
What is an Abstract Machine?

Richard B. Kieburtz, Borislav Agapiev

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton. OR 97006-1999 USA

Technical Report No. CS/E 91-01 1

August, 1991

What is an Abstract Machine?

Richard B. Kieburtz
Borislav Agapiev

Oregon Graduate Institute
19600 N.W. von Neumann Dr.
Beaverton, Oregon 97006 USA

Technical Report CSE-091-011

August, 1991

Abstract

The thesis of this paper is t h a t categorical models provide an appropriate frame-

work for the high-level specification of computer architectures. As an example of this

approach, we specify a categorical abstract machine capable of normal-order reduction

of lambda calculus expressions t o weak head-normal form. The paper includes substan-

t ial theoretical development of the appropriate categories and monads, including an

account of involution, analogous t o negation in intuitionistic logic.

An abstract machine is defined as a composite monad, a technique tha t

emphasizes modularity of structure. In order t o make control explicit in the machine

model, the monad structure models continuations. This supports a formal specification

of stored-program control. The categorical model is shown t o be cartesian-closed.

Finally, an implementation of (weak) lambda-calculus reduction by the categorical

abst ract machine is proved coherent with the syntactic reduction rule (B) of the cal-

culus.

Abstract Machines

What is an Abstract Machine?

Richard B. Kieburtz
Borislau Agapiev

Oregon Graduate Institute
19600 N.W. von Neumann Dr.
Beaverton, Oregon 97006

1. Abstract machines

Implementations of programming languages are often based upon an evaluation

model called an 'abstract machine' [6,12,13,15,24,27]. An abstract machine is a

semantic model for the programming language, subject t o informally imposed con-

straints t h a t ensure i ts realizability. The utility of abstract machine models has been

t h a t they embody well defined concepts of implementation. They characterize particu-

lar strategies for evaluation, independently of the architecture of an underlying target

machine tha t may be the ultimate host for a compiled implementation.

Typically, abstract machines have been specified either by a set of transitions on a

rather complex machine s ta te (this is usually called a register-transfer specification), or

by a set of term rewriting rules that provide an operational model for a combinatory

logic [25]. Either of these forms of specification can have ad hoe aspects. It is hardly

ever clear why a particular machine state-space was chosen over possible alternatives,

or why a particular set of combinators was selected.

With the Categorical Abstract Machine [4] we were given the idea tha t a formal

characterization of an abstract machine may be possible by expressing computation in

an appropriate category. The CAM was 'derived' from the categorical combinators of

Curien (51. The model is a cartesian-closed category; its morphisms are characterized

as combinators, including an indexed family of de Bruijn combinators t h a t destructure

finitely nested pairs. The morphisms of this category form the basis for the instructions

of the abstract machine. Computations are expressed as compositions of these mor-

phisms. The equational theory of the categorical model entails a congruence relation

on sequences of machine instructions. A naive compiler can be obtained immediately by

giving a denotational semantics for a source language, with denotations in the category

of computations.

However, upon closer examination, the CAM seems t o have some problems: (i) The

morphism App is taken as a primitive instruction of the CAM, yet no physical

Abstract Machines

realization is known for i t (i.e. we do not know how t o build an electronic device tha t

directly realizes function application). (ii) The control structure of the CAM specifies

conditional jumps, yet the underlying categorical model contains no morphisms tha t

model control discontinuities. (iii) The CAM is a call-by-value machine and does not

evaluate all functional programs tha t have normal forms when interpreted in a term-

rewriting semantics. (iv) Recursive definitions are represented in the CAM by forming

a cyclic d a t a structure, which requires an updatable store t h a t is completely outside the

formal model. Thus while the CAM points the way towards abstract machines based

upon precise, mathematical models for programming languages, there are gaps remain-

ing t o be filled.

Nevertheless, we believe the right answer t o the rhetorical question posed in the

title of the paper is tha t an abstract machine is an operational model tha t can be

represented in a category whose morphisms form a basis for the instructions of the

machine. Equations satisfied by the morphisms of the category provide a formal

specification of an abstract machine. In this paper we construct a detailed categorical

framework for evaluating expressions of the lambda-calculus, and use it t o define an

abstract machine tha t is essentially similar t o the CAM. I ts architecture is typical of

machines t h a t engineers know how t o build. This machine has explicit control; i t relies

upon addressable control store; i t evaluates the untyped lambda calculus t o (weak)

head normal forms and i t resembles in most details other abstract machines tha t have

been proposed for lazy evaluation of functional programming languages.' For an alter-

native approach, see [9,10], in which an abstract machine is derived from operational

semantics of a language and i t s architecture refined through a series of transformations.

The model of computation we use is based upon the notion of continuations, which

gives it the ability t o describe explicit control transfers a t the level of the machine.

This is the principal design decision tha t affects the course of derivation of the

mathematical model. Control is modeled in a category whose objects are continuations

and whose morphisms are continuation transformers. I t is the dual of a cartesian-

closed category.

Our use of categorical duality was inspired by the research of Andrzej Filinski 171.

Rather than interpreting the objects and morphisms in a category uniformly as sets and

'Our abstract machine is not actually a 'lazy' evaluator but a call-by-need evaluator. In
order to make it a lazy evaluator it would be necessary t o add an explicit mechanism, such as
updatable data store, with which to secure sharing of the results of previous evaluations.

Abstract Machines

functions, he also interprets objects as types of continuations and morphisms as con-

tinuation transformations. Values and continuations are categorical duals of one

another. In terms of structure, the duals of products are coproducts (sums). A

category can be closed with respect to i ts coproducts as well as with respect t o p r e

ducts. We call the closure of coproducts ceexponentiation. It is the categorical

mechanism t h a t best models control abstractions.

We give a somewhat different interpretation t o ceexponentials than does Filinski

and show how c~exponent ia t ion provides an appropriate mechanism t o model the con-

trol structure of conventional computer architectures. We complete the picture by

showing how the value-oriented semantics of functional programming languages are

reflected by categorical duality into sequential computations expressed as continuations.

Ceexponentials are used t o effect transfers of control. Function application is emulated

by a specific construction of abstract machine morphisms tha t formalize the familiar

call and return mechanism of a von Neumann computer architecture.

This paper applies Moggi's idea tha t computation can be represented in a category

with a suitable monad [20,23]. The idea is tha t the essence of a notion of computation

(state transformation, continuations, non-determinacy, etc.) is captured with a monad,

and the detailed description of the possible computations is described with auxiliary

functions, typed in the monad. Wadler [26] has given some nice examples of this tech-

nique. We explore in some detail the monad of continuations.

Section 2 summarizes the basic techniques of category theory used in the paper,

and contains some informative examples. Section 3 is a study of the intuitionistic i n v e

lution functor, analogous t o negation in in tuitionistic logic, and which induces the

monad of continuations. This is all new material. Section 4 discusses strong monads

and shows how a tensorial strength enables certain monad compositions. A principal

result of this section is t o show t h a t the monad of continuations specifies a cartesian-

closed subcategory, embedded in a category with products, sums, and a weaker form of

closure. Section 5 provides a formal description of the categorical abstract machine

(CAM), including i ts control structure. The categorical model is a composition of

monads, each introducing an additional aspect of detail into the machine. Nearly all of

this section can be read independently of the technical development in Sections 3 and 4.

Section 6 presents a compilation scheme for the lambda calculus and proves t h a t the

resulting implementation by the CAM is coherent with the @reduction rule of the cal-

culus. Section 7 presents conclusions and points t o directions for further work.

Abstract Machines

2. Categorical modele

Categories provide a nice framework for specifying machine architectures a t an

abstract level for several reasons:

An abstract machine should be a model for a programming language. With a

categorical model, one can prove tha t the model is coherent with the logical

specification of the language and the proof does not have t o rely upon point-wise

reasoning.

Machine s ta te , buried in the structure of objects of a category, can be as abstract a s

desired. The only aspects of the structure of an abstract machine tha t need t o be

revealed are those entailed by equations specifying i ts morphisms. These morphisms

are the externally visible architecture of the machine - i ts instructions.

Computation over some specified domain (of values, say) can be characterized by a

monad, a s described by Moggi (201. This form of characterization is quite general,

not a t all restricted t o any preconceived notion of computational model. T o each

monad there corresponds an adjunction tha t relates a category of values t o a

category of computations.

Categories emphasize the compositional aspects of specification. Not only can com-

plex instructions be composed of simpler ones, but entire substructures of a complex

machine can be defined separately and composed t o define a complete machine [21].

We assume the reader is familiar with the basic concepts of category theory such

as arrows, functors, natural transformations, adjunction, initial and terminal objects,

universal constructions, limits and the basic methods of proof. This section will review

the definitions of adjunction and of monads, principally t o establish notational conven-

tions. I t is not intended as a comprehensive introduction t o the concepts.

Definition 2.1: An adjunction from a category C t o a category C' consists of

(a) a pair of functors F: C+C1 and U: Cf+C called the left- and right-adjoints, respec-

tively;

(b) a pair of natural transformations q : I d c i U F and E : FU+Idc called the unit and

co-unit;

(c) constraining equations E F o F q = id and UE o q U = id.

