
Speaking in Tongues:
The Language of Revelation

Scott D. Daniels

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006- 1999 USA

Technical Report No. CS/E 91-007

January 1992

Ypeaking in 'l'ongues:
The Language of Revelation

- Scott David Daniels
Oregon Graduate Institute

daniels@cse.ogi.edu

Abstract

The Revelation project addresses the problem of query optimization in
ob ject-oriented databases. The database community is using ob ject-oriented
technology to provide extensibility for database types. Unfortunately, this
technology (when naively applied) reduces the ability of the database system
to perform adequate query optimization. In Revelation we hope to reduce
this impact by carefully orchestrating the techniques we use to pierce the
veil of object encapsulation during optimization. This paper argues that
the language used for implementing the objects in such a system should be
strongly typed and polymorphic, and explores the constraints on such type
systems. It then proposes a type system to match these constraints, and
addresses some further aspects of the planned language environment and
their relationship to the project goals of query optimization.

and out of long-term store is a non-trivial problem. Attempting to build a
database system without persistence of the data is a bit like "playing ten-
nis without a net."* In a database system, however, we may presume the
existence of a persistent store. This store provides a convenient place to
retain information from code analysis, something that often proves to be an
issue in more traditional language environments. Since we have to be able
to store objects for the database user, we may presume a mechanism to save
any structured data that the language system needs - a sufficiently general
system must already be in place.

2.2 0 bject- Or i en t ed
Second, we speculate on what properties derive from the fact that this

database is object-oriented. We will draw from the meaning of "object-
oriented" in both the computer language and database communities.

While the relational model has worked extremely well for a large number
of database applications, there are applications that are struggling with its
limitations. These struggling applications include engineering databases,
where the information stored has more structure than the simple tables
available through the relational model. The big problem seems to be that in
relational databases all of the types that may be stored in the tables must
be provided by the implementors of the database, as well as the operations
available on those types.

While the standard set of well-understood types typically defined by a
database works well for many applications (storage and retrieval of textual
information, accounting applications, . . .), it begins to fall apart for appli-
cations where more complex elements are desired. Dates are a simple exam-
ple, where one might want operations like print, compare, subtract (yielding
days), and add (to days). If dates seem obvious, imagine areas in a plane,
volumes in space, or hyper-volumes in space-time. The number of basic op-
erations grows, and it is no longer clear what their definition might be: for
defining distance, Euclidean distance might be most reasonable for general
consumption, but Manhattan (or city block) distance is more appropriate
for applications such as printed circuit board layout.

As these types and operations get more specialized, it seems less reasonable
to include them in the database implementation. What we really want is to
provide a way to extend the basic types of the database without changing the
basic database code. Let a specialist in the application environment design
his special types, and keep the database expertise focussed on database issues
such as storage and buffer management.

Object-oriented languages have been quite successful in providing lan-
guage users the ability to define new types and specify operations on those

* Robert Frost originally said this of free verse, but we feel sure if he knew the issues,

types. In fact, this may be one of the reasons that this programming style
has become so popular. By shifting the focus from the structure of the data
to the operations on that data, this technique has allowed a tighter encap-
sulation of implementation details. It is, we believe, this encapsulation that
provides much of the power of the object-oriented paradigm by enhancing
modularity of the code. Implementation details tend to be accessible in
much narrower scopes, so the chances of building systems that can survive
re-implementation of inefficient subsections are increased correspondingly.

Along with this focus on the operations on the data, the data structure
itself is often hidden. When this happens, the data structure becomes a
black box, and we can think of the operations as providing a "behavior"
for the "object" (the encapsulated data structure). If all we examine is this
"behavior," two radically different data structures can "behave" the same,
and may in some sense be indistinguishable. Thus, this "behavioral identity"
provides the basis for a kind of polymorphism that will allow different im-
plementations (perhaps representing different engineering design trade-offs)
of the same behavior.

