saxpyS2. c, on it:

i l i a m a % ca t tes t l la t
9 7
-5.726 -3.622 4.902 -4.336 -7.347 -4.286 -0.158
-0.797 4.693 -6.129 1.932 0.714 4.449 1.977
0.320 -6.667 -5.266 -4.886 3.900 4.171 2.433
3.902 6.757 6.638 3.588 0.322 -0.101 2.179
3.090 3.075 1.011 5.363 7.453 -2.087 -6.973
-7.894 1.627 0.869 -0.691 -1.680 2.740 -6.759
7.034 -0.811 3.218 -0.646 0.522 5.952 2.467
-3.578 2.123 -3.100 -7.676 0.880 -4.462 3.912
-6.797 3.438 -1.910 4.292 -1.487 7.102 1.656
i l i a m a % saxpyS2
s-ax-py demo program. Enter alpha
.56
Result vector is:

-4.101 -5.756 -4.779 -5.273 2.959 5.705 -1.352

Here is the run of saxpy2.mmp (cubix is the Express interface to the
parallel machine):

iliamnax cubix -n4 saxpy2
Allocated 4 nodes, o r ig in a t 0 , process i d 0 .
Loading f i l e saxpy2 t o nodes 0-3
a-ax-py demo program. Enter alpha
.56
Result vector is:
Processor 0 has:

-4.101 -5.756 -4.779 -5.273 2.959 5.705
Processor 1 has:

0.000 0.000 0.000 0.000 0.000 0.000 0.000
Processor 2 has:

0.000 0.000 0.000 0.000 0.000 0.000 0.000
Processor 3 has:

0.000 0.000 0.000 0.000 0.000 0.000 0.000
System 0:15 User 0:3
CUBIX: e x i t s t a t u s 0

Note that the saxpy was computed only in processor 0, which is where Y
was located.

Here is the run of saxpy3. mmp:

i l i a m a % cubix -n4 saxpy3
Allocated 4 nodes, o r ig in a t 0 , process i d 0.
Loading f i l e saxpy3 t o nodes 0-3
s-ax-py demo program. Enter alpha
.56
Result vector is:
Processor 0 has:

-4.101 -5.756
Processor 1 has:

-4.779 -5.273
Processor 3 has:

2.959 5.705

Processor 2 has:
-1.352

System 0:14 User 0 :3
CUBIX: e x i t s t a t u s 0

Now a l l of the processors have a section of Y, and so they all contribute to
the computation.

Here is the run of saxpy4 .mmp:

i l i a m a % cubix -n4 saxpy4
Al located 4 nodes, o r i g i n a t 0 , process i d 0 .
Loading f i l e saxpy2 t o nodes 0-3
s-ax-py demo program. En te r a lpha
.56
Resul t vec to r is:
Processor 0 has:

-4.101 -5.766 -4.779 -5.273
Processor 1 has:

2.969 5.705 -1.352
Processor 2 has:

0 . m 0.000 0.000 0.000
Processor 3 has :

0.000 0 . m 0.ooo
System 0:16 User 0 :3
CUBIX: e x i t s t a t u s 0

This is the mixed case. Two processors participate in the saxpy0, while
the other two don't.

A More Realistic Program
Finally, we give a more realistic program using our parallel saxpy0. It
is shown in figure 7, and it zeros out all elements below the diagonal of
the first column of the matrix by doing the appropriate saxpy0 operation.
A complete Gaussian elimination program is not far behind. Here it is in
operation, on the same test matrix as before:

iliama% cubix -n4 ge
Allocated 4 nodes, origin at 0, process id 0.
Loading file ge to nodes 0-3
ge demo program.
Matrix is:
Processor 0 has:
-5.726 -3.622 4.902 -4.336 -7.347 -4.286 -0.158
-0.000 5.197 -6.811 2.536 1.737 5.046 1.999
0.000 -6.869 -4.992 -5.128 3.489 3.931 2.424

Processor I has:
-0.000 4.289 9.978 0.633 -4.685 -3.022 2.071
0.000 1.120 3.656 3.023 3.488 -4.400 -7.058

Processor 3 has:
-0.000 6.620 -5.889 5.287 8.449 8.649 -6.541
0.000 -5.260 9.240 -5.972 -8.503 0.687 2.273

Processor 2 has:
-0.000 4.386 -6.163 -4.967 5.471 -1.784 4.011
0.000 7.737 -7.729 9.439 7.234 12.190 1.844

System 0:lS User 0:1
CUBIX: exit status 0
iliama%

References

[I] S. Otto. MetaMP: A higher level abstraction for message-passing pro-
gramming. Technical report 91-003, Dept of Computer Science, Oregon
Graduate Institute, 1991.

[2] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Softw., 5:308-23,
1979.

[3] S.W. Otto. MetaMP users guide. Technical report, Oregon Graduate
Institute of Science and Technology, 1991. document in preparation.

t i n c l u d e < s t d i o .h>
i n t H,I;
f l o a t X[II ; X r e p l i c a t e X
f l o a t Y [I] ; X r e p l i c a t e X
f l o a t A[U:4] [I] ; X d i s t r i b u t e %

r a i n 0
(i n t i , tmp ,o r ig in ;

f l o a t a lpha;
FILE *fp;
p r i n t f ("ge demo program.\nM) ;
f p = fopen("testUat", '*r") ;
f scanf (fp ,"Xd Xd" ,kU ,&I) ;
X Alloc X
fscan2f(fp."Xf", A) ;
f c l o s e (f p) ;

X = A[O] ; % s e t t o subarray A101 [*I, copy t o a l l %

f o r (i 31 ; i<U; ++ i) %C X s p l i t F o r on A[*] [I %
a lpha = -A [i] [O] / X [O] ;
Y n A[i]; % s e t t o subarray A C i] [*I %
saxpy(alpha, Y, X) ;

XI

p r i n t f ("Hatrix is :\nu) ;
print2f("%8.3f ", A);
e x i t (0) ;

I

saxpy (a lph , y , x)
f l o a t a lph ;
f l o a t *y.*x;
%{{ % SetDcmp of y .x %

i n t i ;

if (X y s e t ? X Lt X x s e t ? %) I
f o r (i=O; i<X g s i z e of y [*I %; ++i) X { X s p l i t F o r on y [*I X

y [il += a lph * x[i] ;
XI

I
XI)

Figure 7: ge .mmp: zero-out first column, using saxpy0

