
Breitenbush and Santiam:
Tools for Program Development in Extended ML

James Hook

Oregon Graduate Institute
Deparlment of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 9 1-010

April, 1991

Breitenbush and Santiam:
Tools for Program Development in Extended ML

James Hook
Oregon Graduate Institute

hook@cse.ogi.edu

April 3, 1991

Abstract

We propose to design and implement an environment for computer assisted pro-
gram development in Extended ML, a formal specification language. We intend
to demonstrate the feasibility of the EML methodology, to demonstrate its appli-
cability to a large class of problems, and to explore issues that arise in providing
an automated programming environment for formal methods. We will produce an
EML derivation editor (Breitenbush) built with the Cornell Synthesizer generator,
a library of examples and technical reports describing our experiences, and detailed
plans for a second-generation environment (Santiam).

1 A personal vision

In the 1990s and beyond increasingly complex problems involving ever more critical
systems will have to be solved by fewer software engineers than we have today. Yet,
we are already straining the limits of our current software development technology-it
cannot scale much further. The AT&T telephone network has exhibited a catastrophic
software failure; companies regularly fail to deliver software on schedule; and the accepted
standard for safety-critical systems is still informal review and extensive testing.

To meet the needs of the future, we must improve the productivity of software engi-
neers by reducing the number of intellectual acts they perform each day while increasing
the quality of the software they produce. We believe that this revolution in programming
will come by the application of formal methods to software development.

Formal methods will support reasoning at appropriate levels of abstraction-decreasing
the number of bookkeeping and representational details that a programmer must manage

while increasing confidence in the result. In the end, the programmer must say more,
and say it more clearly, by writing fewer lines of code.

We envision the formal design of a system as an active entity maintained by the
software development environment. Early in the design phase the design specification
can be explored by proving properties of the integrated components based on their spec-
ifications. As the design evolves, some simple tasks may be prototyped by automatic
programming techniques, possibly based on program extraction from constructive proofs
as in Nuprl and Romulus[7, 101, or on A1 heuristics such as in KIDS[48]. As parts of
the system are implemented, the proof of compliance with the specification will be main-
tained. If, in the future, design changes are made that invalidate correctness proofs of
system components, the environment will automatically discover the invalidated claims
and bring them to the attention of the software engineer.

The discipline of formal methods is also expected to assist the programmer by aiding
in clear thinking-the most important contribution of a team member to any system.
Companies currently are experiencing improved communication between engineers and
higher productivity through the use of rigorous methods[9]. Rigorous methods are meth-
ods in which designs are expressed in a mathematical notation but, in contrast with
formal methods, implementations are not formally proved to correspond to designs.

While advocating discipline as contributing to clear thinking, we do not deny that
programming and algorithmic design is fundamentally a creative process. It is important
that the software development environment of the future support a sufficiently expressive
logic to facilitate the development of efficient and creative algorithms. This includes being
expressive over algorithms involving state and control.

If this is the future, how do we get there? How long will it take? We feel that
research into formal methods, logical frameworks and programming language design is
now at a point where systems realizing important facets of this vision are a poten-
tial reality. We propose to build a system for program development based on Sannella
and Tarlecki's Extended ML specification logic and the associated program development
methodology[41, 42, 39, 441. The system will provide support for a single user to manip-
ulate an integrated program-design object, giving automatic assistance for the stepwise
development of programs from specifications.

This system will not address all the problems outlined above. In particular, we will
not address the problems of concurrent access, version management, automatic program-
ming and theorem proving in this effort. However, it will initiate a long-term research
program that will address those issues in the future.

Why EML?
The environment of the future will have a specification language at its core. The specifi-
cation language will properly include an executable programming language, as well as a
mathematical logic expressive over the abstractions present in the design. In this project
we will take Standard ML (SML) as our implementation language and an augmentation
of it called Extended ML (EML) as our specification language.

Standard ML is a small, formally defined programming language with higher-order
functions, references, exceptions and strong-typing[23]. It comes out of a tradition of
languages based on the lambda-calculus that goes back to Landin's ISWIM, introduced
in his classic 1966 paper on the fundamentals of programming languages[l9]. Standard
ML is arguably the most mathematically elegant language designed and implemented to
date that includes both functional and imperative features. It is an obvious choice as a
starting point for this investigation.

Standard ML includes a module facility that supports the data encapsulation tech-
niques popularized in object-oriented programming, while retaining static-typing and
strong-typing. The basic unit of data encapsulation in SML is called a structure. Like
an "object," a structure is a collection of types and values. The type of a structure is
called a signature. Signatures record the visible interfaces of structures, much like class
definitions describe objects. However, signatures and structures are completely distinct
entities, and neither are first-class values at runtime, unlike objects and classes. In-
stead structures are manipulated at compile time, where they are acted upon by special
functions called functors. The functor-structure calculus provided at compile time is
rich enough to express much of the code reuse claimed by advocates of object-oriented
methods. (This mechanism is also similar to, but far more general than, Ada's generic
packages.)

In spite of this immense expressive power, the semantic explanation of SML is com-
pact and mathematically well behaved[l6, 17,241. Ob ject-oriented languages, in contrast,
have complex and quite operational semantic explanations. Formal reasoning about even
the simplest object-oriented language is extremely difficult.

Extended ML is a family of specification logics built on top of Standard ML. It has
been defined by Sannella and Tarlecki of Edinburgh and Warsaw, respectively. All logics
in the EML family support the same development methodology and have the same high
level structure. They differ, however, in exactly which features of Standard ML they
can naturally express. It is not surprising that the simplest logics deal with the most
restricted subset of the language. One area of investigation will be finding the appropriate
balance between the expressive power of the logic and its over-all simplicity.