Another major feature of these languages is called inheritance. This is
a technique that allows implementation by providing organized ways of re-
using an existing implementation. Roughly, the programmer specifies some
implementation close to what he wants, and rewrites those parts that are
not exactly what he wants. Since most programming tasks involve large
amounts of similar code, this technique provides a big savings when properly
used. Since inheritance involves a dynamic link between implementations,
it provides a way to "fix a bug once," in that the code to perform some
function is stored once, rather than copied.

Using inheritance to program systems is sometimes called "programming
by differences." Implementation in an object-oriented system consists pri-
marily of defining classes. Although almost all classes could be defined "from
scratch," most of the ob ject-oriented languages use inheritance. Roughly, in-
heritance allows an implementation to be defined by specifying an existing
class as a superclass (or a set of superclasses for multiple inheritance) and
writing a set of updates that define the new class in terms of the super-
class(es). If no updates are specified, the new class behaves just like the old
class(es), so objects will have the same behavior. There are basically three
kinds of updates possible. First, the object's internal data structure may be
extended (typically adding a field to a tuple). Second, new messages may be
added for the object to respond to. Of course, in this case methods must be
defined to perform the operations implied by the new messages. Finally, new
methods may be defined to replace the response of the object to messages
that had methods defined in the superclass(es).

When defining methods for any of these updates, one has available two
special keywords for referring to the object that is executing the method:

self and super. Messages sent to this object using the term super use the
method written in the superclass, i.e., the old behavior of the message. Mes-
sages sent to this object using the term self use the method provided by this
object to the outside world. Note that there is no way to specify use of a
parallel method (one from the same class): the choices are former behavior
(a method from the superclass) or external behavior (the method associ-
ated with the leaf class). While this specification seems to be a missing
feature, the lack simplifies modification. Since so many messages go out to
the interface, a later inheritance simply redefines a method by superceding
it. Now the implementation uses the new improved method for messages to
seZf automatically.

Almost all forms of ob ject-oriented programming allow at least some form
of polymorphism. Polymorphism allows procedures to be written that can
operate on a range of types of objects, without a case statement enumerating
the possible types that can be used. Correct source code can be written and
compiled that performs operations on objects whose structure has not yet
been fully defined. It is just this sort of operation that is necessary in a
database whose types are not fully determined when the system is already
running.

2.3 Query Optimization
Finally, we come to query optimization. If we are going to do any meaning-

ful query optimization, we will need to do more than proceed from message
to message, interpreting the system language. We will need some form of
partial information about the objects stored in the database. If we have no
such information, it can cost us as much time to find out how to optimize a
query as it would to execute it in the most naive way. Somehow, we need a
way to obtain information that will remain true at least for the duration of
the execution of the query, and not simply at the very moment we ask the
question.

Computer languages of all kinds have had to deal with such issues from
a slightly different point of view. The problem shows up in Lisp when we
try an determine exactly what is being referred to by a name (the famous
finarg confusion). In languages such as Pascal, the type of the variables
provides a kind of partial information (for subrange types, that is exactly
what is going on). This spectrum of ideas can be described as questions
of bindings [Lomet80] [Lomet85]. In translating and executing a program,
the language system goes through a series of bindings, first binding names
to variable identities (and hence some associated type), later variables are
bound to storage, and even later values are bound to the variables (or the
storage). Naturally, in the last case, rebindings will occur, and so we cannot
rely on these bindings to be permanent. Even in functional languages, this
rebinding occurs when procedure actuals are bound to formals. As long as
the same function is used several times, some form of rebinding is needed.

We see a natural progression here with the lifetimes of bindings following
a kind of nesting. The longer-lived bindings specifying less information, but
remain in force while shorter-lived (inner) bindings come and go. The in-
nermost bindings we will call "narrow" binding, as the value is most tightly
constrained by these bindings. As we travel out along the nesting relation-
ship, we refer to the bindings as being "broader". These bindings provide
less constraint, but also remain in force longer. This sounds ideal for use
in query optimization - you use the "narrowest binding" that will remain
valid for your query in order to extract the most information about how
to best perform the query. A query optimized with more "broadly bound"
information may be stored and used later (as long as the binding remains in
effect).