Abstract Machines

We shall make use of a pair of facts about adjoints: a right adjoint functor carries

all limits from C' to limits in C while a left adjoint functor carries colimits in the opp*

site direction ([17], pp. 114-115).

There are several alternative, but equivalent ways t o define adjunction. One tha t

is often useful is tha t of a (natural) bijection between the hom-sets of two categories,

Sometimes the names of the categories are omitted from this notation. This presenta-

tion emphasizes the role of the adjunction as relating the morphisms of two categories,

and further allows us t o deal with sets, as opposed t o the objects of a category which

are not always t o be interpreted as sets.

Notation: The literature of category theory is rich in overloaded notation, which is

confusing if not clearly understood. We shall use roman letters I, T, F, U (sometimes

subscripted) t o designate functors, and letters X, Y, Z t o range over objects. Applica-

tion of a functor t o an object is designated by juxtaposition of symbols. So is functor

composition. Thus the coding of symbols mentioned above is critical.

Lower case italic identifiers are used for functions (or morphisms). Ordinary com-

position of functions (morphisms) is designated by ' '. In sections 4 and 5, ';' is also

used for composition in diagrammatic order in a dual category. Application of a func-

tor t o a morphism is indicated with parentheses around the argument.

Greek letters are used t o name natural transformations and hom-set bijections. A

hom-set bijection carries a morphism between adjunct categories. Applications of some

particular hom-set bijections will be designated by an overbar or a superscripted or sub-

scripted sharp symbol on the morphism identifier. Some authors omit these notational

decorations but we find the potential for confusion t o be too high.

A superscripted asterisk is used only t o designate the Kleisli s t a r extension of a

function.

2.1. An example: cartesian closure

I t is well known tha t cartesian-closed categories furnish categorical models for

languages in which higher-order functions can be defined.

Abstract Machines

Definition bE A category C is cartesian-closed if

i) There is a distinguished object, 1,

for every object, X E C , a morphism &: X + l exists,

for every morphism h : X+1, h = Ox.
ii) If X,Y are objects of C, then XXY is an object,

there are morphisms r1 : XXY 4 X , n2 : XXY + Y and a bifunctor

(- ,-): (Z+X)x(Z+Y) + (Z+(XxY)), satisfying

A1° (!,!I)=!

T 2 O O(/,g)=g

(~ 1 2 T!) = ~ ~ x X Y

iii) If Y,Z are objects of C , then [Y+Z] is an object.

For each object Y, there is a family of universal arrows {apy,Z: ([Y*Z]xY)+Z)

and for each arrow f : (XXY)+Z an arrow f #: X+F*Z] such t h a t

apy,z " (f "fidz) = I
(apy,z O (gxidy)P = 9

Cartesian closure is the existence of an adjunction from C t o itself for each object

Y, with left adjoint F = (,xY) and right adjoint U = (Y*,). The natural bijection of

hom-sets (in C) is

where [Y+Z] designates an object tha t may be interpreted a s a function space.

The unit and ceun i t , when specialized t o an object, can be typed as

qx: X+Y+(XxY) and cZ: ([Y+Z]xY)-Z. The unit is the pair constructor,

q = Xz. Xy. z ,y and the co-unit is the family of universal arrows, {apy,Z), tha t realize

function application. The adjunction 'internalizes' arrows of the category C as objects

of the same category by enabling the elements of objects p + Z] t o be used as functions.

2.2. Monads

Definition 2.3 A monad over a category C is a triple, (T ,T) ,~) , where T is a functor

from C t o itself (an endofunctor) and q : I d i T , p : T ~ A T are natural transformations

satisfying the equations:

Abstract Machines

q is called the unit and p the multiplier of the monad.

0

Every monad (T,q,p) induces an adjunction between suitably defined categories.

One way t o form an adjunction is t o construct a Kleisli category, CT from a category

C with endofunctor2 T. The left adjoint of a Kleisli adjunction is simply an inclusion

functor, I : C + CT. The right adjoint is T: CT+C. Thus the adjunction defines the

natural bijection of hom-sets

C(X -, TY)

We shall use an overbar t o designate this bijection, so t h a t if j: X - + Y in CT,

7: X + T Y in C. Because of the inclusion functor, the objects of CT are seen t o be the

the same a s those of C ; its arrows correspond t o the arrows of C t h a t exist by virtue of

the monad.

The image of an identity in CT is a universal arrow, ax = qx: X+TX in C. A

composition of arrows, g f , where f : X+Y and g : Y+Z in CT corresponds to a s c ~

called Kleisli composition, pZ T(g) 7 : X+TZ in C.

Definition 2.4: The Kleisli triple extension of an arrow g is defined t o be

g* = pz T(g) : TY+TZ. From the monad axioms and the naturality of p and q , i t is

straightforward t o prove

This gives a system of Kleisli triples, (T, q,(,)")), where T is restricted t o a function on

objects. I t provides an equivalent characterization of a monad.

The arrows of the Kleisli triple extension are just the arrows of the Kleisli category,

projected into C by the functor T.

Technically, the monad endofunctor is TI, which is abbreviated to T.

7

Abstract Machinea

The monad of Cartesian closure

I t is instructive to examine the Kleisli triples t h a t correspond to the adjunction

defining cartesian closure. Holding Y fixed, the object function is T,X = Y+(XxY);

the unit and multiplier are

?) = Xz. Xy. z ,y

CLx = At : T U . Xy :Y. apy ,xxy (t y)

where a p y l x x y : T&+X is the XXY-component of the c e u n i t of the adjunction.

If j : X+Z in CT, then
qz o j = Xz. Xy. jz, y : X--+TmZ

The image of j in C is
Tcc(j) = Xt :T&.let z , y l = t y in j z , y l

Composing the multiplier with T&J) gives

This suggests a n operational interpretation of function application. Suppose a pair

(z,y) represents an environment structure in which z designates the 'current' value and

y the remainder of the environment. An environment binds values to free variables,

with correspondence established by position in a d a t a structure of nested pairs. The

unit of the monad injects a value into an environment by pairing. A function defined

relative to a n environment, expressed a s y :Y I-- j : X+Z in CT, corresponds in C t o

an explicitly curried function, 7, t h a t when applied first t o an argument, z , then to a n

environment, y , yields a new environment gotten by extending y with J z y.

T h e monad of continuations

A further example is the monad of continuations,

T X = (X+A)+A
q = Xz.Xc. c z
p = Xt :T%.XC :x+A. t (Ah :(x+A)+A. h C)

Let j : X+Y in CT and J : X + T Y in C. Then

T(j) = Xh :TX. Xc :Y+A. h (Ax. c (j x))

j* = pz 0 T(J) = Ah. Xc. h (Xz. J z c)

Intuitively, qx specifies how a value of type X is included as a computation, while (,)"

specifies the extension of a function J from values t o computations t o a function j*

from computations to computations.

Call-by-value computation

A composite monad can be derived from the two previous examples by composing

adjunc tions.

The composite endofunctor on C is Tv = U T I F . The object function, unit and multi-

plier are

TVX = Y+ ((X xY)+A)*A

T d j) = Xt:TVX. Xy:Y. Xc:(ZxY)+A. t y (Xh:XxY.c (j (nlh), %h))
where f : X-+Z in CT

7 = Xz. Xy. Xc. c (z , y)

p = Xt :T$X. X y :Y. Xc :(XxY)+A. t y (Ah : T m . ~r, h (nz h) c)

Proof the t h a t the monad equations (1-4) are satisfied is obtained by calculation, sub-

stituting the definitions of the unit and multiplier into the equations and reducing the

lambda-terms t o normal forms.

Let j : X + Z in CT. Then we derive

In studying the final expression of f*, we see tha t the argument t is applied t o an

environment variable, y , yielding a computation of type ((XxY)+A)+A. This compu-

tation is applied t o a continuation gotten by abstracting h :XXY from an expression

representing the result of a computation. The argument variable, h , represents a struc-

ture t h a t consists of nested pairs of values, not of computations. The computation

described by this monad is call-by-value evaluation of applicative expressions.

Abstract Machines

2.2.1. T-cones and their limits

Certain covariant endofunctors construct limiting objects in C. Recall the

definition of a cone [2]. Let G be a graph, C be a category, and D: G + C be a

diagram in C with shape G . A cone with base D is a pair (x, {p,)), where X E O b j (C)

is the vertex and {p,) is a family of arrows in C indexed by nodes of G , such t h a t

p, : X + D a for each node a of G. A cone is said t o be commutative if the diagram

D(G) commutes in C. (In case the diagram is discrete, the commutative property holds

trivially.) A cone generalizes the notion of a family of projections. A commutative

cone with base D and vertex X is called a limit of the diagram D if from every cone c

over the same base D, there is a unique arrow from vertez(c) t o X. The vertex of a lim-

iting cone is called the limit object, or simply the limit if i t is understood t h a t the sub-

ject of discussion is an object.

Example 1: The prototypical example of a limit is a binary product. Take G to be the

twepoint , discrete graph, D t o be a map t o two objects X and Y of C, and the limiting

cone with base D is (XXY, {rill s)).

Example 2: More generally, consider limits with parameters [17]. Let the diagram D

be parametric on an object of C; D: C -+ G +C. With the twepoint graph of the pre-

vious example, introducing a parameter allows us t o fix one of the objects in the

codomain of D, so tha t D(A) is a map t o objects A and X, and the limiting cone with

base D(A) is (A x X, {n,, ~ ~ 2)) .

