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Abstract 

As part of the Revelation project in object-oriented query processing, we are seeking an algebra over 
complex data structures that is both simple and expressive. 

The expected uses of object-oriented databases include engineering and scientific data management 
as well as management of complex business applications. Bulk processing on these databases will include 
matrix and vector operations in addition to  the traditional set and relational operations. There will also 
be a need for operations that move information between ordered structures such as arrays and unordered 
structures such a s  sets and multisets. 

We outline an approach to  constructing a query algebra capable of expressing these operations. We 
suggest a data model that includes subtyping and identity, and a core set of very general bulk operators. 
Our approach is compared with others that have appeared in the literature. 

1 Introduction 

Revelation [DGK+91] is a project on query processing in object-oriented databases. The facilities to  be 

provided by the database are intended to cover the needs of a variety of applications, but special attention 

is being given to scientific applications, for which earlier databases provide relatively meager support. 

This paper proposes a query algebra for Revelation. Query algebras are of interest for a t  least two 

reasons. First, they provide an abstract language in which to reason about the meanings of queries and 

the expressiveness of user query languages. Second, query algebras have great practical utility in query 

optimization: a user query, once translated into an algebra expression, can in many cases be transformed 

through algebraic identities into an equivalent expression that can be evaluated much more rapidly. Algebraic 

query optimization is an established technique in the implementation of relational databases [Mai83]. 

However, in object-oriented databases, the algebraic formulation of queries is complicated by encapsu- 

lation of object behaviors, and by the presence of multiple bulk data  t ypes .  In addition, object-oriented 

queries range over complex data structures, and mix bulk operations with general-purpose compulat ion.  The 

remainder of the introduction elaborates on these complications. 



1.1 Breaking Encapsulation 

In Smalltalk-80 [Go1841 and other purely object-oriented languages, there is no such notation as f ( x )  for 

the application of a function f to an argument x .  The closest analogue is the notation x f, in which f is 

referred to as a message,  and x as the receiver of the message. The idea behind these differences in notation 

and terminology is that the responsibility for computing x f lies with the object t, rather than with some 

free-standing implementation for f .  Different objects may prescribe different methods of computing f ,  i.e., 

different definitions o f f .  We say that the behavior of the object x is encapsulated because the meaning of 

x f is determined internally by the implementation of x ,  and cannot be known by any agent external to x. 

Encapsulation is widely viewed as beneficial from a software engineering standpoint, but it is an obsta- 

cle to optimization. Consider the following example of optimization in the compilation of a conventional 

programming language: The expression 5 * f ( x )  + 5 * g ( x )  can be optimized to 5 * ( f  ( x )  + g ( x ) )  without 

any knowledge of the definitions of f and g .  But the expression can be further optimized if it happens that 

f (x)  = 3 * x and g ( x )  = 2 * x ,  for in that case, 5 * ( f ( x )  + g ( x ) )  can be rewritten as 5 * (3  * x + 2 * x ) ,  and 

simplified to  25 * x. 

The analogous expression in an object-oriented language is less easily optimized. As before, 5 * (x f )  + 
5 * ( z  g )  can be rewritten as 5 * ( x  f + z g ) ,  but it is not obvious how to expand x f or x g into more 

informative expressions. To do so would appear to require knowing how x was implemented, but since z is a 

variable, there is no telling what object x might represent. Two successive evaluations of x f with different 

bindings for x might expand to two entirely different algebraic expressions. 

However, it is possible to  expand z f into an algebraic expression that is valid for all bindings x might 

take on in a given context. How this is done is explained in the body of the paper. Here we note only that in 

Revelation we take advantage of knowledge of the database schema, and even the database state, to expand 

messages into algebraic expressions. Hence the correctness of an algebraic expansion of an expression may 

depend on the current state of the database; the expression may have to be reexpanded and reoptimized as 

the database changes. Note, though, that there is nothing new about data-dependent optimization in query 

evaluation. Query optimization traditionally relies on database statistics to estimate the costs of alternative 

query evaluation strategies. 

We refer to  expanding z f into a more informative expression as revealing the definition o f f .  It is from 

this concept of revealing that the Revelation project takes its name. 



1.2 Bulk Data Types 

The term bulk data type, or simply bulk type, refers to such structures as arrays, sets, and sequences, which 

can contain arbitrarily many elements. Trees are also considered bulk types because they may contain 

arbitrarily many nodes. However, tuples are not considered bulk types; it is true that tuples may contain 

arbitrarily many components, but a given tuple type has a fixed number of components. Intuitively, bulk 

types are those types that make it possible for databases to contain huge amounts of data.' In conventional 

programming languages, it is almost always necessary to use iterative or recursive constructs to  process data 

from bulk types. 

Relational query languages can express bulk processing operations without explicit iteration, as can 

the relational algebra. This expressive capability is convenient for users and is also conducive to  high- 

level optimizations. However, one of the limitations of the relational model is that it provides only one 

bulk type: the set. That is, a relation is by definition a set of tuples. Being unordered, sets are not 

convenient for modeling such entities as lists (or sequences) of events. Note also that sets may not contain 

duplicates; yet many relational database implementations fail to enforce this property, because it is expensive 

to do so. In those implementations, relations are actually multisets (or bags) of tuples, not sets of tuples. 

Thus, the relational model's exclusive reliance on sets has drawbacks both for application modeling and for 

implementation efficiency. 

The bulk types we will support may be divided into three groups: arrays (of one or more dimensions), 

trees, and what might be called the flat bulk types: sets, multisets, and lists. We want our algebra to  be 

able to  express a wide variety of useful operations over these bulk types, but we also want the algebra to be 

as simple and regular as possible. Complexity would be a hindrance not only to abstract reasoning about 

the algebra, but also to reliable implementation. 

Thus, rather than define a new ad hoc set of operators for each bulk type, we exploit the similarities 

between bulk types to define operators that have analogues from one type to the next. Many algebraic 

identities on these operators are shared among the different bulk types. 

There are necessarily some operators and laws that distinguish among the bulk types. Multidimensional 

arrays stand out as having processing needs unlike those of the other bulk types. We imagine that a set 

lDevising a precise definition of bulk type is annoyingly tricky. An appealing characterization due to Trinder [TriQl] is that 
the size of a value from a bulk type is independent of the size of the type description. However, by a malicious reading of this 
characterization, one can conclude that Int is a bulk type-there is no intrinsic reason why all integers should occupy the same 
amount of storage, though in most systems they do. Furthermore, a tuple whose components were sets would be a bulk type by 
this characterization. Because of such difficulties, and because precision on this point is not critical to our topic, in this paper 
we forego a formal definition of bulk t ype .  



of array manipulation operators based on those of APL [FI68] would support efficient array processing, 

and would provide excellent opportunities for high-level algebraic optimization. However, the present work 

touches only lightly on arrays. 

1.3 General-Purpose Computation 

The relational algebra cannot express arithmetic operations, conditional constructs, or explicit iteration or 

recursion-but does express bulk operations concisely. By contrast, conventional programming languages 

support general-purpose computing, but usually can express bulk operations only through iterative or re- 

cursive constructs. We seek to provide much of the best of both worlds. 

In the implementation of our algebra, we will provide access to general-purpose computation by departing 

from convention in two ways. First, the algebra will include operators on scalar types as well as on bulk types; 

it will also support "small" constructed types-types that are neither scalar nor bulk types, such as tuples 

and discriminated unions. Second, when expanding query language constructs into algebraic expressions, we 

will permit subexpressions to remain in unexpanded form if they cannot be expressed algebraically. Such 

unexpanded subexpressions will not be subject to algebraic optimization, and we will not touch on them 

further. 

We base our treatment of scalar types and small constructed types on the functional programming model 

[BW88]. A functional program without recursion is essentially an algebraic expression over a many-sorted 

algebra, and is amenable to  optimization through algebraic transformations. Thus, functional programming 

blends together smoothly with the algebraic formulation of queries. Moreover, by parameterizing our bulk 

operations with functional arguments, we obtain a synergy between bulk operations and operations on 

booleans and other small types. With only a handful of bulk and non-bulk operators, we obtain a very 

expressive algebra. 

2 An Extensible Data Model 

Our view of data is a t  heart a functional one. All data will be typed, and we will concern ourselves almost 

exclusively with immutable data structures. Thus, there will be no such operations as insert or remove on 

lists and sets; rather, operators may be applied to lists and sets to obtain new lists and sets. 