Finally (and probably most problematic), query optimization may use
information about "tendencies," in which case obsolete information may
work out perfectly well. This kind of information includes things such as
set sizes and query selectivities. While such information is likely to change
frequently, it is more often the order of magnitude than the actual value
that is used in decision making. In fact, the value is used in comparisons
between estimated costs of possible query plans; small changes in values
that change the choice of plans are typically indicative of nearly equal-cost
plans. A real problem with this kind of information is in identifying exactly
when it has gone out of date, since we want to straddle the fence between
regarding it as changing whenever the value changes and regarding it as a
constant. Luckily, the result of executing queries with incorrect information
of this sort typically slows down a query rather than rendering its results
incorrect. For this kind of information, it may be safe to presume the future
will be like the past, since that is often the best guess. We can use some
form of "aging" to indicate that such plans must be re-optimized, or place
the responsibility on the shoulders of the database administrator.

3 Choices for the Type System

The justification for these parameters really have more to do with large
system organization than they have to do with this particular project. We
hope to sacrifice as little practical functionality as possible from systems as
general as Smalltalk-80 [Goldbew83], [Goldbergbd], however we will make
a few restrictions where the cost to query optimization of avoiding those
restrictions seems prohibitive.

Chief among these restrictions in Smalltalk-80 is the elimination of the
become: message. Its function is to swap identities between two objects.
Unfortunately, this behavior can wreak untold havoc in a database. Not
only may the object be bound to a variable that is typed incompatibly with
the object, but it may even be stored as a member of a set or relation where
the typing on the members provides structure. Once created, we will not

allow an object to change class, nor to change its instance variables except
by invocation of its interface messages.

A similarly problematic feature in Smalltalk-80 is the ability to change
the methods in a class while the system is using objects of that class (and
possibly even executing the very method being changed). This mutability
also presents intractable analysis problems for query optimization: "I know
what this message does now, but what about after I've called this procedure
that might rewrite all of the methods in the system?" Fortunately, such
methods are nearly intractable for humans as well, and no self-respecting
programmer will claim the loss of such operations is a tragedy (outside of a
few perverse moments for the truly warped).

3.1 Polymorphic
We want to obtain the maximum amount of polymorphism from the sys-

tem consistent with a goal of performing query optimization (clearly, with
no polymorphism optimization would be easier, since we could then trans-
late the query to a simple algebraic form and then optimize that). We
believe (as many others do) that it makes little sense to allow messages
to be sent to an object that does not implement them [Black861 [Black87]
[Hutchinson87]. Thus we will disallow systems where a class re-implements
the doesNotRespond met hod, and at tempts some other technique to respond
to the message. It is not that we think such systems are useless. Quite to
the contrary, this technique has been used to provide delegation [Stein871
and communication with objects on remote systems. It is simply that such
techniques make the analysis for query optimization nearly intractable. We
do not, however, accept that the speed gains possible by relying solely on
structural polymorphism* are worth the loss in generality of the source lan-
guage. The reason we want a more general form of polymorphism is that
we expect the user will need to change the implementations for some of his
types, and we wish to allow the old and new implementations to co-exist in
the system.

By supporting run-time polymorphism for all messages to all objects (ac-
tually, the primitives for integers, characters, and strings may not work this
way), we hope to create a situation where a collection can contain several
implementations of the same type (perhaps from a span of several customer
class rewrites), and perform correctly with no explicit provision for that in
the source code. If we can achieve this polymorphism at a reasonable cost,
we will have provided a nice tight encapsulation of the implementation.

3.2 Strongly Typed
We believe in strongly typed language systems. They provide the kind

of consistency check that helps a programmer catch the think03 that plague

* Where the only polymorphism provided is via shared implementations.

6

us all: reversed parameters, wrong variable passed, etc. When these errors
are fixed, programs stand a much greater chance of working correctly, rather
than producing some meaningless result. In a simple program, such a fail-
ure (once detected) will require that the program be fixed and re-run. In
a database, it could be weeks before the error is found, and re-executing
all transactions over that period with the "new, improved, correct" code
providing different results is typically not an option.