Theoretical work on EML began in 1985 and continues today[41,42, 39,441. There is
currently an implementation project at Edinburgh that is focusing on building compiler-
like tools for EML that interface to theorem proving engines being developed with sup-

port from the UK Science and Engineering Research Council[40]. We are in close com-
munication with the principal investigators of these efforts. We know of no other efforts
investigating EML in the United States. More information about EML is given in the
appendix.

EML has also been used in an industrial setting by Harlequin Ltd of Cambridge,
England. They have use it for specification of a compiler, and plan to specify other com-
ponents of their comprehensive Standard ML design and development environment[47].

3 Breitenbush-a derivation editor
The Breitenbush derivation editor will be the first tool we build in support of our vision
of the future. It will directly support the EML methodology for deriving programs that
satisfy specifications. This methodology is based on decomposition and refinement. The
editor will augment this paradigm with a mechanism of design reuse, discussed below.

The editor will realize the vision of a computer-maintained entity representing the
design and implementation. This entity will be the derivation of the program from its
specification. It will include the top-level specification and be built by the three basic
steps of decomposition, coding and refinement provided by the EML methodology.

The EML derivation will be viewed as a tree. The root of the tree gives the highest
level specification of the problem. The branches in the tree reflect design decisions that
result in decomposition or refinement. The leaves of a complete derivation yield an
executable SML program that satisfies the specification in the root. Every well-formed
derivation may be read as a consistent story of how the implementation relates to its
specification.

The primary operations supported by the editor will correspond to the basic EML
derivation operations: decomposition, coding and refinement. The user will select a leaf
of the derivation tree to be extended, and invoke the appropriate derivation operation.
The system will then transform the derivation, grafting a new subderivation onto the
tree. The system will also calculate the logical conditions that must be demonstrated
to justify the derivation step. These correctness conditions are a critical part of the
derivation. Breitenbush will provide limited support for these proofs.

When working out derivations by hand, there is a great deal of information that is
repeated from one stage to the next, and it is difficult to keep track of the implications
of changing an earlier design decision. To facilitate this, and to rapidly get a mature,
workstation-based user interface, we plan to use the Cornell Synthesizer Generator[34,
36, 371 to build the Breitenbush editor. The synthesizer generator is a tool that builds
editors from language descriptions given by attribute grammars. Attribute grammars
provide a way to augment context free grammars with context sensitive information,
expressed as equational constraints between "inherited" and "synthesized" at tributes.

The synthesizer has been used successfully to prototype a user interface for a logical
framework based proof editor[l2] and an Ada verification environment[l4]. It will allow
us to build a demonstration project quickly.

The attribute propagation mechanism provided by the editor transmits the effect of
a change in a component throughout the tree, providing a tool akin to a spread-sheet
calculator for derivations. We expect this feature to provide a design reuse mechanism
through which a user will load a previously developed derivation into the current deriva-
tion and update its specification as required. (If no update is required this is traditional
code reuse, which is also supported.) The synthesizer will then propagate the impact of
these changes throughout the derivation and identify places that need further attention.
We feel that design reuse is the "good idea" behind the overly powerful and potentially
dangerous notion of method inheritance in object-oriented programming. An example
illustrating EML and design reuse is given in the appendix.

Once the editor is complete we will work on a series of examples that demonstrate:

1. the utility of the EML methodology,

2. the enhanced utility of an automated EML system,

3. the application of EML to several different problem domains,

4. design and derivation reuse,

5. the design of specifications to promote reuse, and,

6. the simplicity and learnability of the EML paradigm.

In addition we will determine how appropriate EML is for the larger OGI effort on
formal methods for software development. We expect this project to support directly
a larger effort proposed by Kieburtz, Hook and Bellegarde on deriving software from
specifications.

4 Santiam-the next step
While we anticipate learning a great deal from Breitenbush, it will not by itself become
the tool to realize our vision of the future. The synthesizer generator will allow us to de-
velop a very nice user interface with minimal effort, but it will not communicate directly
with the tools supporting formal methods that currently exist in the research community.
Nor is it well suited for algorithmically extensible environments, such as those provided
by the tactic mechanism in LCF. In the long term, we expect the automatic program-
mer's assistant, briefly described in the first section, to be supported by a tactic-like

mechanism. For these reasons we include in the goals of this initiation project the design
and exploratory implementation of the next generation system: Santiam.

The Santiam system will be developed in Extended ML and implemented in Standard
ML. It will not have the benefit of the synthesizer's built-in attribute recalculation engine.
We plan to use its design and implementation as a test case for the EML methodology in
general and the Breitenbush editor in particular. It will provide support for automating
derivation methods discovered in the Breitenbush system, automatic programming using
user-supplied program search tactics, and formal verification of the soundness of logical
derivations.

4.1 Tactics

The notion of tactic was introduced by Milner in the Edinburgh LCF system[ll]. Naively,
a tactic interface is very much like a command interpreter, such as the UNIX shell. At the
interactive interface, there is no distinction between built-in commands, system supplied
utilities and user programs; shell commands can be combined in a simple programming
language to form other shell commands; and, most importantly, the observable effects of
a shell command must be exclusively realized through system calls. Ultimately, there is
only this small distinguished class of primitive actions that can be effected by a command.
Similarly, in a tactic based theorem prover, tactics may be invoked without knowing if
they are primitive rules or user defined ones; they can be combined and manipulated by
programming in the metalanguage; and they are constrained to use only a small set of
primitive rules (the inference rules of the logic).

