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Abstract 

We show how to use MetaMP's object-oriented features to write 
distribution independent programs. This facilitates the construction 
of a distributed-memory, MIMD, software library such as Linpack or 
the BLAS. 

Introduction 

It  is generally agreed that distributed-memory parallel computers have the 
potential for very high performance. In specific applications this perfor- 
mance has been realized. In many cases, however, the parallel programs are 
far from matching the functionality of their sequential counterparts. Though 
there doesn't seem to  be fundamental obstacles to using distributed mem- 
ory, MIMD machines for large-scale scientific and engineering computations, 
the machines and their associated software environments have proven to be 
idiosyncratic and problematical. 

To achieve widespread usage, a natural approach to consider is to build 
large software libraries of highly functional, optimized components. In some 
domains at  least, this approach seems to be workable. 

In another paper [I], we introduced MetaMP, a set of compile time di- 
rectives and a run time system which supports multi-dimensional arrays dis- 
tributed on a MIMD machine. MetaMP compiles down to C and Express, 



and so is portable across many parallel machines. Here, we wish to con- 
centrate on some of MetaMP's ob ject-oriented features and how these may 
be applied toward writing distribution independent programs. By this we 
mean programs which, at their high level description, remain the same (and 
remain correct) as different choices are made for the distribution strategy 
of the arrays involved. Distribution independent programs and subroutines 
are much more suitable for the construction of a software library. 

In this paper we will show how to write MetaMP functions and their 
calling programs so that they are distribution independent. As an example, 
we illustrate the method with the saxpy0 routine, one of the members of 
the BLAS library [2]. We show how this routine can function correctly in a 
variety of distribution environments and how this can be embedded within 
a distribution independent Gaussian elimination program. 

The Saxpy 

The saxpy0 is a member of the BLAS library used to add to a vector a 
constant times another vector. That is, let y and x be vectors and a some 
scalar. Then saxpy (alpha, y , x) computes the assignment: 

y; t ax; + y;, V i .  

Figure 1 shows a simple sequential program which reads in two vectors, 
prompts the user for a, applies saxpy(), and prints out the result. Some of 
the options of the real saxpy0 have been left out for clarity (e.g., non-unit 
strides), but the essential operations remain. 

Figure 2 gives the MetaMP equivalent of figure 1. A brief description of 
each of the MetaMP directives appearing in the program follows. 

The vectors are distributed across all of the nodes of the machine (this 
program is written with the number of processors, 4, wired into the 
code). The vectors themselves have length M, and the declaration and 
distribution of the vectors is accomplished with: 

float X[M:41; % distribute % 
float Y[M:4] ; % distribute % 

The vectors are allocated at the MetaMP statement: 



#include <stdio.h> 
*define IlAX 64 
int H; 
float X [HAXI , Y [HAXI ; 

rain () 
inti,tmp; 
float alpha; 
FILE *fp; 
printf ("8-ax-py demo progran. Enter alpha\nU); 
scanf ("%f",talpha) ; 
fp = fopen("testVecs2","r") ; 
f scanf (f p ,"%d" ,&H) ; 
for (i=O; i<M; ++i) 

fscanf(fp,"%f",tXCiI); 
fscanf (fp,"%d",ttmp) ; 
if (tap != U) perror("vector size mismatch") ; 
for (i=O; i<H; ++i) 

fscanf (fp,w%f",&YCil); 
fclose(fp); 

saxpy( alpha. Y, x, U); 

printf("Resu1t vector is:\nU); 
for (i=O; i<M; ++i) 

printf ("W .3f " .Y ti]) ; 
printf ("\nW) ; 
exit(0) ; 

1 

saxpy ( alph, y, x,  size ) 
float alph,*y,*x; 
int size; 
{ int i; 

for (i=O; i<size; ++i) { 
y [i] += alph x [i] ; 

> 
> 

Figure 1: saxpyS . c:  sequential saxpy (1. 