A second advantage we hope to gain from this strong typing is enforced
encapsulation. We will only allow messages to be sent to a variable if the
typing on that variable has that message in its repertoire. This encapsulation
should increase the likelihood that re-implementations will work properly
wherever they are needed.

Finally, and quite a bit more pragmatically, this typing provides us with an
ideal spot to coalesce the partial information we accumulate about how this
code might be optimized. The skeleton of typed variables and expressions
provides a wonderful framework for accumulating facts for optimization. We
finally have a good place to hang the partial information that we hope to
obtain by code examination.

3.3 Classes as Types

In most object-oriented systems there is a natural candidate for a type: the
class. A class provides the structure and code for all of its instances. Since all
such objects (instances of a single class) have the same structure, and since
they all use the same code to respond to messages, they all behave similarly.
This similarity is much like the similarity of floating point numbers to each
other in a piece of hardware, and there this match is viewed as a type. In
most of the typed object-oriented languages classes and their descendedants
constitute types [Meyer86] [Stroustrup86a] [Stroustrup86b] [Stroustrup89]
[Gravergo].

As far as it goes, such a definition seems to work. However, when you
begin to explore the relationship between different classes, problems crop
up. It is tempting to take the ideas of subtypes and subclasses and iden-
tify them. "But that would be wrong!"* Certainly you lose much of the
polymorphism that we feel is at the heart of the object-oriented paradigm
with this identification. If we want to allow for re-implementations, such a
type system would constrain us to using subclasses of the original class in
order to get the types right. This means that we either lose freedom in how
the new implementation works, or we waste storage by ignoring the instance
variables (and even the methods) of the former implementation.

As early as 1986, Alan Snyder [Snyder86] pointed out that the advan-
tages of encapsulation of abstract data types are at odds with the technique

* Richard Nixon in the infamous White House tapes, but we feel sure if he knew the issues,

of implementation by inheritance. Basically, too much behavior is inherited
"accidentally" to provide a good type for the resulting object. There is an-
other objection to types as classes: ob ject-oriented languages in general, and
Smalltalk-80 in particular, use an object's behavior as its meaning. This use
of behavior rather than structure allows a rich variety of implementations to
be used for the same purpose. To incorporate all of these implementations in
a single class, one defines an "abstract class," and has every implementation
inherit from it.

3.4 Message Sets as Types
Another approach to providing a typing for object-oriented systems is to

treat the message name-signature pairs themselves as the atoms of a type
system [Black86] [BZack87] [Hutchinson87] [Cardelli84a] [Ca~delli85]. With
this point of view, the type of an object is the set of message signatures that
it implements. Some fairly impressive things can be done with such systems,
including type inference (which frees the programmer from having to specify
the types of all of the variables in his program). Unfortunately, these sys-
tems also have some of the problems that Snyder pointed out [Snyder86].
Since inheritance provides all of the messages of the superclass as default
implementations for the subclass, messages will show up in the interface
of a subclass that are merely implementation details. This expansion of
the interface, however, can interact poorly with a system that avoids the
doesNotRespond problem. If one thinks of the doesNotRespond behavior as
providing a warning of a type failure, one sees that by eliminating that style
of type problem we have trimmed the type failures down to those where mes-
sages not in the interface are used. Thus, if we had built a car, for example,
from a bicycle with some added messages, this "messages as the morphemes
of a type" approach will allow messages through to our car that only affect
the bicycle portion of the data structure, possibly in ways inconsistent with
the car abstraction. So we see such an approach cannot detect the use of
inappropriate messages that could scramble the internal state of an object .

4 Our Solution

4.1 Protocols as Types
We intend to separate the ideas of specification and implementation into

two separate hierarchies. The specification hierarchy is a hierarchy of pro-
tocols and addresses the behavioral semantics of the objects. The imple-
mentation hierarchy is a hierarchy of classes and and addresses the internal
workings of the objects. For our typing, we will use the term protocols.