Tactics are more complicated than shell commands, however, because it is necessary
for the composition of their results to form complete derivations that accomplish specific
goals. Typically, the goal is a theorem and its accomplishment is a formal proof. To
enforce these constraints, tactics are written as programs in a strongly-typed program-
ming language. Each tactic is a function from the desired goal to a list of subgoals
and an object called the validation. If tactic t applied to goal G gives subgoals GI and
G2, that means if goals GI and G2 are satisfied then their solutions can be combined
to solve G using steps ultimately justified by primitive rules. This is done by applying
the validation, which is a function, to the accomplishments of GI and G2 to yield the
accomplishment of G.

Tactics provide a rich paradigm for goal-directed programming. Tactics may either
implement derived logical rules or heuristic search. Tactics can be supported by re-
finement style editors, as in Nuprl[8], where proofs are represented by trees. In such
systems, tactics are associated with nodes in the tree and justify the relationship be-
tween a node and it children. Tactics may also return proof objects or extracted code
obtained from the proofs they discover. An abstract treatment of tactics is presented in
Griffin's thesis[l3].

To integrate tactics into Santiam, it will be necessary to identify how goals and their
validations are to be expressed. It is expected that at one level an EML specification
will be a goal and a complete derivation yielding SML code will be the record of its
accomplishment. However, there will be other notions of goal and validation at other
levels of granularity, such as theorems and extracted proofs.

4.2 Tactics and information flow

A major question which must be addressed in the implementation of Santiam is how
much of the information propagation style of Breitenbush can be retained in a system
that supports tactics. In Breitenbush, the information flow is specified with first-order
attribute equations and the information propagation is done by the synthesizer's incre-
mental attribute evaluation algorithm. Allowing an extensible tactic collection introduces
higher-order dependence. This makes the static analysis techniques of the synthesizer
generator inapplicable.

This general problem of incremental change in an environment based on tactics arises
in several similar contexts, including LCF, Nuprl, and Romulus. The work of Bundy[4,5]
Paulson[29] and others will be relevant to this investigation.

Although our initial goal in building Santiam will be to facilitate the derivation
process from specification to program, it should also, in principle, provide an environment
for more traditional program transformation. In Santiam's design we will examine tools
implementing these techniques. In particular, we will study the Orme tool set[20] and
the Focus system[33].

4.3 Theorem proving support

In addition to providing an extensible derivation environment, Santiam will also have
access to theorem proving tools implemented in Standard ML, such as Paulson's generic
theorem prover Isabelle[30] and Pollack's logical framework implementation LEG0[32,
211. This link will be vital to make the system formal rather than simply rigorous. In
the truly formal setting it is important that the logic be easily changed to support the
research outlined in the section on theoretical investigations below.

Some of the concepts in Santiam are also being explored at the University of Edin-
burgh. We will cooperate with Sannella7s group; we intend to avoid unnecessary dupli-
cation of effort.

The Santiam system is considerably broader in its overall scope than Breitenbush.
Experience with Breitenbush will determine the priorities assigned to the various aspects
of Santiam. We will flesh out its design and initiate its implementation in the second
year of this project. Its completion, however, is beyond the scope of this proposal.

5 Theoretical invest igations-a continuing effort

Not all of the work on the environment of the future is centered around implementation-
there is still a lot of theory to be worked out with pencil and paper. As the field
of computer science matures, we are using more and more advanced mathematics to
discover and express the fundamental simplicity of computational processes. This para-
doxical situation holds in specification logics and programming language design, where
new advances are being made by organizing logical and computational notions in cat-
egory theory, an abstract theory of functions and function spaces originally developed
by topologists. Recent advances in language semantics that use category theory as an
organizational tool appear very attractive.

5.1 How wide a spectrum?

Sannella and Tarlecki describe EML as a wide spectrum language because it contains
both a specification logic and an implementation language. When that implementation
language is full Standard ML then EML is clearly wide spectrum. However, when SML
is first restricted to the first-order recursion equations used in the motivational papers,
the width of the spectrum is considerably reduced.

This narrower spectrum language, while too restrictive for some problems, is certainly
appropriate for many interesting examples. When it is applicable, it is often much simpler
than more expressive logics. It is desirable to allow the user to use the simpler logic of
the narrower spectrum language on some components of a derivation and a more wide
spectrum language on others.

For example, suppose the sort example developed in the appendix is to be used in a
program that reads an input stream and writes an output stream. It would be best to
decompose this into three components: input, sort and output. The input component
could be reasoned about in a logic that captured the semantics of interactive input,
the sort component could be derived in the simple equational setting, and the output
component could be developed in a logic that expressed interactive output. The entire
program could then be integrated in a single logic of interactive input and output that
extended all three of the logics used in the derivation.

Furthermore, after the sort implementation was derived in the elementary logic of
recursive equations, it may be desirable to refine it into a functionally equivalent imple-
mentation using stores and iteration. This derivation would require a logic of sequential
computation with modifiable stores. It also requires a theoretical justification of the use
of the imperitive implementation in place of the original functional program. This may
be obtained by adapting results of Sannella and Tarlecki on implementations of algebraic
specifications to this context [43].

We will investigate a "multi-spectrumv approach where different components may be

developed in different logics, as appropriate, and then combined in a sound manner. We
are encouraged by Moggi7s work on modular denotational semantics[26, 271. He shows
how to combine different semantic facets in a categorical setting to get denotational
semantics for languages in a systematic way. However, it is not clear to what extent his
constructions preserve interesting theorems in the logic.