In the following, we first develop support for arbitrary data structures, without regard to object-oriented 

issues. Subsequently we consider the role of encapsulation, subtyping, and identity. 



2.1 Built-in Data Types 

As is customary, we conceive of data types as being freely built up from a collection of built-in types and 

type constructors. The question is which types should be built in. On the one hand, we want to  provide 

efficient support for the data structures we consider important; on the other hand, if too many types and 

constructors are built in, we may lose opportunities for optimization, in addition to sacrificing conceptual 

simplicity, and complicating implementation. 

There is not much doubt that we want our built-in types to include Bool, Int, Real, and Char. Also 

indispensable, in our view, are the small constructed types: product types (i.e., labeled records, as well 

as pairs, triples, and other ordered tuples), discriminated unions (including recursive discriminated unions, 

which may be used to build trees), and function types. 

Some of the bulk types, such as List, will also be built in. It  would certainly be possible to define List in 

the traditional way, as a recursive discriminated union with Nil and Cons as constructors. However, we can 

obtain far superior performance on list operations if we represent a list as a (mostly) contiguous sequence of 

storage locations, much like an array. For this reason, we will make List a built-in type constructor with its 

own special operators. 

Multisets are similar to lists, and will be handled similarly. As we have just suggested, one-dimensional 

arrays are also similar to  lists. The only difference, in our treatment, is that array elements will have an 

index associated with them, and may be accessed randomly. Multidimensional arrays could be defined in 

terms of one-dimensional arrays, but it is preferable to make them built-ins in their own right: Suppose we 

were to  support only one-dimensional arrays directly, and to require higher-dimensional array operations to 

be implemented using one-dimensional representations. Then straightforward operations on two-dimensional 

arrays, such as transposition, while easy enough to implement using loops or recursion, would be extremely 

awkward to express algebraically. In many instances this awkwardness of expression would translate to 

inefficiency in evaluation. 

On the other hand, there is also a danger in including built-in types that are too high-level. Such types 

as Matrix (in the linear algebra sense) and Relation will not be supported directly, for reasons that should 

become clear presently. 



2.2 Decomposition of High-Level Operators 

The appeal of including high-level operators such as matrix multiplication, or the relational operators, is 

that they lend themselves to  abstract optimizations. Thus, one might algebraically optimize the matrix 

expression A * B + A * C to A * ( B  + C),  or the relational expression up(R w S) to (up R) W S, on the basis of 

computational complexity alone. In a later optimization phase, one would work out a plan for multiplying, 

joining, etc., in such a way as to minimize storage access overhead. 

However, this idea of a clean separation between the different phases of optimization does not always 

work out as nicely as one might wish. An example involving matrix multiplication illustrates the problem. 

The matrix product A * B * C can be evaluated either as (A * B) * C or as A * ( B  * C).  If we know 

nothing about the matrices, either evaluation strategy is equally good. But suppose now that we know that 

the dimensions of A, B ,  and C, are n  x rn, m x n,  and n  x m, respectively, and let us say that n  >> m. (See 

Figure 1 (i) .) 

Whether we choose to multiply A * B first or B * C first greatly affects the sizes of our intermediate 

results (Figure l(ii, iii)). If we make the wrong choice, we suffer both in computing the intermediate result, 

and again in computing the final product. It is more expensive to compute ( A  * B) * C than A * ( B  * C )  by 

a factor of ( ~ z l r n ) ~ .  

This much we can determine if Matrix is an abstract type with a hidden representation. But the costs 

of the computation can be analyzed more exactly if the storage layouts of A, B, and C are known. Suppose 

A has row-major organization, and B and C have column-major organization (Figure l ( iv ) ) .  If both n 

and na are large, then access patterns that cross rows of A  involve consulting secondary storage much more 

frequently than access patterns within rows of A; and similarly for the columns of B  and C. Consequently, 

assuming a naive matrix multiplication algorithm, the storage layouts shown here are more favorable to 

computing A * B  than B * C [GK90]. In a given situation, this consideration may or may not outweigh the 

fact that in the abstract, B * C is the best first step. For the purposes of estimating evaluation costs, we 

would do well to decompose matrix multiplication into more primitive operations. 

2.3 Quasi-built-in Types 

As we have seen, there is a trade-off involved in incorporating high-level, abstract operations into the algebra. 

Abstractions can increase expressive power and provide high-level optimization opportunities, but by hiding 

the details of a computation, they can make cost estimation difficult. 



(ii) (iii) 

(iv) 

Figure 1: Array Sizes and Storage Layouts 



To some extent we can avoid making a trade, if we give special status to types such as Matrix. From 

a user's viewpoint Matrix might appear to be built in; and, equally important, the Matrix operators could 

be assumed to obey algebraic laws such as A * ( B  * C) = (A * B) * C and (A * B)T = BT * AT. However, 

the operators would have no direct implementations, nor would any cost metrics be associated with them. 

Instead, the laws would be used at optimization time to evolve alternative formulations of a given high-level 

query; each alternative would then be expanded into an expression built with more primitive operators. The 

resultant expanded expressions would be separately optimized, and the one with the best cost estimate (after 

optimization) would be selected for evaluation. 

A similar approach is probably appropriate for Set. Sets are a valuable abstraction for users, and they 

also have useful algebraic properties. However, set operations are often decomposable into more primitive 

operations. For example, a common implementation of set union computes the multiset union of two multi- 

sets, and then eliminates duplicates. By making this decomposition explicit in our algebra, we will open up 

optimization possibilities that would otherwise be unavailable. 

2.4 User-Defined Types and Implementations 

In addition to built-in types and quasi-built-in types, we will have user-defined types. To achieve abstrac- 

tion and encapsulation, we separate the definition of a new type's inierface (or protocol) from the type's 

implementation. The protocol specifies what messages are understood by a given type, and also specifies the 

argument and result types of those messages. The implementation consists of a representation for a type, 

together with a collection of message definitions (or methods). To qualify as an implementation for a given 

type, the implementation must conform to the type's protocol [DGK+91]. Subtype relationships between 

types are also founded on conformance of protocols. 

An important aspect of our model is that a given type may be implemented in more than one way. Indeed, 

a collection of values of some type may simultaneously contain values with different implementations. We 

may even conceive of having multiple implementations for built-in types. Pursuing this idea, we might 

observe that while there is a clearly a distinction between built-in and user-defined implementations, there 

is no inherent distinction between built-in and user-defined types. We could regard all types-even scalar 

types-as abstract data types [Lom76, Lorn801 supported by some combination of built-in and user-defined 

implementations. 

Alternative implementations for built-ins are likely to have practical value in scientific applications, where 

a number of representations are used for multidimensional arrays [BP87]. For example, an n-dimensional 



array might be represented as a "smaller" n-dimensional array of n-dimensional subarrays; sparse arrays can 

be compactly represented with structures containing only the nonzero array elements. However, to avoid 

unnecessary distractions, the remainder of this paper will assume a single implementation for the types we 

have designated as built-ins. 

2.5 Encapsulation and Subtyping 

Let us now turn to the problem of breaking encapsulation in algebraic expressions. The mechanism we 

propose for breaking encapsulation will also give us the means to cope with subtyping in the algebra. 

This mechanism hinges on the observation that at  a given time, a given type has some fixed number of 

implementations. 

We can reveal the expression x f ,  even when the value of x is not known, by using type information. 

Assume the variable x has type T; then we can infer that x is implemented by one of T's existing imple- 

mentations. Let us call these implementations Ill 12, . . . , I,. Each of these implementations will provide a 

method (i.e., a function definition) for f (perhaps by inheritance). Let us give the name fi to the function 

for f defined by implementation Ii. 

Informally, we know that if x has implementation Ii, then the effect of x f is to apply fi to x. To 

manipulate x f in the algebra, we need to formalize our intuition about the meaning of x f 

Our mechanism for describing the action of messages in the algebra is as follows: We will regard objects 

whose types have multiple possible implementations as belonging to discriminated unions inside the algebra. 

This use of discriminated unions is not to be confused with our making discriminated unions available to 

users as type constructors. To separate the user's view of types from the internal one, we will use the word 

sort for the internal classifications. In many instances, types will map directly to sorts. Our use of union 

sorts is intended to be mostly behind the scenes. 