What we propose is a system where the types are explicitly declared,
along with the messages and type signatures that constitute the interface
to objects of those types. We call the types thus declared "protocols" (by
simple analogy with communications systems). We intend each protocol

to correspond to some abstract property, not simply to be a collection of
messages. Thus an object could be said to obey the "stack protocol," if,
for example, it not only had appropriate messages (push:, pop, empty), but
it also behaved like a stack. These abstract properties mesh nicely with
Goguen's ideas on type systems [Goguen86]. In his type system he associates
types with functions and axioms (the axioms provide properties of the the
type and its functions, allowing statements of properties such as transitivity,
associativity, etc.). Initially we will simply rely on comments to explain
these properties, but this does provide a good basis for an extension of this
system.

Since we are appealing to the meaning of the code here, we must rely
on explicitly provided (as opposed to automatically detected) links between
classes and the protocols that they implement. We can, however, indicate
that certain protocols are always satisfied whenever a particular protocol is
satisfied (this satisfaction is clearly transitive). Any object which conforms
to one protocol must obviously also conform to all other protocols which that
protocol satisfies. This leads to a separate hierarchy of protocols from the
transitive closure of this subtype relation. If adding a link in this relation
creates an equivalence group of protocols, we may either reject such links, or
warn the user since creating this equivalence class may not be intentional.
Similarly, when the class-protocol link is made, the system may find that
the class cannot implement the protocol, in which case it will reject the link
and inform the user.

4.2 Row Does This Help?

This use of a protocol as a type certainly allows us the polymorphism we
feel is so important. Since the types describe behavior, not structure, we are
free to allow many structures to satisfy a single type. In fact we may even
allow one implementation to be used for several different types (a dequeue
could be used as a dequeue, a queue, and a stack).

At any given moment in the database, there is some number of classes,
and a number of protocols that they obey. We intend to be able to travel be-
tween the protocols and the classes that implement them, so we may discover
facts about all current implementations of a protocol that are "coincidental"
(properties of implementation rather than definition). This information can
be used to optimize queries, provided we have a way of retracting this opti-
mized code whenever changes in the protocols or classes invalidate some of
these assumptions. To simplify this invalidation, we assume: "no protocols
or classes will be changed or created during the execution of any code."

Exactly what "coincidences" are we looking for? Well, certainly one of
the questions the query optimizer will ask the type system is: "How many
distinct methods exist for this message sent to an object that obeys this pro-
tocol?" If the answer is exactly one method then the query optimizer might

expand the query in-line (unfold the message). Note that several distinct
classes may use the same method simply by inheritance from a single class;
determining this answer does not imply full-fledged function comparison.
This unfolding can lead to similar requests on discovered messages to what-
ever level of expansion desired. This technique is similar to "specialization"
or "customization" in Self [Ungar87][Chambers89].

Other possibilities include discovering that there are precisely two such
methods, and expanding the code to include a test based on the class of the
object being sent the message. Yet another useful property to know about a
method is whether it is a "leaf-level" method. Such methods are capable of
computing their results with access only to a fixed set of the object's state
variables (no further messages or recursion involved). Such methods may be
compiled into machine code and executed at full machine speed given hooks
to the necessary data, and execution of such methods may be delayed until all
variables are accessible. Simply delaying evaluation till all data is available
provides performance improvement by reducing the percentage of time spent
locking and unlocking data in the buffer. In addition, this can greatly speed
the processing of any unordered collection, since it is possible to execute
the method as elements of the collection become available (all elements on
the same buffer page, for example) rather than having to execute them in
some arbitrary sequential order. Notice that this technique works out well in
conjunction with the previous mentioned method unfolding, allowing even
more methods to be executed in a single call to generated code.

Another useful property is to observe that some methods only read state,
hence they can be arbitrarily interleaved with each other (another big sav-
ings for processing collections of all kinds). If it can be verified that all
methods for a message in a particular protocol examine only globals and
internal state, but only write internal state, then we may once again re-
order the operations in the collection based simply on when the data arrives
in the buffers, and avoid the excessive I/O normally implied by sequential
processing of collection members.

4.3 Other Unusual Language Features
In order to avoid focusing on syntactic detail early in the project, we have

decided to use a structural, rather than textual definition for the language.
All referents (variables, protocols, classes) will be referred to by identity
rather than by name. Thus we avoid name scope issues (the identity is
what is specified by the code, not the name), and allow for later develop-
ment of the "syntactic sugar" to create readable source code. Since the
query optimizer may have to do expression unfolding, defining the language
structurally rather than syntactically eliminates the parsing portion of that
task.

