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Abstract 

We propose to design and implement an environment for computer assisted pro- 
gram development in Extended ML, a formal specification language. We intend 
to demonstrate the feasibility of the EML methodology, to demonstrate its appli- 
cability to a large class of problems, and to explore issues that arise in providing 
an automated programming environment for formal methods. We will produce an 
EML derivation editor (Breitenbush) built with the Cornell Synthesizer generator, 
a library of examples and technical reports describing our experiences, and detailed 
plans for a second-generation environment (Santiam). 

1 A personal vision 

In the 1990s and beyond increasingly complex problems involving ever more critical 
systems will have to be solved by fewer software engineers than we have today. Yet, 
we are already straining the limits of our current software development technology-it 
cannot scale much further. The AT&T telephone network has exhibited a catastrophic 
software failure; companies regularly fail to deliver software on schedule; and the accepted 
standard for safety-critical systems is still informal review and extensive testing. 

To meet the needs of the future, we must improve the productivity of software engi- 
neers by reducing the number of intellectual acts they perform each day while increasing 
the quality of the software they produce. We believe that this revolution in programming 
will come by the application of formal methods to software development. 

Formal methods will support reasoning at appropriate levels of abstraction-decreasing 
the number of bookkeeping and representational details that a programmer must manage 



while increasing confidence in the result. In the end, the programmer must say more, 
and say it more clearly, by writing fewer lines of code. 

We envision the formal design of a system as an active entity maintained by the 
software development environment. Early in the design phase the design specification 
can be explored by proving properties of the integrated components based on their spec- 
ifications. As the design evolves, some simple tasks may be prototyped by automatic 
programming techniques, possibly based on program extraction from constructive proofs 
as in Nuprl and Romulus[7, 101, or on A1 heuristics such as in KIDS[48]. As parts of 
the system are implemented, the proof of compliance with the specification will be main- 
tained. If, in the future, design changes are made that invalidate correctness proofs of 
system components, the environment will automatically discover the invalidated claims 
and bring them to the attention of the software engineer. 

The discipline of formal methods is also expected to assist the programmer by aiding 
in clear thinking-the most important contribution of a team member to any system. 
Companies currently are experiencing improved communication between engineers and 
higher productivity through the use of rigorous methods[9]. Rigorous methods are meth- 
ods in which designs are expressed in a mathematical notation but, in contrast with 
formal methods, implementations are not formally proved to correspond to designs. 

While advocating discipline as contributing to clear thinking, we do not deny that 
programming and algorithmic design is fundamentally a creative process. It is important 
that the software development environment of the future support a sufficiently expressive 
logic to facilitate the development of efficient and creative algorithms. This includes being 
expressive over algorithms involving state and control. 

If this is the future, how do we get there? How long will it take? We feel that 
research into formal methods, logical frameworks and programming language design is 
now at a point where systems realizing important facets of this vision are a poten- 
tial reality. We propose to build a system for program development based on Sannella 
and Tarlecki's Extended ML specification logic and the associated program development 
methodology[41, 42, 39, 441. The system will provide support for a single user to manip- 
ulate an integrated program-design object, giving automatic assistance for the stepwise 
development of programs from specifications. 

This system will not address all the problems outlined above. In particular, we will 
not address the problems of concurrent access, version management, automatic program- 
ming and theorem proving in this effort. However, it will initiate a long-term research 
program that will address those issues in the future. 



Why EML? 
The environment of the future will have a specification language at its core. The specifi- 
cation language will properly include an executable programming language, as well as a 
mathematical logic expressive over the abstractions present in the design. In this project 
we will take Standard ML (SML) as our implementation language and an augmentation 
of it called Extended ML (EML) as our specification language. 

Standard ML is a small, formally defined programming language with higher-order 
functions, references, exceptions and strong-typing[23]. It comes out of a tradition of 
languages based on the lambda-calculus that goes back to Landin's ISWIM, introduced 
in his classic 1966 paper on the fundamentals of programming languages[l9]. Standard 
ML is arguably the most mathematically elegant language designed and implemented to 
date that includes both functional and imperative features. It is an obvious choice as a 
starting point for this investigation. 

Standard ML includes a module facility that supports the data encapsulation tech- 
niques popularized in object-oriented programming, while retaining static-typing and 
strong-typing. The basic unit of data encapsulation in SML is called a structure. Like 
an "object," a structure is a collection of types and values. The type of a structure is 
called a signature. Signatures record the visible interfaces of structures, much like class 
definitions describe objects. However, signatures and structures are completely distinct 
entities, and neither are first-class values at runtime, unlike objects and classes. In- 
stead structures are manipulated at compile time, where they are acted upon by special 
functions called functors. The functor-structure calculus provided at compile time is 
rich enough to express much of the code reuse claimed by advocates of object-oriented 
methods. (This mechanism is also similar to, but far more general than, Ada's generic 
packages.) 