Now, instead of saying that x has type T, we may say x has sort I1 + I2 + . . . + In, and we may define 

case x of isIl (z) a fi (z) 

i s I2 (~ )  * fz(z) 

isL(z) fn(z) 

As shorthand for the right-hand side of this definition, let us use the notation fT (z). In other words, we are 

interpreting the message application x f as the application of a function to x-a function that happens to 

be defined by a case expression. 



The advantage of rewriting x f as the case expression jT(x) is that  i t  then becomes susceptible t o  

algebraic manipulation. For example, when messages are cascaded, as in (x f )  g, optimization possibilities 

are created by the general law for case expressions 

case x of isZl z f l (z)  case x of isIl z (g, o fl)(z) 

9v 

isIn 2 * (SV 0 fn)(z) 

where the function g, may be taken as an interpretation for the message g. This law transforms cascaded 

messages into a collection of function compositions of the form g, o fi, some of which may be optimizable 

when the definitions of g, and fi are revealed. 

Another transformation on case expressions, applicable if the discriminated unions are suitably repre- 

sented, and f l ,  f 2 , .  . . , fn are all the same, is t o  collapse the entire case expression to  fl(strip-tag(x)), where 

strip-tag(inZi r )  z .  This important optimization arises frequently as a result of inheritance. 

A side benefit of making implementations explicit through the use of union sorts is that in situations 

where a value is known to have only one possible implementation, it n e ~ d  not have a discrimination tag. 

This data optimization distinguishes our approach from naive models, in which even atomic objects such as 

integers must carry the overhead of a type tag alongside the data value. 

The union sort mechanism makes it easy to accommodate subtyping in the algebra, because for the 

purposes of the algebra the effect of subtyping is merely to increase the number of possible implementations 

for a type: Any implementation for the subtype of a type is also an implementation for the type itself. 

2.6 Identity and Updates 

Up to this point all the constructors we have mentioned yield pure-value types that do not admit updates. In 

this paper we will not consider update queries, and for the queries we do consider, the presence of updatable 

cells in the data  model has no effect. Nonetheless, as updates are essential to  a database, a few comments 

about object identity and updatable cells are in order. 

Following Ohori [Oho90b], we base the semantics of object identity on the ML ref constructor. Each 

evaluation of the expression ref E yields a new updatable cell that is different from any other cell. Thus, ref 

may be used to  create objects. 

We depart from Ohori in allowing an arbitrary number of ref cells in the representation of a single object, 

rather than asserting a one-to-one correspondence between ref cells and objects. For us, an object is an 



encapsulated, possibly complex value in which some number of ref cells have been embedded. A value with 

zero embedded ref cells is still an object, but i t  is an immutable object and, unlike mutable objects, it is 

not guaranteed distinct from all other objects. 

In this model, every object is a value, and every value is an object. Whether or not an object (or value) 

is tagged with type information depends on whether it belongs to  a union sort. 

3 Algebraic Operators and Identities 

3.1 Support for Small Types 

For the scalar types, the choice of primitive operators and identities is not controversial. For booleans, one 

will have the usual boolean connectives as operators, commutativity and associativity of A, V, and exclusive 

or,  the de Morgan laws, the fact that false is a unit for V and a zero for A ,  and so forth. For integers, too, the 

operators and laws are straightforward. Reals are a little more difficult, as associativity and commutativity 

are not always upheld by floating point operations that nominally have these properties. In the present 

work, however, we will not delve into these difficulties. 

We shall also assume the usual operators and identities on the small constructed types. For example, 

for function types, the apply operator applies a functional value to  an argument, and obeys the P- and 

gconversion rules of the A-calculus. For ref cells there are creation, dereferencing, and update operators, 

but in this paper we exclude creation and update, and consequently there are no applicable laws. For pairs, 

the operators are fst, snd, and the pair constructor, and we have, among other laws, (fst(z), snd(z)) = z; 

similarly for other product types. The operators for discriminated unions are injections and case expressions; 

among the laws for the discriminated union T + U are these: 

case x of isT z + inT(r) ) = 
isU z + inU(z) 

case x of isT t + fi(z) case x of i sT  z + g(f l ( t ) )  
isU z * f2(z) isU z 3 g( f2 (~ ) )  

case x of isT z + e ) = 
isU z 3 e 

As special cases of these laws, viewing Boo1 as the union Unit + Unit, we have 

(if 6 then true else false) = 6 

g(if b then el else e2) = (if then g ( e ~ )  else g(e2)) 



(if b then e else e )  = e 

There are also laws relating if-then-else to boolean  operator^;^ for example, 

if bl A b2 then e l  else ez = if b1 then (if b2 then el else e z )  else e2 

The importance of these laws will be seen in manipulations on bulk operations in the following. 

3.2 A Reductionist Approach to Bulk Operations 

An algebra over complex types should be a t  least as expressive as the relational algebra, and preferably 

much more so. One way to achieve this expressiveness would be to endow the algebra with a large number 

of operators as primitives, including the relational operators among them. We have already hinted a t  our 

objections to this approach: 

It  is aesthetically displeasing, especially if fewer primitives would suffice. 

It raises the question of how easily the algebra can be extended to include new type constructors. 

It  makes difficult the discovery and verification of algebraic identities. 

It entails a large implementation effort, and a large maintenance burden in the face of changes to the 

algebra. 

To escape these problems, we will support bulk types with as few operators as possible. In the following, we 

first illustrate how one bulk reduction operator parameterized by functional arguments can be used to  express 

many familiar bulk operations. We go on to show that this operator, which we call fold, obeys powerful 

algebraic laws that are useful for query optimization. We then observe that fold lends itself to efficient 

implementation; however, we also observe that an implementation cannot be built around fold alone. 

Initially we introduce our treatment by concentrating on lists. Subsequently, we note the extent to  which 

analogous treatments apply to sets, multisets, one-dimensional arrays, and trees. Finally, we observe that 

conversions between bulk types can be obtained effortlessly as a side benefit of the algebra's regular structure. 

We shall assume that lists, multisets, and one-dimensional arrays come equipped with constructors to 

create empty and singleton collections, and with the fundamental primitive operator append, denoted +t. 

For lists, + L ~ ~ ~  is concatenation; U M ~ ~ ~ , ~ ~ ~  is multiset union; +A,-,. is array concatenation. In the next 

subsection, we abbreviate + ~ i , t  as +t. 

2Note that if booleans are viewed as unions, and the boolean connectives are defined in terms of i f - then-e lse  and the constant 
injections t rue  and fa lse ,  then all the identities of boolean algebra, as  well as the laws shown here, are direct consequences of 
general laws for discriminated unions. 



3.3 The fold Operator 

Assuming +t as a given, the most powerful and useful bulk primitive we know of is a reduction operator we 

shall call fold, which we introduce by way of example: 

[2,3,4] fold(0, square, +) = square(2) + square(3) + square(4) = 4 + 9 + 16 = 29 

[2,3,4] fold(l,id,*) = 2 * 3 * 4 = 2 4  

[I fold(l,id,*) = 1 

Schematically, if f : a -+ ,5 is a function on the elements of an a List, $ : P x ,5 + P is any associative 

dyadic operator, and u : ,5 is a left and right unit (identity) for @, then we have 

At first glance it is surprising that from fold one can derive all the traditional relational operators and more, 

but in fact one can. In our examples above, the list elements are numbers, and @ is bound to arithmetic 

operators. However, the following uses of fold are also legitimate (here u,v,w,x,y, and z are variables all of 

the same type; "one", "two", and "five" are text strings that obey a lexicographic ordering): 

["one", "five", "two"] fold([], f ,  U) 
= ["one"]+t[] +["two"] = ["one" , "two"] 

where f(s) = if s 2 "one" then [s] else [ I  

These examples generalize to  the following operators derived from fold: 

xs flattenmap(f) = xs fold([], f ,  +t-) 

xs flatten = xs flattenmap(id) 

xs jltermap(p, f )  = xs flattenmap(Xz.if p(x) then [f (x)] else [I) 

xs selecl(p) = xs jltermap(p, id) 

xs map(f) = xs filtermap((Xx.trzle), f )  

xs project(al, . . .,a,) = xs map(A{al = X I , .  . . , a n  = xn ,  . . .).{al = X I , .  . . , a, = 2,)) 

The derived operators implement a variety of useful and familiar functions. Thus, patten transforms a list 

of lists into a simple list: 

I[., v, wl, [XI, [Y, 211 flatten = [u, v ,  w, x, Y, 21 



The select shown is precisely the relational a applied to lists, and project is the relational s applied to lists of 

records; map, also known as mapcar, apply-to-all, and collect, appears in functional languages, and in other 

object-oriented query algebras; flattenmap and filtermap are variants on map. For example, 

where is-even stands for Xn.n mod 2 = 0. 