Example 3: A more interesting example occurs when a graph G is also obtained from

the object parameter of D. For example, in a cartesian-closed category whose objects

are sets, the graph of an object is just the discrete graph of i ts elements. If we take the

diagram D(A) = G(A)+X, then the limiting cone with base D(A) is

(IA*xl1 {.PA- ,a) I a €A))

Example 4: In a cartesian-closed category let D(A) = C(X,A)-+A (by an abuse of

notation identifying the hom-set with i ts graph). The limiting cone with base D(A) is

((x*A)*A, bP*(- 1 c) l c E [X*AI)).
When the objects T X of a category with a monad are limit objects, we say tha t T

has limits and shall refer t o the limit cones as T-cones, rather than specifying the base

of each cone. When T has limits, there is an arrow Z+TX which is the mediating

morphism of a T-cone extending from the vertex Z t o a base t h a t i t shares with the

limiting T-cone.

Abstract Machines

2.2.2. The structure of T(C)

The codomain of an endofunctor T is a subcategory of C, which we designate as

T(C). When T is an endofunctor component of a monad, T (C) can have interesting

properties.

A Kleisli adjunction (FT,uT, q, f) : C CT is derived from a monad on C, but it

also induces a comonad (FTuT, C, V) on CTl where v = FTqUT: FTUT 2 FTUTFTUT. (It

is straightforward t o check t h a t the comonad laws are satisfied.)

When T maps objects t o limit objects in C, the comonad on CT reveals a great

deal about the structure of T(C). A T-coalgebra is associated with a comonad, dually

as a T-algebra is associated with a monad ([17], Sec. VI.2).

Definition 2.5 If T = (T, E,V) is a comonad on CTl a T-coalgebra (x, kx) is

represented as a pair where XEObj (CT) is the carrier of the algebra and the arrow

k x : X - T X in C (called the co-structure map) obeys the equations:3

A T-algebra homomorphism is an arrow j : X -+Y of C such t h a t

D

Proposition 2.6: T o every X E Obj(T(C)) there corresponds a T-coalgebra (x, qx).

Proof: I t is easily verified t h a t qx is a T-co-structure map, using the first triangle law of

a n adjunction and the formula for v from the definition of a comonad.

Proposition 2.7: Every arrow of C is a T-coalgebra homomorphism.

Proof: If j : X --+Y in C then

(q is natural)

The functor FT is often omitted from these equations as it is simply an injection functor.

Its e&ct on a T-coalgebra is to drop the construction map, F~(x , k x) - X.

Abstract Machines

The objects of T(C) are isomorphic t o the T-coalgebras of C. The arrows, X+Y, of

the Kleisli category CT are isomorphic (by the natural isomorphism of the adjunc-

tion) t o mediating arrows, X+TY, of T-cones in C. When T has limits, the com-

ponents of the unit of the Kleisli adjunction, qx: X+TX, which are the isomorphic

images of the identity arrows of CT, are unique limit constructors.

Proposition t.8 When an endofunctor T has limits, each object in the codomain of UT is

a limit object of a family of T-cones.

Proof: Every arrow of CT is isomorphic (by &) t o the mediating arrow of a T-cone of

C. Since UT is a right adjoint functor, it preserves all limits of CT, and in particular,

preserves the limits of i ts families of T-cones.

0

Theorem 2.9: If T: C + C has limits then T(C) is a full subcategory of C.

Proof: T(C) is a category as i t is defined t o be the codomain of the functor UT and i ts

objects are the set {TX I XEObj(C)) by Proposition 2.8. Let g : TX+TY in C. Then

G 1 (g) : TX+Y in CT and g* = uT(G1(g)) : T*X+TY in C. By (K2),

g = g* 0 qTX = u~(&-'(~)) o qTX. Thus g belongs t o T(C).

0

3. Involution

Definition 3.1: An involution of a category C is a pair, (D,A), where D: C +Cop is a

faithful, contravariant functor and A E O b j (C) has the property tha t DA is terminal in

C.

0

Recall t h a t a functor is faithful if i t does not identify parallel arrows tha t are dis-

tinct in C. The composition of faithful functors is faithful, thus a n involution functor

from C t o C O P composed with the reverse involution from C O P t o C defines a self-

embedding of C. The functor whose object mapping is the identity and which simply

reverses the sense of every arrow is an example of an involution functor, albeit a trivial

one.

The role of the involution object will be illustrated by a particular involution tha t

we shall investigate. However, note tha t the involution object has the property t h a t

as an immediate consequence of the definition.

Abatract Machines

We are interested in a particular involution, t h a t which generates continuations as

the objects dual t o value objects. Toward this end, we shall explore a closure property

of certain cartesian categories, weaker than cartesian closure.

Definition 8.2: A category C has a quasi-closure if i t has direct products and a dis-

tinguished object A such tha t the following bijection, natural in X and Y, holds:

Theorem 8.3 Let C be a category with a quasi-closure. Then there is a family of

universal arrows, {ansy : (Y+A)xY-+A) such tha t every morphism j : X X Y + A can

be factored through ansy.

Proof: Consider the bijection of composites,

g xid, 0-Y h

X X Y + Z X Y + A
I h

X 4 Z + Y + A

Let Z = Y+A and h = idy+A.

Then g = $($-l(idy+A) o (g X idy)) and a m y = $-'(idyeA).

Let g = $-'(j): X+(Y+A), where j : X X Y + A and f = ansy o (g X idy).

Corollary 3.4: For a quasi-closed category, C, the following assertions are equivalent:

a) a m A is an isomorphism;

b) A+A is a terminal object;

c) XE Obj(C). there is a unique arrow &: X X A +A.

Proof: (b) (a): Ox: X + [A+A] is a unique arrow, by hypothesis (b). Since a m A is

universal,

ansA (0A x jdA) = $il(OA)

But $il(OA) is the unique morphism of type A XA +A.

Thus a m A 0 (OA X idA) = = r2 0 (OA X idA) from which we conclude t h a t

a m A (OA, idA) = idA and o m A = (T ~) ~ * ~ , ~ .

Composing with ansA on the right,

Abetract Machines

(c) + (b): For each X E O b j (C) &(&): X+ [A+A] is unique, as & is unique by

hypothesis (c) and every arrow with codomain [A+A] is introduced by exponentiation.

(a) + (c): a m A is an isomorphism by hypothesis. I t s inverse is easily demonstrated:

~ h u s a n s i l = ($ (T ~) ~ , ~ , idA) and oneA = (? T ~) ~ + ~ , ~ . This allows 4(t o be calculated.

There must exist an arrow of type X X A + A for (%)x,A is one. Suppose 4(is any

arrow of this type. Then

Definition 3.5: We say tha t A E O b j (C) is an involution object if v X E O b j (C) , two

conditions hold:

i) there is a unique morphism &: X XA +A,

ii) there is a monic morphism I E X : X+A.

Clause (i) of the above definition is motivated by Corollary 3.4. Of the three equivalent

conditions given there, 3.4(c) is the only one tha t does not depend upon properties of

quasi-closure.

Proposition 3.6: In a quasi-closed category with an involution object A, there is a 1-1

correspondence between arrows X + A and the elements of [X+A],

ProoR (Here we designate the terminal object [A+A] by 1.)

Abstract Machines

in which Ex is the 'administrative' morphism of left identity in a cartesian category.

0

Theorem 3.7 Let C be a quasi-closed category with an involution object A. Define a

functor D by extending the object mapping

t o hom-sets in the usual way. Then (D,A) is an involution of C.

Proof: From Corollary 3.4, DA = [A*A] is a terminal object. I t is immediate from

Definition 3.2 tha t an element of [X+A] is contravariant in X. I t remains t o show tha t

D is faithful.

Let j , g : X + Y be parallel arrows in C and D(j) ,D(g) : DY+DX be their images

in C. If D (j) =D(g) then h : Z +DY. D(f) o h = D(g) o h . In particular, choose

Z = 1 and let h = $(k o E T ~), where k : Y +A. Then

Naturality of $-I, expressed in the following diagram,

C(1, DY)
$-I

+ C(l XY,A)

gives

Abstract Machines

Thus D(j)=D(g) ==s fj k : Y+A. k o j = k o g .

Furthermore, from Definition 3.2 and the definition of D we have t h a t

which induces the hom-set isomorphism

This justifies the final s tep needed t o establish tha t D is faithful, namely t h a t

for since A is an involution object, there is a monic arrow of type Y+A.

Here we consider some consequences of this involution.

Corollary 3.8: The involution functor D from a quasi-closed category C t o COP is self-

adjoint.

Proofi Consider the sequence of natural bijections in C ,

X x Y + A
h o e

Y X X + A
$ (A C)

Y -+ DX

where CXPy: XXY-YxX is the exchange morphism for symmetric products. We shall

call the composite bijection 4, and write i t as a bijection between hom-sets of COP and

COP(DX + Y)
ky: C(X + DY)

This formulation makes it apparent tha t 4 expresses the self-adjunction of D.

0

The bijection, when represented entirely in C, can be expressed in lambda-notation,

+(I) = XY. Xx.f z Y

from which we see tha t 4-I = 4 as untyped expressions.