#include <stdio.h> 
int H; 
float X[H:4l; X distribute X 
float Y[H:4]; X distribute X 

main0 
{ int tmp; 

float alpha; 
FILE *fp; 
printf ("0-ax-py demo program. Enter alpha\nU) ; 
scanf ("Xf" ,&alpha) ; 
fp = f0pen(*~tastVecs2","r") ; 
f scanf (fp,"Xd0 ,&H) ; 
% Alloc % 
fscanlf(fp,"Xf". X ) ;  
fscanf(fp,"XdU,&tmp); 
if (tap != H) Perr~r("~e~tor size mismatch"); 
fscanlf(fp,"Xf", Y ) ;  
f close(fp) ; 

printf("Resu1t vector is:\nU); 
printlf("X8.3f ", Y ) ;  
exit ( 0 )  ; 

> 
saxpy( alph, y, x) 
float alph; 
float *y.+x; 
X{{ X setDcmp of y ,x X 

int i ;  
for (i*; i<X gsize of y[*] %; ++i) %{ X splitFor on yC*] X 

y Cil += alph x Cil ; 
X) 

Figure 2: saxpy . mmp: parallel saxpy () , first version. 



% Alloc % 

MetaMP creates, along with a distributed array, an associated data 
structure (the Dcmp structure) which gives the run time attributes 
of the array. Each processor has a copy of this structure and it is 
computed at allocation time. The attributes are such things as: the 
starting and ending points of this processor's portion of the array, for 
each dimension of the array; the global sizes of the array; whether or 
not the array has associated guard strips; and so on. Some of the 
attributes vary from processor to  processor. 

The data for the vectors are read in by the MetaMP library routine 
f scanlf  0. We do not wish to discuss I/O here; it is covered in detail 
in the user's guide [3]. 

The actual call to saxpy0 is made much like that in the sequential 
case. The one difference is that the size of the vectors is not supplied 
as an argument. Since the vectors are MetaMP objects, their sizes 
are available from the Dcmp structure. But which Dcmp structure? 
After all, in the specification of saxpy0,  y and x are merely dummy 
arguments. The MetaMP directive, % setDcmp of y , x  %, answers 
this question. When saxpy () is called, setDcmp associates the correct 
Dcmp structure with y and x. This means that, within saxpy0,  one 
can query the Dcmp structure for attributes of the argument arrays. 

The statement, % g s i z e  of  yC*l %, is precisely such a query. This 
one says to  return the global size of the array y in it's 1st dimension. 
That is, writing this is equivalent to writing M. By the way, calling this 
a "query" may cause one to suspect that this is a slow operation, but 
this isn't true. MetaMP inline expands such queries to a simple access 
of memory. 

At this point, the f o r  within saxpy0 is a loop over the entire vector, 
y. The final directive, spl i tFor on YE*], turns this into a parallel 
loop. It causes each processor to loop over only those members of y 
which are stored in this processor. Again, this is done efficiently - the 
upper limit of the loop is modified to  this processor's % s i z e  of y [*I 
% attribute. 

This complete our discussion of saxpy .mmp. As specified, the saxpy0 
routine can be used on any vector object. In many linear algebra contexts, 



however, we wish to run the routine on rows or columns of a distributed 
matrix. 

Using the Saxpy in Other Contexts 

In a real linear algebra application, for instance, Gaussian elimination, we 
need to  run the saxpy0 on two vectors, where the vectors are rows of a 
matrix. The sequential program in figure 3 shows the sort of operation we 
need to perform. X and Y are set to point at the beginning of the rows of A, 
they are fed into saxpy0,  and it works. 

Now let's look at how we would do this in MetaMP. We begin by dis- 
tributing the matrix, A, in the row direction. We will treat the other cases 
(column-wise and two-dimensional distribution) later. Figure 4 gives the 
correct MetaMP analog of saxpyS2. c. Let us discuss the new MetaMP 
directives in order: 

The declarations, 

f l o a t  X [N] ; % r ep l i ca te  % 
f l o a t  Y [N] ; % r ep l i ca te  % 
f l o a t  A[M:4] [NI ; % d i s t r i b u t e  % 

distribute A row-wise across the machine, and give each processor a 
copy of X and Y. 