Familiar identities on these operators, such as 

(xs select(p)) select (q) = xs select(X y.p(y) A q(y)) 

(ZS map(f)) map(g) = xs map(g 0 f )  

can be proved by simple inductive arguments from the following identities on fold, which may be regarded 

as definitional: 

[ I  fold(u, f, @) = u ( 2 )  

[XI fold(u, f ,  @) = f (x) (ii) 

(x~*Ys) fold(u, f ,  @) = (XS f ~ l d ( u ,  f ,  @)) @ (ys fold(u, f ,  63)) ( iiz ) 

3.4 Algebraic Manipulation of fold Expressions 

If we allow ourselves to use inductive reasoning, then Equations i-iii, in conjunction with the laws for 

the small types, give us the means to establish numerous identities along the lines of Equations 5 and 6. 

However, inductive reasoning is more difficult to perform mechanically than the equational reasoning used 

by existing query optimizers. These optimizers transform expressions by direct application of algebraic 

identities, substituting equals for equals. For use by such an optimizer, Equations i-iii are inadequate. We 

therefore supplement them with the following laws: 

Law 1 For any list xs, 

xs fold([], (Xx.[x]), -I+) = xs 

Law 2 Let h : p -, y be a monoid homomorphism; thus, there exist operators $ : ,O x ,O -, P with identity 

u, and @ : y x y -4 y with identity h(u), such that for all X I ,  x2 : P,  



Then for any xs : aLis t  and f : a -, /3, 

Example 1 Observe that log(xl * x2)  = logxl + logxz and log 1.0 = 0.0 (1.0 and 0.0 being the identities 

of real multiplication and addition, respectively). Thus, log is a homomorphism as required of h in Law 2. 

Therefore, i fnums  is a list of real numbers, then by Law 2 we have 

log(nums fold(l.O, id, *)) = nums fold(O.O, log, +) 

That is, the logarithm of the product over a list is equal to the sum of the logarithms of the list elements. 

Laws 1 and 2 are consequences of Equations i-iii. The proofs rely on induction, but once the laws are 

established, further identities can be derived from them equationally. Of particular interest is the following 

corollary of Law 2 based on the observation that Equation iii expresses a homomorphic property for fold. 

Law 2a Define 

Then by Equation iii, 

I t  follows that 

(xs fold([], f ,  *)I fold(v, g, 8 )  = hv,,,@(xs fold([], f ,  *)) {by (7)) 

= fold(hv,g,@([]), hv,g,@ 0 f ,  8 )  {by Law 2, using (8)) 

= xs fold(v, hu,,,@ 0 f ,  8 )  {by (7), (2)) 

Law 2a allows us to obtain identities such as Equation 5 without induction, as we shall now demonstrate. 

By definition of select, we may write 

I f = Ax .if p(x) then [XI else [I 
select(p) = fold([ 1, f ,  -kt) 

g = Xx.if q(x) then [XI else [I  
( = fold([], g ,  U) with 

1 = Ax .if pq(x) then [XI else [I 
se[ect(Xy.p(y) A q(y)) = fold([ I,[, *) 

P9 = XY.P(Y)A~(Y)  

and hence we may rewrite the left-hand side of Equation 5 as follows: 

(xs  select(^)) select(q) = (xs fold([], f ,  -I+)) fold(v, g, @) with 
. = [ I  

= xs fold(v, h , , , , ~  0 f ,  @) {by Law 2a) 

= xs fold([], h[ltg,+t 0 f ,  *) 



We want to  show (by deriving h[l,g,++ o f  = 1) that this last expression can be transformed to 

which is the right-hand side of Equation 5. Thus, it remains only to  derive h[l,g,,+ o f = I: 

A~.h[l!,,* (f (x)) 

Ax.hil,,,,+(if p(x) then [x] else [I)  

Axif P(X) then h[],g,*([~l) else h[l,gv*([l) 

h . i f  P(X) then 1x1 fold([ I, g, ft) else I fold([], g,*) 

Xx.if p(x) then g(x) else [ I  
Xx.if p(x) then (if q(x) then [x] else [I) else [I 

Ax.if p(x) A q(x) then [XI else [I 

Xx.if pq(z) then [XI else [I 

1 

{def. of o) 

{def. of f ;  P-rule) 

((2)) 

((7) twice} 

{(ii), ( 2 ) )  

{def. of g; ,&rule} 

((4)) 

{def. of pq; P-rule) 

{def. of I) 

This concludes the derivation of Equation 5. 

This derivation is straightforward, but long (the derivation of Equation 6 would be a good deal shorter). 

Preferably an optimizer should not have to  have to  go through such a large number of steps to  carry out 

a simple transformation. On the other hand, an optimizer able to carry out derivations on the fly might 

discover optimizations that would be inaccessible to  optimizers working from a fixed list of identities for 

select, map, and so forth. A compromise between efficiency and flexibility might be achieved by developing 

a list of frequently applicable identities, and using these to short-cut the derivations whenever possible. 

3.5 Evaluation of fold Expressions 

As we have seen, operators such as select and map can be expressed in terms of fold. One advantage of 

reducing multiple bulk operators to  a single one is that the effort required to  build an evaluator for the 

algebra is thereby reduced as well. However, one might worry that the efficiency of evaluation would suffer 

in the absence of special-case code for the derived operators. 

For the present, we shall assume we are dealing with unindexed collections. Under this assumption, 

implementing the derived operators in terms of fold can be very efficient. (Some low-level optimizations in 

query execution are necessary to  make this true, but the ability to achieve these optimizations is desirable 

in any case.) In fact, it would be detrimental to efficiency to break fold apart and separately implement 

the different operators i t  can express. Consider the case where select and project operations are cascaded, 



as they often are. Naively evaluating these operators in sequence, first select and then project, would entail 

generating a potentially large intermediate result, and then taking a second pass over that intermediate 

result to  generate the final result. However, a select followed by a project can always be simplified to a single 

fold by application of Law 2a; the fold can then be evaluated with a single pass over the data. Any efficient 

relational implementation is capable of rolling evaluation of o and T together into a single pass, and in this 

sense implicitly performs fold all the time, even though fold is not in the relational algebra. 

Sharing common bulk processing code among the different operators offers the usual advantages of mod- 

ular design. In particular, gains obtained by tuning the implementation of fold immediately accrue to  all 

the operators built on top of it .  One way to make fold fast is to use parallel evaluation. Since @ is assumed 

associative, the reduction 

21 @ x 2 $ . . - $ x ,  

may be written as 

Thus the reduction can be organized as k parallel reductions carried out on k processors and then combined. 

Note that parallel evaluation opportunities are not generally afforded by list reductions in functional pro- 

gramming languages. For example, the fold1 and foldr functions of Miranda3 [BWSS], while every bit as 

expressive as our fold, must be evaluated serially. We defined fold as we did partly for the sake of flexible 

evaluation order. 

3.6 The Complexities of Join 

We have not run out of things that can be done with fold, but it is not a panacea. Let us turn to an operation 

for which fold is not well suited: relational join. Certainly relational join can be expressed concisely with 

fold, but this yields a brute-force computation. It is probably better to introduce a new primitive crossfold 

with the following semantics: 

xs crossfold(f, g, h) ys = xs j?aitenrnap(X~.~s filtemap((Ay. f (x) = g(y)), h(x, y))) 

The right-hand side computes the cross product of xs and ys, but each pair (x, y) is retained only if f (x)  = 

g(y); the final result is then obtained by applying h to each (x, y) pair that is retained. This computation is a 

3Miranda is a trademark of Research Software Limited. 



slightly generalized form of join that lends itself to  implementation by the same kinds of efficient algorithms 

as relational join. 

A difficulty that arises in complex object algebras is that whereas relational join and cross product are 

associative, their complex-object analogues usually are not. In complex-object algebras, the elements of 

a bulk type are not necessarily tuples, and there is no general way to combine two elements of unknown 

structure except to pair them. Since ((x, y), z) # (x, (y, z)), the tactic of pairing yields nonassociative 

operations. 

