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Abstract 

The  thesis of this paper is t h a t  categorical models provide an  appropriate frame- 

work for the high-level specification of computer architectures. As an  example of this 

approach, we specify a categorical abstract  machine capable of normal-order reduction 

of lambda calculus expressions t o  weak head-normal form. The  paper includes substan- 

t ial  theoretical development of the appropriate categories and monads, including an  

account of involution, analogous t o  negation in intuitionistic logic. 

An abstract  machine is defined as  a composite monad, a technique tha t  

emphasizes modularity of structure. In order t o  make control explicit in the machine 

model, the monad structure models continuations. This supports a formal specification 

of stored-program control. The categorical model is shown t o  be cartesian-closed. 

Finally, an  implementation of (weak) lambda-calculus reduction by the categorical 

abst ract  machine is proved coherent with the syntactic reduction rule (B)  of the cal- 

culus. 
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1. Abstract machines 

Implementations of programming languages are often based upon an evaluation 

model called an  'abstract machine' [6,12,13,15,24,27]. An abstract  machine is a 

semantic model for the programming language, subject t o  informally imposed con- 

straints t h a t  ensure i ts  realizability. The utility of abstract machine models has been 

t h a t  they embody well defined concepts of implementation. They characterize particu- 

lar strategies for evaluation, independently of the architecture of an  underlying target  

machine tha t  may be the ultimate host for a compiled implementation. 

Typically, abstract machines have been specified either by a set of transitions on a 

rather complex machine s ta te  (this is usually called a register-transfer specification), or 

by a set of term rewriting rules that  provide an  operational model for a combinatory 

logic [25]. Either of these forms of specification can have ad hoe aspects. It is hardly 

ever clear why a particular machine state-space was chosen over possible alternatives, 

or why a particular set of combinators was selected. 

With the Categorical Abstract Machine [4] we were given the idea tha t  a formal 

characterization of an  abstract machine may be possible by expressing computation in 

an  appropriate category. The CAM was 'derived' from the categorical combinators of 

Curien (51. The model is a cartesian-closed category; its morphisms are characterized 

as combinators, including an  indexed family of de Bruijn combinators t h a t  destructure 

finitely nested pairs. The morphisms of this category form the basis for the instructions 

of the abstract  machine. Computations are expressed as compositions of these mor- 

phisms. The  equational theory of the categorical model entails a congruence relation 

on sequences of machine instructions. A naive compiler can be obtained immediately by 

giving a denotational semantics for a source language, with denotations in the category 

of computations. 

However, upon closer examination, the CAM seems t o  have some problems: (i) The 

morphism App is taken as a primitive instruction of the CAM, yet no physical 
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realization is known for i t  (i.e. we do not know how t o  build an  electronic device tha t  

directly realizes function application). (ii) The control structure of the CAM specifies 

conditional jumps, yet the underlying categorical model contains no morphisms tha t  

model control discontinuities. (iii) The CAM is a call-by-value machine and does not 

evaluate all functional programs tha t  have normal forms when interpreted in a term- 

rewriting semantics. (iv) Recursive definitions are represented in the CAM by forming 

a cyclic d a t a  structure, which requires an  updatable store t h a t  is completely outside the 

formal model. Thus  while the CAM points the way towards abstract  machines based 

upon precise, mathematical models for programming languages, there are gaps remain- 

ing t o  be filled. 

Nevertheless, we believe the right answer t o  the rhetorical question posed in the 

title of the paper is tha t  an abstract machine is an  operational model tha t  can be 

represented in a category whose morphisms form a basis for the instructions of the 

machine. Equations satisfied by the morphisms of the category provide a formal 

specification of an  abstract machine. In this paper we construct a detailed categorical 

framework for evaluating expressions of the lambda-calculus, and use it t o  define an  

abstract  machine tha t  is essentially similar t o  the CAM. I ts  architecture is typical of 

machines t h a t  engineers know how t o  build. This machine has explicit control; i t  relies 

upon addressable control store; i t  evaluates the untyped lambda calculus t o  (weak) 

head normal forms and i t  resembles in most details other abstract machines tha t  have 

been proposed for lazy evaluation of functional programming languages.' For an  alter- 

native approach, see [9,10], in which an  abstract machine is derived from operational 

semantics of a language and i t s  architecture refined through a series of transformations. 

The  model of computation we use is based upon the notion of continuations, which 

gives it the ability t o  describe explicit control transfers a t  the level of the machine. 

This is the principal design decision tha t  affects the course of derivation of the 

mathematical model. Control is modeled in a category whose objects are continuations 

and whose morphisms are continuation transformers. I t  is the dual of a cartesian- 

closed category. 

Our use of categorical duality was inspired by the research of Andrzej Filinski 171. 

Rather than interpreting the objects and morphisms in a category uniformly as sets and 

'Our abstract machine is not actually a 'lazy' evaluator but a call-by-need evaluator. In 
order to  make it a lazy evaluator it would be necessary t o  add an explicit mechanism, such as 
updatable data store, with which to secure sharing of the results of previous evaluations. 
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functions, he also interprets objects as types of continuations and morphisms as con- 

tinuation transformations. Values and continuations are categorical duals of one 

another. In terms of structure, the duals of products are coproducts (sums). A 

category can be closed with respect to i ts  coproducts as well as with respect t o  p r e  

ducts. We call the closure of coproducts ceexponentiation. It is the categorical 

mechanism t h a t  best models control abstractions. 

We give a somewhat different interpretation t o  ceexponentials than does Filinski 

and show how c~exponent ia t ion provides an appropriate mechanism t o  model the con- 

trol structure of conventional computer architectures. We complete the picture by 

showing how the value-oriented semantics of functional programming languages are 

reflected by categorical duality into sequential computations expressed as  continuations. 

Ceexponentials are used t o  effect transfers of control. Function application is emulated 

by a specific construction of abstract machine morphisms tha t  formalize the familiar 

call and return mechanism of a von Neumann computer architecture. 

This paper applies Moggi's idea tha t  computation can be represented in a category 

with a suitable monad [20,23]. The idea is tha t  the essence of a notion of computation 

(state transformation, continuations, non-determinacy, etc.) is captured with a monad, 

and the detailed description of the possible computations is described with auxiliary 

functions, typed in the monad. Wadler [26] has given some nice examples of this tech- 

nique. We explore in some detail the monad of continuations. 

Section 2 summarizes the basic techniques of category theory used in the paper, 

and contains some informative examples. Section 3 is a study of the intuitionistic i n v e  

lution functor, analogous t o  negation in in tuitionistic logic, and which induces the 

monad of continuations. This is all new material. Section 4 discusses strong monads 

and shows how a tensorial strength enables certain monad compositions. A principal 

result of this section is t o  show t h a t  the monad of continuations specifies a cartesian- 

closed subcategory, embedded in a category with products, sums, and a weaker form of 

closure. Section 5 provides a formal description of the categorical abstract  machine 

(CAM), including i ts  control structure. The categorical model is a composition of 

monads, each introducing an additional aspect of detail into the machine. Nearly all of 

this section can be read independently of the technical development in Sections 3 and 4. 

Section 6 presents a compilation scheme for the lambda calculus and proves t h a t  the 

resulting implementation by the CAM is coherent with the @reduction rule of the cal- 

culus. Section 7 presents conclusions and points t o  directions for further work. 
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2. Categorical modele 

Categories provide a nice framework for specifying machine architectures a t  an  

abstract  level for several reasons: 

An abstract  machine should be a model for a programming language. With a 

categorical model, one can prove tha t  the model is coherent with the logical 

specification of the language and the proof does not have t o  rely upon point-wise 

reasoning. 

Machine s ta te ,  buried in the structure of objects of a category, can be as  abstract  a s  

desired. The  only aspects of the structure of an abstract  machine tha t  need t o  be 

revealed are those entailed by equations specifying i ts  morphisms. These morphisms 

are the externally visible architecture of the machine - i ts  instructions. 

Computation over some specified domain (of values, say) can be characterized by a 

monad, a s  described by Moggi (201. This form of characterization is quite general, 

not a t  all restricted t o  any preconceived notion of computational model. T o  each 

monad there corresponds an adjunction tha t  relates a category of values t o  a 

category of computations. 

Categories emphasize the compositional aspects of specification. Not only can com- 

plex instructions be composed of simpler ones, but entire substructures of a complex 

machine can be defined separately and composed t o  define a complete machine [21]. 

We assume the reader is familiar with the basic concepts of category theory such 

as arrows, functors, natural  transformations, adjunction, initial and terminal objects, 

universal constructions, limits and the basic methods of proof. This section will review 

the definitions of adjunction and of monads, principally t o  establish notational conven- 

tions. I t  is not intended as  a comprehensive introduction t o  the concepts. 

Definition 2.1: An adjunction from a category C t o  a category C' consists of 

(a) a pair of functors F: C+C1 and U: Cf+C called the left- and right-adjoints, respec- 

tively; 

(b) a pair of natural transformations q :  I d c i U F  and E : FU+Idc called the unit and 

co-unit; 

(c) constraining equations E F  o F q  = id and UE o q U  = id. 



Abstract Machines 

We shall make use of a pair of facts about adjoints: a right adjoint functor carries 

all limits from C' to limits in C while a left adjoint functor carries colimits in the opp* 

site direction ([17], pp. 114-115). 