In spite of this immense expressive power, the semantic explanation of SML is com- 
pact and mathematically well behaved[l6, 17,241. Ob ject-oriented languages, in contrast, 
have complex and quite operational semantic explanations. Formal reasoning about even 
the simplest object-oriented language is extremely difficult. 

Extended ML is a family of specification logics built on top of Standard ML. It has 
been defined by Sannella and Tarlecki of Edinburgh and Warsaw, respectively. All logics 
in the EML family support the same development methodology and have the same high 
level structure. They differ, however, in exactly which features of Standard ML they 
can naturally express. It is not surprising that the simplest logics deal with the most 
restricted subset of the language. One area of investigation will be finding the appropriate 
balance between the expressive power of the logic and its over-all simplicity. 

Theoretical work on EML began in 1985 and continues today[41,42, 39,441. There is 
currently an implementation project at Edinburgh that is focusing on building compiler- 
like tools for EML that interface to theorem proving engines being developed with sup- 



port from the UK Science and Engineering Research Council[40]. We are in close com- 
munication with the principal investigators of these efforts. We know of no other efforts 
investigating EML in the United States. More information about EML is given in the 
appendix. 

EML has also been used in an industrial setting by Harlequin Ltd of Cambridge, 
England. They have use it for specification of a compiler, and plan to specify other com- 
ponents of their comprehensive Standard ML design and development environment[47]. 

3 Breitenbush-a derivation editor 
The Breitenbush derivation editor will be the first tool we build in support of our vision 
of the future. It will directly support the EML methodology for deriving programs that 
satisfy specifications. This methodology is based on decomposition and refinement. The 
editor will augment this paradigm with a mechanism of design reuse, discussed below. 

The editor will realize the vision of a computer-maintained entity representing the 
design and implementation. This entity will be the derivation of the program from its 
specification. It will include the top-level specification and be built by the three basic 
steps of decomposition, coding and refinement provided by the EML methodology. 

The EML derivation will be viewed as a tree. The root of the tree gives the highest 
level specification of the problem. The branches in the tree reflect design decisions that 
result in decomposition or refinement. The leaves of a complete derivation yield an 
executable SML program that satisfies the specification in the root. Every well-formed 
derivation may be read as a consistent story of how the implementation relates to its 
specification. 

The primary operations supported by the editor will correspond to the basic EML 
derivation operations: decomposition, coding and refinement. The user will select a leaf 
of the derivation tree to be extended, and invoke the appropriate derivation operation. 
The system will then transform the derivation, grafting a new subderivation onto the 
tree. The system will also calculate the logical conditions that must be demonstrated 
to justify the derivation step. These correctness conditions are a critical part of the 
derivation. Breitenbush will provide limited support for these proofs. 

When working out derivations by hand, there is a great deal of information that is 
repeated from one stage to the next, and it is difficult to keep track of the implications 
of changing an earlier design decision. To facilitate this, and to rapidly get a mature, 
workstation-based user interface, we plan to use the Cornell Synthesizer Generator[34, 
36, 371 to build the Breitenbush editor. The synthesizer generator is a tool that builds 
editors from language descriptions given by attribute grammars. Attribute grammars 
provide a way to augment context free grammars with context sensitive information, 
expressed as equational constraints between "inherited" and "synthesized" at tributes. 



The synthesizer has been used successfully to prototype a user interface for a logical 
framework based proof editor[l2] and an Ada verification environment[l4]. It will allow 
us to build a demonstration project quickly. 

The attribute propagation mechanism provided by the editor transmits the effect of 
a change in a component throughout the tree, providing a tool akin to a spread-sheet 
calculator for derivations. We expect this feature to provide a design reuse mechanism 
through which a user will load a previously developed derivation into the current deriva- 
tion and update its specification as required. (If no update is required this is traditional 
code reuse, which is also supported.) The synthesizer will then propagate the impact of 
these changes throughout the derivation and identify places that need further attention. 
We feel that design reuse is the "good idea" behind the overly powerful and potentially 
dangerous notion of method inheritance in object-oriented programming. An example 
illustrating EML and design reuse is given in the appendix. 