Abstract Machines

There is an analogy between involution in a cartesian-closed category and nega-

tion in intuitionistic logic. In intuitionistic logic, absurdity is expressed by the closed,

second-order formula VA.A, where A ranges over all propositions. T o assert the nega-

tion of a proposition X, we write the implication X+VA.A. I t is customary t o replace

VA.A by a special symbol 1 when second-order quantification is not used elsewhere,

obtaining first-order intuitionistic logic with (weak) negation. The implication 1 +X is

the X-component of an axiom scheme; i t has a unique (i.e. trivial) proof object. We

shall not press the analogy further here, other than t o note t h a t if a category has only

quasi-closure and not cartesian-closure, then it does not model the rule of modus ponens

in logic.

3.1. Naturality properties

The properties of a natural bijection between categories are summarized in four

equations in (171. Specialized t o the adjunction (D,D), and using the symbol ';' for com-

position in COP, the equations are:

4-'(9 h) = 4-'(g) ; ~ (h) 4 - ' (~ (k) O 9) = k ; 4-'(s (5a,5b)

Choosing f = id in (4b) gives

where q is the unit of the adjunction. Choosing k = +-'(j) in (5b) gives

4- ' (~(4- '(j 1) O g = b-l (j) ; 4-Yg 1 (7)

The endofunctor T = D~ induces the monad of continuations, seen previously as an

example, on C. The adjunction between C and i ts Kleisli category is not the same as

the self-adjunction of the functor D. Nevertheless, we shall see t h a t the categories CT

and C O P a re related.

The bijection 4 allows the identities and compositions of CT t o be expressed in

C O P . Letting 7 = & ~ , (k) in (6), we have tha t

7 = D(&,',(f 1) O rlx

But 7 = f 0 7 7 ~ is a law of any monad, and fi is a universal arrow, so

Abstract Machines

Proposition 9.9:

(i) 4-'(q) = id

(4 4-'U + o g) = +-'(TI ; 4-'(g)

Prooji

(i) q is the unit of the adjunction (D,D), whose natural bijection is 4.

(ii) Immediate from (7) and (8)

0

The preceding proposition establishes an embedding of the Kleisli category, CT,

which was introduced t o represent functions as computations, into the category C O P , in

which the arrows of CT are represented as continuation transformers, embedded by

involution. We shall show how function application can be represented with continua-

tion transformers.

3.2. C*exponentiation in the Kleisli category of continuations

Coproduct closure is an isomorphism dual t o cartesian (direct) product closure and

is illustrated by the commutation of the following diagram:

Here, paz,* is a universal arrow called co-application and [Ye Z] designates a CCP

18

Abstract Machines

exponential object, a type whose elements are co-abstractions. The arrow h, is the co-

curried image of h under the co-closure.

Technically, we require the isomorphism (natural in X and Y) between D(X+Y)

and DXXDY t o be made explicit. I t is

= hc : D(x+Y). (c 0 inl, c inr)

a$,\ = XC':DXXDY. [rlel, %el]

The following theorem restates a result of Moggi and Agapiev [22] for the case of

quasi-closed categories.

Theorem 9.10: If C has finite products and coproducts and is quasi-closed, then CT has

co-exponentials.

Proof: The diagram expressing the universal property of the arrow ansDyfl can be

transformed isomorphically in C.

DZ XDYXX /

where f = 4(h o cZPy)

and Fx,Y=~~(~~~(~~sDY~xoQI)o~DY~x,Y)~
and a = ((T, rl ~2), r2 o T2)

Universality of pa is assured by the universality of ans, which is preserved by the b

morphisms. The co-exponential object, viewed in CT, is DY XX. When f : X + Z +Y,

the corresponding cecurried morphism is f #: (DY xX) -+ Z in CT.

There is a computational interpretation of ceapplication. Just as the c e u n i t of

the adjunction of cartesian closure, up, provides the morphism tha t models substitution

of a value for a bound variable in the body of an expression, co-application models sub-

stitution of continuations in an expression with a bound continuation variable.

&l(&,Y) o o&,~, : D(DY xX) xDY -DX in Cop can be seen as taking a pair, consist-

ing of a continuation transformer and a continuation for the anticipated result of a

function's application, into a new continuation, tha t which accepts the argument. This

is, of course, an interpretation tha t corresponds t o reading a program backwards from

i ts end towards i ts beginning. When reading the same program forwards, paxy can be

interpreted as taking an argument of type X into a contezt for a pair t h a t consists of a

continuation transformer and a result continuation. A context for a pair has a formal

representation as a computation whose type is a sum, although this is less intuitive.

4. Strong monads

A monad (T, 7, p) on a category C with direct products is said to be strong if there

is a family of morphisms {TX,Y: TXXTY-+T(XXY)), natural in X and Y. T is called a

symmetric tensorial strength for the monad.

A cartesian category equipped with a strong monad of continuations can model call-by-

value computation [23]. The counterpart of this strength in a model for call-by-need

computation is simply the unit of the monad, specialized t o products,

vTXxTY: TXxTY-*T(TXxTY). We shall exhibit the symmetric tensorial strength,

even though i t is not required t o model call-by-need computation with non-strict pair-

ing.

Proposition 4.1: Let C be a quasi-closed category with the monad of continuations.

This monad has a symmetric tensorial strength, T. Furthermore, there is a family of

morphisms, (7: T(xxY)+TXXTY), natural in X and Y, which is a quasi-inverse of T.

Proof: We shall first derive I?;. An explicit representation is derived by passing a direct

product object through the involution functor twice. The two steps of involution realize

the DeMorgan laws of classical propositional logic.

Abetract Machines

First step: Let rl designate the first projection of the product in the Kleisli category,

CT. Then ?il : X X Y + TX in C, and thus : DX+D(XxY) in C O P . Taken together

with the image of the second projection, this gives

[#-I(%), #-I(%)] : DX + DY + DO[x Y)

Second step: ax,, : D(X+Y) + DXXDY

Now the morphisms derived in these two steps should be composed in C. We take the

involution of the morphism derived in the first step to get

which can also be expressed in lambda notation as4

?= Xt:T(XxY).(Xc:DX.t (c 0 rl), XC:DY.~ (c 0 4))

T o carry the proof in the other direction requires a morphism called simply a t e n s o r i a l

s t r e n g t h (201.

A tensorial strength for T exists in a quasi-closed category. Its representation as a

lambda-term is:

Two applications of the tensorial strength are required in order t o reduce both com-

ponents of a pair, yielding

T = (tX,, c ~ ~ , ~) + tmJ CTX,~, : TXXTY+TWY)

which in lambda notation is

The composition of the symmetric tensorial strength with i ts quasi-inverse on the

left is

Technically, lambda calculus is only justified as the language in which to express mor-

phisrns of a cartesian-closed category. It can also be used with a category that is quasi-closed if

applications are always denoted by value elements of the involution object, A.

Abstract Machines

-
T o T = Xp :TX X TY. (XC :DX. Xl p (XZ :x. 7T2 p (K (c z))), XC :DY. 7Tl p (K (7T2 P c))) (9)

where K is the weakening combinator, K z y = z . &,J is an approximate left inverse t o

TXBY. It fails t o invert TXnY when one of the computations TX or T Y fails to converge.

T o show the inverse property, i t is convenient to define a subcategory of C tha t may be

interpreted as a category of total computations, although this subcategory is not one in

which constructive models can be found.

Definition 4.2: Let C be a quasi-closed, cartesian category with the monad of continua-

tions. Then Cioiol is the subcategory of C t h a t is inductively defined by the following

conditions:

3) j ECiotor(X,TY) if j EC(X,TY) and #-I(/) EC(DY,DX) is rnonic

4) j ECioiol(X,Y) if j EC(X,Y) and D (j) €C(DY,DX) is rnonic

The intuition t h a t underlies the rnonic requirement is t h a t rnonic morphisms, when

interpreted as functions, do not discard their arguments. Thus a rnonic morphism of

type X + Y can be interpreted as a strict function, or if i ts type is DX+A so t h a t its

argument is a continuation, i t can be interpreted as a total computation. There are a

number of immediate consequences of Definition 4.2.

Proposition 4.9:

A. 1 = A+A is a terminal object of Cfotol

B. k E Ctoiol(X,A) if k E C(X,A)

C. the elements of T X in Cioiol are isomorphic t o the rnonic arrows kx€C(DX,A)

D. rlx E Cioiol(X,TX)

E. there is a family of morphisms {evalx~Cioiol(TX,X)), such tha t evalx is inverse t o

%, for all X E Obj(Ctoio~)

F. for j E C ~ ~ ~ , ~ (X , T Y) , condition 4.2(4) is equivalent t o 4.2(3)

- CiOtOl(TX,Y)
G. there is a natural isomorphism a:

Cio io l (DYtDX)

Abstract Machines

Proof:

A. X E C , & : X + 1 is in Cioial because D(&) : D(l) +DX is monic in C (recognizing

t h a t D(1) =A)

B. D(k) EC(DA,DX) is rnonic as DA is terminal in C .

C. the isomorphism is & -, but D l = [l=s-A] "A.
C(1lTX)

D. $-'(qx) = idDx, which is monic.

E. T o show t h a t the family of arrows {evalx) exists and is natura l in XI let

D(evalx) = qDx, which is rnonic. Then the composites {evalx qx€CtOtal(X,X)) and

{qx evalx€Ct,i,l(TX,TX)) are natural in X, and since the only such natural fami-

lies a re {idx) and (idTX), we conclude t h a t eval is a natural inverse to q in C,,,,,.