The directives, 

X = A[5] ; % s e t  t o  subarray AC51 [*I, copy t o  a l l  % 
Y = A[2] ; % s e t  t o  subarray A121 [*I % 

cause the following to happen. In the processor which contains A C51 [*I 
(row 5 of A), the pointer X is set to point at it, and the s e t ?  attribute 
of X is assigned TRUE. In other processors, the s e t ?  attribute of X is 
assigned FALSE. In the processor which contains AC21 [*I (row 2 of 
A), the pointer Y is set to point at it, and the s e t ?  attribute of Y is 
assigned TRUE. In other processors, the s e t ?  attribute of Y is assigned 
FALSE. 

The second directive on X in the above, copy t o  a l l ,  causes the set 
X to be copied to all other replicas of X, that is, a broadcast occurs to 





t i n c l u d e  <s td io .h> 
i n t  H , I ;  
f l o a t  KC#]; X r e p l i c a t e  X 
f l o a t  Y C I ]  ; X r e p l i c a t e  X 
f l o a t  A[ll:4] [a ; X d i s t r i b u t e  % 

r a i n 0  
{ i n t  i . tmp.origin;  

f l o a t  a lpha ;  
FILE *fp;  
p r i n t f  ("s-ax-py demo program. Enter  alpha\nm) ; 
scanf  ("Xf",kalpha) ; 
f p  = f open("testllat","r") ; 
f s can f  (fp,"Xd Xd",kll,kI); 
X Alloc  X 
f scan2f ( fp ,  "Xf"  , A) ; 
f c l o s e ( f p )  ; 

X = A[5] ; % s e t  t o  subarray A[5] [*I , copy t o  a l l  % 
Y = A[2]; % s e t  t o  subarray  A[2l [*I % 
saxpy (alpha,  Y ,  X) ; 

pr in t f ( " l e su1 t  vec to r  i s : \ n U ) ;  
p r i n t I f ( " U . 3 f  ". Y); 
e x i t  ( 0 )  ; 

> 
saxpy( a lph ,  y ,  x) 
f l o a t  a lph;  
f l o a t  *y,*x; 
%(C % SetDcmp of y .x % 

i n t  i ;  

if (X y s e t ?  X k t %  x s e t ?  %) C 
f o r  (i=O; i < X  g s i z e  o f  y[*l X ;  ++i )  XC X s p l i t F o r  on YE*] X 

y  [i] += alph * x[ i l  ; 
XI 

> 
XI) 

Figure 4: saxpy2 .mp: MetaMP version of saxpyS2. c. 



tinclude Cstdi0.h) 

int H , J ;  
float X[1:4];  % distribute % 
float Y[1:4] ; % distribute % 
float ACH] [J:a ; X distribute % 

... Tho rest is the same 

Figure 5: saxpy3. mmp: column-wise version of saxpy2. mmp. 

all the replicas so that each processor has row 5 of A. This is done so 
that some processor actually contains both X and Y. Doing this as a 
broadcast is appropriate - in Gaussian elimination, for example, one 
is running a saxpy() of one row of the matrix with all the rows of 
the matrix below it. The copy also has the effect of setting the set? 
attribute of X to  TRUE in all processors. 

Finally, we wish to  run the saxpy() only in those processors in which 
both X and Y have been set, that is, where they are both valid. This 
is accomplished inside the routine by the statement: 

if (% y set? % && % x set? %) 

Other Data Distribution Choices 

The methods employed in saxpy2 .mmp have given us distribution indepen- 
dence. We can now vary the distribution of the matrix and still have correct 
behavior. 

Column-wise Distribution 

To change saxpy2 . m p  to a column-wise distribution, the array declarations 
need to  be modified to  that shown in figure 5. With these declarations, the 
distribution is column-wise and the program is still correct. Here are a few 
comments about this case. 