One way to  regain associativity is to invent a complex rule for combining two complex elements. Consider 

this rule: If neither of the elements is a tuple, then just pair them; if one is an n-tuple but the other is not 

a tuple, then combine them into an (n + 1)-tuple in the obvious way; and if both are tuples-an n-tuple 

and an rn-tuple-then combine them into an (n + m)-tuple. With this rule, combining (x,  y) with r would 

yield (x, y, z), as would combining z with (y, z). But what if ((x, y), z) were actually the desired result? The 

given rule cannot generate nested tuple structures. Complex-object algebras that treat tuples differently 

from other objects pay a price in lost simplicity and flexibility. 

The parameterization of crossfold by functional arguments permits the use of whatever combining rule 

is suitable in a given context. Although crossfold is not associative in general, the following identity allows 

us to achieve the effect of associativity in a restricted use of crossfold corresponding to typical joins in 

complex-object algebras: 

(xs crossfold(f1, gl ,  id) ys) crossfold(f2 0 snd, g2, (A((x, Y), z).(+, Y, 2))) zs 

= I S  ~fos~fold(f1,  gl 0 fsf,(X(x, ( Y ,  z)).(x, Y,  z))) (YS cro~sfold(f2, g2, id) 2s) 

This is not an especially readable identity, so let us state its significance in English: Using crossfold, we may 

implement a 3-way (or, for that matter, an n-way) join yielding a collection of triples (or n-tuples), without 

being constrained to perform the constituent two-way joins in any particular order. 

Another special case of crossfold that is associative is the intersection operator: 

xs A ys = xs crossfofd(id, id, fst) ys 

However, i t  should be noted that this definition of intersection has some undesirable properties. The most 

bothersome of these is that xs A xs, rather than always yielding xs, may yield a larger list if xs contains 

duplicates. One might dismiss the problem on the grounds that intersection is not a sensible operation for 

lists (as opposed t o  sets). Alternatively, one might question whether the crossfold we have defined here is 



the right choice of primitives for generalizing join. A further reason to doubt this choice is that this version 

of crossfold appears to be incapable of expressing list difference. 

3.7 Bulk Operators for Multisets and Sets 

So far we have discussed bulk operators only on lists. If we reinterpret fold as foldMultiset, as 

and = as = ~ ~ l t i ~ ~ ~ ,  and change the list literals into multiset literals, then the foregoing discussion of fold and 

its uses carries over from lists to multisets. We need only add one proviso: Since multisets are unordered, 

we require that $ be commutative (as well as associative) for foldMultrset(u, f ,  $) to be well-defined. 

Sets present more of a problem. Just as we have done with multisets, it would be possible to support 

sets with another variant of fold, together with +set (which would be set union). However, the set versions 

of fold and ++ do not constitute a good model for efficient computation on sets; moreover, the algebraic 

properties of sets are somewhat different from those of lists and m ~ l t i s e t s . ~  We can evade these difficulties 

by treating Set as a derived type. 

Several set representations are possible, among which the most straightforward is probably a multiset 

without duplicates. To support this representation, a duplicate-elimination operator is needed. However, it 

may be just as well to define dup-elim as a special case of another operator, the grouping operator that maps 

{a, a, b, c, a ,  c) to { { a ,  a ,  a),  {b), {c, c)). We may conceive of this operator as a new primitive on lists and 

multisets called group. In addition to its list or multiset argument, group would take a functional argument 

to define equivalence classes of the list or multiset elements by mapping each element to a value in some 

domain of the user's choice. Elements mapping to equal values would be deemed equivalent and would be 

grouped together. A map over the result could be used to extract a representative element from each group 

of duplicates. It  would also be possible to wrap the group and map operations together by postulating an 

additional functional argument for group. 

Note that one operator derivable from group would be a split operator that would separate a collection 

over a union sort into collections over the constituent types in the union sort. 

It is unclear what is the best way to axiomatize group and dup-elirn. But it is important to recognize, 

either as an axiom or as a consequence of different axioms, the identity 

(where T is List or Multiset), which asserts that dup-elim is a homomorphism. From Law 2 we therefore 

'For commentary on some of the differences, see Section 4.5. 



obtain 

dup-elim, (xs fold([], f ,  u)) = xs fold({)s,t, dup-elim, 0 f ,  U) 

This equation, applied in the reverse direction, can save execution time by replacing U with the much cheaper 

H. Applied in the forward direction, it can reduce the size of intermediate results. 

3.8 Bulk Operators for Arrays 

Again we may adopt the material that applies to lists in the foregoing, and apply it to one-dimensional 

arrays, so long as we postulate a fold for arrays. This is easily done, but in the case of arrays, a more 

appropriate primitive would probably be a variation of fold we will call foldi: 

In other words, foldi reduces over (index, array element) pairs rather than over array elements alone. Pairing 

the index values with the elements makes it possible to collect a set of indexes of array values satisfying some 

criterion, or to find the position of a known element in a sorted array. 

We may define fold in terms of foldi as 

We also have, among other derived operators, 

xs subarray(low, high) = xs f~ ld i ( [ ]~ , , ,  (X(i, x).if low 5 i 5 high then [xIArr else [IArr), +tArr) 

although it is plain that subarray would be more efficiently implemented as a primitive. 

These operators, foldi and subarray, and the immediate derivatives of fold cited previously, provide fairly 

general support for array processing. However, these are all one-dimensional operators. It is possible to  

express multidimensional array operations in terms of them, but only if the multidimensional arrays involved 

are represented as one-dimensional arrays of arrays. A suitable choice of operators for direct manipulation 

of multidimensional arrays is beyond the scope of the present paper. 

3.9 Bulk Operators for Tree Structures 

In relational systems, tree and graph structures in the user's conceptual schema must be modeled using 

tuples as nodes and foreign keys as edges. Object-oriented systems permit more direct modeling of these 

structures by using objects as nodes and object references as edges. 



In both models, however, expressing queries that involve tree traversal is problematical. One of the 

difficulties is that there is no distinction enforceable in these models between a tree and an arbitrary graph. 

If traversals could be expressed, their complexity would be unbounded unless nodes were marked as they 

were visited. 

Our data  model allows for user-defined tree structures as pure values that involve no explicit keys or 

references. Being trees, these structures are guaranteed acyclic, and the time to traverse them is linear in 

the number of nodes they contain. Pure-value trees may well be the best representation for many complex 

structures in engineering, even when those structures have shared subcomponents; note that  a tree may be 

structurally a pure value and still have object references embedded within it. 

Trees can be defined with recursive discriminated unions. As an example, consider the following type 

definition for a possibly empty binary tree: 

datatype cr Bintree = Empty ( Leaf of cr ( Node of ( a  Bintree) * ( a  Bintree) 

This recursive definition says a tree may be empty, or i t  may consist of a single leaf (in which case this leaf is 

the root), or i t  may be a node with two subtrees obeying the Bintree definition. The type variable cr denotes 

the type of the values associated with the leaves. Note that internal nodes have no values associated with 

them-they only have subtrees. 

Suppose the leaf values of a Bintree were integers and one wished to define a reduction function t o  sum 

the squares of all the leaves in a tree. This function would yield 0 for the empty tree; it would apply square 

to  the value in a tree consisting of just a single leaf; and for a tree whose root was a node, i t  would apply + 
to  the results of recursively applying the reduction to  the subtrees. 

Thus, this particular reduction would be characterized by the triple (0, square, +). Other reductions over 

type Bintree can also be characterized by triples in an analogous way. We therefore define foldsintree to 

carry out the Bintree reduction characterized by a triple given as fold's argument. Summing the squares of 

the leaves of a Bintree called tree would be achieved by 

tree fold(0, square, +) 

As this example suggests, foldB,,,,,, can be used in similar ways to  foldL,,,, foldMurtiset, and so on. It can 

be used to  build up new trees as well, though we will not go into the details here. 

Each recursive type induces a different version of fold. It happens that foldBintree closely resembles 

foldList and foldMult,,,,, but that is only because for the purposes of reduction we have been treating lists 



and multisets as though they were binary trees. In our discussion of foldLis,, our assumption of associativity 

of $ was a way of saying that we wanted to  be able to view a list as the frontier of any binary tree with the 

right number of leaves-with each leaf corresponding to one element of the list-rather than being confined 

to a particular tree structure and hence a particular reduction order. In a manner of speaking, we have been 

using foldsintree all along, even though the binary trees themselves were not introduced until just now. 