F. $-I(f) = D(f) qDr is rnonic iff D(f) is rnonic.

G. Let E(f) = D(f qX), where f €CiOtal(TX,Y)

and F1(D(g)) = g evalx, where g EC,,,,,(X,Y)

Then F1(E(f)) = F 1 (~ (f 0 qX)) = f 0 qx evalx = f ,
-- -1 and n (~ (D(g)) = Bg evalx = D(g evalxo R) = D(g).

Naturality of the isomorphism E of Proposition 4.3.G entails four equations:

Returning now to the question of the inverse of TI we shall show t h a t -
TX,Y 0 TX,Y = idTX+TY in Ctolal. First we need a lemma.

Lemma 4.4: t : TX c : DX in Ctotal. ansDX(t, c) = ansx(c , (evalX t)).

Proof: Replacing quasi-applications by compositions of arrows, the assertion of the

lemma can be restated as:

where t : 1 +TX, c : 1 + DX and TA g A. Since 1 +A r 1 +TA, i t follows from (5b)

t h a t

$-'(D(C) 0 t) = $-'(t) o c : 1 -+A

However, $-'(t) = D(t) 0 qDx = D(t) 0 D(evalx) = D(evalx t), and for any h : 1 -+A,

Abstract Machines

4-'(h) = h . Substitution using these two equalities gives (12).

-
Proposition 4.5: In Ctotol, T O T = id.

Proof: Referring t o the composition ?o T given in in (g), note tha t a l p :TX and

n 2 p :TY. Lemma 4.4 tells us tha t applications of these terms can be equated t o

a1 P f = E(eua1x (a1 p))

a2 P f = C (eualy (% p))

and thus we get
-
T0T={(~),(l~o),(13b)) X~.(Xc.alP(Xz~K(cZ)(eua1~(a2~))),Xc-K(a2~c)(eua1~(al~)))

- -{defn. o j K) Xp. (Xc. a l p (Xz. c z), hc. 3 p c)
-
-{I) reduction) Xp. (XC. a l p C , XC. T2p C)
-
{ I) u c t i n) XP- (al, 4) P
-
-{unicity 1 Xp. p = id

4.1. haymetric etrength

The strength T is not the only possibility t o relate a product of computations t o

the computation of a product. As we have just seen, T constructs the computation of a

pair of values, by first reducing both components. There is an assymmetric strength

a~ reduces only the first component of the pair i t constructs, leaving the second com-

ponent unaffected.

4.2. Projections from a lifted pair

One might also regard qTXXTY : TXX TY + T(%x TY) as analogous t o a strength,

although i t does not require a tensorial strength for i ts realization. I t does, however,

have a left inverse. This implies tha t there are projections from a 'lifted' pair, an ele-

ment of T(TXxTY).

Proposition 4.6: In a quasi-closed category with the monad of continuations, there exists

a family of arrows T ~ , ~ : T(TXxTY)+TXxTY, natural in X and Y, such tha t

Abstract Machiiee

~ X , Y O VTXX TY = ~ ~ T X X m.

Prooj The derivation of r is snalogous t o tha t of ?except tha t i t uses the projections

from a cartesian product, (? T ~) ~ ~ , ~ ~ and (T ~) ~ , ~ , instead of Til and ?f2 t o obtain

4 , ~ = ~ D X , D Y o D([$-'(TI), Y '(~2)l) : T(=x TY) TX x TY

or, in lambda notation

The composition rX,,- 0 qTXXTY can most easily be simplified in the lambda representa-

t ion,

T X , ~ o q ~ x ~ ~ y = Xq. T ~ , ~ (XC :D(TX xTY). c q)

= Xq. (Xc,. ?TI q c,, XC,. ?r, q cy)

= Xq. (75 qln2q)

= Xq. (.nll?r,)9

= Xq. q

4.3. Normal objects The unit of a monad takes a type of values into a type of i ts

computations. In the CAM there are no 'unevaluated' representations for function

values; each is represented as a normal term. (The same is not true of a supercombina-

tor reducer such as the G-machine.) An element of a function-space is the involution

image of a continuation transformer, and is represented in the CAM as a closure.

(Obviously, the representations for a function value are not unique.) We can formalize

the property just described.

Definition I ,? In a category C with a strong monad, a n object X is said t o be a nor-

mal object if qx has a right inverse, where q is the unit of adjunction with the Kleisli

category.

When an abstract machine is defined by a (strong) monad of continuations on C ,

every convergent computation has a representation as an object of the subcategory

T(C). Every function-space object [TX+TY] in C is the image under involution of a

ceexponential, interpreted as a type of continuation transformers in COP, and is a nor-

mal object.

Abstract Machines

4.4. The subcategory T(C) is cartmian-closed

Our goal is t o show tha t the category of computations realized by the mechanism

of continuation substitution is cartesiao-closed. As T is a right adjoint functor, i t car-

ries limits in CT, i.e. the products and the terminal object, into limits in T(C). Special-

izing T t o designate the endofunctor of the monad of continuations, since CT has coex-

ponentials and is equivalent t o C O P , the contravariant functor D carries these coex-

ponentials t o exponentials in C .

Theorem 4.8: If C is a quasi-closed bicartesian category and (T , q , p , T) is the strong

monad of continuations, then T(C) is cartesian-closed.

Proof.

1. Existence of a terminal object is assured by the bijection of hom-sets:

where the injection functor, I, is faithful and T is full.

2. Existence and uniqueness of projections: Let ?rl: TXxTY+TX and

7r2 : TXxTY-+TY. The projections from T(TXxTY are

?rl 0 T : T(TXxTY)-+TX and 7r20 T: T(TXxTY)+TY

These projections are unique, a s

The morphisms fst = $-'(nl) : DX+D(TXxTY) and and = $-I(%) : DY +D(TXx TY)

are continuation transformers in C O P corresponding t o nl T and n2 in C.

4. Existence and uniqueness of exponentials: The following diagrams illustrate the

derivation of a universal arrow from ansz by isomorphic transformation.

Abstract Machines

(b)

where a: D(DYxZ)x(DYx Z) + (D(DYxZ)xDY)xZ is an instance of the 'administrative'

isomorphism for associativity in a cartesian category. Diagram (b) expresses exponen-

tiation of a morphism from a product, when i ts objects and arrows are appropriately

renamed:

[DY =+ DZ] =def D(DY X Z)

a p ~ ~ , D ~ ' d c j h (a n s ~ a)

h =A(& O a)

hn = &yxz(k)

in which (, T is notation for cartesian exponentiation, or 'currying'.

Instantiating X t o DX, Y t o DY and Z t o DZ in the diagram above, we obtain

The following equation holds in C:

where j : X X Y 4 T in CT.

Abstract Machines

A further, isomorphic transformation of diagram (b) in the proof above gives

This is the involution of a co-exponential diagram. The application morphism

a p ~ y , ~ ~ : [TY=sTZ]xTY-+TZ in C can also be expressed a s the involution of a co-

application morphism,

4.5. The evaluation morphisma

Finally, we can make explicit the co-unit of the adjunction between C and CT. I ts

Kleisli triple extension will be the application reduction morphism in T(C). This is

eXTyPz* = a p ~ y , ~ z ' (c v u ~ ~ , ~ ~ + ~ ~ X idTY) O aT-l : T([TY+TZ] x TY) TZ
-

Here, ~PTY,TZ = ZE7TY,Z. (Had we chosen T, rather than a?', the resulting morphism

would have had the type T([TY++TZ] x Y) d T Z , which corresponds t o call-by-value com-

putation.) We know t h a t this morphism is the Kleisli triple extension of a morphism

in CT because T(C) is a full subcategory.

Function space objects are normal objects in C. The unit, q, instantiated for a

function-space object, constructs a closure consisting of a continuation transformer and

an empty environment, qm+Tz = CTY*TZ ETY+TZ. In lambda notation, this is

qm*Tz = Ax. (),x, where (): 1. Its inverse is euall,Ty+Tz = (T ~) ~ ~ + ~ ~ , ~ . Thus

Abstract Machines

is an isomorphism tha t relates the closure representation of a computation to a n expli-

cit continuation-transformer, environment pair. What then, is T Z in CT? It is the

image of type T Z closures, an object formed by identifying (for all Y) the objects

[T Y + T Z] X T Y in C as they are carried into CT by the embedding map, I. The c e

unit, E , of the adjunction (1,T) between C and CT is the family of universal arrows

{ e ~ a l - , ~ : TZ + Z) in CT.

5. Specifying the architecture of an abstract machine

Within the categorical framework developed in the preceding sections, it is now

possible t o define the promised machine model, the CAM. I ts architecture can be

specified by a composition of five monads, which correspond t o distinct functional capa-

bilities of the abstract machine. Composition of monads has been proposed by Moggi

(211 as a technique t o provide modular building blocks for programming language

semantics.

