
Comments on the
"Third-Generation Data Base System Manifesto"

David Maier

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006- 1999 USA

Technical Report No. CS/E 91-012

April, 1991

Comments on the
"Third-Generation Data Base System Manifesto"

David Maier
Oregon Graduate Institute

April 18, 1991

Abstract

These notes are my reflections on the "Third-Generation Data Base
System Manifeston by the Committee for Advanced DBMS Function, the
version of 22 April 1990, hereafter called "3GMn. While this is a personal
view, I benefitted from a discussion of the 3GM with Malcolm Atkinson,
Francois Bancilhon, Dave DeWitt and Klaus Dittrich. I recommend that
one read the 3GM before reading this document, as I assume familiarlity
with its contents. [It has been printed in SIGMOD Record 19:3, Septem-
ber 1990.1 These notes may be freely copied for personal use as long as
they are duplicated in their entirety.

1 Introduction and Organization

It is unclear whether the 3GM is intended as a definition of a new class of
DBMSs, as a prognostication, as a research and development agenda or as a
marketing piece. It may be something of each, judging from the arguments in
it. Some are on semantic and engineering grounds, but other are based on per-
ceived customer demands or market forces. Most disturbing is an undercurrent
of implication that requirements for next generation database systems should
be tempered by what are compatible extensions to current relational models
and technology. The message I read is that relational systems, or their slight
extensions, are the "end of history" as far as database systems go. The bottom
line is that there should be one flavor of next generation database system and
that flavor should be extended relational.

There is a tone in the 3GM of "if it can't be added easily to current relational
systems, it must be wrong" and that data models should only evolve if the
current implementations can evolve along with them. We shouldn't abandon
the successes of the relational model lightly, but they shouldn't bind us from
exploring new territory. Columbus had to sail out of sight of land to find the
New World. Even if third-generation systems end up looking a lot like their

parents, I doubt database technology is best advanced by research that limits
itself to relational extensions or is dictated by current practice. Research should
be unfettered by the current state of affairs, in order to foster the most diversity
in new models and implementation technology. Certainly research should be
driven by real applications, but later benchmarking and analysis can winnow
the applicable ideas from the impracticable, for incorporation in the next round
of commercial systems. I question whether inheritance, method attachment and
recursive complex objects would be showing up in relational extensions if not
for the experimentation with object-oriented databases.

Most of these notes are structured as direct responses to individual tenets
and propositions of the 3GM. However, the next section takes up three general
topics that I will come back to throughout. The first is type extensibility and
what database application developers really want from a type definition system.
The second topic is trying to clarify what the term "rule" means in a database
setting. The third is the distinction between types, collections and names.

I warn the reader that these notes were written in a rush and a sometimes
agitated frame of mind. Expect lapses of grammar and rationality throughout.

2 Preliminaries

2.1 Type Extensibility
Many of us in the object-oriented database field have struggled to distill out the
essence of "object-orientedness" for a database system. Several papers already
propose definitions, and I've heard of four groups working on standards of some
form. My own thinking about what the most important features of OODBs are
has changed over time. At first I thought it was inheritance and the message
model. Later I came to think that object identity, support for complex state,
and encapsulation of behavior were more important. Recently, after starting to
hear from users of OODBMSs about what they most value about those systems,
I think that type extensibility is the key. Identity, complex state an encapsulation
are still important, but insomuch as they support the creation of new datatypes.

Type extensibility means being able to augment the set of types that the
database system supports, beyond just the records and sets or trees of records
provided by most current systems. But "type extensibility" can stand for dif-
ferent capabilities-adding new base types, allowing nested record structures,
adding an array constructor-so let me say what kind of type extensibility is
most important for database programmers. It is support for what I will call
manifest types. Manifest types have three properties; they are first-class, im-
naedaate, and abstract. I define these terms in turn.

By first-class I mean that instances of user-defined types should be on
the same footing as instance of system-supplied types. Those instances
should be able to participate in collections or exist independently. They

should be able to take instances of other types as arguments to their
operations, such a s putting an Employee object in a Queue or asking a Gate
object if it is connected to a particular Wire object. They should enjoy
complete data management support: transparent persistence, recovery,
concurrency control, authorization, querying and so forth. A user-defined
type should be an acceptable argument any place that a system-supplied
type is allowed. User-defined types should be usable to define yet other
types. (The first-class requirement is related to the notion of datatype
completeness in PLs, and to the definitional types of Buneman and Ohori.)