Moggi and Pitts are also applying this machinery to what they call evaluation logics,
which are logics generated by categorical computational models[25, 311. These logics can
express modalities, such as those found in the dynamic logics used in concurrency.

If the multi-spectrum approach can be given a sound foundation its utility must still
be demonstrated. We will design Santiam to accommodate multiple logics. This will
result in a testbed for the multi-spectrum approach. We will also study carefully the
EML logics developed by Sannella and Tarlecki. They are currently working on a logic
that includes exceptions and higher-order functions.

5.2 Alternate foundations
We are also looking at alternative foundations for EML. In a recent visit, Robert Harper
suggested that a type-theoretic foundation may be given to the EML specification lan-
guage. This move from a model-theoretic semantics to a type-theoretic one may sim-
plify the system and integrate more naturally with other semantics accounts of ML.
In particular, the treatment of polymorphism may be more natural in the alternative
framework, which is based on Harper's work with Mitchell and Moggi on higher-order
modules[l7]. Sannella and Tarlecki7s work on higher-order specifications may also be
relevant to this[45].

6 Related work

The EML methodology supports what Scherlis and Scott call inferential programming[46].
It does this in the context of a wide spectrum language. The Munich project CIP is the
most complete example of an automated environment supporting this approach to pro-
gram development. The Munich group defined a wide spectrum language, CIP-L[2], and
implemented a derivation environment, CIP-S[3].

The language CIP-L differs from EML in two very important ways: it attempts to
be more inclusive of low level features, such as concurrency and non-determinism, and
it has less support for the modular development of programs.

As a member of the Standard ML committee, Sannella made sure that the support
for programming in the large in SML would be appropriate as the basis of a system
for formal reasoning. Consequently, EML appears to be a better base for inferential
programming than CIP-L, particularly because of its connection with the Standard ML

module facility.
The CIP-S system supports inferential programming by maintaining complete deriva-

tions. It does not, however, provide the support for identifying the scope of changes that
supports our design reuse paradigm.

The CIP project was generally successful, and its investigators are optimistic about
the general approach. We intend to study their system carefully in the development of
Breitenbush and Santiam.

Our use of the Cornell Synthesizer Generator is largely inspired by the experience of
the Penelope group at Odyssey Research Associates1 [14]. During Penelope's early devel-
opment its implementors were particularly pleased with the synthesizer; the use of the
right tool "jump-startedn the project. The Penelope system provides an environment for
developing Ada programs that are annotated with assertions. It is not a true inferential
system since it does not maintain the development from specification to code.

There are several interactive program transformation systems in which executable
specifications are automatically or semiautomatically improved, including the KIDS sys-
tem developed by Kestrel Institute[48]. We plan to develop tools for program transfor-
mation as part of the larger OGI effort on formal methods, but we do not wish to restrict
ourselves to executable specificat ion languages.

Programming logics with similar goals to EML include 2, VDM and Larch. 2[49, 501
and VDM[18] are the most distinct from EML. They are language independent nota-
tions derived from set theory. They have been used quite successfully in rigorous en-
vironments, where formal reasoning is done in the specification logic, generally without
automatic support. In these examples programs are more informally associated with
their specifications. The logics are typically not integrated with a specific programming
language. There has been some work on tools for Z and VDM, including the ESPRIT
project RAISE. RAISE has produced an interesting, but rather complicated, specifi-
cation language and methodology[28]. Any serious research into practical specification
environments must study the successful aspects of Z and VDM carefully. However, we
do not feel they are the ultimate answer.

Larch is a hybrid system[l5, 511. It consists of a language independent "shared lan-
guage" and a collection of language dependent "interface languages." Top level specifica-
tions are given in the shared language. As programs are developed, specifications in the
shared language are refined into language specific interface specifications. By attempting
to interface to many languages, most of which were not defined with verification in mind,
Larch is trying to solve a fundamentally harder problem than we propose. As with the
other systems mentioned, Larch has had important successes and merits study during
this investigation.

The most closely related work on EML is being undertaken by Sannella's group at

My former employer.

Edinburgh. They are currently focused on the semantic definition of EML for larger
subsets of SML, modifying compiler tools to support the type checking and execution of
partially-executable EML specifications, and interfacing these compiler tools to theorem-
proving environments. The areas of emphasis identified in this proposal are meant to
complement the efforts in Edinburgh.

7 Research plan

The first task is the implementation of Breitenbush. A masters student has already
initiated construction of a synthesizer generated editor for Standard ML. If that project
is successful it will become the core of the Breitenbush implementation. I expect Bre-
itenbush to be operational within the first three to six months of the project. Once
Breitenbush is available a series of examples will be worked out and the EML method-
ology will be exercised. We expect to discover idioms of use and identify useful support
tools that we can incorporate into Breitenbush. At the end of the first year we will stop
development of Breitenbush.

In parallel with the implementation, we will begin investigating the theoretical ques-
tions outlined in Section 5. At the end of the first year we will have evaluated the
multi-spectral approach and be ready to specify the logical support required for San-
tiam.

When these goals have been met we plan to visit Sannella's group in Edinburgh to
evaluate our progress and discuss strategy. At that point we will have written reports
documenting Breitenbush and presenting a collection of case studies.

The second year of the project will focus on the design and partial implementation of
Santiam. The first question to be addressed will be how to maintain the methodological
benefits obtained from the attribute grammar implementation of Breitenbush.