Once the editor is complete we will work on a series of examples that demonstrate: 

1. the utility of the EML methodology, 

2. the enhanced utility of an automated EML system, 

3. the application of EML to several different problem domains, 

4. design and derivation reuse, 

5. the design of specifications to promote reuse, and, 

6. the simplicity and learnability of the EML paradigm. 

In addition we will determine how appropriate EML is for the larger OGI effort on 
formal methods for software development. We expect this project to support directly 
a larger effort proposed by Kieburtz, Hook and Bellegarde on deriving software from 
specifications. 

4 Santiam-the next step 
While we anticipate learning a great deal from Breitenbush, it will not by itself become 
the tool to realize our vision of the future. The synthesizer generator will allow us to de- 
velop a very nice user interface with minimal effort, but it will not communicate directly 
with the tools supporting formal methods that currently exist in the research community. 
Nor is it well suited for algorithmically extensible environments, such as those provided 
by the tactic mechanism in LCF. In the long term, we expect the automatic program- 
mer's assistant, briefly described in the first section, to be supported by a tactic-like 



mechanism. For these reasons we include in the goals of this initiation project the design 
and exploratory implementation of the next generation system: Santiam. 

The Santiam system will be developed in Extended ML and implemented in Standard 
ML. It will not have the benefit of the synthesizer's built-in attribute recalculation engine. 
We plan to use its design and implementation as a test case for the EML methodology in 
general and the Breitenbush editor in particular. It will provide support for automating 
derivation methods discovered in the Breitenbush system, automatic programming using 
user-supplied program search tactics, and formal verification of the soundness of logical 
derivations. 

4.1 Tactics 

The notion of tactic was introduced by Milner in the Edinburgh LCF system[ll]. Naively, 
a tactic interface is very much like a command interpreter, such as the UNIX shell. At the 
interactive interface, there is no distinction between built-in commands, system supplied 
utilities and user programs; shell commands can be combined in a simple programming 
language to form other shell commands; and, most importantly, the observable effects of 
a shell command must be exclusively realized through system calls. Ultimately, there is 
only this small distinguished class of primitive actions that can be effected by a command. 
Similarly, in a tactic based theorem prover, tactics may be invoked without knowing if 
they are primitive rules or user defined ones; they can be combined and manipulated by 
programming in the metalanguage; and they are constrained to use only a small set of 
primitive rules (the inference rules of the logic). 

Tactics are more complicated than shell commands, however, because it is necessary 
for the composition of their results to form complete derivations that accomplish specific 
goals. Typically, the goal is a theorem and its accomplishment is a formal proof. To 
enforce these constraints, tactics are written as programs in a strongly-typed program- 
ming language. Each tactic is a function from the desired goal to a list of subgoals 
and an object called the validation. If tactic t applied to goal G gives subgoals GI and 
G2, that means if goals GI and G2 are satisfied then their solutions can be combined 
to solve G using steps ultimately justified by primitive rules. This is done by applying 
the validation, which is a function, to the accomplishments of GI and G2 to yield the 
accomplishment of G. 

Tactics provide a rich paradigm for goal-directed programming. Tactics may either 
implement derived logical rules or heuristic search. Tactics can be supported by re- 
finement style editors, as in Nuprl[8], where proofs are represented by trees. In such 
systems, tactics are associated with nodes in the tree and justify the relationship be- 
tween a node and it children. Tactics may also return proof objects or extracted code 
obtained from the proofs they discover. An abstract treatment of tactics is presented in 
Griffin's thesis[l3]. 



To integrate tactics into Santiam, it will be necessary to identify how goals and their 
validations are to be expressed. It is expected that at one level an EML specification 
will be a goal and a complete derivation yielding SML code will be the record of its 
accomplishment. However, there will be other notions of goal and validation at other 
levels of granularity, such as theorems and extracted proofs. 

4.2 Tactics and information flow 

A major question which must be addressed in the implementation of Santiam is how 
much of the information propagation style of Breitenbush can be retained in a system 
that supports tactics. In Breitenbush, the information flow is specified with first-order 
attribute equations and the information propagation is done by the synthesizer's incre- 
mental attribute evaluation algorithm. Allowing an extensible tactic collection introduces 
higher-order dependence. This makes the static analysis techniques of the synthesizer 
generator inapplicable. 

This general problem of incremental change in an environment based on tactics arises 
in several similar contexts, including LCF, Nuprl, and Romulus. The work of Bundy[4,5] 
Paulson[29] and others will be relevant to this investigation. 

Although our initial goal in building Santiam will be to facilitate the derivation 
process from specification to program, it should also, in principle, provide an environment 
for more traditional program transformation. In Santiam's design we will examine tools 
implementing these techniques. In particular, we will study the Orme tool set[20] and 
the Focus system[33]. 

