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Abstract 

When analyzing programs with parallel imperative constructs (e.g., cobegin/coend), standard 
computer intermediate representations are inadequate. This paper introduces a new relation called 
the precedence relation and new data structures called the Pamllel Control Flow Graph and Parallel 
Precedence Graphs for programs with parallel constructs. We show how to report anomalies in 
parallel programs using Parallel Precedence Grnphs. In sequential control flow graphs, the precedence 
relation is represented by the dominance relation. With explicit parallelism, the dominance relation 
is not the same a s  the precedence relation; we discuss the significance of the precedence relation 
and the new data structures for analyzing programs with parallel constructs. These data structures 
form a concrete basis for the development of efficient algorithms for optimizing parallel programs. 

1 Introduction 

Parallel programming has become very popular for implementation of numerical and scientific compu- 
tations. It is desirable that compilers for programs containing parallel constructs be able to perform 
classical code optimizations. To do this, it is important to establish an efficient intermediate language. 
Static Single Assignment form (SSA) is a powerful intermediate representation and an efficient plat- 
form for the optimization of sequential programs [Cytr 891. Extending SSA to parallel programs is a 
non-trivial task and requires the introduction of many new concepts. 

We introduce Parallel Control Flow Graphs and Parallel Precedence Graphs and a new relation called 
the precedence relation. The dominance relation is the same as the precedence relation in sequential 
control flow graphs; the two relations are not identical in parallel control flow graphs. We illustrate 
this using examples. We also define parallel dominance frontiers using the precedence relation. An 
application of Parallel Precedence graphs is in reporting anomalies in parallel programs. Associated 
concepts are the wait-dominance relation and the wait-dominator tree, both of which are also used in 
reporting anomalies in parallel programs. 

Section 2 discusses Control Flow Graphs and dominance relations and defines dominance frontiers 
in the case of sequential programs. Section 3 describes the parallel construct considered in this paper. 
Section 4 illustrates the need to define the precedence relation and to redefine dominance frontiers. 



Section 5 defines the various new data structures introduced in this paper. Section 6 describes an 
application of Parallel Precedence graphs. 

2 Control Flow Graphs for Sequential programs 

A control flow graph (CFG) is a directed graph that models program control flow. Nodes of a CFG 
are the basic blocks of the program with two additional nodes, Entry and Exit. Edges in the CFG 
correspond to the transfers of control between basic blocks of the program. There is also an edge from 
Entry to any basic block where control enters the program and an edge to Exit from any basic block 
where control leaves the program. 

Formally, we denote a Control flow graph as G = (V,E,V,,try, &,it) where V denotes the nodes in 
the CFG, E denotes the edges and Ventry is the start node (in our case, Entry) and V,,;t is the exit 
node (in our case Exit). Node Z is a successor of node Y if there is an edge Y -+ Z in the CFG. Node 
X is a predecessor of node Y if there is an edge X 4 Y in the CFG. 

2.1 Dominance Relation 
Let G = <V, E, Entry, Exit> be a CFG with start node Entry and exit node Exit. A node X dominates 
another node Y ( X dom Y) in G if every path from Entry to Y contains X. Note that Entry dominates 
all other nodes, and every node Y dominates itself. A node X strictly dominates node Y if X dom Y 
and X is not equal to Y. 

Node W is the immediate dominator of Y if W dominates Y and every other strict dominator of 
Y also dominates W. Therefore, the immediate dominator of Y is the closest strict dominator of Y 
(denoted idom(Y)). In a sequential program, the dominance relation can be represented by a tree rooted 
at Entry with an edge to every node from its immediate dominator. 

The dominance frontier of a node X, DF(X), is the set of all CFG nodes Z such that X dominates a 
predecessor of Z but does not strictly dominate Z.  The rest of the paper refers to dominance frontiers 
as sequential dominance frontiers. 