Other issues to be investigated in the design of Santiam will include the choice of
a formal logic support environment, the architecture of multi-spectral logic support,
Santiam's relationship to the Edinburgh tools, and the potential of integrating the system
with the larger OG1 effort on Formal Methods.

By the middle of the second year we will have formalized the design of some Santiam
components and begun their development in Breitenbush. At the end of that year we will
have a complete design for Santiam and an implementation of some system components.

Theoretical investigations will continue in the second year as required to support the
design of Santiam and the refinement of the methodology.

Throughout the investigation we will report progress in conference proceedings and
journals and market this research to industry and other government agencies. If addi-
tional funding is obtained, and the level of effort can be increased, we will accelerate the
schedule accordingly.

A Appendix: A simple example

This appendix illustrates a few features of Standard ML and presents the derivation of
a quick sort algorithm in Extended ML. It briefly describes the Breitenbush tool and its
utility in the derivation process. It may be read independently of the body of the report.

A.l Standard ML
ML is a polymorphic, call-by-value functional programming language with references and
exceptions. Although the language is strongly-typed, ML programs are expressed with
minimal type annotations. Type inference is performed by the compiler using a complete
algorithm based on unification[22]. Functions in ML may either be defined by lambda
abstraction or by cases on the structure of the arguments. For example, the identity
function, which simply returns its argument, is written in the lambda-calculus Xx.x and
in Standard ML as fn x => x. A function to calculate the length of a list is expressed:

fun length [I = 0
I length (x::xs) = 1 + length xs

Here : : is the infix list "cons" operator and [I represents "nil." Note that the variables
occurring in the pattern (x: : xs) on the left hand side of the equal sign are bound
on the right. The polymorphic types inferred for the two examples are ' a -> 'a for
the identity and length : ' a list -> int for the length function. Type variables,
indicated with a leading '' '", range over all (mono) types in the language. Note that no
type annotations are present in the two programs. Type annotations are only needed in
SML to resolve overloaded identifiers.

The module facility of SML has as its basic entity the structure. A structure may
be viewed as a "large value7' that collects together types and small values, as well as
other structures from the module language. The visible contents of a structure are
described by a signature. Signatures are "large types;" they collect the names and
types of components of structures. This method of data encapsulation is similar to that
used in object oriented programming, however structures are less dynamic in nature
and have a significantly simpler semantic interpretation. Structures are not first-class
runtime objects (i.e. they cannot be passed as values to functions at run-time); they are,
however, first-class objects at compile time (or "link time").

The third and final entity in the module facility is the functor. Functors map struc-
tures to structures; they may be viewed as "large functions.'' Functors are defined as
abstracted structures or as compositions of functors. All functor applications are elab-
orated at compile time. Functors are similar to generic encapsulation features in Ada.
However, they are both more uniform and more general than the mechanisms provided
by Ada.

In the final report on SML it is clear that Milner achieved the goal of developing a
formally defined, elegant language that could be used by real programmers[23]. There
are currently at least three major implementations of SML-the Edinburgh implemen-
tation, MacQueen and Appel's Standard ML of New Jersey[l], and Matthews' POLY
implementation. In addition there is at least one private company, Harlequin Ltd of
Cambridge, England, developing a commercial implementation. In the eyes of many,
SML is the language design success story of the 1980s.

A.2 Extended ML
Extended ML (EML) weds the many-sorted algebraic specification technology of Goguen,
Burstall, Sannella, Tarlecki, and Ehrig with SML[6, 381. The name Extended ML ap-
plies to a family of specification languages, satisfaction relations and associated program
development methodologies being investigated by Sannella and Tarlecki[4l, 42, 39, 441.
All of the languages in the EML family are obtained by picking a logic expressive over
a subset of the ML core language and extending it with the SML module facility. The
methodologies provide the same three simple steps: decomposition, coding and refine-
ment. Each step insures that the derived program satisfies the specification, provided
the associated proof obligations are discharged. This report focuses on tools to automate
and record the derivation process.

A.2.1 The EML specification language

The EML language is obtained from SML by extending the module facility with axioms
describing program behavior. As expected, this extends SML signatures to traditional
algebraic specifications and functors to maps between structures satisfying specifications.
For example, to specify sorting, we would derive a functor from a total order to a total
order with a sort operation. The total order would be specified:

signature Total-Order =
sig type elem

val <= : elem * elem -> boo1
axiom all x. x <= x
axiom all x,y. x <= y andalso y <= x implies x = y
axiom allx,y,z. x <= y andalso y <= z implies x <= z
axiom all x,y. x <= y orelse y <= x

end

The sorted total order:

signature Sorted-Total-Order =

sig include Total-Order
val sort : elem list -> elem list
axiom all 1. permutation 1 (sort 1)

andalso ordered (sort 1)
end

We are assuming that ordered and permutation have been previously defined. The
include directive repeats the specification of total orders as part of the specification of
sorted total orders. With these definitions in place, the functor sort can be specified:

functor sort (0:Total-Order) :
sig include Sorted-Total-Order

sharing type 0.elem = elem
end

= ?

The placeholder, ?, is an important part of the EML language. It indicates that it is
undetermined how to implement the sorting functor. Also note the sharing declaration
in the result type of the functor. This requires that the result of the sort functor be
related to its argument.