The creation operation is performed with a protocol-class pair or just a
protocol (in which case a default class is chosen), rather than a class. This

choice parallels our focus on behavior rather than implementations. We
speculate that often code and queries care only about "any implementation
of this abstraction," and, if so, the protocol-only form of creation will work
out quite nicely.

Because of the way objects are created with protocols, we will store with
each object not only its class, but its creation protocol as well. We intend
to experiment with restricting message access to objects to those messages
available in the protocol from which it was created (although messages to
the special names self and super will remain unrestricted). What we hope
to provide with this restriction is insurance that only the specified interface
to an object is used, and therefore ease the task of an administrator who
wishes to replace an implementation.

Since we are using a structural rather than textual representation for the
code, a binding environment that maps names to objects such as protocols
and classes will be needed to create code. This environment should contain
the roots of the database as well, with protocol-object pairs for things such
as the basic collections the queries will be run against. This environment
will hold the dependence tracking mechanism that is used to retract code
optimizations that rely on our "implementation coincidences," since it is in
this environment that implementations are added to the protocols. Here is
also a reasonable place to keep statistics about the root objects; this way
the same retraction mechanism can be used to propagate new statistical in-
formation. Other information that might be kept here includes such things
as common queries in both their raw and optimized forms. The query op-
timizations may then receive the same retractions as the code does, thus
allowing frequent queries to remain optimized without the cost of regular
query optimizer runs.

5 More Ideas on the Protocol Hierarchy
Modifications within the hierarchy of protocol must be done, if at all, with

extreme care. When a new protocol is added at the leaves of the hierarchy,
the operation is straightforward. However, when a message is added to
an existing protocol, all classes that implement that protocol (or any of
its subprotocols) must be checked to make sure they have an appropriate
method. Similarly, adding a protocol-protocol link may add messages to
the new subprotocols, and more checking must ensue in those cases as well.
In order to perform some of these operations, it may be necessary to create
a copy of the old protocol, and modify the copy, then put the new protocol
in the binding environment under the old name. This copy may require a
subgraph copy, but (since the protocol-subprotocol relation is a preorder),
the copy should not be overly complicated.

Because the resulting messages in the protocols are not always obvious,
there must be a means added to the system to query the protocol hierarchy

and determine exactly what each protocol actually entails. In fact, to enable
reasonable development, we need to be able to dump the class and protocol
hierarchies. This dump is not entirely straightforward, since the names for
classes and protocols lie in the binding environment, and there may be no
name for an old implementation (or protocol).

6 Examples of Query Optimization Information

Here are the kinds of questions that our system should be able to answer.
We anticipate that a sophisticated a query optimizer (with some partial
evaluation capabilities) can develop quite sophisticated plans by combining
the answers to such questions with information about the top-level named
structures (things such as sizes, statistics, and actual object bindings).

I. How many classes implement this protocol?
II. How many methods for this message/protocol?
III. What is the method for this message when sent to this object?
IV. Is this message/protocol always implemented by "ground" methods?
V. Is this message/protocol "functional?"
VI. Is this message/protocol a "local-read?"
VII. Is this message/protocol "read-only?"
VIII. Does this message/protocol write local st ate?
IX. Does this message/protocol write global state?
X. What are the methods for this message when sent to an object with this
protocol?

7 Conclusion

The Revelation project addresses the problem of query optimization in
object-oriented databases. We have described in detail the reasoning leading
to our selection of the type system that we intend to use: protocols, and
explained why we feel this typing best captures the concept of the behavior
of an object. We have further described how such a type system would
properly describe a series of implementations of the same classes, and hence
serve as a basis for typing in a query-optimized object-oriented database. We
have indicated how information collected these types can be used to provide
information helpful to a query-optimizer. Finally, we have described briefly
the name binding space at the root of the database, and shown how it is
used to organize protocol and class replacements.