Immediate means that the type extension facilities are directly accessible
to any database programmer. This availability, to me, encompasses two
requirements. One is that new types can be defined at schema definition
time, rather than only at database implementation or generation time, as
some type extensibility mechanisms require. Second is that new types can
be defined using only the DDL and DML of the database system. It is
not necessary to use the database system implementation language, a sep-
arate application programming language, or a special database extension
language.

Abstract means that all or some of the implementation of a type can be
hidden from clients of the type, be they other types, application programs
or end users. Abstraction helps in data modeling, as it lets the database
user and programmer view individual entities in the world as single data
items in the database. It is not necessary to manipulate multiple data
items when dealing with what is conceptually a unit, even if that unit
is represented by several components. Abstraction also provides logical
data independence, localizing the effects of changes in type implementa-
tions, thereby protecting other types an existing applications from needing
modification, in many cases. When parameterization is supported as well,
abstraction lets users create new type constructors.

Most OODBs and Persistent PLs support manifest types. I have not yet
seen any relational extensions that do.

2.2 Rules
The term "rules" is heavily overloaded in its use in database literature and in the
3GM. Rule can have the broad or everyday sense of "an established principle or
standard" in connection with running an enterprise or performing a task. "Rule"
in this everyday sense encompasses many possibilities: a policy, a guideline, a
heuristic, a convention, an administrative regulation, a good business practice,
a definition. In computer science, "rule" is given a narrower meaning, as a
statement in some formal system, such as a Prolog clause or a pattern-action
pair in a production system. Let me use the term human rules to refer to rules

in the everyday sense, and machine rules for the narrower meaning. Machine
rules can capture some kinds of human rules; human rules must be formulated
as machine rules for a computer system to process with them.

Within the domain of machine rules, I want to call out two subcategories,
declaratave and proceduraI rules. Declarative rules have the form "if A then
B", meaning if statement A is true, you can conclude B. For example, "If the
monthly salary of E is M7 then the yearly salary of E is 12 * M." Procedural
rules have the form "if A do B", meaning if the condition or event A occurs,
perform the action B. For example, "If the salary of employee E increases by I,
add I to the total salary of the department D of E." In the database setting,
people have proposed quite powerful things for what the action B can be, in-
cluding arbitrary DML commands or programming language procedures with
embedded DML calls. I point out that "if-then" and "if-do" rules are quite dif-
ferent beasts. For many classes of "if-then" rules, such as the Horn clauses used
in logic programming, it is possible to define the global semantics of a database
with respect to a set of rules, using minimal model semantics. The database
represents the minimal set of conclusions drawn by repeated application of the
rules to derive new facts from the stored base facts. The important point is that
this closure of the database under the rules is unique and independent of the
order of the application of the rule (for most classes of rules used for deductive
databases). Of course, the goal of query processing in deductive database sys-
tems is to avoid computing the entire closure of the database to answer a query
about derived information. Another point is that "if-then" rules don't modify
the database.

Procedural "if-do" rules, on the other hand, have no global semantics in-
dependent of their application order. Firing the rules in one order can take
the database to a different state than firing them in a different order. A set of
these rules seems like a parallel goto statement to me (or maybe navigational
programming without a compass). I am wary of "if-do" rules in the database
setting: huge cascades of triggered actions; not being able to determine if a set
of rules terminates; debugging rule sets; not being able to figure out after the
fact what caused a certain update to the database.

In future discussions of DB system features, it is important to avoid ambi-
guity with the term "rule" and to distinguish human rules from "if-then" rules
from "if-do" rules, probably by using distinct terms for the different concepts.
The 3GM confuses the human and machine senses of "rule" in justifying the re-
quirement for rules. Obviously, if you walk into a business or talk to a designer
and ask "Do you have rules you use in your work?", he or she will answer "Of
course," having human rules in mind. If you question further, you are likely
to find out that some of the human rules can be captured as machine rules,
such as "The expected value of a loan is the principle plus interest adjusted
by inflation" or "Whenever you add a chip to an IC board design, be sure you
add connections for power and ground." But there will be other human rules
that resist capture as machine rules, such as "Be sure that all documents for

the Chartwell account use simple English" or "Keep run lengths of power and
ground busses to a minimum." Thus, claims that customers from this or that
enterprise or application require support for rules need to be scrutinized more
closely to see what kind of rules are in use. Some human rules might be imple-
mented as machine rules in the database, while an expert system or application
program might be necessary to deal with others, and some will remain forever
beyond the ken of database assistance: "Always put the stopper back on the
ink bottle when you leave your desk."