4.3 Theorem proving support 

In addition to providing an extensible derivation environment, Santiam will also have 
access to theorem proving tools implemented in Standard ML, such as Paulson's generic 
theorem prover Isabelle[30] and Pollack's logical framework implementation LEG0[32, 
211. This link will be vital to make the system formal rather than simply rigorous. In 
the truly formal setting it is important that the logic be easily changed to support the 
research outlined in the section on theoretical investigations below. 

Some of the concepts in Santiam are also being explored at the University of Edin- 
burgh. We will cooperate with Sannella7s group; we intend to avoid unnecessary dupli- 
cation of effort. 

The Santiam system is considerably broader in its overall scope than Breitenbush. 
Experience with Breitenbush will determine the priorities assigned to the various aspects 
of Santiam. We will flesh out its design and initiate its implementation in the second 
year of this project. Its completion, however, is beyond the scope of this proposal. 



5 Theoretical invest igations-a continuing effort 

Not all of the work on the environment of the future is centered around implementation- 
there is still a lot of theory to be worked out with pencil and paper. As the field 
of computer science matures, we are using more and more advanced mathematics to 
discover and express the fundamental simplicity of computational processes. This para- 
doxical situation holds in specification logics and programming language design, where 
new advances are being made by organizing logical and computational notions in cat- 
egory theory, an abstract theory of functions and function spaces originally developed 
by topologists. Recent advances in language semantics that use category theory as an 
organizational tool appear very attractive. 

5.1 How wide a spectrum? 

Sannella and Tarlecki describe EML as a wide spectrum language because it contains 
both a specification logic and an implementation language. When that implementation 
language is full Standard ML then EML is clearly wide spectrum. However, when SML 
is first restricted to the first-order recursion equations used in the motivational papers, 
the width of the spectrum is considerably reduced. 

This narrower spectrum language, while too restrictive for some problems, is certainly 
appropriate for many interesting examples. When it is applicable, it is often much simpler 
than more expressive logics. It is desirable to allow the user to use the simpler logic of 
the narrower spectrum language on some components of a derivation and a more wide 
spectrum language on others. 

For example, suppose the sort example developed in the appendix is to be used in a 
program that reads an input stream and writes an output stream. It would be best to 
decompose this into three components: input, sort and output. The input component 
could be reasoned about in a logic that captured the semantics of interactive input, 
the sort component could be derived in the simple equational setting, and the output 
component could be developed in a logic that expressed interactive output. The entire 
program could then be integrated in a single logic of interactive input and output that 
extended all three of the logics used in the derivation. 

Furthermore, after the sort implementation was derived in the elementary logic of 
recursive equations, it may be desirable to refine it into a functionally equivalent imple- 
mentation using stores and iteration. This derivation would require a logic of sequential 
computation with modifiable stores. It also requires a theoretical justification of the use 
of the imperitive implementation in place of the original functional program. This may 
be obtained by adapting results of Sannella and Tarlecki on implementations of algebraic 
specifications to this context [43]. 

We will investigate a "multi-spectrumv approach where different components may be 



developed in different logics, as appropriate, and then combined in a sound manner. We 
are encouraged by Moggi7s work on modular denotational semantics[26, 271. He shows 
how to combine different semantic facets in a categorical setting to get denotational 
semantics for languages in a systematic way. However, it is not clear to what extent his 
constructions preserve interesting theorems in the logic. 

Moggi and Pitts are also applying this machinery to what they call evaluation logics, 
which are logics generated by categorical computational models[25, 311. These logics can 
express modalities, such as those found in the dynamic logics used in concurrency. 

If the multi-spectrum approach can be given a sound foundation its utility must still 
be demonstrated. We will design Santiam to accommodate multiple logics. This will 
result in a testbed for the multi-spectrum approach. We will also study carefully the 
EML logics developed by Sannella and Tarlecki. They are currently working on a logic 
that includes exceptions and higher-order functions. 

5.2 Alternate foundations 
We are also looking at alternative foundations for EML. In a recent visit, Robert Harper 
suggested that a type-theoretic foundation may be given to the EML specification lan- 
guage. This move from a model-theoretic semantics to a type-theoretic one may sim- 
plify the system and integrate more naturally with other semantics accounts of ML. 
In particular, the treatment of polymorphism may be more natural in the alternative 
framework, which is based on Harper's work with Mitchell and Moggi on higher-order 
modules[l7]. Sannella and Tarlecki7s work on higher-order specifications may also be 
relevant to this[45]. 