A novel feature of EML is that axioms are also allowed in structures, where they can
be used to describe classes of implementations. Returning to our example, EML will
allow the following "implementation" of the sort functor:

functor sort (0 : Total-Order) :
sig include Sorted-Total-Order

sharing type 0.elem = elem
end

= struct
type elem = 0.elem
val sort : elem list -> elem list = ?
axiom all 1. permutation 1 (sort 1)

andalso ordered (sort 1)
end

This "implementation" of sort is constrained only by the axioms. The meaning given such
underspecified structures is the class of all SML structures that satisfy the constraints
(up to behavioral equivalence2). These underspecified implementations are exploited in . -

the refinement methodology, where users successively introduce constraints until they
have a completely specified SML structure that satisfies its specification.

2This is suggestive, but incomplete. See the foundations paper for details[44].

A.2.2 The EML methodology

The EML methodology is "top down." It starts with a specification of the entire program,
decomposes this into successively smaller subproblems, and then refines the subproblems
into code. Program derivations in the methodology may be viewed as a tree of functor
refinements of three basic sorts: decomposition steps, coding steps and refinement steps.
The decomposition steps involve the module language exclusively. They implement a
functor by composing two simpler functors, typically introducing a new signature for
the interface of the two newly specified functors. The coding steps are the transition
from the module language level to the core. They provide an abstract functor body to
implement a functor. The refinement steps take abstract functor bodies to more concrete
ones, eventually producing SML code.

For example, if we decide to derive the quick sort algorithm as our implementation of
the sort functor, we would first decompose the problem into producing partitioned total
orders and then exploit the partitioned orders in the implementation of sorting. This
decomposition step requires the interface signature:

signature Part it ioned-Total-Order =
sig include Total-Order

val partition : elem -> elem list -> (elem list * elem list)
axiom all a,l.

let val at,or,below,above = partition a 1
in permutation 1 (at,or,belowOabove)

andalso
all x. (x is-in at-or-below implies x <= a)

andalso (x is-in above implies not (x <= a))
end

end

The sort functor is now implemented by two new functors, part i t ion and qsort as
follows:

functor partition (0 :Total-Order) :
sig include Partitioned-Total-Order

sharing type 0.elem = elem
end

= ?

functor qsort (O:Partitioned,Total,Order) :

sig include Sorted-Total-Order
sharing type 0.elem = elem

end
= ?

functor sort (0:Total-Order) :
sig include Sorted-Total-Order

sharing type 0 .elem = elem
end

= qsort (part it ion (0))

Coding steps replace a placeholder (?) functor body by a structure. For example, we
can code the qsort functor

functor qsort (0:Partitioned-Total-Order) :
sig include Sorted-Total-Order

sharing type 0.elem = elem
end

= struct
open 0
val sort : elem list -> elem list = ?
axiom all 1. permutation 1 (sort 1)

andalso ordered (sort 1)
end

The open declaration includes all components of 0 in the structure being created. The
partition operation of 0 will not be exported because it is not mentioned in the
Sorted-Total-Order signature.

This implementation can be made more specific by a refinement step:

functor qsort (0:Partitioned-Total-Order) :
sig include Sorted-Total-Order

sharing type 0.elem = elem
end

= struct
open 0
fun sort [I = [I

I sort Cal = Cal
I sort (a: : 1) = let val (at-or-below, above) = partit ion a 1

in (sort at-or-below) Q [a] 0 (sort above)
end

end

This final step produces executable SML code. Each development step gives rise to
a number of proof obligations which can be generated automatically from the "before"
and "after" versions of the functor. These proof obligations are trivially satisfied except
in the last step. The proof obligation in the last step is to show that the new body
of qsort, plus the axioms in Part it ioned-Total-Order, entail the old body of qsort;
this follows by induction. To complete the example the reader is invited to derive the
implementation of the part it ion functor.

It is not uncommon in the design process to discover that an interface specifica-
tion needs to be relaxed or strengthened, or that an alternative decomposition might

simplify the derivation. Such modifications may cause a cascade of changes within the
derivation. It is illuminating to consider how the example would be modified to specify
stable sorting, that is, sorting where the relative order of equivalent elements remains
unchanged. However, as the reader may have already discovered, stable sorts do not sort
total orders! The antisymmetry law, a l l x ,y . x <= y andalso y <= x implies x =
y, is too strong to allow stable sort to be defined. Instead one must start with a total
quasi-order (a total, reflexive, transitive relation). As a result, some logical inferences
may no longer be established by identity and verification conditions must be updated.

While the EML methodology of program development is top down and based on de-
composition, it can be viewed as a system that promotes the composition of reusable
program components. An expert working in an environment with a rich library of spec-
ifications and functors can guide the decomposition into previously defined concepts.
Since the library records the specifications of modules, as well as the signatures and
implementations, code can safely be reused and code with multiple uses may be safely
maintained and improved (provided the specification is not violated).

A.3 Breitenbush - a derivation editor

Our initial tool, the Breitenbush derivation editor, will be built with the Cornell synthe-
sizer generator[35, 34, 36, 371. The synthesizer generator is a tool that produces interac-
tive structured editors from language specifications given in an attribute grammar-based
formalism. We feel, based on the experience of Griffin[l2] and of Guaspari, Marceau
and Pollak[l4], that this will be an appropriate environment for rapidly prototyping an
editor interface for EML.

Breitenbush will support the derivation process by maintaining the tree of derivation
steps interactively. In the sort example, the derivation begins with the sort specification.
The editor will allow us to indicate a decomposition step, splitting the derivation into
the par t i t i on and qsort subderivations. When we indicate the trivial coding step
for the qsort functor, it will automatically generate the subderivation starting with
the unconstrained implementation. When this implementation is refined into code, the
editor will compute the verification conditions introduced by the refinements. (We do not
expect the editor to do any non-trivial theorem proving.) Another attribute computed
by the editor will be the executable SML code corresponding to the derivation.