There are several alternative, but equivalent ways t o  define adjunction. One tha t  

is often useful is tha t  of a (natural) bijection between the hom-sets of two categories, 

Sometimes the names of the categories are omitted from this notation. This presenta- 

tion emphasizes the role of the adjunction as relating the morphisms of two categories, 

and further allows us t o  deal with sets, as opposed t o  the objects of a category which 

are not always t o  be interpreted as  sets. 

Notation: The  literature of category theory is rich in overloaded notation, which is 

confusing if not clearly understood. We shall use roman letters I, T, F, U (sometimes 

subscripted) t o  designate functors, and letters X, Y, Z t o  range over objects. Applica- 

tion of a functor t o  an object is designated by juxtaposition of symbols. So is functor 

composition. Thus  the coding of symbols mentioned above is critical. 

Lower case italic identifiers are used for functions (or morphisms). Ordinary com- 

position of functions (morphisms) is designated by ' '. In sections 4 and 5, ';' is also 

used for composition in diagrammatic order in a dual category. Application of a func- 

tor t o  a morphism is indicated with parentheses around the argument. 

Greek letters are used t o  name natural  transformations and hom-set bijections. A 

hom-set bijection carries a morphism between adjunct categories. Applications of some 

particular hom-set bijections will be designated by an overbar or a superscripted or  sub- 

scripted sharp symbol on the morphism identifier. Some authors omit these notational 

decorations but we find the potential for confusion t o  be too high. 

A superscripted asterisk is used only t o  designate the Kleisli s t a r  extension of a 

function. 

2.1. An example: cartesian closure 

I t  is well known tha t  cartesian-closed categories furnish categorical models for 

languages in which higher-order functions can be defined. 
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Definition bE A category C is cartesian-closed if 

i) There is a distinguished object, 1, 

for every object, X E C ,  a morphism &: X + l  exists, 

for every morphism h : X+1, h = Ox. 
ii) If X,Y are objects of C, then XXY is an object, 

there are morphisms r1 : XXY 4 X ,  n2 : XXY + Y  and a bifunctor 

(- ,- ): (Z+X)x(Z+Y) + (Z+(XxY)), satisfying 

A1° (!,!I)=! 

T 2 O  O(/,g)=g 

( ~ 1 2  T! ) = ~ ~ x X Y  

iii) If Y,Z are objects of C ,  then [Y+Z] is an object. 

For each object Y, there is a family of universal arrows {apy,Z: ([Y*Z]xY)+Z) 

and for each arrow f : (XXY)+Z an arrow f #: X+F*Z] such t h a t  

apy,z " ( f  "fidz) = I 
(apy,z O (gxidy)P = 9 

Cartesian closure is the existence of an adjunction from C t o  itself for each object 

Y, with left adjoint F = (,xY) and right adjoint U = (Y*,). The  natural  bijection of 

hom-sets (in C) is 

where [Y+Z] designates an  object tha t  may be interpreted a s  a function space. 

The unit and ceun i t ,  when specialized t o  an  object, can be typed as 

qx: X+Y+(XxY) and cZ:  ([Y+Z]xY)-Z. The unit is the pair constructor, 

q = Xz. Xy. z ,y  and the co-unit is the family of universal arrows, {apy,Z), tha t  realize 

function application. The adjunction 'internalizes' arrows of the category C as objects 

of the same category by enabling the elements of objects p + Z ]  t o  be used as functions. 

2.2. Monads 

Definition 2.3 A monad over a category C is a triple, (T ,T) ,~) ,  where T is a functor 

from C t o  itself (an endofunctor) and q :  I d i T ,  p :  T ~ A T  are natural  transformations 

satisfying the equations: 
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q is called the unit and p the multiplier of the monad. 

0 

Every monad (T,q,p) induces an adjunction between suitably defined categories. 

One way t o  form an adjunction is t o  construct a Kleisli category, CT from a category 

C with endofunctor2 T. The left adjoint of a Kleisli adjunction is simply an  inclusion 

functor, I :  C + CT. The right adjoint is T: CT+C. Thus the adjunction defines the 

natural  bijection of hom-sets 

C(X -, TY) 

We shall use an  overbar t o  designate this bijection, so t h a t  if j: X - + Y  in CT, 

7: X + T Y  in C. Because of the inclusion functor, the objects of CT are seen t o  be the 

the same a s  those of C ;  its arrows correspond t o  the arrows of C t h a t  exist by virtue of 

the monad. 

The  image of an identity in CT is a universal arrow, ax = qx: X+TX in C. A 

composition of arrows, g f ,  where f : X+Y and g : Y+Z in CT corresponds to  a s c ~  

called Kleisli composition, pZ T(g) 7 : X+TZ in C. 

Definition 2.4: The Kleisli triple extension of an  arrow g is defined t o  be 

g* = pz T(g) : TY+TZ. From the monad axioms and the naturality of p and q ,  i t  is 

straightforward t o  prove 

This gives a system of Kleisli triples, (T, q,(,)")), where T is restricted t o  a function on 

objects. I t  provides an equivalent characterization of a monad. 

The arrows of the Kleisli triple extension are just the arrows of the  Kleisli category, 

projected into C by the functor T. 

Technically, the monad endofunctor is TI, which is abbreviated to T. 

7 
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The monad of Cartesian closure 

I t  is instructive to examine the Kleisli triples t h a t  correspond to the adjunction 

defining cartesian closure. Holding Y fixed, the object function is T,X = Y+(XxY); 

the unit and multiplier are  

?) = Xz. Xy. z ,y  

CLx = At : T U .  Xy :Y. apy ,xxy  ( t  y)  

where a p y l x x y :  T&+X is the XXY-component of the c e u n i t  of the adjunction. 

If j : X+Z in CT, then 
qz o j = Xz. Xy. jz, y : X--+TmZ 

The  image of j in C is 
Tcc(j) = Xt :T&.let z , y l  = t y in j z , y l  

Composing the multiplier with T&J) gives 

This suggests a n  operational interpretation of function application. Suppose a pair 

(z,y) represents an  environment structure in which z designates the 'current' value and 

y the remainder of the environment. An environment binds values to free variables, 

with correspondence established by position in a d a t a  structure of nested pairs. The 

unit of the monad injects a value into an  environment by pairing. A function defined 

relative to a n  environment, expressed a s  y :Y I-- j : X+Z in CT, corresponds in C t o  

an  explicitly curried function, 7, t h a t  when applied first t o  an  argument, z ,  then to a n  

environment, y ,  yields a new environment gotten by extending y with J z  y. 

T h e  monad of  continuations 

A further example is the monad of continuations, 

T X  = (X+A)+A 
q = Xz.Xc. c z 
p = Xt :T%.XC :x+A. t (Ah :(x+A)+A. h C )  

Let j : X+Y in CT and J : X + T Y  in C. Then 

T( j ) = Xh :TX. Xc :Y+A. h (Ax. c (j x)) 

j* = pz 0 T(J) = Ah. Xc. h (Xz. J z c )  

Intuitively, qx specifies how a value of type X is included as a computation, while (,)" 

specifies the extension of a function J from values t o  computations t o  a function j* 

from computations to computations. 



Call-by-value computation 

A composite monad can be derived from the two previous examples by composing 

adjunc tions. 

The  composite endofunctor on C is Tv = U T I F .  The object function, unit and multi- 

plier are 

TVX = Y+ ((X xY)+A)*A 

T d j )  = Xt:TVX. Xy:Y. Xc:(ZxY)+A. t y (Xh:XxY.c ( j  (nlh), %h)) 
where f : X-+Z in CT 

7 = Xz. Xy. Xc. c (z ,  y ) 

p = Xt :T$X. X y :Y. Xc :(XxY)+A. t y (Ah : T m .  ~r, h (nz h )  c )  

Proof the t h a t  the monad equations (1-4) are satisfied is obtained by calculation, sub- 

stituting the definitions of the unit and multiplier into the equations and reducing the 

lambda-terms t o  normal forms. 

Let j : X +  Z in CT. Then we derive 

In studying the final expression of f*, we see tha t  the argument t is applied t o  an 

environment variable, y ,  yielding a computation of type ((XxY)+A)+A. This compu- 

tation is applied t o  a continuation gotten by abstracting h :XXY from an  expression 

representing the result of a computation. The argument variable, h ,  represents a struc- 

ture t h a t  consists of nested pairs of values, not of computations. The  computation 

described by this monad is call-by-value evaluation of applicative expressions. 
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2.2.1. T-cones and their limits 

Certain covariant endofunctors construct limiting objects in C. Recall the 

definition of a cone [2]. Let G be a graph, C be a category, and D: G + C  be a 

diagram in C with shape G .  A cone with base D is a pair (x, {p,)), where X E O b j ( C )  

is the vertex and {p,) is a family of arrows in C indexed by nodes of G ,  such t h a t  

p, : X + D a  for each node a of G. A cone is said t o  be commutative if the diagram 

D(G) commutes in C. (In case the diagram is discrete, the commutative property holds 

trivially.) A cone generalizes the notion of a family of projections. A commutative 

cone with base D and vertex X is called a limit of the diagram D if from every cone c 

over the same base D, there is a unique arrow from vertez(c) t o  X. The vertex of a lim- 

iting cone is called the limit object, or simply the limit if i t  is understood t h a t  the sub- 

ject of discussion is an  object. 