6 Related work 

The EML methodology supports what Scherlis and Scott call inferential programming[46]. 
It does this in the context of a wide spectrum language. The Munich project CIP is the 
most complete example of an automated environment supporting this approach to pro- 
gram development. The Munich group defined a wide spectrum language, CIP-L[2], and 
implemented a derivation environment, CIP-S[3]. 

The language CIP-L differs from EML in two very important ways: it attempts to 
be more inclusive of low level features, such as concurrency and non-determinism, and 
it has less support for the modular development of programs. 

As a member of the Standard ML committee, Sannella made sure that the support 
for programming in the large in SML would be appropriate as the basis of a system 
for formal reasoning. Consequently, EML appears to be a better base for inferential 
programming than CIP-L, particularly because of its connection with the Standard ML 



module facility. 
The CIP-S system supports inferential programming by maintaining complete deriva- 

tions. It does not, however, provide the support for identifying the scope of changes that 
supports our design reuse paradigm. 

The CIP project was generally successful, and its investigators are optimistic about 
the general approach. We intend to study their system carefully in the development of 
Breitenbush and Santiam. 

Our use of the Cornell Synthesizer Generator is largely inspired by the experience of 
the Penelope group at Odyssey Research Associates1 [14]. During Penelope's early devel- 
opment its implementors were particularly pleased with the synthesizer; the use of the 
right tool "jump-startedn the project. The Penelope system provides an environment for 
developing Ada programs that are annotated with assertions. It is not a true inferential 
system since it does not maintain the development from specification to code. 

There are several interactive program transformation systems in which executable 
specifications are automatically or semiautomatically improved, including the KIDS sys- 
tem developed by Kestrel Institute[48]. We plan to develop tools for program transfor- 
mation as part of the larger OGI effort on formal methods, but we do not wish to restrict 
ourselves to executable specificat ion languages. 

Programming logics with similar goals to EML include 2, VDM and Larch. 2[49, 501 
and VDM[18] are the most distinct from EML. They are language independent nota- 
tions derived from set theory. They have been used quite successfully in rigorous en- 
vironments, where formal reasoning is done in the specification logic, generally without 
automatic support. In these examples programs are more informally associated with 
their specifications. The logics are typically not integrated with a specific programming 
language. There has been some work on tools for Z and VDM, including the ESPRIT 
project RAISE. RAISE has produced an interesting, but rather complicated, specifi- 
cation language and methodology[28]. Any serious research into practical specification 
environments must study the successful aspects of Z and VDM carefully. However, we 
do not feel they are the ultimate answer. 

Larch is a hybrid system[l5, 511. It consists of a language independent "shared lan- 
guage" and a collection of language dependent "interface languages." Top level specifica- 
tions are given in the shared language. As programs are developed, specifications in the 
shared language are refined into language specific interface specifications. By attempting 
to interface to many languages, most of which were not defined with verification in mind, 
Larch is trying to solve a fundamentally harder problem than we propose. As with the 
other systems mentioned, Larch has had important successes and merits study during 
this investigation. 

The most closely related work on EML is being undertaken by Sannella's group at 

My former employer. 



Edinburgh. They are currently focused on the semantic definition of EML for larger 
subsets of SML, modifying compiler tools to support the type checking and execution of 
partially-executable EML specifications, and interfacing these compiler tools to theorem- 
proving environments. The areas of emphasis identified in this proposal are meant to 
complement the efforts in Edinburgh. 

7 Research plan 

The first task is the implementation of Breitenbush. A masters student has already 
initiated construction of a synthesizer generated editor for Standard ML. If that project 
is successful it will become the core of the Breitenbush implementation. I expect Bre- 
itenbush to be operational within the first three to six months of the project. Once 
Breitenbush is available a series of examples will be worked out and the EML method- 
ology will be exercised. We expect to discover idioms of use and identify useful support 
tools that we can incorporate into Breitenbush. At the end of the first year we will stop 
development of Breitenbush. 

In parallel with the implementation, we will begin investigating the theoretical ques- 
tions outlined in Section 5. At the end of the first year we will have evaluated the 
multi-spectral approach and be ready to specify the logical support required for San- 
tiam. 

When these goals have been met we plan to visit Sannella's group in Edinburgh to 
evaluate our progress and discuss strategy. At that point we will have written reports 
documenting Breitenbush and presenting a collection of case studies. 

The second year of the project will focus on the design and partial implementation of 
Santiam. The first question to be addressed will be how to maintain the methodological 
benefits obtained from the attribute grammar implementation of Breitenbush. 