Processors no longer contain entire rows, and so, each processor has 
only apa r t  of X and Y. 



i n t  R , l ;  
f l o a t  X[I:2] ; % d i s t r i b u t e  on [I [*I, r e p l i c a t e  on [*I [I % 
f l o a t  Y[l:2]; % d i s t r i b u t e  on [I [*I, r e p l i c a t e  on [*I [I % 
f l o a t  A[H:2][1:2]; % d i s t r i b u t e  % 

. . . The r e s t  is t h e  name 

Figure 6: saxpy4 .mmp: two-dimensional version of saxpy2 .mmp. 

There is no need to replicate the vectors, and there is no problem 
in getting the valid X and Y together in the same processor. This, 
in turn, implies that a broadcast (the copy t o  a l l  directive) isn't 
necessary. MetaMP knows this, however, since it knows how the arrays 
are distributed. Therefore, even though the copy t o  a l l  directive 
remains in the program, no code to actually do a broadcast is emitted 
by the MetaMP compiler. 

The saxpy0 routine continues to function correctly. 

Two-Dimensional Distribution 

Now we wish to distribute the matrix in both the row direction and the col- 
umn direction. Figure 6 gives the declaration syntax for this case. Notable 
features of this case are listed below. 

In this case, the vectors are distributed in the column direction but 
need to  be replicated in the row direction. A mixed directive like this 
is available in MetaMP and shown in figure 6. The directions are 
specified with the usual [I [*I, [*I [I, notation. 

The copy t o  a l l  directive now causes a broadcast to occur only to 
the set of replicas of X. That is, a broadcast in the row direction is 
emitted by the MetaMP compiler. 

Again, the saxpy0 routine functions correctly. 

Actual Runs 
To show that these are real programs, we give the output of them operating 
on some test data. Here is the test data and the result of running the 



sequential program, saxpyS2. c, on it: 

i l i a m a %  ca t  tes t l la t  
9 7 
-5.726 -3.622 4.902 -4.336 -7.347 -4.286 -0.158 
-0.797 4.693 -6.129 1.932 0.714 4.449 1.977 
0.320 -6.667 -5.266 -4.886 3.900 4.171 2.433 
3.902 6.757 6.638 3.588 0.322 -0.101 2.179 
3.090 3.075 1.011 5.363 7.453 -2.087 -6.973 
-7.894 1.627 0.869 -0.691 -1.680 2.740 -6.759 
7.034 -0.811 3.218 -0.646 0.522 5.952 2.467 
-3.578 2.123 -3.100 -7.676 0.880 -4.462 3.912 
-6.797 3.438 -1.910 4.292 -1.487 7.102 1.656 
i l i a m a %  saxpyS2 
s-ax-py demo program. Enter alpha 
.56 
Result vector is: 

-4.101 -5.756 -4.779 -5.273 2.959 5.705 -1.352 

Here is the run of saxpy2.mmp (cubix is the Express interface to the 
parallel machine): 

iliamnax cubix -n4 saxpy2 
Allocated 4 nodes, o r ig in  a t  0 ,  process i d  0 .  
Loading f i l e  saxpy2 t o  nodes 0-3 . . . . 
a-ax-py demo program. Enter alpha 
.56 
Result vector is: 
Processor 0 has: 

-4.101 -5.756 -4.779 -5.273 2.959 5.705 
Processor 1 has: 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Processor 2 has: 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Processor 3 has: 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
System 0:15 User 0:3 
CUBIX: e x i t  s t a t u s  0 

Note that the saxpy was computed only in processor 0, which is where Y 
was located. 

Here is the run of saxpy3. mmp: 

i l i a m a %  cubix -n4 saxpy3 
Allocated 4 nodes, o r ig in  a t  0 ,  process i d  0. 
Loading f i l e  saxpy3 t o  nodes 0-3 .... 
s-ax-py demo program. Enter alpha 
.56 
Result vector is: 
Processor 0 has: 

-4.101 -5.756 
Processor 1 has: 

-4.779 -5.273 
Processor 3 has: 

2.959 5.705 



Processor 2 has:  
-1.352 

System 0:14 User 0 :3  
CUBIX: e x i t  s t a t u s  0 

Now a l l  of the processors have a section of Y, and so they all contribute to 
the computation. 