Example 1: The prototypical example of a limit is a binary product. Take  G to be the 

twepoint ,  discrete graph, D t o  be a map t o  two objects X and Y of C, and the limiting 

cone with base D is (XXY, {rill s)). 

Example 2: More generally, consider limits with parameters [17]. Let the diagram D 

be parametric on an object of C; D:  C -+ G +C. With the twepoint  graph of the pre- 

vious example, introducing a parameter allows us t o  fix one of the objects in the 

codomain of D, so tha t  D(A) is a map t o  objects A and X, and the limiting cone with 

base D(A) is (A x X, {n,, ~ ~ 2 ) ) .  

Example 3: A more interesting example occurs when a graph G is also obtained from 

the object parameter of D. For example, in a cartesian-closed category whose objects 

are  sets, the graph of an object is just the discrete graph of i ts  elements. If we take the 

diagram D(A) = G(A)+X, then the limiting cone with base D(A) is 

(IA*xl1 {.PA- ,a )  I a €A)) 

Example 4: In a cartesian-closed category let D(A) = C(X,A)-+A (by an  abuse of 

notation identifying the hom-set with i ts  graph). The limiting cone with base D(A) is 

((x*A)*A, bP*( - 1 c )  l c E [X*AI) ). 
When the objects T X  of a category with a monad are limit objects, we say tha t  T 

has limits and shall refer t o  the limit cones as  T-cones, rather than specifying the base 

of each cone. When T has limits, there is an  arrow Z+TX which is the mediating 

morphism of a T-cone extending from the vertex Z t o  a base t h a t  i t  shares with the 

limiting T-cone. 
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2.2.2. The structure of T(C) 

The  codomain of an  endofunctor T is a subcategory of C, which we designate as  

T(C). When T is an endofunctor component of a monad, T ( C )  can have interesting 

properties. 

A Kleisli adjunction (FT,uT, q, f ) :  C CT is derived from a monad on C, but it 

also induces a comonad (FTuT, C, V) on CTl where v = FTqUT: FTUT 2 FTUTFTUT. (It 

is straightforward t o  check t h a t  the comonad laws are satisfied.) 

When T maps objects t o  limit objects in C, the comonad on CT reveals a great 

deal about the  structure of T(C).  A T-coalgebra is associated with a comonad, dually 

as a T-algebra is associated with a monad ([17], Sec. VI.2). 

Definition 2.5 If T = (T, E,V)  is a comonad on CTl a T-coalgebra (x, kx) is 

represented as a pair where XEObj (CT)  is the carrier of the algebra and the arrow 

k x :  X - T X  in C (called the co-structure map) obeys the equations:3 

A T-algebra homomorphism is an arrow j : X -+Y of C such t h a t  

D 

Proposition 2.6: T o  every X E Obj(T(C)) there corresponds a T-coalgebra (x, qx). 

Proof: I t  is easily verified t h a t  qx is a T-co-structure map, using the first triangle law of 

a n  adjunction and the formula for v from the definition of a comonad. 

Proposition 2.7: Every arrow of C is a T-coalgebra homomorphism. 

Proof: If j : X --+Y in C then 

(q  is natural) 

The functor FT is often omitted from these equations as it is simply an injection functor. 

Its e&ct on a T-coalgebra is to  drop the construction map, F~(x ,  k x )  - X. 
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The objects of T(C)  are isomorphic t o  the T-coalgebras of C. The  arrows, X+Y, of 

the Kleisli category CT are isomorphic (by the natural  isomorphism of the adjunc- 

tion) t o  mediating arrows, X+TY, of T-cones in C. When T has limits, the com- 

ponents of the unit of the Kleisli adjunction, qx: X+TX,  which are the isomorphic 

images of the identity arrows of CT, are unique limit constructors. 

Proposition t.8 When an  endofunctor T has limits, each object in the codomain of UT is 

a limit object of a family of T-cones. 

Proof: Every arrow of CT is isomorphic (by &) t o  the mediating arrow of a T-cone of 

C. Since UT is a right adjoint functor, it preserves all limits of CT, and in particular, 

preserves the limits of i ts  families of T-cones. 

0 

Theorem 2.9: If T: C + C has limits then T(C)  is a full subcategory of C. 

Proof: T(C)  is a category as i t  is defined t o  be the codomain of the functor UT and i ts  

objects are  the set {TX I XEObj(C) )  by Proposition 2.8. Let g : TX+TY in C. Then 

G 1 ( g ) :  TX+Y in CT and g* = uT(G1(g)) :  T*X+TY in C. By (K2), 

g = g* 0 qTX = u~(&-'(~)) o qTX. Thus g belongs t o  T(C). 

0 

3. Involution 

Definition 3.1: An involution of a category C is a pair, (D,A), where D:  C +Cop is a 

faithful, contravariant functor and A E O b j ( C )  has the property tha t  DA is terminal in 

C. 

0 

Recall t h a t  a functor is faithful if i t  does not identify parallel arrows tha t  are dis- 

tinct in C. The  composition of faithful functors is faithful, thus a n  involution functor 

from C t o  C O P  composed with the reverse involution from C O P  t o  C defines a self- 

embedding of C. The functor whose object mapping is the identity and which simply 

reverses the sense of every arrow is an example of an involution functor, albeit a trivial 

one. 

The  role of the involution object will be illustrated by a particular involution tha t  

we shall investigate. However, note tha t  the involution object has the property t h a t  

as an immediate consequence of the definition. 
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We are interested in a particular involution, t h a t  which generates continuations as  

the objects dual t o  value objects. Toward this end, we shall explore a closure property 

of certain cartesian categories, weaker than cartesian closure. 

Definition 8.2: A category C has a quasi-closure if i t  has direct products and a dis- 

tinguished object A such tha t  the following bijection, natural  in X and Y, holds: 

Theorem 8.3 Let C be a category with a quasi-closure. Then there is a family of 

universal arrows, {ansy : (Y+A)xY-+A) such tha t  every morphism j : X X Y  + A  can 

be factored through ansy. 

Proof: Consider the bijection of composites, 

g xid, 0-Y h 

X X Y  + Z X Y  + A 
I h 

X 4 Z  + Y + A  

Let Z = Y+A and h = idy+A. 

Then g = $($-l(idy+A) o (g X idy)) and a m y  = $-'(idyeA). 

Let g = $-'(j): X+(Y+A), where j : X X Y  + A  and f = ansy o (g X idy). 

Corollary 3.4: For a quasi-closed category, C, the following assertions are  equivalent: 

a )  a m A  is an  isomorphism; 

b) A+A is a terminal object; 

c) XE Obj(C). there is a unique arrow &: X X A  +A. 

Proof: (b) (a): Ox: X +  [A+A] is a unique arrow, by hypothesis (b). Since a m A  is 

universal, 

ansA (0A x jdA) = $il(OA) 

But $il(OA) is the unique morphism of type A XA +A. 

Thus a m A  0 (OA X idA) = = r2 0 (OA X idA) from which we conclude t h a t  

a m A  (OA, idA ) = idA and o m A  = ( T ~ ) ~ * ~ , ~ .  

Composing with ansA on the right, 
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(c) + (b): For each X E O b j ( C )  &(&): X+ [A+A] is unique, as & is unique by 

hypothesis (c) and every arrow with codomain [A+A] is introduced by exponentiation. 

(a) + (c): a m A  is an isomorphism by hypothesis. I t s  inverse is easily demonstrated: 

~ h u s  a n s i l  = ( $ ( T ~ ) ~ , ~ ,  idA ) and oneA = ( ? T ~ ) ~ + ~ , ~ .  This allows 4( t o  be calculated. 

There must exist an  arrow of type X X A + A  for (%)x,A is one. Suppose 4( is any 

arrow of this type. Then 

Definition 3.5: We say tha t  A E O b j ( C )  is an involution object if v X E O b j ( C ) ,  two 

conditions hold: 

i) there is a unique morphism &: X XA +A, 

ii) there is a monic morphism I E X :  X+A.  

Clause (i) of the above definition is motivated by Corollary 3.4. Of the three equivalent 

conditions given there, 3.4(c) is the only one tha t  does not depend upon properties of 

quasi-closure. 

Proposition 3.6: In a quasi-closed category with an involution object A, there is a 1-1 

correspondence between arrows X + A  and the elements of [X+A], 

ProoR (Here we designate the terminal object [A+A] by 1.) 
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in which Ex is the 'administrative' morphism of left identity in a cartesian category. 

0 

Theorem 3.7 Let C be a quasi-closed category with an  involution object A. Define a 

functor D by extending the object mapping 

t o  hom-sets in the usual way. Then (D,A) is an involution of C. 

Proof: From Corollary 3.4, DA = [A*A] is a terminal object. I t  is immediate from 

Definition 3.2 tha t  an  element of [X+A] is contravariant in X. I t  remains t o  show tha t  

D is faithful. 