For each monad (expressed here as a Kleisli triple), (T, q,(, r), and for each arrow

j : X + T Y in C, we say tha t j is proper for the monad5 if j = qy o g, for some

g : X+Y. The proper morphisms are those tha t are unexceptional for the monad. For

example, in the Boolean monad, whose definition in Kleisli triples is

BX = X+X

$ = in1

j* (in1 x) = j z
0 j* (inr y) = inr y ,

a morphism j : X + Y + Y is proper if f = in1 0 g for some g : X+Y.

For a proper morphism, j = q 0 g , the Kleisli composition can be replaced by ordi-

nary composition in C with j replaced by g ,

Thus t o define a proper morphism of a monad, i t is not necessary t o describe explicitly

the action on the object structure entailed by the monad map, whereas for non-proper

morphisms, i t s action must be specified explicitly. This allows considerable economy of

This notion is also due to Moggi, who uses the terminology 'existing' morphism. We

prefer the word 'proper', as it better conveys the sense of the classification.

Abstract Machinee

notation in defining the architecture of an abstract machine, since most of i ts mor-

phisms (i.e. instructions) will be proper for at least some of i ts constituent monads.

6.1. Monad construction

Moggi 1211 advocstes a modular approach t o the construction of a categorical

semantics for a programming language. In this approach, semantic domains are

categories with monads. The monads may have additional structure, tha t is, may come

equipped with additional operations tha t are needed t o explain particular aspects of the

language. He shows how categories with the required monads can be built by applying

monad constructors, adding one feature a t a time t o the language being defined.

Without going into the general theory behind monad construction, we shall make use of

a few special instances of monad constructors t o build an abstract machine.

5.1.1. Composing monads

Monads impose structure upon a category. Composite structure can be expressed

by a composition of monads, but monad composition is not universal. One must check,

in each case, t h a t a postulated composition actually forms a monad, i.e. t h a t the unit

and s ta r extension exist and satisfy the monad equations. A composition might fail if,

for instance, the composite object mapping did not preserve the internalization of cer-

tain morphisms as objects of the category.

T
If (Tl,fl l,(_)"l) and (T2,fi(-)"') are monads, we can ask whether there is a

T
natural transformation T : T1T2iT3 such tha t (T3,q ',(-)"9) is a monad over C and T

has a left inverse. Naturality requires tha t

TI TI fl? = TX0 flT& flx

The requirement t h a t T has a left inverse is t o ensure tha t the object mapping T3 does

not identify objects t h a t are not identified by TIT2.

When the above conditions are satisfied, we call the result the monad composition

of T1 with T2 by T.

6.1.2. An example: state transformers

Consider the monad of state transformers,

STX = S+XXS

fl = Ax. A5.z ,s

Abstract Machines

j * = At. AS. let (~ ~ 8 ') = t 8 in j z s'

This monad has previously been interpreted as computations t h a t produce side effects

on a store (23,261.

If (T,q,(-)"T) is a monad t o be composed with ST, the required natural transfor-

mation has the typing

The composition of ST with T by 7 is given by

ST*TX = S+T(X x S)

qiTT = Xz. 7 (7);; (~ $ 2))

jeST = Xu. AS. let (c,s') = Flu s

in j*T(s'

where j : X+ S+T(YxS) and j *=: TX+ S+T(YxS).

In particular, ST can be composed with another monad of s t a te transformers. The

required natural transformation is:

TX : (S+(R+X x R) x S) + S+R+-(X x S) x R

T = Xa.Xs. Xr. let c,s' = a s

in let z , r '= c r

in (zJsl),r'

Notice tha t 7-' is not a right inverse t o T. Another useful example is the composition of

ST with the monad of continuations. The required natural transformation is:

Tx : (S+((X+A)+A) x S) -+ S+((Xx S)+A)+A

7-l = Xu.Xs. let t2 = U S

in (Xcl.t2(X(z,~').cI z)) , t2(X(z,s').s')

Abstract Machinee

6.2. The categorical abstract machine

The CAM is a composition of a series of s ta te transformer monads with a monad

of continuations. The s ta te transformers each contribute one more component t o the

machine s ta te . Instructions of the machine form groups tha t utilize successively wider

views of the machine state. The action of the machine is modeled as a continuation,

applied to a machine state.

The s ta te space of the CAM will be defined 'inside out'. Start ing from a type X of

value representations, we first augment i t with a s t a te transformer Reg. I t s s t a te

object is the type of contents of a register file, Rec(X), where Rec is a recursively

defined type,

Rec(R) = R xRec(R) .

An element of this type serves as a stack of intermediate value representations used in

a computation.

At the second level, the CAM has a s ta te transformer Cc, which adds another

s t a te object 2 t h a t corresponds t o a one-bit condition-code register. At the third level,

the s t a te transformer Cs, adds a s t a te object tha t is a type of control stores. A control

store will be modeled as a list of instructions. At the fourth level is the s t a te

transformer M, whose s ta te object is the type of a stack of contexts. The fifth level

specifies a monad of continuations, T.

The entire machine is then the monad composition

CAM = Reg(Cc(Cs(M(TaId))))

where Id is the identity monad, here used as a placeholder for an object variable.

5.3. Using a control store to realize continuations

The s ta te object of Cs is List(Control), where Control = S + T S and

S is the s t a te object for M and the type of the s t a te of the entire machine. A machine

continuation has the type

Mcont = S + A

and a context has the type

Abstract Machinee

Context = Rec(X) X 2 x List(Contro1) X Mcont

A context element is formed of a s ta te element, less the current value component, and

with a machine continuation appended. A context object is isomorphic to X+ A, the

type of value continuations.

A single step of machine operation is represented by6

Step : Mcont + Mcont

where ';' is the infix list constructor and [I designates an empty list. If op is proper

for M, then i t has the form At. Am. m (op't), where opt: S+S. As a morphism of C, an

instruction proper for M is

op = cams CSpS o (o p ' ~ idDS) qsT

The only instructions of CAM tha t are non-proper for M are 'call', 'ret' and 'eval'.

The machine executes by performing Step repeatedly, beginning with the com-

ponents of an initial machine state. T h a t is,

Run = Y(Step) = lim stepi(lMcont)
a+m

where Mcont is a pointed cpo and lMcont is i ts least element. An execution with pro-

gram store so from initial d a t a z is Run [(z l p O ~ ~ ~ s O] , where p is a constant of

Rec(X) and Co is a constant of Rec(Context). A sequence of steps, stepi, applied t o a

machine s ta te yields a sequence of i instructions t h a t comprise a partial elaboration of

the continuation from the given machine s ta te . For example, if the initial instruction of

the control store happens t o be proper for Cs, op = A0.Xm.m (opta), where opt: S-+S,

then

In displaying patterns, we shall let p range over Rec(X) and s range over Lisf(Contro1).

The notation is similar to conventions often used in register-transfer descriptions of machines.

Abstract Machines

b o .s r PA,
s tep m 1'. bp?] = ~ (o P [] o ~ ; =,ep (,-l(oP);m)

The initial program store, so, is actually a free variable of the expression of an abstract

machine, as i t also occurs in the definitions of some control transfer instructions.

This definition of machine semantics separates the definition of a computation

from the question of whether i t terminates. A computation terminates if i t reaches a

fixed point after a finite number of steps.

Instructions proper for Cs preserve the control store, while non-proper instructions

may replace the current control with another one. We introduce the list function

indz (0) s = s
indz (n +1) (c ;s) = indz (n) s

which allows non-negative integers t o be used as labels in control stores. When indz(1)

is composed with K so = Xs.so, which replaces the current control store with a constant

(the initial control store), we obtain a composite function indx(1) o K so, giving the effect

of a control transfer directed t o a label, I . The fixpoint computation, Run, makes use

of the indexable control store in an essential way. Each time an instruction directs con-

trol t o a label, the control store is effectively re-initialized t o the sequence beginning a t

the specified label. This abstract machine model is capable of evaluating recursively

defined functions. In order tha t i t could compute fixpoints of values not of a functional

type, a natural mechanism t o add t o the machine would be an addressable d a t a store.

We have not made tha t extension in the present paper.

5.4. Instructions of the CAM

We begin by giving the instructions tha t correspond t o proper morphisms for the

composite monad CAM. These instructions only affect the current value representa-

tion; they make no use of the added components of machine s ta te . Accordingly, some

instructions (the arithmetic instructions, here) require auxiliary definition t o make them

precise.

The notation is similar t o the register-transfer descriptions often used t o describe

the architecture of concrete machines. The sense of the arrows corresponds t o arrows

in the Kleisli category CT, induced by the monad of continuations. This is the

representation we find most intuitive. The instructions themselves compose as con-

Abstract Machines

tinuation transformers in C.

Instructions proper for all monads

quotex(4 z + z

fst (2 , ~) +

sn d (2 1 ~) + Y

add (2 1 ~) + Z+Y

neg 2 + -2

There could, of course be additional proper instructions. We shall make no further use

of the arithmetic instructions, which have been included only as examples.