The real benefit of the synthesizer technology, however, comes when we want to prop-
agate changes through the derivation. For the stable sort modification, the synthesizer's
attribute propagation facility will allow us to make this specification change at the top
level and have it propagate throughout the derivation. Breitenbush will automatically
highlight logical inferences that are no longer established by identity and update the list
of verification conditions.

This mechanism will also be helpful as designers explore the design space and the

impact of design decisions. Program specification and synthesis does not eliminate error
in specification and design-it simply promotes the discovery of such errors by making
claims about the abstract behavior of systems explicit and providing tools for the analysis
of the consistency of these claims. It is important to note that these discoveries are made
by reasoning at design time, not by testing executing code. This is as radical a departure
from the test and debug technology used today as design rule checking is from testing
fabricated chips.

It is not uncommon in the design process to discover that an interface specification
needs to be relaxed or strengthened, or that an alternative decomposition might simplify
the derivation. When doing derivations by hand, such changes are difficult because it is
tedious to predict their ramifications. This is another situation in which the attribute
computation engine provided by a synthesizer-generated editor is expected to have a
large payoff.

There is also a potential for design and derivation reuse. In addition to the speci-
fication and implement ations of components, the library will also contain the complete
derivations of modules and systems. This will often include important intermediate ab-
stractions that are not apparent in either the specification or the final implementation.
The stable sorting exercise is an example of design reuse.

Tools for support of EML are in their infancy. Currently Kazmierczak, under the
direction of Sannella, is working on a parser and interface to various theorem proving
engines, including LEG0 and Isabelle[40, 32, 21, 301. In spite of the lack of tools, EML
is being used in program development by Harlequin Ltd of Cambridge[47].

References

[l] Andrew W. Appel and David B. MacQueen. A Standard ML compiler, August 1987.
Distributed as documentation with the compiler.

[2] F. L. Bauer et al. The Munich Project CIP, Volume I: The Wide Spectrucm Lan-
guage CIP-L, volume 183 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1985.

[3] F. L. Bauer et al. The Munich Project CIP, Volume 11: The Program Transformation
System CIP-S, volume 292 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1987.

[4] Alan Bundy. A science of reasoning: Extended abstract. In Tenth International
Conference on Automated Deduction, volume 449 of Lecture Notes in Computer
Science, pages 633-640. Springer-Verlag, July 1990. Meeting held in Kaiserslautern,
FRG.

[5] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The Oyster-
Clam system. In Tenth International Conference on Automated Deduction, volume
449 of Lecture Notes in Computer Science. Springer-Verlag, July 1990. Meeting held
in Kaiserslautern, FRG.

[6] R. M. Burstall and J . A. Goguen. The semantics of Clear, a specification language.
In Proceedings of Advanced Course on Abstract Software Specifications, pages 292-
332. Springer-Verlag, Lecture Notes in Computer Science, 1980.

[7] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel-
opment System. Prentice Hall, Englewood Cliffs, New Jersey, 1986.

[8] Robert L. Constable, Todd B. Knoblock, and Joseph L. Bates. Writing programs
that construct proofs. Journal of Automated Reasoning, 1:285-326, 1985.

[9] Norman Delisle and David Garlan. A formal specification of an oscilloscope. IEEE
Software, September 1990.

[lo] Carl Eichenlaub, Bruce Esrig, James Hook, Carl Klapper, and Garrel Pottinger.
The romulus proof checker. In Tenth International Conference on Automated De-
duction, volume 449 of Lecture Notes in Computer Science. Springer-Verlag, July
1990. Meeting held in Kaiserslautern, FRG.

[ll] Michael J . Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF,
volume 78 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1979.

[12] Timothy G. Griffin. An environment for formal systems. Technical Report 87-846,
Cornell University, Department of Computer Science, Ithaca, New York, June 1987.

[13] Timothy George Griffin. Notational Definition and Top-Down Refinement for In-
teractive Proof Development Systems. PhD thesis, Cornell University, Ithaca, New
York, August 1988. Available as Cornell University Department of Computer Sci-
ence Technical Report TR 88-937.

[14] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verfication of Ada
programs. IEEE Transactions on Software Engineering, 16(9), September 1990.

[15] J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch family of specificatino
languages. IEEE Software, 2(5), September 1985.

[16] Robert Harper, Robin Milner, and Mads Tofte. A type discipline for program
modules. In TA PSOFT '87, pages 308-319. Springer-Verlag, March 1987.

[17] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, pages 341-354. ACM, January 1990.

[18] C. B. Jones. Systematic Software Development Using VDM. Printice-Hall Interna-
tional, 1986.

[19] P. J. Landin. The next 700 programming languages. Communications of the ACM,
9(3), 1966.

[20] Pierre Lescanne. ORME: an implementation of completion procedures as sets of
transitions rules. In Tenth International Conference on Automated Deduction, vol-
ume 449 of Lecture Notes in Computer Science. Springer-Verlag, July 1990. Meeting
held in Kaiserslautern, FRG.

[21] Zhaohui Luo, Robert Pollack, and Paul Taylor. How to use LEGO (a preliminary
user's manual). Technical Report LFCS-TN-27, Laboratory for the Foundations of
Computer Science, Dept. of Computer Science, University of Edinburgh, Edinburgh,
Scotland, October 1989. Distributed with LEGO.