Let j , g  : X + Y  be parallel arrows in C and D(j) ,D(g) :  DY+DX be their images 

in C. If D ( j )  =D(g) then h : Z +DY. D(f ) o h = D(g) o h . In particular, choose 

Z = 1 and let h = $(k o E T ~  ), where k : Y +A. Then 

Naturality of $-I, expressed in the following diagram, 

C(1, DY) 
$-I 

+ C(l XY,A) 

gives 
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Thus  D(j)=D(g) ==s fj k :  Y+A.  k  o j = k  o g .  

Furthermore, from Definition 3.2 and the definition of D we have t h a t  

which induces the hom-set isomorphism 

This justifies the final s tep  needed t o  establish tha t  D is faithful, namely t h a t  

for since A is an  involution object, there is a monic arrow of type Y+A. 

Here we consider some consequences of this involution. 

Corollary 3.8: The involution functor D from a quasi-closed category C t o  COP is self- 

adjoint. 

Proofi Consider the sequence of natural  bijections in C ,  

X x Y + A  
h o e  

Y X X  + A  
$ ( A  C )  

Y -+ DX 

where CXPy: XXY-YxX is the exchange morphism for symmetric products. We shall 

call the composite bijection 4, and write i t  as a bijection between hom-sets of COP and 

COP(DX + Y) 
ky: C(X + DY) 

This formulation makes it apparent tha t  4 expresses the self-adjunction of D. 

0 

The  bijection, when represented entirely in C,  can be expressed in lambda-notation, 

+(I )  = XY. Xx.f z Y 

from which we see tha t  4-I = 4 as untyped expressions. 
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There is an  analogy between involution in a cartesian-closed category and nega- 

tion in intuitionistic logic. In intuitionistic logic, absurdity is expressed by the closed, 

second-order formula VA.A, where A ranges over all propositions. T o  assert the nega- 

tion of a proposition X, we write the implication X+VA.A. I t  is customary t o  replace 

VA.A by a special symbol 1 when second-order quantification is not used elsewhere, 

obtaining first-order intuitionistic logic with (weak) negation. The  implication 1 +X is 

the X-component of an  axiom scheme; i t  has a unique (i.e. trivial) proof object. We 

shall not press the analogy further here, other than t o  note t h a t  if a category has only 

quasi-closure and not cartesian-closure, then it does not model the rule of modus ponens 

in logic. 

3.1. Naturality properties 

The properties of a natural bijection between categories are summarized in four 

equations in (171. Specialized t o  the adjunction (D,D), and using the symbol ';' for com- 

position in COP, the equations are: 

4-'(9 h )  = 4-'(g) ; ~ ( h )  4 - ' ( ~ ( k )  O 9)  = k ; 4-'(s (5a,5b) 

Choosing f = id in (4b) gives 

where q is the unit of the adjunction. Choosing k = +-'(j) in (5b) gives 

4- ' (~(4- '( j  1) O g = b-l ( j ) ;  4-Yg 1 (7) 

The  endofunctor T = D~ induces the monad of continuations, seen previously as an 

example, on C. The adjunction between C and i ts  Kleisli category is not the same as 

the self-adjunction of the functor D. Nevertheless, we shall see t h a t  the categories CT 

and C O P  a re  related. 

The  bijection 4 allows the identities and compositions of CT t o  be expressed in 

C O P .  Letting 7 = & ~ , ( k )  in (6), we have tha t  

7 = D(&,',(f 1) O rlx 

But 7 = f 0 7 7 ~  is a law of any monad, and fi is a universal arrow, so 



Abstract Machines 

Proposition 9.9: 

(i)  4-'(q) = id 

( 4  4-'U + o g) = +-'(TI ; 4-'(g) 

Prooji 

( i )  q is the unit of the adjunction (D,D), whose natural  bijection is 4. 

(ii) Immediate from (7) and (8) 

0 

The preceding proposition establishes an  embedding of the Kleisli category, CT, 

which was introduced t o  represent functions as  computations, into the category C O P ,  in 

which the arrows of CT are represented as  continuation transformers, embedded by 

involution. We shall show how function application can be represented with continua- 

tion transformers. 

3.2. C*exponentiation in the Kleisli category of continuations 

Coproduct closure is an  isomorphism dual t o  cartesian (direct) product closure and 

is illustrated by the commutation of the following diagram: 

Here, paz,* is a universal arrow called co-application and [Ye Z] designates a CCP 

18 
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exponential object, a type whose elements are co-abstractions. The arrow h,  is the co- 

curried image of h under the co-closure. 

Technically, we require the isomorphism (natural in X and Y) between D(X+Y) 

and DXXDY t o  be made explicit. I t  is 

= hc : D(x+Y). (c  0 inl, c inr ) 

a$,\ = XC':DXXDY. [rlel, %el] 

The  following theorem restates a result of Moggi and Agapiev [22] for the case of 

quasi-closed categories. 

Theorem 9.10: If C has finite products and coproducts and is quasi-closed, then CT has 

co-exponentials. 

Proof: The  diagram expressing the universal property of the arrow ansDyfl  can be 

transformed isomorphically in C. 

DZ XDYXX / 

where f = 4(h  o cZPy) 

and Fx,Y=~~(~~~(~~sDY~xoQI)o~DY~x,Y)~ 
and a = ((T, rl ~2 ), r2 o T2 ) 



Universality of pa is assured by the universality of ans, which is preserved by the b 

morphisms. The  co-exponential object, viewed in CT, is DY XX. When f : X + Z  +Y, 

the corresponding cecurried morphism is f #: (DY xX) -+ Z in CT. 

There is a computational interpretation of ceapplication. Just as the c e u n i t  of 

the adjunction of cartesian closure, up, provides the morphism tha t  models substitution 

of a value for a bound variable in the body of an expression, co-application models sub- 

stitution of continuations in an  expression with a bound continuation variable. 

&l(&,Y) o o&,~, : D(DY xX) xDY -DX in Cop can be seen as taking a pair, consist- 

ing of a continuation transformer and a continuation for the anticipated result of a 

function's application, into a new continuation, tha t  which accepts the argument. This 

is, of course, an  interpretation tha t  corresponds t o  reading a program backwards from 

i ts  end towards i ts  beginning. When reading the same program forwards, paxy can be 

interpreted as taking an  argument of type X into a contezt for a pair t h a t  consists of a 

continuation transformer and a result continuation. A context for a pair has a formal 

representation as a computation whose type is a sum, although this is less intuitive. 

4. Strong monads 

A monad (T, 7, p) on a category C with direct products is said to be strong if there 

is a family of morphisms {TX,Y: TXXTY-+T(XXY)), natural in X and Y. T is called a 

symmetric tensorial strength for the monad. 

A cartesian category equipped with a strong monad of continuations can model call-by- 

value computation [23]. The counterpart of this strength in a model for call-by-need 

computation is simply the unit of the monad, specialized t o  products, 

vTXxTY: TXxTY-*T(TXxTY). We shall exhibit the symmetric tensorial strength, 

even though i t  is not required t o  model call-by-need computation with non-strict pair- 

ing. 

Proposition 4.1: Let C be a quasi-closed category with the monad of continuations. 

This monad has a symmetric tensorial strength, T. Furthermore, there is a family of 

morphisms, (7: T(xxY)+TXXTY), natural  in X and Y, which is a quasi-inverse of T. 

Proof: We shall first derive I?;. An explicit representation is derived by passing a direct 

product object through the involution functor twice. The two steps of involution realize 

the DeMorgan laws of classical propositional logic. 
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First step: Let rl designate the first projection of the product in the Kleisli category, 

CT. Then ?il : X X Y  + TX in C, and thus : DX+D(XxY) in C O P .  Taken together 

with the image of the second projection, this gives 

[#-I(%), #-I(%)] : DX + DY + DO[ x Y) 

Second step: ax,, : D(X+Y) + DXXDY 

Now the morphisms derived in these two steps should be composed in C. We take the 

involution of the morphism derived in the first step to get 

which can also be expressed in lambda notation as4 

?= Xt:T(XxY).(Xc:DX.t (c 0 rl),  XC:DY.~  (c 0 4)) 

T o  carry the proof in the other direction requires a morphism called simply a t e n s o r i a l  

s t r e n g t h  (201. 

A tensorial strength for T exists in a quasi-closed category. Its representation as  a 

lambda-term is: 

Two applications of the tensorial strength are required in order t o  reduce both com- 

ponents of a pair, yielding 

T = (tX,, c ~ ~ , ~ ) +  tmJ CTX,~, : TXXTY+TWY) 

which in lambda notation is 

The  composition of the symmetric tensorial strength with i ts  quasi-inverse on the 

left is 

Technically, lambda calculus is only justified as the language in which to express mor- 

phisrns of a cartesian-closed category. It can also be used with a category that is quasi-closed if 

applications are always denoted by value elements of the involution object, A. 



Abstract Machines 

- 
T o  T = Xp :TX X TY. (XC :DX. Xl p (XZ :x. 7T2 p (K ( c z ))), XC :DY. 7Tl p (K (7T2 P c ))) (9) 

where K is the weakening combinator, K z  y = z .  &,J is an approximate left inverse t o  

TXBY. It fails t o  invert TXnY when one of the computations TX or  T Y  fails to converge. 

T o  show the inverse property, i t  is convenient to define a subcategory of C tha t  may be 

interpreted as a category of total  computations, although this subcategory is not one in 

which constructive models can be found. 