Instructions non-proper for Reg

The notation we shall use for the CAM register file will usually make explicit i ts

first element, called the Term Register in the original CAM [3], and the rest of the

registers, called the Stack.

push 3, P + z , (~ , P)

POP Z , (Y , P) + ~ , P

swap ~ , (Y , P) -+ Y , (~ , P)

mk-pr Y , (~ , P) + (~ , Y) , P

The instructions 'push' and 'pop' correspond t o dupl and drop of the Linear Abstract

Machine [14]. The instruction 'swap' is the exchange morphism of a symmetric product.

'mk-pry is an instance of the associativity morphism, a.

Instructions non-proper for Cc

eqO (z ,p) ,b -+(z ,p) , t t i f O = z E X

eqO (z , p), b -+ (z, p), fl otherwise

In a hardware realization, this instruction could set a condition code register.

Instructions non-proper for Cs

The next set of instructions are those tha t transfer control. Recall t h a t the s t a te

object for Cs is List(Control), an object whose elements represent control stores. In the

descriptions below, p ranges over environment objects and s ranges over control stores.

j m ~ (l) p, b , s + p, b , indz(1) so

jfalse(1) p, b , s + if b =tt then p, b , s

else p, t t , indz(1) so

Abstract Machines

stop p , b , s -,p,b,stop;s

Instructions non-proper for M

This brings us t o the most complex operations, those non-proper for M. Here the

notation for an object is extended t o include stackeq contexts.

eval ''l'z" "' ' + ~ m . ~ u n I (.,PO>, tt, ind.(l) so
C p , b , s , m

C I
These non-proper instructions can be identified with the categorical morphisms

tha t underlie them. In general, for an instruction op : S + T S , we need t o express its

Kleisli triple extension, op* = D(&'(O~)). Under involution, the instruction can be

represented a s a continuation transformer with the form

in the category Cop, where p a ~ s : DS+(TSxDS)+DS. Note tha t TSxDS = (D S e DS] is

a co-exponential object in this category, and tha t pa^^ realizes continuation substitu-

tion. Then

op* = D(paDs) (D(co,) X idDs) : DAxTS -+ TS

Recall t h a t DA = 1 and thus the type is isomorphic t o TS+TS.

If op is proper for M, op = Xo.Xm.m(oplu), then

For a uniformly terminating proper instruction, the type of #-'(op) is isomorphic t o

DS +DS and can be represented in lambda notation as Xm.opl; m .

For a non-proper instruction, cop is more complex. For instance,

where ~ c , , I (l) is given using variables rather than compositions of projection morphisms

for better readability:

Abstract Machines

The operational effect of 'call(l)' is t o substitute the continuation represented by

the label 1 in place of the current continuation, which is saved. The categorical opera-

tion tha t corresponds t o 'saving' a continuation is co-application of a continuation

abstraction.

The return instruction is represented in analogous fashion,

where

'eval' corresponds t o E , the co-unit of the adjunction between C and CT. I ts

representation is similar t o t h a t of 'call', except tha t the label argument t o indz is got-

ten by taking the first projection of the value component of the state.

6. Translating lambda calculus for the CAM

The deBruijn combinatory calculus can be compiled for the CAM by a compilation

scheme C tha t translates expressions without evaluation. For this translation, we do

not require the full machine. We use the Basic abstract machine, BCAM, which is simi-

lar t o CAM but omits the condition code component of machine s ta te , 2, and the

instructions 'add', 'neg', 'pop', 'eq07, 'jmp', 'jfalse', 'stop' and 'call'. The compilation

scheme is:

ClUl = snd

C 1 A M I = push; quote(1) ;swap; mk-pr

where 'label(1) ; C I M I ; eval; ret'

is appended t o the control store

Abstract Machina

In this translation, T is a macro instruction,

T = push;Rot;snd;swap;mk,pr;swap;fst;swap;mk~r

Rot is another macreinstruction tha t exchanges the two values nearest the top of the

BCAM register file.

Rot = mk,pr;mk_pr;push;snd;fst;swap;push;fst;swap;snd;snd;

6.1. Coherence of the implementation

Coherence of a model with a language is the property t h a t equivalence of terms in

the language implies equivalence of their interpretations in the model. In this section,

we establish tha t the interpretation given by the translation scheme C is coherent with

the equivalence defined by @conversion of terms not protected by A. This is equivalent

to asserting tha t programs executed by BCAM compute (weak) head-normal forms of

the hg-calculus.

Equivalence in the model must be extensional equivalence of functions, since terms

of the language are interpreted in a function space. We designate this relation by '=',
and define i t t o be the least relation on BCAM terms tha t is reflective, symmetric,

closed under transitivity, and satisfies

The proof of coherence relies upon several technical lemmas, some of which are of

interest in their own right.

Lemma 6.1:

+f M. v s , e ,p,C. 3 ! e l .
e , p , C I M J ; s e l ,p , s -

C C

Proof: We show by induction on the structure of M tha t C I M / is proper for BCAM.

Recall tha t an instruction proper for M can affect only the value of the Term Register

component, leaving all other components of s t a te unchanged.
-

M = n :

by induction on n . C IUI = snd, which is proper. C I n+lI = fst; C I E 1 , which is

the composition of a proper instruction with a sequence proper by hypothesis.

M = M'N':

Examine the definition of C I M'N'I. There is no occurrence of 'eval' or 'ret', the

instructions non-proper for M and Cs. The instructions non-proper for Reg are

Abstract Machines

'push', 'swap', and ' m k s r ' . But a sequence of these instructions remains proper

for Reg provided tha t (1) every occurrence of 'push' is matched (exactly) by a fol-

lowing occurrence of 'mk-pr', and (2) every occurrence of 'swap' is bracketed

between an occurrence of 'push' and one of 'mk-pr'. Proper instructions may be

freely interleaved in a sequence without affecting its propriety.

Recoding the instruction sequence for C (M ' N I I with the macro instructions T

and Rot expanded, proper instructions replaced by ,, 'push' by '(', 'swap' by s and

'mk-pr' by ')', gives

The embedded instruction sequences C (MI1 and C I NII are proper by hypothesis.

The sequence can be seen t o satisfy conditions (1) and (2).

M = A M 1

Again, the instruction sequence for C I A M 1 I contains no occurrence of 'eval' or

'ret'. I t s recoding is (, s), which satisfies conditions (1) and (2) above, hence the

sequence is proper.

Uniqueness of the term el follows from the induction (C I M I is finite) and the fact tha t

each instruction is interpreted by a (total) function.

Notation: In what follows, we shall write C l M l e t o stand for the unique term e l

asserted by Lemma 6.1.

Lemma 6.2: If a label, I, has a binding in the initial control store

then for evaluations t h a t terminate,

(The term el asserted in (1) will be designated 'eval(C I M 1 e)' when i t is referred t o in

the derivation of (3) in the proof.)

Abstract Machines

ProoJ is by a well-founded induction based upon the depth of the stacked contexts, We

show t h a t if the eonelusions of the lemma hold a t s ta tes of the computation where the

stack is more deeply nested, then they also hold at s ta tes where the stack is shallower.

The stack depth is fimite at every step of a terminating computation.

(I , e) , p, eval; s

C

- el,p, eval; ret; . - .
- { H u P * ~ . (~) } ((I p e 1, p) :s K ret; - .

C

(2) From (*) above, the next s tep is:

- (I ,e) , p, eval; ret; . . .
-{Hupoth. (2)) e t , p : s

- eval (C I M 1 e) , p, ret; - . -
-{Hupofh. (1)) e 1 , p : s

Abstract Machines

- e , p , C I M I ; e v a l ; s
-(H"o*.'l'.) C

Lemma 6.1

The uses of the inductive hypotheses in the derivations can be indexed by the level of

stacked contexts a t the point t h a t each hypothesis is invoked:

t o derive HI: H2(1), Hl(1)
t o derive H2: H3(0)
t o derive H3: H2(1), H1(1), Hl(0)

from which i t can be seen tha t the induction is well-founded.

Corollary 6.3 m : C l r M I ; T ; . . . - - W : c l M I ; . . .
C - C

- e l (el, p), push; quote(1) ;swap; mk-pr; T ; eval; . -
-{C-tranulafion) C

where I : CIM1;eva l ; re t - - .