Other issues to be investigated in the design of Santiam will include the choice of 
a formal logic support environment, the architecture of multi-spectral logic support, 
Santiam's relationship to the Edinburgh tools, and the potential of integrating the system 
with the larger OG1 effort on Formal Methods. 

By the middle of the second year we will have formalized the design of some Santiam 
components and begun their development in Breitenbush. At the end of that year we will 
have a complete design for Santiam and an implementation of some system components. 

Theoretical investigations will continue in the second year as required to support the 
design of Santiam and the refinement of the methodology. 

Throughout the investigation we will report progress in conference proceedings and 
journals and market this research to industry and other government agencies. If addi- 
tional funding is obtained, and the level of effort can be increased, we will accelerate the 
schedule accordingly. 



A Appendix: A simple example 

This appendix illustrates a few features of Standard ML and presents the derivation of 
a quick sort algorithm in Extended ML. It briefly describes the Breitenbush tool and its 
utility in the derivation process. It may be read independently of the body of the report. 

A.l  Standard ML 
ML is a polymorphic, call-by-value functional programming language with references and 
exceptions. Although the language is strongly-typed, ML programs are expressed with 
minimal type annotations. Type inference is performed by the compiler using a complete 
algorithm based on unification[22]. Functions in ML may either be defined by lambda 
abstraction or by cases on the structure of the arguments. For example, the identity 
function, which simply returns its argument, is written in the lambda-calculus Xx.x and 
in Standard ML as fn x => x. A function to calculate the length of a list is expressed: 

fun length [I = 0 
I length (x::xs) = 1 + length xs 

Here : : is the infix list "cons" operator and [I represents "nil." Note that the variables 
occurring in the pattern (x: : xs) on the left hand side of the equal sign are bound 
on the right. The polymorphic types inferred for the two examples are ' a  -> 'a for 
the identity and length : ' a  list -> int for the length function. Type variables, 
indicated with a leading '' '", range over all (mono) types in the language. Note that no 
type annotations are present in the two programs. Type annotations are only needed in 
SML to resolve overloaded identifiers. 

The module facility of SML has as its basic entity the structure. A structure may 
be viewed as a "large value7' that collects together types and small values, as well as 
other structures from the module language. The visible contents of a structure are 
described by a signature. Signatures are "large types;" they collect the names and 
types of components of structures. This method of data encapsulation is similar to that 
used in object oriented programming, however structures are less dynamic in nature 
and have a significantly simpler semantic interpretation. Structures are not first-class 
runtime objects (i.e. they cannot be passed as values to functions at run-time); they are, 
however, first-class objects at compile time (or "link time"). 

The third and final entity in the module facility is the functor. Functors map struc- 
tures to structures; they may be viewed as "large functions.'' Functors are defined as 
abstracted structures or as compositions of functors. All functor applications are elab- 
orated at compile time. Functors are similar to generic encapsulation features in Ada. 
However, they are both more uniform and more general than the mechanisms provided 
by Ada. 



In the final report on SML it is clear that Milner achieved the goal of developing a 
formally defined, elegant language that could be used by real programmers[23]. There 
are currently at least three major implementations of SML-the Edinburgh implemen- 
tation, MacQueen and Appel's Standard ML of New Jersey[l], and Matthews' POLY 
implementation. In addition there is at least one private company, Harlequin Ltd of 
Cambridge, England, developing a commercial implementation. In the eyes of many, 
SML is the language design success story of the 1980s. 

A.2 Extended ML 
Extended ML (EML) weds the many-sorted algebraic specification technology of Goguen, 
Burstall, Sannella, Tarlecki, and Ehrig with SML[6, 381. The name Extended ML ap- 
plies to a family of specification languages, satisfaction relations and associated program 
development methodologies being investigated by Sannella and Tarlecki[4l, 42, 39, 441. 
All of the languages in the EML family are obtained by picking a logic expressive over 
a subset of the ML core language and extending it with the SML module facility. The 
methodologies provide the same three simple steps: decomposition, coding and refine- 
ment. Each step insures that the derived program satisfies the specification, provided 
the associated proof obligations are discharged. This report focuses on tools to automate 
and record the derivation process. 