Here is the run of saxpy4 .mmp: 

i l i a m a %  cubix -n4 saxpy4 
Al located  4 nodes, o r i g i n  a t  0 ,  process  i d  0 .  
Loading f i l e  saxpy2 t o  nodes 0-3 .... 
s-ax-py demo program. En te r  a lpha  
.56 
Resul t  vec to r  is: 
Processor  0 has:  

-4.101 -5.766 -4.779 -5.273 
Processor  1 has:  

2.969 5.705 -1.352 
Processor 2 has:  

0 . m  0.000 0.000 0.000 
Processor 3 has :  

0.000 0 . m  0.ooo 
System 0:16 User 0 :3  
CUBIX: e x i t  s t a t u s  0 

This is the mixed case. Two processors participate in the saxpy0,  while 
the other two don't. 



A More Realistic Program 
Finally, we give a more realistic program using our parallel saxpy0. It  
is shown in figure 7, and it zeros out all elements below the diagonal of 
the first column of the matrix by doing the appropriate saxpy0 operation. 
A complete Gaussian elimination program is not far behind. Here it is in 
operation, on the same test matrix as before: 

iliama% cubix -n4 ge 
Allocated 4 nodes, origin at 0, process id 0. 
Loading file ge to nodes 0-3 .... 
ge demo program. 
Matrix is: 
Processor 0 has: 
-5.726 -3.622 4.902 -4.336 -7.347 -4.286 -0.158 
-0.000 5.197 -6.811 2.536 1.737 5.046 1.999 
0.000 -6.869 -4.992 -5.128 3.489 3.931 2.424 

Processor I has: 
-0.000 4.289 9.978 0.633 -4.685 -3.022 2.071 
0.000 1.120 3.656 3.023 3.488 -4.400 -7.058 

Processor 3 has: 
-0.000 6.620 -5.889 5.287 8.449 8.649 -6.541 
0.000 -5.260 9.240 -5.972 -8.503 0.687 2.273 

Processor 2 has: 
-0.000 4.386 -6.163 -4.967 5.471 -1.784 4.011 
0.000 7.737 -7.729 9.439 7.234 12.190 1.844 

System 0:lS User 0:1 
CUBIX: exit status 0 
iliama% 
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t i n c l u d e  < s t d i o  .h> 
i n t  H,I;  
f l o a t  X[II ; X r e p l i c a t e  X 
f l o a t  Y [I] ; X r e p l i c a t e  X 
f l o a t  A[U:4] [I] ; X d i s t r i b u t e  % 

r a i n 0  
( i n t  i , tmp ,o r ig in ;  

f l o a t  a lpha;  
FILE *fp;  
p r i n t f  ("ge demo program.\nM) ; 
f p  = fopen("testUat", '*r") ; 
f scanf ( fp  ,"Xd Xd" ,kU ,&I)  ; 
X Alloc X 
fscan2f(fp."Xf", A ) ;  
f c l o s e ( f p ) ;  

X = A[O] ; % s e t  t o  subarray  A101 [*I, copy t o  a l l  % 

f o r  ( i 31 ;  i<U; ++ i )  %C X s p l i t F o r  on A[*] [I % 
a lpha  = -A [i] [O] / X  [O] ; 
Y n A[i]; % s e t  t o  subarray A C i ]  [*I % 
saxpy(alpha, Y,  X) ; 

XI 

p r i n t f  ("Hatrix is :\nu) ; 
print2f("%8.3f ", A); 
e x i t ( 0 )  ; 

I 

saxpy ( a lph ,  y , x) 
f l o a t  a lph ;  
f l o a t  *y.*x; 
%{{ % SetDcmp of y .x % 

i n t  i ;  

if (X y s e t ?  X Lt X x s e t ?  %) I 
f o r  (i=O; i<X g s i z e  of y [*I %; ++i) X {  X s p l i t F o r  on y [*I X 

y [il += a lph  * x[i] ; 
XI 

I 
XI) 

Figure 7: ge .mmp: zero-out first column, using saxpy0 