8 Further Research

Cook, Canning, Hill, and Olthoff [CCH088] have a typing that nicely
captures what (at first glance at least) we may want for parameterized types.

They call it "F-bounded lambda typing", and their types are of the following
form:

V T such that T C F (T) : u(T)

This typing works well for describing such things as Set(TotalOrderedType),
an almost essential type for describing things such as binary relations.

A prototype will be built to find how these decisions will work in practice.

The dependence tracking mechanism needs substantial work. In the initial
implementations, it will be done by hand; only later will we attempt to
provide automatic support.

Existential queries in a database (queries which ask about the existence
of objects with certain properties) seem in conflict with the whole idea of
encapsulation. It does not seem to be anybodys business whether or not a
car is implemented by using a bicycle as a sub-object and using the bicycles
response to messages to guide the car's response to similar messages. How-
ever, if queries can be made against "all bicycles," this implementation detail
will come to the fore. Perhaps an "implied universe" for existential queries
is needed, with the universe corresponding to the NULL-named object in
the name-binding space.

References

[Black861 A. Black, N. Hutchinson, E. Jul, and H. Levy. Object struc-
ture in the Emerald system. SIGPLA N Notices, 21 (1 1):78-
86, November 1986.

[Black871 A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter.
Distribution and abstract types in Emerald. Transactions
on Software Engineering, SE-13(1), January 1987.

[Blair891 G.S. Blair, J.J. Galagher, and J. Malik. Genericity vs. in-
heritance vs. delegation vs. conformance vs.. . Journal of
Object-Oriented Programming, 2(3):11-17, 1989.

[Bloom871 T. Bloom and S.B. Zdonik. Issues in the design of object-
oriented database programming languages. SIGPLAN No-
tices, 22(12):441-451, 1987.

[Borning82] A. Borning and D. Ingalls. A type declaration and inference
system for Smalltalk. In Proceedings of the Ninth Annual
A CM Symposium on Principles of Programming Languages,
pages 132-141. ACM, January 1982.

[Breazugg] V. Breazu-Tannen, P. Buneman, and A. Ohori. Can object-
oriented databases be statically typed? In Second Inter-
national Workshop on Database Programming Languages,
pages 226-237. OCATE, Morgan Kaufmann, 1989.

[Burstall771 R.M. Burstall and J.A. Goguen. Putting theories together to
make specifications. In Proceedings of the Fifth International
Joint Conference on Artificial Intelligence (IJCAI77), pages
1045-1058, 1987.

[Canning89a] P.S. Canning, W.R. Cook, W.L. Hill, and W.G. Olthoff.
Inheritance is not subtyping. In The Fourth Interna-
tional Conference on Functional Programming Languages
and Computer Architecture (FPCA '89), pages 273-280.
ACM, September 1989. Imperial College, London.

P.S. Canning, W.R. Cook, W.L. Hill, and W.G. Olthoff.
Interfaces for strongly typed ob ject-oriented programming.
SIGPLAN Notices, 24(10):457-467, 1989.

L. Cardelli. Basic polymorphic typechecking. Technical
Report 119, AT&T Bell Laboratories Computing Science,
1984.

L. Cardelli. A semantics of multiple inheritance. In Seman-
tics of Data Types, number 173 in Lecture Notes in Com-
puter Science, pages 51-67. Springer-Verlag, June 1984.

L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. Computing Surveys,
17(4):471-522, December 1985.

C. Chambers and D. Ungar. Customization: Optimiz-
ing compiler technology for SELF, a dynamically-typed
object-oriented programming language. SIGPLAN Notices,
24(7):146-160, 1989.

W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not
subtyping. In Proceedings of the Seventeenth Annual A CM
Symposium on Principles of Programming Languages, pages
125-135. ACM, 1990.

W.R. Cook and J . Palsberg. A denotational semantics
of inheritance and its correctness. SIGPLAN Notices,
24(10):433-443, 1989.

B.J. Cox. Object Oriented Programming: An Evolutionary
Approach. Addison-Wesley, 1986.

J.A. Goguen. Reusing and interconnecting software compo-
nents. Computer, 19(2) :16-28, Febuary 1986.