[22] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348-375, 1978.

[23] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts, 1990.

[24] John C. Mitchell and Robert Harper. The essence of ML. In Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programming Languages,
pages 28-46. Association for Computing Machinery, SIGACT, SIGPLAN, 1988.

[25] Eugenio Moggi. Computational types and logic: Evaluation logic, 1990. Working
draft.

[26] Eugenio Moggi. Modular approach to denot ational semantics, 1990. Working draft.

[27] Eugenio Moggi. Notions of computations as monads, 1991. To appear in Information
and Computation.

[28] M. Nielsen, K. Havelund, K. Wagner, and C. George. The RAISE language, method
and tools. Formal Aspects of Computing, 1 :85-114, 1989.

[29] Lawrence C. Paulson. Natural deduction as higer-order resolution. The Journal of
Logic Programming, 3:237-258, 1986.

[30] Lawrence C. Paulson. The foundation of a generic theorem prover. The Journal of
Automated Reasoning, 5:363-397, 1989.

[31] Andrew M. Pit ts. Evaluation logic. Technical Report 198, University of Cambridge
Computer Laboratory, August 1990.

[32] Robert Pollack. The theory of LEGO, 1988. Manuscript.

[33] Uday S. Reddy. Term rewriting induction. In Tenth International Conference on
Automated Deduction, volume 449 of Lecture Notes in Computer Science, pages
162-177. Springer-Verlag, July 1990. Meeting held in Kaiserslautern, FRG.

[34] Thomas Reps. Generating language-based environments. The M. I.T. Press, Cam-
bridge, Mass., 1984.

[35] Thomas Reps and Tim Teitelbaum. The synthesizer generator. In Proceedings of
ACM SIGSOFT/SIGPLAN Software Enigineering Symposium on Practical Soft-
ware Development Environments, pages 42-48, Balitimore, MD, April 1984. Asso-
ciation for Computing Machinery, SIGPLAN.

[36] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator: A System for
Constructing Language-based Editors. Texts and Monographs in Computer Science.
Springer-Verlag, 1989.

[37] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator Reference Man-
ual. Texts and Monographs in Computer Science. Springer-Verlag, third edition,
1989.

[38] D. T. Sannella and R. M. Burstall. Structured theories in LCF. In Proceedings of
the 8th Colloquium on Algebra and Trees in Programming, pages 377-391, L'Aquila,
Italy, 1983.

[39] Donald Sannella. Formal program development in Extended ML for the working
programmer. In Proceedings of the 3rd BCS/FACS Workshop on Refinement, volume
to appear of Lecture Notes in Computer Science. Springer-Verlag, January 1990.
Meeting was held in Hursley Park, England. Also available as Edinburgh, LFCS
technical report number ECS-LFCS-89-102.

[40] Donald Sannella and Fabio da Silva. Syntax, typechecking and dynamic semantics
for Extended ML. Technical Report ECS-LFCS-89- 101, Laboratory for the Foun-
dations of Computer Science, Dept. of Computer Science, University of Edinburgh,
Edinburgh, Scotland, December 1989.

[41] Donald Sannella and Andrzej Tarlecki. Program specification and development in
standard ML. In Conference Record of the Twelfth Annual ACM Symposium on
Principles of Programming Languages, pages 67-77. ACM, January 1985.

[42] Donald Sannella and Andrzej Tarlecki. Extended ML: an institution-indepdendent
framework for formal program development. In David Pitt, Samson Abramsky, Axel
Poignk, and David Rydeheard, editors, Category Theory and Computer Program-
ming Tutorial and Workshop, volume 240 of Lecture Notes in Computer Science,
pages 364-389, Berlin, 1986. Springer-Verlag. Meeting was held in September 1985
in Guildford, UK.

[43] Donald Sannella and Andrzej Tarlecki. Toward formal development of programs
from algebraic specifications: implementations revisited. Acta Inforrnatica, 25:233-
281, 1988.

[44] Donald Sannella and Andrzej Tarlecki. Toward formal development of ML pro-
grams: foundations and methodology. In Proceedings Colloquium on Current Is-
sues in Programming Languages, Joint Conference on Theory and Practice of Soft-
ware Development (TAPSOFT), volume 352 of Lecture Notes in Computer Science.
Springer-Verlag, March 1989. Meeting was held in Barcelona, Spain.

[45] Donald Sannella and Andrzej Tarlecki. A kernel specification formalism with higher-
order parameterisation. In Proceedings Seventh Workshop on Specification of Ab-
stract Data Types, volume to appear of Lecture Notes in Computer Science, 1991.
Meeting was held in Wusterhausen, GDR.

[46] William L. Scherlis and Dana S. Scott. First steps towards inferential programming.
In Proceedins of the IFIP 9th World Computer Congress, Paris, September 1983.

[47] Andrew Smith. Uses of Standard ML, March 1990. Distributed on the Standard
ML mailing list maintained by sml-request ((lcs . cmu . edu.

[48] Douglas R. Smith. KIDS: A semiautomatic program development system. IEEE
Transactions on Software Engineering, 16(9): 1024-1043, September 1990.

[49] J. M. Spivey. Understanding 2: A specification language and its formal semantics.
Cambridge University Press, Cambridge, 1988.

[50] J. M. Spivey. The Z Notation: a reference manual. Prentice Hall International, New
York, 1989.

[51] Jeannette M. Wing. Writing Larch interface language specifications. A CM Trans-
actions on Programming Languages and Systems, 9(1), January 1987.