Definition 4.2: Let C be a quasi-closed, cartesian category with the monad of continua- 

tions. Then Cioiol is the subcategory of C t h a t  is inductively defined by the following 

conditions: 

3) j ECiotor(X,TY) if j EC(X,TY) and #-I(/) EC(DY,DX) is rnonic 

4) j ECioiol(X,Y) if j EC(X,Y) and D ( j )  €C(DY,DX) is rnonic 

The intuition t h a t  underlies the rnonic requirement is t h a t  rnonic morphisms, when 

interpreted as functions, do not discard their arguments. Thus a rnonic morphism of 

type X + Y  can be interpreted as a strict function, or if i ts  type is DX+A so t h a t  its 

argument is a continuation, i t  can be interpreted as a total  computation. There are a 

number of immediate consequences of Definition 4.2. 

Proposition 4.9: 

A. 1 = A+A is a terminal object of Cfotol 

B. k E Ctoiol(X,A) if k E C(X,A) 

C. the elements of T X  in Cioiol are isomorphic t o  the rnonic arrows kx€C(DX,A) 

D. rlx E Cioiol(X,TX) 

E. there is a family of morphisms {evalx~Cioiol(TX,X)), such tha t  evalx is inverse t o  

%, for all X E Obj(Ctoio~) 

F. for j E C ~ ~ ~ , ~ ( X , T Y ) ,  condition 4.2(4) is equivalent t o  4.2(3) 

- CiOtOl(TX,Y) 
G. there is a natural  isomorphism a: 

Cio io l  (DYtDX) 



Abstract Machines 

Proof: 

A. X E C ,  & : X + 1 is in Cioial because D(&) : D(l) +DX is monic in C (recognizing 

t h a t  D(1) =A) 

B. D(k) EC(DA,DX) is rnonic as DA is terminal in C .  

C. the isomorphism is & -, but D l  = [l=s-A] "A. 
C(1lTX) 

D. $-'(qx) = idDx, which is monic. 

E. T o  show t h a t  the family of arrows {evalx) exists and is natura l  in XI let 

D(evalx) = qDx, which is rnonic. Then the composites {evalx qx€CtOtal(X,X)) and 

{qx evalx€Ct,i,l(TX,TX)) are natural  in X, and since the only such natural  fami- 

lies a re  {idx) and (idTX), we conclude t h a t  eval is a natural  inverse to q in C,,,,,. 

F. $-I( f ) = D( f ) qDr is rnonic iff D( f ) is rnonic. 

G. Let E(f ) = D(f qX), where f €CiOtal(TX,Y) 

and F1(D(g)) = g evalx, where g EC,,,,,(X,Y) 

Then F1(E(f )) = F 1 ( ~ ( f  0 qX)) = f 0 qx evalx = f , 
-- -1 and n ( ~  (D(g)) = Bg evalx = D(g evalxo R) = D(g). 

Naturality of the isomorphism E of Proposition 4.3.G entails four equations: 

Returning now to the question of the inverse of TI we shall show t h a t  - 
TX,Y 0 TX,Y = idTX+TY in Ctolal. First we need a lemma. 

Lemma 4.4: t : TX c : DX in Ctotal. ansDX(t, c) = ansx(c , (evalX t)). 

Proof: Replacing quasi-applications by compositions of arrows, the assertion of the 

lemma can be restated as: 

where t : 1 +TX, c : 1 + DX and TA g A. Since 1 +A r 1 +TA, i t  follows from (5b) 

t h a t  

$-'(D(C ) 0 t ) = $-'(t ) o c : 1 -+A 

However, $-'(t) = D(t) 0 qDx = D(t) 0 D(evalx) = D(evalx t), and for any h : 1 -+A, 
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4-'(h) = h . Substitution using these two equalities gives (12). 

- 
Proposition 4.5: In Ctotol, T O  T = id. 

Proof: Referring t o  the composition ?o T given in in (g), note tha t  a l p  :TX and 

n 2 p  :TY. Lemma 4.4 tells us tha t  applications of these terms can be equated t o  

a1 P f = E(eua1x (a1 p))  

a2 P f = C (eualy (% p )) 

and thus we get 
- 
T0T={(~),(l~o),(13b)) X~.(Xc.alP(Xz~K(cZ)(eua1~(a2~))),Xc-K(a2~c)(eua1~(al~))) 

- -{defn. o j  K) Xp. (Xc. a l p  (Xz. c z), hc. 3 p  c )  
- 
-{I) reduction) Xp. (XC. a l p  C ,  XC. T2p C )  
- 
{ I )  u c t i n )  XP- (al, 4 ) P 
- 
-{unicity 1 Xp. p = id 

4.1. haymetric etrength 

The strength T is not the only possibility t o  relate a product of computations t o  

the computation of a product. As we have just seen, T constructs the computation of a 

pair of values, by first reducing both components. There is an assymmetric strength 

a~ reduces only the first component of the pair i t  constructs, leaving the second com- 

ponent unaffected. 

4.2. Projections from a lifted pair 

One might also regard qTXXTY : TXX TY + T(%x TY) as analogous t o  a strength, 

although i t  does not require a tensorial strength for i ts  realization. I t  does, however, 

have a left inverse. This implies tha t  there are projections from a 'lifted' pair, an  ele- 

ment of T(TXxTY). 

Proposition 4.6: In a quasi-closed category with the monad of continuations, there exists 

a family of arrows T ~ , ~ :  T(TXxTY)+TXxTY, natural  in X and Y, such tha t  
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~ X , Y  O VTXX TY = ~ ~ T X X  m. 

Prooj The  derivation of r is snalogous t o  tha t  of ?except tha t  i t  uses the  projections 

from a cartesian product, ( ? T ~ ) ~ ~ , ~ ~  and ( T ~ ) ~ , ~ ,  instead of Til and ?f2 t o  obtain 

4 , ~  = ~ D X , D Y  o D( [$-'(TI), Y '(~2)l) : T(=x TY) TX x TY 

or, in lambda notation 

The composition rX,,- 0 qTXXTY can most easily be simplified in the lambda representa- 

t ion, 

T X , ~  o q ~ x ~ ~ y  = Xq. T ~ , ~  (XC :D(TX xTY). c q) 

= Xq. (Xc,. ?TI q c,, XC,. ?r, q cy) 

= Xq. (75 qln2q) 

= Xq. (.nll?r,)9 

= Xq. q 

4.3. Normal objects The unit of a monad takes a type of values into a type of i ts  

computations. In the CAM there are no 'unevaluated' representations for function 

values; each is represented as a normal term. (The same is not true of a supercombina- 

tor reducer such as the G-machine.) An element of a function-space is the involution 

image of a continuation transformer, and is represented in the CAM as a closure. 

(Obviously, the representations for a function value are not unique.) We can formalize 

the property just described. 

Definition I ,?  In a category C with a strong monad, a n  object X is said t o  be a nor- 

mal object if qx has a right inverse, where q is the unit of adjunction with the Kleisli 

category. 

When an  abstract  machine is defined by a (strong) monad of continuations on C ,  

every convergent computation has a representation as an  object of the subcategory 

T(C). Every function-space object [TX+TY] in C is the image under involution of a 

ceexponential, interpreted as  a type of continuation transformers in COP, and is a nor- 

mal object. 
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4.4. The subcategory T(C) is cartmian-closed 

Our goal is t o  show tha t  the category of computations realized by the mechanism 

of continuation substitution is cartesiao-closed. As T is a right adjoint functor, i t  car- 

ries limits in CT, i.e. the products and the terminal object, into limits in T(C).  Special- 

izing T t o  designate the endofunctor of the monad of continuations, since CT has coex- 

ponentials and is equivalent t o  C O P ,  the contravariant functor D carries these coex- 

ponentials t o  exponentials in C .  

Theorem 4.8: If C is a quasi-closed bicartesian category and ( T , q , p ,  T) is the strong 

monad of continuations, then T(C)  is cartesian-closed. 

Proof. 

1. Existence of a terminal object is assured by the bijection of hom-sets: 

where the injection functor, I, is faithful and T is full. 

2. Existence and uniqueness of projections: Let ?rl: TXxTY+TX and 

7r2 : TXxTY-+TY. The projections from T(TXxTY are 

?rl 0 T :  T(TXxTY)-+TX and 7r20 T: T(TXxTY)+TY 

These projections are unique, a s  

The  morphisms fst = $-'(nl) : DX+D(TXxTY) and and = $-I(%) : DY +D(TXx TY) 

are continuation transformers in C O P  corresponding t o  nl T and n2  in C. 

4. Existence and uniqueness of exponentials: The  following diagrams illustrate the 

derivation of a universal arrow from ansz by isomorphic transformation. 
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(b) 

where a: D(DYxZ)x(DYx Z) + (D(DYxZ)xDY)xZ is an instance of the 'administrative' 

isomorphism for associativity in a cartesian category. Diagram (b) expresses exponen- 

tiation of a morphism from a product, when i ts  objects and arrows are  appropriately 

renamed: 

[DY =+ DZ] =def D(DY X Z) 

a p ~ ~ , D ~  ' d c j  h ( a n s ~  a) 

h =A(& O a )  

hn = &yxz(k) 

in which (, T is notation for cartesian exponentiation, or 'currying'. 