Lengauer and Tarjan [Len 791 describe an O(ma(m,n)) algorithm for finding dominators in a flow- 
graph. Dominator trees are very useful data structures in code optimizations and also in developing 
efficient intermediate forms. Ferrante et a1 [FOW 871 use dominators in the reverse control flow graph 
to find control dependences and Cytron et a1 [Cytr 891 use dominator trees and dominance frontiers to 
develop the Static Single Assignment intermediate form. 

3 The Parallel Sections Construct 

The Parallel Sections Construct [PCF] is similar to a cobegin-coend [Brin 731 or the parallel cases 
statement introduced by Allen et al[ABC 881. 

The Parallel Sections Construct is block structured and is used to specify parallel execution of 
identified sections of code. The parallel sections may also be nested. The sections of code must be data 
independent, except where an appropriate synchronization mechanism is used. If a variable is assigned 
in two different sections, the compiler may need to detect an anomaly. In the case of array variables, 
data dependence analysis is essential to report anomalies. Synchronization between parallel sections is 
realized using Wait clauses. An example of a Parallel Sections Construct using Wait clauses is shown in 
figure 1. Each {stmt list) contains one or more statements and execution within a section is sequential. 

Consider the parallel program in figure 1. Assuming that there are no other assignments to variables 
v and u in the program we have the following situation: 



v = 90 
Parallel sections 
Section A 

v = 100 
u = i  
{stmt l i s t )  

Section B 
u = 2  
{stmt l i s t }  

Section C ,  Wait(A) 
{stmt l i s t )  

Section D, Wait (B,C) 
{ s t m t  list} 

Section E ,  Wait (D) 
{stmt l i s t )  

Section F ,  Wait (A) 
v = 120 
t = u  
{stmt l i s t )  

end parallel sections 

Figure 1: Parallel Sections Construct 

The value of u used at  section F is indeterminate. Since sections A and B execute in parallel, the 
variable u may be modified before section F starts execution. On the other hand, section F could execute 
before section B and the value of u used in F will then be the value of u assigned in section A i.e., 1. 

To circumvent such non-determinism in the program, we follow copy-in/copy-out semantics in the 
following manner. When control flow enters a parallel block, every parallel section forked will get a local 
copy of the values of variables in memory. If there are no wait clauses, then an update is done to the 
global copy at the coend node. Of course, if there are two assignments to the same variable within the 
parallel block, an anomaly has to be reported. In the presence of wait clauses, we need to propagate the 
modified local values to the waiting sections. Again, if a variable is assigned in more than one section 
for which another section is waiting, then it is an anomaly and should be reported. The value of the 
variable is, however, still propagated to the waiting section. At the coend node, the global values are 
updated, as before. 

4 Example 
Consider the programs in figures 2.a and 2.b. The corresponding control flow graphs are shown in figures 
3.a and 3.b respectively. In figure 3.a, nodes c and d do not dominate node e. This is because nodes c 
and d do not always appear on the path from Entry to node e. 

In the case of figure 3.b, nodes r and s do not dominate node t. However, we know that both r 
and s must precede node t in execution. Therefore, even though the dominance relation does not exist 
between nodes r and t and nodes s and t, there does exist a precedence relation. 

Consider the parallel program in figure 4. The corresponding control flow graph (using the definition 
in section 2) is given in figure 5. By definition of the dominance relation, nodes c, m and q do not 
dominate node t. This is because nodes c, m and q do not appear on all paths from Entry to node t. 



Figure 2.a Figure 2.b 

X = l  
Y = l  
if P then 

X = 2  
else 

Y = 2  
end if 
z = X+Y 

X = l  
Y = l  
Parallel sections 
Section 

X = 2  
Sect ion 

Y = 2  
end parallel sections 

Figure 2: Example programs 

However, the semantics of the parallel construct considered here requires that nodes c, m and q must 
all execute before node t .  In other words, the execution of c, m and q must precede node t .  

(Entry) 

Figure 3.a Figure 3.b 

Figure 3: Control Flow Graphs for the programs in figures 2.a and 2.b 

Similarly, node I ,  p and s do not dominate node 2 ,  but must precede node t in execution. It is clear 
from the definitions in section 2.1 that a dominator tree cannot convey the precedence relation explained 
above. 