A. Goldberg. Smalltallc-80: The Interactive Programming
Environment. Addison-Wesley, 1984.

[Lomet801

[Lomet 851

A. Goldberg and D. Robson. Smalltalk-80: The Language
and Its Implementation. Addison-Wesley, 1983.

G. Graefe and D. Maier. Query optimization in object-
oriented database systems: The REVELATION project.
In Advances in Object-Oriented Database Systems, number
334 in Lecture Notes in Computer Science, pages 358-363.
Springer-Verlag, September 1988.

J.O. Graver and R.E. Johnson. A type system for Smalltalk.
In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, pages 136-150.
ACM, January 1990.

N. Hutchinson. Emerald: An Object-Based Language for
Distributed Programming. PhD thesis, University of Wash-
ington, January 1987. Technical Report 87-01-01.

R.E. Johnson. Type-checking Smalltalk. SIGPLAN Notices,
21(11):315-321, November 1986.

R.E. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2), June 1988.

D.G. Kafura and K.H. Lee. Inheritance in actor-based
concurrent object-oriented languages. Computer Journal,
32(4):297-304, 1989.

S. Kamin. Inheritance in Smalltalk-80: A denotational defi-
nition. In Proceedings of the Fifteenth Annual ACM Sympo-
sium on Principles of Programming Languages, pages 80-87.
ACM, 1988.

D.B. Lomet. A data definition facility based on a value-
oriented storage model. IBM Journal Res. Development,
24(6), November 1980.

D.B. Lomet. BIND. Private Communication, July 1985.

[Lunau89a] C.P. Lunau. Separation of hierarchies in Duo-Talk. Journal
of Object-Oriented Programming, 2(2):20-25, 1989.

[Lunau89b] C.P. Lunau. Separation of Type and Class Hierarchies
in Object-Oriented Languages. PhD thesis, University of
Copenhagen, September 1989. Technical Report 89-118.

[Maier89] D. Maier. Why isn't there an object-oriented data model?
Technical Report CS/E-89-002, Oregon Graduate Center,
May 1989. Also summarized in IFIP 11 World Computer
Conference, S.F., Ca. 1989.

[Meyer86] B . Meyer . Genericity versus inheritance. SIGPLA N Notices,
21(11):391-405, November 1986.

[Mitchell901 J.C. Mitchell. Toward a typed foundation for method spe-
cialization and inheritance. In Proceedings of the Seven-
teenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 109-124. ACM, 1990.

[Sciore89] E. Sciore. Object specialization. Transactions on Informa-
tion Systems, 7(2):103-122, April 1989.

[Snyder861 A. Snyder. Encapsulation and inheritance in ob ject-oriented
programming languages. SIGPLAN Notices, 21(11):3845,
November 1986.

[S tein871 L.A. Stein. Delegation is inheritance. SIGPLAN Notices,
22(12):138-146, December 1987.

[Stroustrup86a] B . Stroustrup. The C++ Programming Language. Addison-
Wesley, 1986.

[Stroustrup86b] B. Stroustrup. An overview of C++. SIGPLAN Notices,
21(10):7-18, October 1986.

[Stroustrup87] B. Stroustrup. What is object-oriented programming.
In European Conference on Object-Oriented Programming,
number 276 in Lecture Notes in Computer Science, pages
51-70. Springer-Verlag, 1987.

[Stroustrup89] B. Stroustrup. Multiple inheritance for C++. Computing
Systems, 2(4), 1989.

[Ungar87] D. Ungar and R.B. Smith. Self: The power of simplicity.
SIGPLA N Notices, 22(12):227-242, December 1987.

[Wegner88] P. Wegner and S.B. Zdonik. Inheritance as an incremen-
tal modification mechanism or what like is and isn't like.
In European Conference on Object- Oriented Programming,
number 322 in Lecture Notes in Computer Science, pages
55-77. Springer-Verlag, 1988.

[Zdonik90] Stanley B. Zdonik and David Maier, editors. Readings
in Object-Orient ed Database Systems. Morgan Kaufmann,
1990.