The argument t o  foldBintree has three components precisely because there are three alternatives in the 

discriminated union defining the data  type Bintree. Reductions over discriminated unions with n alternatives 

can be characterized by n-tuples, and the generalization of fold to a type defined by such a discriminated 

union would accept an n-tuple as its argument. For more details on reduction operators for recursive types, 

see the excellent treatment by Pierce et al. [PDM89]. 

The laws applicable to  versions of fold induced by recursive types can be generated mechanically. Again, 

we will not go into the details, but for a flavor of the relationships involved, note that Equations i-iii in 

Section 3.3 correspond to the three alternatives in the type definition for Bintree. Note also that Laws 1 and 

2 (Section 3.4) bear a kinship to Equations 1 and 2 for case expressions (Section 3.1)-Equation 1 and Law 1 

say that particular instances of case and fold are the identity function, while Equation 2 and Law 2 allow 

a function application to  be pushed inside a case or fold expression. These similarities are not coincidental: 

rather, they arise from the fact that fold is shorthand for a recursive case expression over a recursive union. 

Consequently, all laws for case expressions have analogues for fold, and vice versa. 

We have not supplied extensive examples to demonstrate the expressiveness of fold on user-defined tree 

structures. But the versatility of the fold message illustrated in previous sections is an indication that this 

single message may well be capable of expressing a wide variety of queries over a wide variety of structures. 

3.10 Bulk Conversions and Aggregates 

There are a number of operations that require special support in traditional and even in object-oriented 

databases, but that are handled very naturally by fold. 

Among these are certain conversions between bulk types, which become almost trivial. For example, 

converts a list, array, or binary tree into a multiset. Other conversions are similar. However, fold conversions 

from multisets t o  lists or arrays are technically disallowed because - + + L , ~ ~  and are not commutative. 

Thus, a sort operator and probably also a nondeterministic arbitrary-order operator would be useful for 



carrying out these conversions. 

Aggregate computations such as averages are supported in the relational algebra through ad hoc exten- 

sions, but with our approach, no such extensions are necessary. We have already used summations in our 

examples. If we use fold to accumulate the pair (partial sum, partial count) rather than just the partial sum, 

the result of the fold will be a (sum, count) pair, from which the average is immediate. Variances, maxima 

and minima, and other aggregates are all easily computed by reductions. 

3.11 Summary 

In this section we have described the salient features of our proposed algebra. Our algebra might be char- 

acterized as a functional language without recursion, to which a handful of highly versatile operators on 

bulk types have been added. Multiple bulk types are supported, and to a large extent they are handled in 

analogous ways. 

The algebra obeys laws that can serve as the foundation for a variety of optimizing transformations, 

including familiar transformations from relational query optimization. Moreover, the operators we have 

defined are suitable for evaluation in a database implementation. 

Much of what we have described revolves around a single family of operators named fold. We have argued 

that the algebra needs several additional bulk operators, but precise definition of these additional operators 

has been left to the future. 

4 Related Work 

The algebra sketched here has some similarities with other algebras that have been proposed. In discussing 

related work we will see some of these similarities; we will also see what is novel in the present approach, 

and the ways in which it improves on the alternatives in expressiveness and amenability to optimization. 

Vandenberg and DeWitt [VD90] describe a complex-object algebra that shares some of the same goals as the 

present work. We shall refer to their algebra as the EXCESS/EXTRA algebra, after the system it is a part 

of. This algebra was intentionally designed to be equivalent to the EXTRA query language in expressive 

power. 



The EXCESSIEXTRA algebra assumes a data model in which several general type constructors are 

provided, and data structures are built through free composition of those constructors. Like ours, the 

EXCESS/EXTRA algebra defines a small number of powerful bulk operators that allow multisets and arrays 

to be processed in analogous ways. Because our approach has much in common with theirs, and to some 

extent builds upon their ideas, here we will focus on some of the differences between the approaches. 

Multidimensional arrays are not directly supported by EXCESS/EXTRA. Users may construct them as 

arrays of arrays or using other representations, but we see the absence of primitive support for them as a 

potential barrier to  efficient implementation of dense arrays. 

The EXCESSIEXTRA algebra is many-sorted, but scalar types are all grouped together in the same sort. 

Thus, integers, booleans, and so forth, are all treated simply as "values," and are not further distinguished; 

nor are operators provided on "values." As in the relational algebra, boolean expressions appear in the 

algebra, but only as subscripts to operators over some other sort. Consequently, a boolean expression at 

the top level of a query cannot be optimized using identities of the algebra. The same applies to boolean 

subexpressions of a query if they are not attached to other operators, as well as to integer subexpressions, 

string subexpressions, and so on. The lack of operators and identities for scalar types concerns us because 

a complex query, especially after methods are revealed, may contain many subexpressions of many sorts. 

Whenever possible we would like to be able to optimize these queries in their entirety, as we explained a t  

the outset. 

In the EXCESSIEXTRA algebra there are general operators called SET-APPLY and ARRAYAPPLY 

that are equivalent to  our map. In fact, they are made more powerful through a sleight of hand. The 

function that is applied to each element of a collection may, for some of those elements, return the special 

value dne, for does not exist. These result values are discarded from the result collection, so SET-APPLY 

or ARRAYAPPLY need not preserve the cardinality of a collection. This makes it possible to  implement 

filtermap and select with SET-APPLY, but still does not give SET-APPLY the generality of fold. One 

important reduction, flattening an array of arrays, or a multiset of multisets, is addressed with special op- 

erators SET-COLLAPSE and ARRAY-COLLAPSE. However, other reductions, like summing the elements 

of an array, are apparently not provided. It  is unclear whether a user could write a general, type-safe fold 

in the data manipulation language. 



4.2 ENCORE 

Shaw and Zdonik [SZ89a] describe an algebra for the ENCORE object-oriented database system. They 

characterize all types as abstract data types whose implementations are hidden from the algebra. Axioms 

on the abstract data types assist the optimizer without revealing implementations. At the same time, Shaw 

and Zdonik allow for the possibility of making use of "optimization strategies for encapsulated behaviors," 

citing [GM88]. 

ENCORE'S data model provides only two built-in parameterized types, Tuple and Set. Consequently, 

bulk data cannot be constructed without sets. Given this limitation, processing of multisets, lists, and arrays 

is likely to be costly. 

A more fundamental difference between the ENCORE data model and our own lies in the treatment of 

object identity. ENCORE, in the tradition of pure object-oriented languages, views everything as an object 

with an identity. An opposing viewpoint is that there is a distinction between objects, which possess identity, 

and values, which do not [D+91]. For atomic types such as booleans and integers, the distinction is only a 

matter of terminology, but for compound types the distinction is important. If an ENCORE user creates 

two separate tuples x = ( A  : 2, B : true) and y = ( A  : 2, B : true), then x and y, though equal in value, 

will be distinguishable by an identity test. However, in systems that treat tuples as values, a: and y would 

be indistinguishable. For us, too, x and y are indistinguishable since neither one contains any ref cells. (See 

Section 2.6.) Thus, we support structured values without identity. 

The ability to generate values without identity is a great asset in query optimization. For example, it is 

the indistinguishability of multiple instances of the same value that makes it possible to optimize 

assuming f has no side-effects. But in ENCORE, these two expressions could not be guaranteed to yield the 

same result in general. In fact, given ENCORE'S object semantics, very few algebraic transformations can 

be applied to a query without changing its meaning. 

To deal with this difficulty, Shaw and Zdonik introduce new notions of equivalence of queries [SZ89b]. 

The roughest form of equivalence they define is weak equivalence; it holds on any pair of queries whose results 

contain the same database objects, glued together in any manner. Thus, if 01 and 0 2  are database objects, 

then a query returning ( 0 2 ,  {{ol), 02)) and one returning {ol, 0 2 )  are weakly equivalent. Under this liberal 

definition of equivalence it again becomes relatively easy to transform a query into a different but equivalent 

query. However, if the user frames a query so as to structure the result in a particular way, a result with an 



entirely different structure will hardly do. Thus, one needs somewhat stronger notions of equivalence that 

still admit query transformations. 

Accordingly, Shaw and Zdonik define a family of relations called i-equality or equality at depth i .  This 

family of equalities generalizes the familiar object-oriented concepts of identity, shallow equality, and deep 

equality: Identity is equality a t  depth 0 ,  shallow equality is equality at depth 1, and deep equality may be 

thought of as equality at depth co. Two queries are i-equivalent if their results are always i-equal; they are id- 

equivalent at depth i if, in addition, their results have isomorphic graph structures. Shaw and Zdonik present 

a number of query transformations that preserve id-equivalence at depth 2. Using such transformations, one 

can optimize a query without losing much structural information from its result. 