Since we are interested in doing static single assignment for parallel programs by extending the 
algorithms in [Cytr 891, we find a need to compute dominance frontiers in programs having parallel 
constructs. 



begin 
(a) F t I 
(a)  E c 7 
(a)  G + 0 
(a)  L c I 
(a)  K  t 5 
(a)  B t 7 
(b) P a r a l l e l  sec t  ions 

Section 
(c) i f  P then 
(dl E c F  
(dl  G c G+1 
(dl D(i) + F-I 

e l s e  
(0) E t F+G 
(f P a r a l l e l  sect ions  
( g )  Section 
(g) H + E  

Sect ion 
(h) i f  Q then 
( i )  G c G+3 
(j) endif 
(k) end p a r a l l e l  sec t  ion 
(1) endif 

Section 
(m) i f  R then 
(n) L c L x K  
(P) endif 

Section 

(9) i f  H then 
( r )  E + D ( j )  
(I) ~ ( j )  B x 9 
( 8 )  endif 
( t )  end p a r a l l e l  sect ion 
(u) p r i n t B  
end 

Figure 4: Example Parallel Program 



Entry a 

Exit b 
Figure 5: CFG for the parallel program in figure 4 

5 Parallel Control Flow Graphs and Parallel Precedence Graphs 
A Parallel Control Flow Graph is a CFG which may have a new type of node called supernode or parallel 
block. A parallel block essentially represents the parallel construct described in the Section 3. 

A Wait clause in a parallel block imposes a dependence (called wait-dependence) between the waiting 
section and the sections specified in the wait clause. We introduce a new data structure called the Parallel 
Precedence Graph that represents a parallel block. Nodes in the PPG are the various sections in the 
parallel block with two additional nodes, cobegin and coend. The edges in the PPG (also called wait- 
dependence arcs) are those representing the wait dependences. For example, the PPG for the program 
in figure 1 in shown in figure 6. For technical reasons, there is an edge from the cobegin node to the 
corresponding coend node in the PPG. In the absence of any wait clause in the parallel block, we have 
a degenerate case where there are only two sets of wait-dependence arcs, one from the cobegin node to 
the sections in the parallel block and other from the different sections to the coend node. 

Formally a PCFG is defined as the graph G = (V, E, Sentry, Sex i t )  where V, E, S e n t r y  and S e x i t  are 
defined as follows : 

V = { a I a is either a basic block or a parallel block) 



Figure 6: PPG for the program in figure 1 

E = { a + b I a , b ~ V )  

Edges represent flow of control in the parallel program. 

Sentry is the start node of the PCFG. 

Setit is the exit node of the PCFG. 

A parallel block is represented by a PPG, which is formally defined as a graph Gp = (Vp , Ep, Pentry, Pe t i t )  

where 

Vp = {N 1 N is either the cobegin node, coend node or a section in the parallel block ) 

Each section in a PPG is again a PCFG with two additional nodes, p-entry (marking the entry 
into that section) and p-exit (marking the exit from that section). 

Ep is the set of edges or wait-dependence arcs in the PPG. 

Pentry is the cobegin node 

Petit is the coend node. 

If the PCFG corresponds to a section in the parallel block, Sentry and Se,it are the p-entry and 
p-exit nodes respectively; otherwise, they are the Entry and Exit nodes. The PCFG of the parallel 
program in figure 4 is shown in figure 7. For technical reasons, there is an edge from the cobegin node 
to the corresponding coend node in the PPG. 



Node SDF PDF 
Entry - - 

a - - 

b - - 

C t - 

d 1 1 
e 1 1 
f 1 1 
g k 1 
h j j 
1 j j 
j k 1 
k 1 1 
1 t 
m t 
n P 
P t 
Q t 
r s 
S t 
t - 

U - 

Exit - 

Sequential and Parallel Dominance 
Frontiers 

Figure 7: PCFG for the program in figure 4 

5.1 Precedence Relations and Parallel Dominance Frontiers 
A node X precedes node Y in the PCFG if the execution of X precedes the execution of Y. The following 
observations can be made about the precedence relation: 

If a parallel block X precedes a node Y in the PCFG, not all the basic blocks within X must 
precede Y. For example, in figure 7, P2 precedes node I but node a within P2 does not precede I .  