A.2.1 The EML specification language 

The EML language is obtained from SML by extending the module facility with axioms 
describing program behavior. As expected, this extends SML signatures to traditional 
algebraic specifications and functors to maps between structures satisfying specifications. 
For example, to specify sorting, we would derive a functor from a total order to a total 
order with a sort operation. The total order would be specified: 

signature Total-Order = 
sig type elem 

val <= : elem * elem -> boo1 
axiom all x. x <= x 
axiom all x,y. x <= y andalso y <= x implies x = y 
axiom allx,y,z. x <= y andalso y <= z implies x <= z 
axiom all x,y.  x <= y orelse y <= x 

end 

The sorted total order: 

signature Sorted-Total-Order = 



sig include Total-Order 
val sort : elem list -> elem list 
axiom all 1. permutation 1 (sort 1) 

andalso ordered (sort 1) 
end 

We are assuming that ordered and permutation have been previously defined. The 
include directive repeats the specification of total orders as part of the specification of 
sorted total orders. With these definitions in place, the functor sort can be specified: 

functor sort (0:Total-Order) : 
sig include Sorted-Total-Order 

sharing type 0.elem = elem 
end 

= ?  

The placeholder, ?, is an important part of the EML language. It indicates that it is 
undetermined how to implement the sorting functor. Also note the sharing declaration 
in the result type of the functor. This requires that the result of the sort functor be 
related to its argument. 

A novel feature of EML is that axioms are also allowed in structures, where they can 
be used to describe classes of implementations. Returning to our example, EML will 
allow the following "implementation" of the sort functor: 

functor sort (0 : Total-Order) : 
sig include Sorted-Total-Order 

sharing type 0.elem = elem 
end 

= struct 
type elem = 0.elem 
val sort : elem list -> elem list = ? 
axiom all 1. permutation 1 (sort 1) 

andalso ordered (sort 1) 
end 

This "implementation" of sort is constrained only by the axioms. The meaning given such 
underspecified structures is the class of all SML structures that satisfy the constraints 
(up to behavioral equivalence2). These underspecified implementations are exploited in . - 

the refinement methodology, where users successively introduce constraints until they 
have a completely specified SML structure that satisfies its specification. 

2This is suggestive, but incomplete. See the foundations paper for details[44]. 



A.2.2 The EML methodology 

The EML methodology is "top down." It starts with a specification of the entire program, 
decomposes this into successively smaller subproblems, and then refines the subproblems 
into code. Program derivations in the methodology may be viewed as a tree of functor 
refinements of three basic sorts: decomposition steps, coding steps and refinement steps. 
The decomposition steps involve the module language exclusively. They implement a 
functor by composing two simpler functors, typically introducing a new signature for 
the interface of the two newly specified functors. The coding steps are the transition 
from the module language level to the core. They provide an abstract functor body to 
implement a functor. The refinement steps take abstract functor bodies to more concrete 
ones, eventually producing SML code. 

For example, if we decide to derive the quick sort algorithm as our implementation of 
the sort functor, we would first decompose the problem into producing partitioned total 
orders and then exploit the partitioned orders in the implementation of sorting. This 
decomposition step requires the interface signature: 



signature Part it ioned-Total-Order = 
sig include Total-Order 

val partition : elem -> elem list -> (elem list * elem list) 
axiom all a,l. 

let val at,or,below,above = partition a 1 
in permutation 1 (at,or,belowOabove) 

andalso 
all x. (x is-in at-or-below implies x <= a) 

andalso (x is-in above implies not (x <= a)) 
end 

end 

The sort functor is now implemented by two new functors, part i t ion and qsort as 
follows: 

functor partition (0 :Total-Order) : 
sig include Partitioned-Total-Order 

sharing type 0.elem = elem 
end 

= ?  

functor qsort (O:Partitioned,Total,Order) : 

sig include Sorted-Total-Order 
sharing type 0.elem = elem 

end 
= ?  

functor sort (0:Total-Order) : 
sig include Sorted-Total-Order 

sharing type 0 .elem = elem 
end 

= qsort (part it ion (0) ) 



Coding steps replace a placeholder (?) functor body by a structure. For example, we 
can code the qsort functor 

functor qsort (0:Partitioned-Total-Order) : 
sig include Sorted-Total-Order 

sharing type 0.elem = elem 
end 

= struct 
open 0 
val sort : elem list -> elem list = ? 
axiom all 1. permutation 1 (sort 1) 

andalso ordered (sort 1) 
end 

The open declaration includes all components of 0 in the structure being created. The 
partition operation of 0 will not be exported because it is not mentioned in the 
Sorted-Total-Order signature. 