Instantiating X t o  DX, Y t o  DY and Z t o  DZ in the diagram above, we obtain 

The following equation holds in C: 

where j : X X Y  4 T  in CT. 
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A further, isomorphic transformation of diagram (b) in the proof above gives 

This is the involution of a co-exponential diagram. The application morphism 

a p ~ y , ~ ~ :  [TY=sTZ]xTY-+TZ in C can also be expressed a s  the involution of a co- 

application morphism, 

4.5. The evaluation morphisma 

Finally, we can make explicit the co-unit of the adjunction between C and CT. I ts  

Kleisli triple extension will be the application reduction morphism in T(C).  This is 

eXTyPz* = a p ~ y , ~ z  ' ( c v u ~ ~ , ~ ~ + ~ ~  X idTY) O aT-l : T([TY+TZ] x TY) TZ 
- 

Here, ~PTY,TZ = ZE7TY,Z. (Had we chosen T, rather than a?', the resulting morphism 

would have had the type T([TY++TZ] x Y ) d T Z ,  which corresponds t o  call-by-value com- 

putation.) We know t h a t  this morphism is the Kleisli triple extension of a morphism 

in CT because T(C)  is a full subcategory. 

Function space objects are normal objects in C. The unit, q,  instantiated for a 

function-space object, constructs a closure consisting of a continuation transformer and 

an  empty environment, qm+Tz = CTY*TZ ETY+TZ. In lambda notation, this is 

qm*Tz = Ax. (),x, where (): 1. Its inverse is euall,Ty+Tz = ( T ~ ) ~ ~ + ~ ~ , ~ .  Thus  
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is an  isomorphism tha t  relates the closure representation of a computation to a n  expli- 

cit continuation-transformer, environment pair. What  then, is T Z  in CT? It is the 

image of type T Z  closures, an  object formed by identifying (for all Y) the objects 

[ T Y + T Z ] X T Y  in C as they are carried into CT by the embedding map, I. The c e  

unit, E ,  of the adjunction (1,T) between C and CT is the family of universal arrows 

{ e ~ a l - , ~  : TZ + Z) in CT. 

5. Specifying the architecture of an abstract machine 

Within the categorical framework developed in the preceding sections, it is now 

possible t o  define the promised machine model, the CAM. I ts  architecture can be 

specified by a composition of five monads, which correspond t o  distinct functional capa- 

bilities of the abstract  machine. Composition of monads has been proposed by Moggi 

(211 as  a technique t o  provide modular building blocks for programming language 

semantics. 

For each monad (expressed here as a Kleisli triple), (T, q,(, r), and for each arrow 

j : X + T Y  in C, we say tha t  j is proper for the monad5 if j = qy o g, for some 

g : X+Y.  The proper morphisms are those tha t  are unexceptional for the monad. For 

example, in the Boolean monad, whose definition in Kleisli triples is 

BX = X+X 

$ = in1 

j* (in1 x )  = j z 
0 j* (inr y ) = inr y , 

a morphism j : X + Y  + Y  is proper if f = in1 0 g for some g : X+Y. 

For a proper morphism, j = q 0 g ,  the Kleisli composition can be replaced by ordi- 

nary composition in C with j replaced by g ,  

Thus  t o  define a proper morphism of a monad, i t  is not necessary t o  describe explicitly 

the action on the object structure entailed by the monad map, whereas for non-proper 

morphisms, i t s  action must be specified explicitly. This allows considerable economy of 

This notion is also due to Moggi, who uses the terminology 'existing' morphism. We 

prefer the word 'proper', as it better conveys the sense of the classification. 
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notation in defining the architecture of an  abstract machine, since most of i ts  mor- 

phisms (i.e. instructions) will be proper for at least some of i ts  constituent monads. 

6.1. Monad construction 

Moggi 1211 advocstes a modular approach t o  the construction of a categorical 

semantics for a programming language. In this approach, semantic domains are 

categories with monads. The monads may have additional structure, tha t  is, may come 

equipped with additional operations tha t  are needed t o  explain particular aspects of the 

language. He shows how categories with the required monads can be built by applying 

monad constructors, adding one feature a t  a time t o  the language being defined. 

Without going into the general theory behind monad construction, we shall make use of 

a few special instances of monad constructors t o  build an abstract  machine. 

5.1.1. Composing monads 

Monads impose structure upon a category. Composite structure can be expressed 

by a composition of monads, but monad composition is not universal. One must check, 

in each case, t h a t  a postulated composition actually forms a monad, i.e. t h a t  the unit 

and s ta r  extension exist and satisfy the monad equations. A composition might fail if, 

for instance, the composite object mapping did not preserve the internalization of cer- 

tain morphisms as  objects of the category. 

T 
If (Tl,fl l,(_)"l) and (T2,fi(-)"') are monads, we can ask whether there is a 

T 
natural  transformation T :  T1T2iT3 such tha t  (T3,q ',(-)"9) is a monad over C and T 

has a left inverse. Naturality requires tha t  

TI TI fl? = TX0 flT& flx 

The requirement t h a t  T has a left inverse is t o  ensure tha t  the object mapping T3 does 

not identify objects t h a t  are not identified by TIT2. 

When the above conditions are satisfied, we call the result the monad composition 

of T1 with T2 by T. 

6.1.2. An example: state transformers 

Consider the monad of state transformers, 

STX = S+XXS 

fl = Ax. A5.z ,s 
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j *  = At. AS. let ( ~ ~ 8 ' )  = t 8 in j z s' 

This monad has previously been interpreted as computations t h a t  produce side effects 

on a store (23,261. 

If (T,q,(-)"T) is a monad t o  be composed with ST, the required natural  transfor- 

mation has the typing 

The  composition of ST with T by 7 is given by 

ST*TX = S+T(X x S )  

qiTT = Xz. 7 (7);; ( ~ $ 2 ) )  

jeST = Xu. AS. let (c,s') = Flu s 

in j*T(s' 

where j : X+ S+T(YxS) and j *=: TX+ S+T(YxS). 

In particular, ST can be composed with another monad of s t a te  transformers. The 

required natural  transformation is: 

TX : (S+(R+X x R) x S) + S+R+-(X x S) x R 

T = Xa.Xs. Xr. let c,s' = a s  

in let z , r '=  c r  

in (zJsl),r' 

Notice tha t  7-' is not a right inverse t o  T. Another useful example is the composition of 

ST with the monad of continuations. The required natural transformation is: 

Tx : (S+((X+A)+A) x S) -+ S+((Xx S)+A)+A 

7-l = Xu.Xs. let t2 = U S  

in (Xcl.t2(X(z,~').cI z ) ) ,  t2(X(z,s').s') 
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6.2. The categorical abstract machine 

The CAM is a composition of a series of s ta te  transformer monads with a monad 

of continuations. The s ta te  transformers each contribute one more component t o  the 

machine s ta te .  Instructions of the machine form groups tha t  utilize successively wider 

views of the machine state.  The action of the machine is modeled as  a continuation, 

applied to a machine state.  

The s ta te  space of the CAM will be defined 'inside out'. Start ing from a type X of 

value representations, we first augment i t  with a s t a te  transformer Reg. I t s  s t a te  

object is the type of contents of a register file, Rec(X), where Rec is a recursively 

defined type, 

Rec(R) = R xRec(R) .  

An element of this type serves as a stack of intermediate value representations used in 

a computation. 

At  the second level, the CAM has a s ta te  transformer Cc, which adds another 

s t a te  object 2 t h a t  corresponds t o  a one-bit condition-code register. At  the third level, 

the s t a te  transformer Cs, adds a s t a te  object tha t  is a type of control stores. A control 

store will be modeled as a list of instructions. At  the fourth level is the s t a te  

transformer M, whose s ta te  object is the type of a stack of contexts. The fifth level 

specifies a monad of continuations, T. 

The  entire machine is then the monad composition 

CAM = Reg(Cc(Cs(M(TaId)))) 

where Id is the identity monad, here used as a placeholder for an  object variable. 

5.3. Using a control store to  realize continuations 

The s ta te  object of Cs is List(Control), where Control = S + T S  and 

S is the s t a te  object for M and the type of the s t a te  of the entire machine. A machine 

continuation has the type 

Mcont = S + A  

and a context has the type 
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Context = Rec(X) X 2 x List(Contro1) X Mcont 

A context element is formed of a s ta te  element, less the current value component, and 

with a machine continuation appended. A context object is isomorphic to X+ A, the 

type of value continuations. 

A single step of machine operation is represented by6 

Step : Mcont + Mcont 

where ';' is the infix list constructor and [I designates an  empty list. If op is proper 

for M, then i t  has the form At. Am. m (op't), where opt: S+S. As a morphism of C, an 

instruction proper for M is 

op = cams CSpS o ( o p ' ~  idDS) qsT 

The  only instructions of CAM tha t  are non-proper for M are 'call', 'ret' and 'eval'. 