Consider the sections of code within a parallel block to be represented by individual nodes. Let X 
and Y be nodes that represent two sections in the parallel construct. X precedes Y if the p-exit 
node in X must execute before the p-entry node in Y. This is true when there are wait clauses in 
the parallel program. In the parallel program in figure 1, section A precedes section C because 
the p-exit for A in the PCFG of this program will execute before the p-entry node in C. 

In the case of sequential CFG's the dominance and precedence relations are the same. This is 
evident from the example in figure 2.a. 

Definition 



Let the set S(X) denote the sequential dominance frontier of a node X in the PCFG. We proceed to 
determine the parallel dominance frontier of X as follows. 

If 3 Y such that Y is either a coend node or a p-entry node and Y E S then the parallel dominance 
frontier of X is defined as 

P(X) = S(X) - Y U F(Py)  where Py is the closest parallel block enclosing Y if there exists such a 
parallel block. 

else P(X) = S(X). 
For example, the sequential dominance frontier of node j is node k which is a coend node. But the 

parallel dominance frontier of node j is the parallel dominance frontier of P2 which is node I .  Similarly, 
the parallel dominance frontier of nodes I,  p and s in figure 7 is not t but the parallel dominance frontier 
of the enclosing parallel block, P1 ie., the empty set. This is because P1 is the outermost parallel block. 

It should be noted that any node that is the merge point of two or more sections in a parallel block 
in the PCFG cannot be in the parallel dominance frontier of any other node. Such nodes are referred 
to as parallel merge nodes. This is the reason why coend and p-entry (which can be a merge point in 
the presence of wait clauses) are not considered as parallel dominance frontiers. 

The parallel dominance frontiers are used to do static single assignment in parallel programs. We 
do not, however, discuss SSA here as it is the topic of a subsequent paper. 

We define a new relation between the different nodes in a Parallel Precedence graph called wait- 
domanance. 

1. Wait-dominance - A node X in the PPG wait-dominates a node Y (X wdom Y) if X appears on 
all paths from the fork node to Y. 

The wait-dominance relation is reflexive and transitive. The immediate wait-dominator of Y in 
the PPG is the closest wait- dominator X of Y such that Y # X. 

It is clear that wait-dominance is the dominance relation in the PPG; in the former we are con- 
sidering sections of the parallel block. When there are no wait clauses, the wait-dominance tree is 
of depth one. Figure 8 gives the wait-dominator tree for the PPG in figure 6. 

2. Wait-dominance Frontier - The wait-dominance frontier of a node X in the PPG is defined as 
follows 

WDF(X) = { Y 1 3 P 3 (P E Pred(Y) A X wdom P A X does not strictly wdom Y) ) 

In our example in figure 8, the wait-dominance frontiers of A,C and B is {D); the WDF's of D,E 
and F is {coend). 

6 Reporting Anomalies in Parallel Programs 
An application of parallel precedence graphs is in reporting anomalies in parallel programs. When a 
variable is assigned in more than one branch of a parallel block, an anomaly should be reported because 
it is not clear which value assigned to the variable will reach the coend node. How do we detect such 
anomalies? This is discussed in this section with relevant examples. 

+-functions : A +-function signifies the merge of potentially anomalous birth points [WZ 841. 
Whenever a variable is assigned in more than one branch of a parallel block, a $-function is placed 
at the merge point. In the presence of wait clauses, a $-function is placed for a variable at a node if 



Figure 8: Wait Dominator tree for the PPG in figure 6 

the variable is assigned in more than one predecessor of this node in the PPG. A $-function is of the 
form v, = $(vl, vz,. . . ,v,-1) where each vi is a variable and the number of operands (ie. n-1) is the 
number of predecessors Y of the point where the $-function appears in the PPG such that Y contains 
an assignment to the variable v. The number of operands is always greater than one. 