This implementation can be made more specific by a refinement step: 

functor qsort (0:Partitioned-Total-Order) : 
sig include Sorted-Total-Order 

sharing type 0.elem = elem 
end 

= struct 
open 0 
fun sort [I = [I 

I sort Cal = Cal 
I sort (a: : 1) = let val (at-or-below, above) = partit ion a 1 

in (sort at-or-below) Q [a] 0 (sort above) 
end 

end 

This final step produces executable SML code. Each development step gives rise to 
a number of proof obligations which can be generated automatically from the "before" 
and "after" versions of the functor. These proof obligations are trivially satisfied except 
in the last step. The proof obligation in the last step is to show that the new body 
of qsort, plus the axioms in Part it ioned-Total-Order, entail the old body of qsort; 
this follows by induction. To complete the example the reader is invited to derive the 
implementation of the part it ion functor. 

It is not uncommon in the design process to discover that an interface specifica- 
tion needs to be relaxed or strengthened, or that an alternative decomposition might 



simplify the derivation. Such modifications may cause a cascade of changes within the 
derivation. It is illuminating to consider how the example would be modified to specify 
stable sorting, that is, sorting where the relative order of equivalent elements remains 
unchanged. However, as the reader may have already discovered, stable sorts do not sort 
total orders! The antisymmetry law, a l l  x ,y  . x <= y andalso y <= x implies x = 
y, is too strong to allow stable sort to be defined. Instead one must start with a total 
quasi-order (a total, reflexive, transitive relation). As a result, some logical inferences 
may no longer be established by identity and verification conditions must be updated. 

While the EML methodology of program development is top down and based on de- 
composition, it can be viewed as a system that promotes the composition of reusable 
program components. An expert working in an environment with a rich library of spec- 
ifications and functors can guide the decomposition into previously defined concepts. 
Since the library records the specifications of modules, as well as the signatures and 
implementations, code can safely be reused and code with multiple uses may be safely 
maintained and improved (provided the specification is not violated). 

A.3 Breitenbush - a derivation editor 

Our initial tool, the Breitenbush derivation editor, will be built with the Cornell synthe- 
sizer generator[35, 34, 36, 371. The synthesizer generator is a tool that produces interac- 
tive structured editors from language specifications given in an attribute grammar-based 
formalism. We feel, based on the experience of Griffin[l2] and of Guaspari, Marceau 
and Pollak[l4], that this will be an appropriate environment for rapidly prototyping an 
editor interface for EML. 

Breitenbush will support the derivation process by maintaining the tree of derivation 
steps interactively. In the sort example, the derivation begins with the sort  specification. 
The editor will allow us to indicate a decomposition step, splitting the derivation into 
the par t i t i on  and qsort subderivations. When we indicate the trivial coding step 
for the qsort functor, it will automatically generate the subderivation starting with 
the unconstrained implementation. When this implementation is refined into code, the 
editor will compute the verification conditions introduced by the refinements. (We do not 
expect the editor to do any non-trivial theorem proving.) Another attribute computed 
by the editor will be the executable SML code corresponding to the derivation. 

The real benefit of the synthesizer technology, however, comes when we want to prop- 
agate changes through the derivation. For the stable sort modification, the synthesizer's 
attribute propagation facility will allow us to make this specification change at the top 
level and have it propagate throughout the derivation. Breitenbush will automatically 
highlight logical inferences that are no longer established by identity and update the list 
of verification conditions. 

This mechanism will also be helpful as designers explore the design space and the 



impact of design decisions. Program specification and synthesis does not eliminate error 
in specification and design-it simply promotes the discovery of such errors by making 
claims about the abstract behavior of systems explicit and providing tools for the analysis 
of the consistency of these claims. It is important to note that these discoveries are made 
by reasoning at design time, not by testing executing code. This is as radical a departure 
from the test and debug technology used today as design rule checking is from testing 
fabricated chips. 

It is not uncommon in the design process to discover that an interface specification 
needs to be relaxed or strengthened, or that an alternative decomposition might simplify 
the derivation. When doing derivations by hand, such changes are difficult because it is 
tedious to predict their ramifications. This is another situation in which the attribute 
computation engine provided by a synthesizer-generated editor is expected to have a 
large payoff. 

There is also a potential for design and derivation reuse. In addition to the speci- 
fication and implement ations of components, the library will also contain the complete 
derivations of modules and systems. This will often include important intermediate ab- 
stractions that are not apparent in either the specification or the final implementation. 
The stable sorting exercise is an example of design reuse. 

Tools for support of EML are in their infancy. Currently Kazmierczak, under the 
direction of Sannella, is working on a parser and interface to various theorem proving 
engines, including LEG0 and Isabelle[40, 32, 21, 301. In spite of the lack of tools, EML 
is being used in program development by Harlequin Ltd of Cambridge[47]. 
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