The machine executes by performing Step repeatedly, beginning with the com- 

ponents of an  initial machine state.  T h a t  is, 

Run = Y(Step) = lim stepi(lMcont) 
a+m 

where Mcont is a pointed cpo and lMcont is i ts  least element. An execution with pro- 

gram store so from initial d a t a  z is Run [ ( z l p O ~ ~ ~ s O ] ,  where p is a constant of 

Rec(X) and Co is a constant of Rec(Context). A sequence of steps, stepi, applied t o  a 

machine s ta te  yields a sequence of i instructions t h a t  comprise a partial elaboration of 

the continuation from the given machine s ta te .  For example, if the initial instruction of 

the control store happens t o  be proper for Cs, op = A0.Xm.m (opta), where opt: S-+S, 

then 

In displaying patterns, we shall let p range over Rec(X) and s range over Lisf(Contro1). 

The notation is similar to conventions often used in register-transfer descriptions of machines. 
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b o .s r PA, 
s tep m 1'. bp? ] = ~ ( o P  [ ] o ~ ;  =,ep (,-l(oP);m) 

The  initial program store, so, is actually a free variable of the expression of an  abstract  

machine, as i t  also occurs in the definitions of some control transfer instructions. 

This definition of machine semantics separates the definition of a computation 

from the question of whether i t  terminates. A computation terminates if i t  reaches a 

fixed point after a finite number of steps. 

Instructions proper for Cs preserve the control store, while non-proper instructions 

may replace the current control with another one. We introduce the list function 

indz (0) s = s 
indz (n  +1) (c ;s)  = indz ( n )  s 

which allows non-negative integers t o  be used as  labels in control stores. When indz(1) 

is composed with K so = Xs.so, which replaces the current control store with a constant 

(the initial control store), we obtain a composite function indx(1) o K so, giving the effect 

of a control transfer directed t o  a label, I .  The fixpoint computation, Run, makes use 

of the indexable control store in an essential way. Each time an  instruction directs con- 

trol t o  a label, the control store is effectively re-initialized t o  the sequence beginning a t  

the specified label. This abstract machine model is capable of evaluating recursively 

defined functions. In order tha t  i t  could compute fixpoints of values not of a functional 

type, a natural  mechanism t o  add t o  the machine would be an  addressable d a t a  store. 

We have not made tha t  extension in the present paper. 

5.4. Instructions of the CAM 

We begin by giving the instructions tha t  correspond t o  proper morphisms for the 

composite monad CAM. These instructions only affect the current value representa- 

tion; they make no use of the added components of machine s ta te .  Accordingly, some 

instructions (the arithmetic instructions, here) require auxiliary definition t o  make them 

precise. 

The notation is similar t o  the register-transfer descriptions often used t o  describe 

the architecture of concrete machines. The sense of the arrows corresponds t o  arrows 

in the Kleisli category CT, induced by the monad of continuations. This is the 

representation we find most intuitive. The instructions themselves compose as  con- 
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tinuation transformers in C. 

Instructions proper for all monads 

quotex(4 z + z  

fst ( 2 , ~ )  + 

sn d ( 2 1 ~ )  + Y 

add ( 2 1 ~ )  + Z+Y 

neg 2 + -2 

There could, of course be additional proper instructions. We shall make no further use 

of the arithmetic instructions, which have been included only as  examples. 

Instructions non-proper for Reg 

The notation we shall use for the CAM register file will usually make explicit i ts  

first element, called the Term Register in the original CAM [3], and the rest of the 

registers, called the Stack. 

push 3, P + z , ( ~ , P )  

POP Z , ( Y , P ) + ~ , P  

swap ~ , ( Y , P )  -+ Y , ( ~ , P )  

mk-pr Y , ( ~ , P ) + ( ~ , Y ) , P  

The instructions 'push' and 'pop' correspond t o  dupl and drop of the Linear Abstract 

Machine [14]. The instruction 'swap' is the exchange morphism of a symmetric product. 

'mk-pry is an instance of the associativity morphism, a. 

Instructions non-proper for Cc 

eqO (z ,p ) ,b -+(z ,p ) , t t  i f O = z E X  

eqO (z ,  p), b -+ (z, p), fl otherwise 

In a hardware realization, this instruction could set a condition code register. 

Instructions non-proper for Cs 

The  next set of instructions are those tha t  transfer control. Recall t h a t  the s t a te  

object for Cs is List(Control), an object whose elements represent control stores. In the 

descriptions below, p ranges over environment objects and s ranges over control stores. 

j m ~ ( l )  p, b ,  s + p, b ,  indz(1) so 

jfalse(1) p, b , s + if b =tt then p, b , s 

else p, t t ,  indz(1) so 
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stop p , b , s  -,p,b,stop;s 

Instructions non-proper for M 

This brings us t o  the most complex operations, those non-proper for M. Here the 

notation for an  object is extended t o  include stackeq contexts. 

eval ''l'z" "' ' + ~ m . ~ u n  I (.,PO>, tt, ind.(l) so 
C p , b , s , m  

C I 
These non-proper instructions can be identified with the categorical morphisms 

tha t  underlie them. In general, for an instruction op : S + T S ,  we need t o  express its 

Kleisli triple extension, op* = D(&'(O~)). Under involution, the instruction can be 

represented a s  a continuation transformer with the form 

in the category Cop, where p a ~ s  : DS+(TSxDS)+DS. Note tha t  TSxDS = ( D S e  DS] is 

a co-exponential object in this category, and tha t   pa^^ realizes continuation substitu- 

tion. Then 

op* = D(paDs) (D(co,) X idDs) : DAxTS -+ TS 

Recall t h a t  DA = 1 and thus the type is isomorphic t o  TS+TS.  

If op is proper for M, op = Xo.Xm.m(oplu), then 

For a uniformly terminating proper instruction, the type of #-'(op) is isomorphic t o  

DS +DS and can be represented in lambda notation as  Xm.opl; m .  

For a non-proper instruction, cop is more complex. For instance, 

where ~ c , , I ( l )  is given using variables rather than compositions of projection morphisms 

for better readability: 
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The operational effect of 'call(l)' is t o  substitute the continuation represented by 

the label 1 in place of the current continuation, which is saved. The categorical opera- 

tion tha t  corresponds t o  'saving' a continuation is co-application of a continuation 

abstraction. 

The return instruction is represented in analogous fashion, 

where 

'eval' corresponds t o  E ,  the co-unit of the adjunction between C and CT. I ts  

representation is similar t o  t h a t  of 'call', except tha t  the label argument t o  indz is got- 

ten by taking the first projection of the value component of the state.  

6. Translating lambda calculus for the CAM 

The deBruijn combinatory calculus can be compiled for the CAM by a compilation 

scheme C tha t  translates expressions without evaluation. For this translation, we do 

not require the full machine. We use the Basic abstract machine, BCAM, which is simi- 

lar t o  CAM but omits the condition code component of machine s ta te ,  2, and the 

instructions 'add', 'neg', 'pop', 'eq07, 'jmp', 'jfalse', 'stop' and 'call'. The compilation 

scheme is: 

ClUl = snd 

C 1 A M  I = push; quote(1) ;swap; mk-pr 

where 'label(1) ; C I M I ; eval; ret' 

is appended t o  the control store 
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In this translation, T is a macro instruction, 

T = push;Rot;snd;swap;mk,pr;swap;fst;swap;mk~r 

Rot is another macreinstruction tha t  exchanges the two values nearest the top of the 

BCAM register file. 

Rot = mk,pr;mk_pr;push;snd;fst;swap;push;fst;swap;snd;snd; 

6.1. Coherence of the implementation 

Coherence of a model with a language is the property t h a t  equivalence of terms in 

the language implies equivalence of their interpretations in the model. In this section, 

we establish tha t  the interpretation given by the translation scheme C is coherent with 

the equivalence defined by @conversion of terms not protected by A. This is equivalent 

to asserting tha t  programs executed by BCAM compute (weak) head-normal forms of 

the hg-calculus. 

Equivalence in the model must be extensional equivalence of functions, since terms 

of the language are interpreted in a function space. We designate this relation by '=', 
and define i t  t o  be the least relation on BCAM terms tha t  is reflective, symmetric, 

closed under transitivity, and satisfies 

The proof of coherence relies upon several technical lemmas, some of which are of 

interest in their own right. 

Lemma 6.1: 

+f M. v s , e  ,p,C. 3 ! e l .  
e , p , C I M J ; s  e l ,p , s  - 

C C 

Proof: We show by induction on the structure of M tha t  C I M / is proper for BCAM. 

Recall tha t  an  instruction proper for M can affect only the value of the Term Register 

component, leaving all other components of s t a te  unchanged. 
- 

M = n :  

by induction on n .  C IUI = snd, which is proper. C I n+lI = fst; C I E 1 ,  which is 

the composition of a proper instruction with a sequence proper by hypothesis. 

M = M'N': 

Examine the definition of C I M'N'I. There is no occurrence of 'eval' or 'ret', the 

instructions non-proper for M and Cs. The instructions non-proper for Reg are 
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'push', 'swap', and ' m k s r ' .  But a sequence of these instructions remains proper 

for Reg provided tha t  (1) every occurrence of 'push' is matched (exactly) by a fol- 

lowing occurrence of 'mk-pr', and (2) every occurrence of 'swap' is bracketed 

between an occurrence of 'push' and one of 'mk-pr'. Proper instructions may be 

freely interleaved in a sequence without affecting its propriety. 