For example, in our example program in figure 4, a $-function is required for variable E because 
it is assigned in more than one section of the outer parallel sections construct. A $-function may be 
required for the array variable D. Since D is a subscripted variable, determining if a +-function is needed 
calls for data dependence analysis [Burk 86, Wolf 871. Also, in figure 1, a $-function is required for 
variable v at the merge point, D. 

6.1 Placement of qh functions 

Algorithm 1 (figure 9) places $ functions using the concept of wait-dominance and wait-dominator trees 
defined in the previous section. 

We use the following data structures in the algorithm to place $-functions: 

A(V) : nodes where variable V is assigned. 

W(N) : wait-dominance frontiers of node N. 

P(V) : Accumulates the pair-wise wait-dominance frontiers of all nodes where variable V is assigned. 

$_cornp(N) : A boolean array which tells if a $-function exists at  node N. 

Wait-dominance frontiers are computed using the same algorithm for computing dominance frontiers 
presented in [Cytr 891. Note that the algorithm for finding wait-dominance frontiers will work on the 
PPG and wait-dominator tree instead of CFG and dominator tree as in [Cytr 891. 

Proof  of Correctness of Algorithm 1 
Algorithm 1 first computes the iterated wait-dominance frontier, IWDF of all the nodes where a 

variable is assigned. The union of the iterated wait-dominance frontiers and A(V) for the variable 
is stored in Z(V). The next phase is the placement of $-functions which is done at the pair-wise 
intersection of the WDF's of all the nodes in Z(V). A +-function for a variable V is considered as 
an assignment to V. This is achieved by adding the WDF of the nodes where V is assigned to Z(V). 
A $-function is placed at a parallel merge point where two or more assignments to the same variable 
reach. A variable may be assigned in two nodes X and Y whose wait-dominance frontiers do not intersect. 
However the paths from X to coend and Y to coend must intersect at  some point in the PPG, at least 
a t  the coend node. By computing the iterated wait-dominance frontiers, it is possible to find the points 



for each variable V do 
hasalready(*) = 0 
$-complete = False 
Z(v> = A(v) 
while ($-complete = False) do 

for each Ni E Z(V) 3 hasalready(Ni) = 0 do 
hasalready(Ni) = I 
i f  W(Ni) Z(V) then 

add W(Ni) t o  A(V) 
$-complete = False 

e l se  
$-complete = True 

endif 
end 

end 

for each Ni, Nj E Z(V) and Ni # Nj do 
P(V) = U(W(Ni) n W(Nj)) 

end 
Place $-function at a l l  nodes in  P(V) 

end 

Figure 9: Algorithm 1 

of intersection of the paths from X to coend and Y to coend. Since a variable may be assigned in more 
than two nodes of the PPG it is required that we consider the pair-wise intersection of the iterated 
WDF's of all the nodes where the variable is assigned. 

For the algorithm to halt it is necessary that the while loop terminate. The while loop will eventually 
terminate because the wait-dominance frontier is a finite set of nodes. 

The time required to process a single variable using algorithm 1 is proportional to the time to compute 
the IWDF's plus the time to compute the pair-wise intersection of the WDF's. The former takes O(N) 
time where N is the number of nodes in the PPG and the latter takes O(N2) time. Therefore, the 
overall algorithm takes O(N + N2) time. 

Referring to figures 1 and 6, A(u) is {A,B), Z(u) is {A,B,D,coend) and P(u) is {D,coend). 

7 Conclusion 

The dominance relation is a very important concept used in code optimization algorithms and in devel- 
oping efficient intermediate forms. We observe that the dominance relation does not convey the control 
flow properties of parallel programs as it does for sequential programs. The precedence relation is an 
important concept for analyzing parallel programs. We have not discussed SSA here. SSA is discussed 
in detail in [Cytr 891 and we have extended dominance frontiers used in the algorithms to compute SSA 
to take parallel constructs into account. Anomalies in parallel programs are very common and it is 
desirable to report anomalies at compile time. We discuss an efficient method of reporting anomalies in 
parallel programs. 
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