One objection to  ENCORE'S complicated approach to equivalence is that it could be difficult for users 

to  master. A second, more technical objection concerns composition of equivalences. Suppose we have a 

transformation rule that says query Q is k-equivalent to R for some k > 0, and let f be some function. 

What can we say about the relationship between f (Q)  and f(R)? In general, we cannot even assure weak 

equivalence of these two expressions, since f may perform computations sensitive to the structure of its 

argument. In other words, we may not freely substitute equivalents for equivalents in subqueries. Similarly, 

if the result of one query may be referred to in subsequent queries, then the initial query may safely be 

transformed only in ways that preserve id-equivalence at depth 1. 

The most interesting contribution of ENCORE is its provision of query transformations that involve 

inverse relationships between database collections. These transformations make it clear that vast improve- 

ments can be achieved on some queries by taking advantage of inverse relationships. Such transformations 

differ from other algebraic transformations in that they rely not only on the properties of the algebraic 

operators, but also on integrity constraints on the underlying database. 

4.3 An Algebra Based on FP 

A general and abstract approach to algebraic manipulation of bulk types is suggested by Beeri and Kornatzky 

[BK90]. Their treatment of high-level operators is similar to ours, but their framework is somewhat different. 

Asserting that "[f]unctional languages such as Lisp with higher-order functions do not possess a useful 

algebra of programs due to the unrestrained use of these higher-order functions," they base their algebra 

on Backus's FP.  To FP's tuple constructor they add constructors for sets, multisets, lists, arrays, and 

trees, but they treat all of these constructors in a uniform way-at least as far as the bulk operators are 

concerned. The distinctions they make between the constructors are expressed through axioms. For example, 



a permutability axiom on sets says that {ol, 02,. . . ,on)  = {p(ol, 02,. . . , on)), where p is any permutation 

and {) denotes the language's set constructor. Similarly, sets satisfy a duplicate elimination axiom that says 

oi = O, {ol, .  . ., oj, . . . , oj, . . . ,on)  = {ol , .  . . , oi, . . . ,o,-1, ~ j + ~ ,  . . . ,on) .  In this way their model neatly 

relieves the bulk operator definitions of the need to distinguish between constructor types. On the other 

hand, it is not clear how such a model might be efficiently implemented. 

The bulk operators themselves are familiar: apply-to-all (map), product (a kind of generalized Cartesian 

product), and pump (similar to fold). Beeri and Kornatzky achieve selection or filtering by using apply-to-all 

with a function that yields null for items to be discarded. A constructor axiom for null elimination has the 

effect of removing the unwanted items. The concept here is of course the same as the use of does not exist 

in EXCESS/EXTRA. 

The null values are also used to distinguish internal nodes of a tree from its leaves. If a node's subtrees 

are null, then it is a leaf. The lack of explicit discriminated unions to distinguish different node types 

restricts the kinds of trees that can be described conveniently. This limitation also leads to cumbersome 

implementations of simple operations, despite the power of the pump operator. For example, to sum the 

leaf values of a binary tree, ignoring internal node values, entails passing pump an argument function of 

surprising messiness. 

4.4 Maps 

Atkinson et al. [ALRSl] take a very different approach to combining minimality with generality. They define 

a single bulk data type, called a map, that can be specialized to any other bulk type one might be interested 

in: finite functions, arrays, relations, other kinds of sets, and so on. 

Although the authors describe relations as just one of many bulk types that maps can represent, one can 

also turn this view upside down and take relations as a starting point. Then maps can be characterized as 

relations whose unique-key constraints are enforced, and whose attribute types are arbitrary. For example, 

a relation can be used as  a function from its key to its other attributes. If the key is an integer, the 

function represents an array. A set is simply a relation whose key includes all its attributes. For efficiency 

reasons, these relations implementing maps of different kinds are maintained in key-sorted order, and in 

some operations this order affects semantics. 

Maps come with both imperative and algebraic operations. Among the latter are union, intersection, 

and di'erence, which are almost the same as their relational counterparts. However, union and intersection 

are not commutative if the operand maps, viewed as relations, have keys in common. There is a generation 



construct that achieves selection, projection, and so forth, using a syntax akin to  that of list comprehensions. 

We comment briefly on comprehensions in the next section. 

4.5 Abstract Bulk Types 

4.5.1 Comprehensions,  Quads ,  a n d  Ringads  

List comprehension notation, found in several functional languages, allows lists to be generated in a concise, 

declarative manner that resembles mathematical set former notation. Wadler [Wadgo] has given an algebraic 

characterization of comprehensions that can be motivated by category theory. Trinder and others have 

explored the use of comprehensions as a database query notation [Trigl, HN911. Trinder emphasizes the 

possibilities for query optimization offered by the algebraic structure underlying comprehensions. 

In Trinder's treatment, the possible manipulations on a bulk data type are distilled to a quadruple of 

functions. Such a quadruple, provided it is associated with a type constructor and that its components satisfy 

eight algebraic laws, is called a quad. As an example, the four functions for the List constructor would be 

map, Xx.[x], flatten, and Ax.[]. Evaluation of a List comprehension involves translating the comprehension 

into an algebraic expression built from these four functions. 

Quadric descriptions also exist for sets, multisets, and some trees. Each such description includes four 

functions, which we will refer to generically as map, single, flatten, and empty. A comprehension for a 

given bulk type can always be translated into a quadric expression; thus, comprehensions provide nothing 

in expressiveness that cannot be obtained by other means. (What comprehensions do provide is notational 

convenience-an important consideration in the design of user languages, but less important to the construc- 

tion of an algebra.) 

Of concern to us here is the expressiveness of the quads themselves. Clearly they can express map and 

flatten, since these functions are built into the quad definition. They can also express selection, as  

select p = flatten o map(Xx.(if p x then single else empty) x) 

but they cannot express general reductions or conversions. More fundamentally, there is no way, using the 

quad functions, to  express +t; indeed, there is no way to create any bulk type instance with cardinality 

greater than For the quadric description of a bulk type to be useful, one needs some mechanism external 

to the quad to build up instances of that bulk type. Trinder assumes the existence of +t but does not 
- -  - - 

50ne could define a f t , b  = j?atfen,(map,(Xx.if x then a else b) [ t rue ,  jalae],), provided one assumed the availability of the 
constant [true, false],; but the construction of any such constant from the quad components alone is impossible. 



relate it to the quad components by any algebraic laws. One has no assurance that the -i+ operators for 

different bulk types will have similar algebraic properties. Thus, the quad structure by itself is inadequate 

to characterize bulk types in an abstract, encapsulated way. 

In recent collaborative work of Watt and Trinder [WT91], the quad is supplanted by a richer algebraic 

structure, the ringad. Before we comment on ringads, however, it is worth noting that sections of the 

Watt and Trinder paper overlap rather closely with the present work. Here we shall point out some of the 

differences. First, Watt and Trinder treat both flattenmap (which they call iter) and fold (which they call 

reduce) as primitive collection operators, rather than deriving flattenmap from fold. Second, they treat sets, 

multisets, and lists (and more) in a uniform manner; in our treatment, sets are problematical. Third, Watt 

and Trinder offer no laws as general as our Laws 2 and 2a. 

These differences are actually related to one another. To see the connections, let us review our thinking 

about sets. Part of our reason for separating sets from multisets and lists is that set operations tend to be 

costly to evaluate; by decomposing set operations into multiset operations and duplicate eliminations, we 

give ourselves optimization opportunities that are unavailable if set operations are treated as atomic. But 

from a theoretical standpoint as well, it is difficult to reconcile the behavior of sets with that of multisets 

and lists. For example, taking *set as set union, and defining foldse, by Equations i-iii, we find (using the 

fact A U A = A) that 

2 = {2)fold(O, id,  +) = ((2) u {2))fold(O, id, +) = ({2}fold(O, id, +)) + ({2)fold(O, id, +)) = 2 + 2 = 4 

In general, foldset is ill-behaved. However, joldset(l ,  f, U) is well-behaved when U is the join opera- 

tion of some lattice, and I is its bottom. (Dually, foldset(T, f ,  fl) is also well-behaved.) In particular, 

JEattenmapset(f) = foldse,(O, f ,  U) is always well-behaved, since set union is the join operation in the lattice 

of sets over a given type. 