Recoding the instruction sequence for C ( M ' N I I  with the macro instructions T 

and Rot expanded, proper instructions replaced by ,, 'push' by '(', 'swap' by s and 

'mk-pr' by ')', gives 

The embedded instruction sequences C (MI1 and C I NII are proper by hypothesis. 

The  sequence can be seen t o  satisfy conditions (1) and (2). 

M = A M 1  

Again, the instruction sequence for C I A M 1 I  contains no occurrence of 'eval' or 

'ret'. I t s  recoding is (, s ), which satisfies conditions (1) and (2) above, hence the 

sequence is proper. 

Uniqueness of the term el follows from the induction ( C  I M I is finite) and the fact tha t  

each instruction is interpreted by a (total) function. 

Notation: In what follows, we shall write C l  M l e  t o  stand for the unique term e l  

asserted by Lemma 6.1. 

Lemma 6.2: If a label, I, has a binding in the initial control store 

then for evaluations t h a t  terminate, 

(The term el asserted in (1) will be designated 'eval(C I M 1 e)' when i t  is referred t o  in 

the derivation of (3) in the proof.) 



Abstract Machines 

ProoJ is by a well-founded induction based upon the depth of the stacked contexts, We 

show t h a t  if the eonelusions of the lemma hold a t  s ta tes  of the computation where the 

stack is more deeply nested, then they also hold at s ta tes  where the stack is shallower. 

The  stack depth is fimite at every step of a terminating computation. 

( I  , e ) ,  p, eval; s  

C 

- el,p,  eval; ret; . - . 
- { H u P * ~ . ( ~ ) }  ( ( I p e  1, p) :s K ret; - . 

C 

(2) From (*) above, the next s tep  is: 

- ( I  ,e ) ,  p, eval; ret; . . . 
-{Hupoth. (2)) e t , p : s  

- eval (C I M 1 e ) ,  p, ret; - . - 
-{Hupofh. (1)) e 1 , p : s  
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- e , p , C I M I ; e v a l ; s  
-(H"o*.'l'.) C 

Lemma 6.1 

The  uses of the inductive hypotheses in the derivations can be indexed by the level of 

stacked contexts a t  the point t h a t  each hypothesis is invoked: 

t o  derive HI: H2(1), Hl(1) 
t o  derive H2: H3(0) 
t o  derive H3: H2(1), H1(1), Hl(0) 

from which i t  can be seen tha t  the induction is well-founded. 

Corollary 6.3 m : C l r M I ; T ; .  . . - - W : c l M I ; .  . . 
C - C 

- e l  (el, p), push; quote(1) ;swap; mk-pr; T ;  eval; . - 
-{C-tranulafion) C 

where I :  CIM1;eva l ; re t  - - . 

- ( 1  ,(e ,el)), p, eval; . . . 
TI C 

In the following, we make use of the deBruijn substitution convention. Our notation is 

adapted from [ll]. The  notation M{NIi designates the substitution of N for all 

occurrences of the ith bound variable in M, where the index i counts the binding-height 

of each variable occurrence in a term. The rules for substitution are given inductively 

on the structure of the term M in the proof of Lemma 6.4, below. The definition 

depends upon an  auxiliary function t h a t  calculates index renormalization in the substi- 

tuted term, N. I ts  definition is: 
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Lemma 6.4: C 1 M{NIi  I (  ...( e ,  ei,l)...eo) = C 1 M I (  ...(( e ,  C I N 1 e),  ei-l)...eo) 

Proof: by well-founded induction on the term structure and the substitution index, i 

M = G  and m<i 

M = m and m=i 

M = G  and m>i 

(MI N') {N) i  = MI { N ) ,  N' { N ) ;  

C 1 (MI N1) {NI i  1 (...(e, ei-l)...eo), p : * . 
- (...(e, ei,l)...eo), p : push; C I N' {N) i  I ;swap; C I M1{NIi  I ; T - . - 

- 
Lemma 6.1, C 1 M' {NI i  I (  ...( e ,  ei-l)...eo)l(C I N f { N ) ;  I (  ...( e l  ei-l)...eo),~):T . 
C-translation 

- - c 1 MI 1 (...((e 1 C I N 1 e ), ei-l)--.eo)t (C  I N1 I ( - - - ( (e ,  C I N I el, ei-~).-.eo), P )  : T . 
- 

C-translotion, ClM1N1I( . . . ( (e ,CINle) ,e  i-l)...eo),p: - . . 
Lemma 6.1 
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Theorem 6.5 Coherence (p)  C CAM) N I C ( M{NIo 1 
Proof: 

' r  i o q l M  I(.. c I NI e )  
Lemma 6.1 

7. Conclusions 

This paper provides further evidence, if any were needed, t h a t  categories with 

monads provide useful models for computation. Monads characterize the additional 

structure required in a category t o  realize an abstract machine. Monad composition, 

using monads of s t a te  transformers and a monad of continuations, appears t o  be a 

satisfactory way t o  compose an  abstract machine. The  structure obtained in this way 

is remarkably similar t o  the architecture of machines intended for realization in 

hardware. This structure also has the advantage tha t  i t  renders a coherence proof 

simpler than it might otherwise be, as most details of the proof (such as verifying tha t  

substitution for variables is correctly implemented) involve instructions tha t  are proper 

for many monads of the composition. Proof of coherence is a preferred method by 

which t o  show the correctness of an  implementation, as i t  relates a machine model 

directly t o  the logical specification of a programming language, rather than t o  a deno- 

tational model. 

We have provided a categorical framework tha t  allows the formal description of 

abstract  machine models t o  be carried to a finer degree of detail than has previously 

been attempted.  In particular, i t  supports the specification of control structure as well 

as the transformation of value representations. T o  express control structure, we have 

introduced objects interpreted as types of continuations and arrows interpreted as  con- 

tinuation transformers, in addition t o  functions on values. The model exploits categori- 

cal duality t o  relate values and continuations. Substitution of continuations, an opera- 

tion dual t o  the substitution of values, is the interpretation we give t o  ceapplication. 

This is a different interpretation than has been given by Filinski in considering dual 

categories with closure of products and (co)closure of coproducts. 
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The  abstract  machine we have constructed is very similar to Mauny's 'lazy' ver- 

sion of the CAM (191. Mauny proposed operations 'freeze' and 'unfreeze' whose actions 

are respectively, t o  construct a closure from a code pointer and an  environment, and t o  

evaluate a closure. In our model, the counterpart of 'freeze' is embedded in the macro- 

instruction T and the counterpart of 'unfreeze' is 'eval'. In Mauny's compilation rules, 

'unfreeze' is inserted t o  force evaluation of an  argument when it is referenced by a 

strict operator, whereas in our model, 'eval' is applied to the term value returned by a 

function application. These two strategies are  equivalent. The 'eval' instruction does 

not require a recursive definition when function-space objects are normal objects. 

An abbreviated coherence proof has been given for the CAM in [4]. A detailed 

coherence proof for an implementation of a lazy, functional language by the G-machine 

was presented in David Lester's doctoral thesis (161. His proof is based upon point-wise 

reasoning and uses induction on the d a t a  structures of the abstract  machine, rather 

than a categorical semantics. 

Asperti [I] has considered several variants of the CAM in a categorical framework 

based upon cartesian-closed categories. In this work the categorical model is developed 

in more detail than was the original model of [4], but it does not address a question we 

have explored here, of how the required exponentials may be fabricated in a category 

where less structure than cartesian closure is assumed. 

The analogy between involution and various forms of logical negation is well 

known and has been exploited by 181 t o  derive typings for first-class control constructs. 

Involution and duality in linear categories has been studied in a detailed paper by 

Marti-Oliet and Meseguer [18]. There, the involution is defined by an  isomorphism, 

analogous t o  the double-negation elimination rule of linear (and classical) logic. 

Finally, we wish t o  point out some directions in which t o  extend this work. An 

obvious extension of the CAM definition would be t o  accommodate evaluation-sharing 

(true lazy evaluation) rather than call-by-name evaluation. This would require an addi- 

tional component of the monad tha t  defines the abstract machine, namely a component 

t o  represent a d a t a  store. Such an extension would render the model more operational 

in flavor, incorporating instructions t o  allocate new storage cells, distinction between 

storage labels and values, etc. I t  would be interesting t o  know how t o  construct a proof 

of coherence for such a model tha t  was relative t o  the proof given here for the simpler 

model t h a t  ignores d a t a  stores. In a relative proof, one should only need to prove t h a t  

instruction sequences of the more detailed model were coherent with those of the 
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simpler one. A related issue is how t o  construct a coherence proof for implementation 

of a programming language with recursive definitions. 

A second question concerns abstract  machine models for supercombinator reducers. 

These introduce the complication of multi-argument combinators. An unsaturated 

combinator application is a normal form, while a saturated application is reducible. 

The model must account in some way for the number of arguments needed t o  sa tura te  

an  application. I t  would be interesting t o  know an  elegant way t o  embed this informa- 

tion in a categorical model. 

The  framework t h a t  we have constructed from quasi-closed categories with 

monads is not the only one possible. An alternative would be t o  formulate the compu- 

tational model in a linear category with '!' and '?' modalities. A linear category embeds 

a fully dual structure. How do these dual modalities relate t o  a monadal structure? 

What  is the computational significance of the tensor product and sum? 
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