- (1 ,(e ,el)), p, eval; . . .
TI C

In the following, we make use of the deBruijn substitution convention. Our notation is

adapted from [ll]. The notation M{NIi designates the substitution of N for all

occurrences of the ith bound variable in M, where the index i counts the binding-height

of each variable occurrence in a term. The rules for substitution are given inductively

on the structure of the term M in the proof of Lemma 6.4, below. The definition

depends upon an auxiliary function t h a t calculates index renormalization in the substi-

tuted term, N. I ts definition is:

Abstract Machines

Lemma 6.4: C 1 M{NIi I (...(e , ei,l)...eo) = C 1 M I (...((e , C I N 1 e), ei-l)...eo)

Proof: by well-founded induction on the term structure and the substitution index, i

M = G and m<i

M = m and m=i

M = G and m>i

(MI N') {N) i = MI { N) , N' { N) ;

C 1 (MI N1) {NI i 1 (...(e, ei-l)...eo), p : * .
- (...(e, ei,l)...eo), p : push; C I N' {N) i I ;swap; C I M1{NIi I ; T - . -

-
Lemma 6.1, C 1 M' {NI i I (...(e , ei-l)...eo)l(C I N f { N) ; I (...(e l ei-l)...eo),~):T .
C-translation

- - c 1 MI 1 (...((e 1 C I N 1 e), ei-l)--.eo)t (C I N1 I (- - - ((e , C I N I el, ei-~).-.eo), P) : T .
-

C-translotion, ClM1N1I(. . . ((e ,CINle) ,e i-l)...eo),p: - . .
Lemma 6.1

Abstract Machines

Theorem 6.5 Coherence (p) C CAM) N I C (M{NIo 1
Proof:

' r i o q l M I(.. c I NI e)
Lemma 6.1

7. Conclusions

This paper provides further evidence, if any were needed, t h a t categories with

monads provide useful models for computation. Monads characterize the additional

structure required in a category t o realize an abstract machine. Monad composition,

using monads of s t a te transformers and a monad of continuations, appears t o be a

satisfactory way t o compose an abstract machine. The structure obtained in this way

is remarkably similar t o the architecture of machines intended for realization in

hardware. This structure also has the advantage tha t i t renders a coherence proof

simpler than it might otherwise be, as most details of the proof (such as verifying tha t

substitution for variables is correctly implemented) involve instructions tha t are proper

for many monads of the composition. Proof of coherence is a preferred method by

which t o show the correctness of an implementation, as i t relates a machine model

directly t o the logical specification of a programming language, rather than t o a deno-

tational model.

We have provided a categorical framework tha t allows the formal description of

abstract machine models t o be carried to a finer degree of detail than has previously

been attempted. In particular, i t supports the specification of control structure as well

as the transformation of value representations. T o express control structure, we have

introduced objects interpreted as types of continuations and arrows interpreted as con-

tinuation transformers, in addition t o functions on values. The model exploits categori-

cal duality t o relate values and continuations. Substitution of continuations, an opera-

tion dual t o the substitution of values, is the interpretation we give t o ceapplication.

This is a different interpretation than has been given by Filinski in considering dual

categories with closure of products and (co)closure of coproducts.

Abstract Mach'ine~~

The abstract machine we have constructed is very similar to Mauny's 'lazy' ver-

sion of the CAM (191. Mauny proposed operations 'freeze' and 'unfreeze' whose actions

are respectively, t o construct a closure from a code pointer and an environment, and t o

evaluate a closure. In our model, the counterpart of 'freeze' is embedded in the macro-

instruction T and the counterpart of 'unfreeze' is 'eval'. In Mauny's compilation rules,

'unfreeze' is inserted t o force evaluation of an argument when it is referenced by a

strict operator, whereas in our model, 'eval' is applied to the term value returned by a

function application. These two strategies are equivalent. The 'eval' instruction does

not require a recursive definition when function-space objects are normal objects.

An abbreviated coherence proof has been given for the CAM in [4]. A detailed

coherence proof for an implementation of a lazy, functional language by the G-machine

was presented in David Lester's doctoral thesis (161. His proof is based upon point-wise

reasoning and uses induction on the d a t a structures of the abstract machine, rather

than a categorical semantics.

Asperti [I] has considered several variants of the CAM in a categorical framework

based upon cartesian-closed categories. In this work the categorical model is developed

in more detail than was the original model of [4], but it does not address a question we

have explored here, of how the required exponentials may be fabricated in a category

where less structure than cartesian closure is assumed.

The analogy between involution and various forms of logical negation is well

known and has been exploited by 181 t o derive typings for first-class control constructs.

Involution and duality in linear categories has been studied in a detailed paper by

Marti-Oliet and Meseguer [18]. There, the involution is defined by an isomorphism,

analogous t o the double-negation elimination rule of linear (and classical) logic.

Finally, we wish t o point out some directions in which t o extend this work. An

obvious extension of the CAM definition would be t o accommodate evaluation-sharing

(true lazy evaluation) rather than call-by-name evaluation. This would require an addi-

tional component of the monad tha t defines the abstract machine, namely a component

t o represent a d a t a store. Such an extension would render the model more operational

in flavor, incorporating instructions t o allocate new storage cells, distinction between

storage labels and values, etc. I t would be interesting t o know how t o construct a proof

of coherence for such a model tha t was relative t o the proof given here for the simpler

model t h a t ignores d a t a stores. In a relative proof, one should only need to prove t h a t

instruction sequences of the more detailed model were coherent with those of the

Abstract Machines

simpler one. A related issue is how t o construct a coherence proof for implementation

of a programming language with recursive definitions.

A second question concerns abstract machine models for supercombinator reducers.

These introduce the complication of multi-argument combinators. An unsaturated

combinator application is a normal form, while a saturated application is reducible.

The model must account in some way for the number of arguments needed t o sa tura te

an application. I t would be interesting t o know an elegant way t o embed this informa-

tion in a categorical model.

The framework t h a t we have constructed from quasi-closed categories with

monads is not the only one possible. An alternative would be t o formulate the compu-

tational model in a linear category with '!' and '?' modalities. A linear category embeds

a fully dual structure. How do these dual modalities relate t o a monadal structure?

What is the computational significance of the tensor product and sum?

Acknowledgements

The authors have benefited from conversations with many people during the long

course of development of this research. We are particularly indebted t o Andrzej Filin-

ski, whose seminal ideas on categorical duality inspired the whole enterprise, and t o

Eugenio Moggi, whose insights and detailed criticisms were essential t o us. Any

shortcomings remaining in the paper are ours alone, however.

References

111 Asperti, A., Categorical topics in computer science, University of Pisa, Dept. of

Informatics, Ph.D thesis, 1989.

121 Barr, M. and Wells, C., Category Theory jor Computing Science, Prentice-Hall

International, 1990.

I31 Cousineau, G., Curien, P. L. and Mauny, M., 'The categrical abstract

machine," in Functional Programming Languages and Computer Architecture,

vol. 201, J. Jouannaud (ed.), Springer-Verlag, Nancy, 1985, pp. 50-64.

141 Cousineau, G., Curien, P . L. and Mauny, M., ''The categrical abstract

machine," Science o j Computer Programming, vol. 8, 2 (1987)) pp. 173-202.

151 Curien, P., Categorical Combinators, CNRS - Universite Paris VII, Ph.D thesis,

1985.

Fairbairn, J. and Wray, S., "Tim: A simple, lazy abstract machine to execute

supercombinators," in Functional Programming Languages and Computer

Architecture, vol. 274, Springer-Verlag, Portland, Oregon, 1987, pp. 3445.

Filinski, A., Declarative Continuations and Categorical Duality, M.S. thesis,

Computer Science Department, University of Copenhagen, 1989.

Griffin, T. G., "A formulae-as-types notion of control," ACM Symp. on Prin. o j

Programming Languages, 1990, pp. 47-58.

Hannan, J. and Miller, D., "From operational semantics t o abstract machines:

preliminary results," Proc. 1990 ACM Conj. on Lisp and Functional

Programming, Nice, 1990, pp. 323-332.

Hannan, J., "Making abstract machines less abstract," in Functional

Programming Languages and Computer Architecture, vol. 523, Springer-Verlag,

1991, pp. 618-635.

Huet, G., Formal Structures for Computation and Deduction, INRIA,

Rocquencourt, 1986.

Johnsson, T., The G-machine -- an abstract architecture for graph-reduction,

Dept. of Computer Sciences, Chalmers Univ. of Technology, Gothenburg, 1983.

Jones, S. P., in The implementation of functional programming languages,

Prentice-Hall International, Heme1 Hempstead, 1987.

Lafont, Y., "The linear abstract machine," Theoretical Computer Science, vol.

59(1988), pp. 157-180.

Landin, P . J., "The mechanical evaluation of expressions," Computer Journal,

vol. 6(1964), pp. 308.

Lester, D., Combinator graph reduction: A congruence and its applications,

Oxford University, PRG, Ph.D thesis, 1988.

MacLane, S., Categories for the Working Mathematician, Springer-Verlag, 1971.

Marti-Oliet, N. and Meseguer, J., "Duality in closed and linear categories,"

SRI-CSL-9@O1, SRI International, 1990.

Mauny, M., Compilation of functional languages in categorical combinators:

Application to the language ML, University of Paris VII, Ph.D thesis, Paris,

1985.

Abstract Machinee

Moggi, E., "Computational lambda-calculus and monads," LICS189, 1989, pp.

1423.

Moggi, E., "An abstract view of programming languages," LFCS-90-113,

Department of Computer Science, University of Edinburgh, 1990.

Moggi, E. and Agapiev, B., Interpretation of symmetric lambda calculus in some

monads, Oregon Graduate Institute, 1991.

Moggi, E., "Notions of computations and monads," Injormation and

Computation, vol. 93, 1 (1991), pp. 5592.

Stoye, W. R., Clarke, T. J. W. and Norman, A. C., "Some practical methods

for rapid combinator reduction," Proc. 1984 ACM Sympos. on Lisp and

Functional Programming, 1984, pp. 159-166.

Turner, D. and languages, A., Software - Practice and Experience, vol. 9(1979),

pp. 31-79.

Wadler, P., "Comprehending monads," Proc. 1990 ACM Sympos. on Lisp and

Functional Programming, 1990.

Warren, D. H. D., "An absract Prolog instruction set," SRI Tech. Note 309,

SRI International, 1983.