Watt and Trinder avoid difficulties with sets by basing most of their discussion on flaiienmap rather than 

fold. Since flatten, map, and select can all be expressed in terms of flattenmap, Watt and Trinder achieve 

considerable generality in this way. They recognize the utility of fold as well, and provide it as another 

operation, but make no promises about its algebraic properties. Thus, fold plays a much less important role 

in their treatment than in ours. It  is then natural that our Laws 2 and 2a, which are laws about fold, should 

be absent from their treatment. 

The algebraic structure used by Watt and Trinder, as we have noted, is called a ringad. The components 

of a ringad are ( T ,  single,,flattenmap,, U,, [ I , ) ,  where T represents some bulk type. A rich set of laws 



relates these components and assures that they interact in a way that most of us would consider reasonable. 

Note, though, that fold is not included in the ringad, nor can it be constructed from the functions that are. 

Just as Sf operated externally to the quad abstraction, fold operates externally to  the ringad abstraction. 

Thus, the ringad, while a step forward, still falls short of providing a complete abstract model of bulk types. 

4.5.2 Ad junc t ions  

As we mentioned, Wadler's algebraic characterization of comprehensions drew on ideas from category theory 

[Wadgo]. In fact, many algebraic structures in computer science have descriptions in terms of category theory. 

The existence of such descriptions can be reassuring: seemingly complicated or arbitrary laws, rewritten as 

categorical abstractions, are seen to  be instances of simple, regular patterns (e.g., [Spi89]). It is therefore 

worth asking whether the equations and laws on fold presented in this paper admit a categorical description. 

The answer is that they do. The applicable categorical notion is the adjunction [SpiSO]. Adjunctions 

do not characterize structures so much as the relationships between structures. Through the adjunction 

framework we see bulk types as transformations from potentially unstructured element types to structured 

algebraic entities. For example, since every list is a monoid, regardless of the type of its elements, lists may be 

said to  constitute a transformation from types to  monoids. The structure embedded in that transformation 

is described by an adjunction. 

Let X be TYPE, the category of types (its arrows are functions), and let A be MONOID,  the category of 

monoids (its arrows are monoid homomorphisms). Then we may define an adjunction (F, U, 7;1, E )  : X - A 

as follows: 

r H  list, +I-, [ I )  on objects 
F is 

on arrows 

(7, @, U) H T on objects 
U is 

id on arrows 

7;1 : I d x  4 U F  

&(r ,@,u)  = fold(u, id, @) 



We may define a slightly different adjunction by taking A to  be the category of commutative monoids, and 

by replacing each occurrence of List by Multiset. 

To show that the foregoing equations do indeed define an adjunction, we must verify that F and U are 

functors, and that q  and E are natural transformations. We must also verify these adjunction laws: 

For the interested reader, we sketch what is involved in carrying out these verifications. That  F is a functor 

follows from Law 2; U is trivially a functor. The naturality of 17 comes from Equation ii; that of E ,  from 

Law 2. The law U E . ~ U  = Idu is obtained as a special case of Equation ii, and E F .  Fq = I ~ F  is a restatement 

of Law 1. 

We have shown that  from the type constructor for List (or Multiset), together with fold and +t- op- 

erations obeying a handful of laws, we can construct an adjunction. Equally important, although we will 

not demonstrate it, is a converse of sorts: given that (F, U, q,  E )  is an adjunction from TYPE to MONOID,  

we could have extracted ft- from F, and defined fold in terms of F and E ,  and then immediately obtained 

Equations i-iii and Laws 1, 2, and 2a-without induction. 

It is tempting t o  conclude from these observations that adjunctions express the essential structure of 

bulk types. Adjunctions do appear to have one major advantage over ringads, in that they integrate fold 

with the ringad operations in a single, coherent structure. The greater structure of the adjunction makes 

it  less flexible; but we can regain flexibility by considering a family of adjunctions, each with analogous 

but slightly different algebraic properties. Thus, in the foregoing, we obtained two different adjunctions 

depending on whether A was MONOID or COMMUTATIVE-MONOID: one adjunction characterizing lists, the 

other characterizing multisets. We can go further and obtain a characterization of sets by taking A to be 

POINTED-LATTICE (the category of lattices with bottom; its arrows are lattice homomorphisms). However, 

it is unclear whether other bulk types (e.g., tree-structured types) can be described within the adjunction 

framework. 

4.6 Other Algebras and Systems 

FAD [BBKV87] introduced the pump operator, which is discussed above and is essentially the same as our 

fold operator applied to  nonempty binary trees. The cited paper points out the usefulness of pump for 

parallel reduction, but does not take full advantage of its generality: a filter function (our filtermap) is 



defined separately rather than being derived from pump. 

Merrett and collaborators have extended the relational algebra to provide more of the expressiveness of 

general-purpose programming languages, and have implemented a number of scientific algorithms in their 

system [MK91]. 

Breazu-Tannen and Subrahmanyam [BTS91] have investigated the algebraic and logical foundations of 

operations on the flat bulk types. They employ a categorical framework different from the one discussed 

above in Section 4.5.2. 

Straube and 0zsu [SOSO~, SO SO^] have developed a set-based object-oriented query algebra, and have 

presented transformation rules for it. However, their algebra is less expressive than others we have examined. 

The Object-Oriented Functional Data Language [MCBSO] synthesizes ideas from functional and object- 

oriented programming, but does not concern itself with database efficiency issues. 

The SETL project [SSS81] investigated optimization of programs using data abstractions through selec- 

tion of suitable representations for the abstractions. However, the project focused on in-memory represen- 

tations and did not consider secondary storage. 

4.7 Data Modeling Issues 

Our conception of subtyping is ultimately based on the pioneering work of Cardelli [Car84, CW85]. A survey 

of subsequent ideas about typing of object-oriented systems is given by Danforth and Tomlinson [DT88]. Still 

more recently, interesting work on typing of object-oriented databases has been done by Ohori, Buneman, 

and Breazu-Tannen; e.g., [OhogOb, OhoSOa, BTB0891. 

VBASE [AH901 deserves mention in connection with discriminated unions. Atypically for an object- 

oriented system, V B A ~ E  provided discriminated unions as a data structuring facility, and, as a separate 

feature, also allowed variable types to be unions of different types supporting the same messages. (These 

type unions are not discriminated from the user's point of view.) The VBASE treatment of these matters is 

very similar to  our own. 

Straube and 0zsu [SOSOC] have studied the problem of type unions in some detail. An important 

application for type unions arises in the typing of elements of a heterogeneous set. Naive approaches force 

the elements of such sets to  be given a general type like Object, or some other type high up in the type 

hierarchy. This can result in the loss of type information. For example, without union types, if A and B are 

sets then the element type of A U B must be a common ancestor of the element types of A and B. With 

union types, the element type of the set union can be taken to be the union of the element types of the two 



sets. The authors apply analogous thinking to other operators, and develop a set of type inference rules to  

determine the most informative type for any expression. 

5 Future Work 

The present work has given less attention to arrays than we would have liked. Future work includes looking 

more closely a t  the ways that operations on matrices with various representations can be efficiently imple- 

mented using more primitive and general operators over multidimensional arrays. The hope is that matrix 

and other array operations can be boiled down to a small number of primitives without sacrificing efficiency. 

In this paper, we have not discussed the part that index structures like B-trees can play in operations like 

selection. There is some question whether index structures should participate in the algebra. Usually they 

do not, but there may be benefits in including indexing abstractions in the algebra. They would allow us to 

duplicate the functionality of maps [ALRSI] with reasonable efficiency. Indexes might also be necessary to 

support inverses as in ENCORE. 

6 Conclusion 

There has been an effort in recent database algebra proposals to make the primitive operators very simple 

and general. In this paper we have taken several unconventional steps in our pursuit of a simple and 

general object-oriented algebra. We have emphasized the role of union types, both in modeling subtyping 

and in modeling complex data. Our algebraic operators have not been limited to bulk types, but have 

supported scalar types and "small" constructed types as well. We have sketched how a minimal set of 

bulk primitives, parameterized by expressions containing arbitrary operators, can support a wide variety of 

traditional database operations and optimizations. 

Certain details of our algebra remain in doubt. But there is little doubt that we want our algebra to 

provide a small number of very general operators over general, freely composed types. The present work 

argues for the viability of this approach. 
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