It is an interesting exercise to think about casting the human form of the
Macy's-Nordstrom rule (from Tenet 1) into a machine rule. (One cannot put
an advertisement for Macy's on the same page as an advertisement for Nord-
strom's.) One glitch is that the rule involves inequality. If ad1 and ad2 run on
the same date and ad1 is for Macy's and ad2 for Nordstrom, then ad1 .page
! = ad2.page. It's not clear that you could capture this knowledge as an "if-
then" rule that would be useful for inferencing. Few inferencing systems can
reason effectively with inequality. What about an "if-do" rule? What would
be the action part of the rule? Will there be a set ad1.page not equal to
ad2.page command? Finally, what qualifies exactly as an ad for Macy's? A
stock offering? What about an ad seeking employees? How about if Macy's
placed an ad promoting a charitable event? What if Nike places an ad that says
"available at Macy's"?

2.3 Types, Collections and Names

The 3GM make scant distinction among types, collections and named values.
In modern programming languages, defining a type, creating a collection of
instances of that type, and declaring a variable to hold such a collection are
separate activities. The 3GM assumes the relational status quo, where all three
are lumped together. Adding a relation to a database scheme defines the tuple
type, the set type over that tuple type (a relation type), creates an instance of
the set type and assings that instance to a variable (the relation name). The
tuple type, the set type and the variable are all lumped together with a single
name (e.g., ~mployee). Artifacts of this view are further assumptions that
functions are associated with collections (rather than instances or types), that
each record type has a unique collection type derived from it, that there is one
instance of that collection type (which contains all instances of the type), that
collections are homogeneous, that a record cannot belong to multiple collections,
that only collections can be named, and on and on. It also tends to interfere
with having multiple implementations of a type and in providing a structured
name space, which are handicaps in building large systems.

Contrast this situation with the OODB and Persistent P L view in which
many different collection types can be defined over a given element type (set
of T, bag of T, list of T), collections can be heterogeneous, there can be
many instances of a collection type, an object can belong to multiple collections,

and any object can be given a persistent name. (Some OODBs do provide classes
that act like both a type definition and a collection of instances, but it is still
possible for those instances to be named and belong to several collections.) This
restricted view of types and collections, in my eyes, drastically limits the way
the new features might be integrated in the next generation of database systems,
and hamstrings their data models.

3 Tenets and Propositions

With the preliminaries taken care of, I now turn to the specific tenets and
propositions of the 3GM. I take them in an order slightly different from that
in the paper, preferring to treat propositions right after the tenets from which
they follow.

3.1 Tenet 1: Besides traditional data management ser-
vices, third-generation DBMSs will provide support
for richer object structures and rules.

I have no quibble with "richer object structures." (However, I don't see a reason
that "business data processing elements" should be regarded as fundamentally
different from other data.) However, to me, listing "rules" confounds require-
ments with solutions. "Having rules" to me advocates a particular mechanism
to support certain database capabilities, but misses stating directly what those
capabilities are. From the paper, I see three such capabilities that rules are
expected to support: inferencing, integrity constraints and event sequencing.

Inferencing says that the database contains knowledge that allows it to infer or
derive information beyond the base facts it stores. Views are an example
of a simple inferencing capability.

Integrity Constraints means the database can enforce restrictions on the
database state beyond those given by the structural parts of the schema,
such as keys, referential integrity and cardinality restrictions.

Event Sequencing means that the DBMS has information on the order of
events that take place in an enterprise or design process and can automat-
ically initiate some of those events.

Most of the later examples of rules in the 3GM are of the procedural "if-do"
variety. I am unconvinced that they are the best approach for providing any
of these capabilities. Databases should provide all three capabilities, but they
don't necessarily need to be provided via rules. I will discuss the suitability of
rules for each of these capabilities in turn, and also mention some alternative
solutions to providing them. (It's kind of like telling a programming language

designer you need iteration, conditional and case control structures, and he or
she concluding that a goto statement is your requirement.)

3.1.1 Inferencing

The Horn-clause-style rules of deductive and logic database are a powerful mech-
anism for capturing a wide variety of knowledge and for processing with it.
However, there are many other kinds of knowledge and strategies of knowledge
processing that can be used for inferencing: classification hierarchies, statistical
inference, approximate reasoning and domain transformations (such as FFT)
to name a few. Some knowledge is best represented as algorithms. Even when
certain kinds of knowledge can be captured as rules, rule processing might not
be the best way of reasoning with the knowledge. Knowledge about arith-
metic can be expressed with Horn-style rules, but reasoning about arithmetic
relationships is probably better done using symbolic manipulation techniques,
relaxation, linear programming or term-rewriting methods. Which brings me to
an important point. Storing knowledge, be it in the form of rules or otherwise,
and processing data using that knowledge are not the same thing. As knowledge
is a shared, persistent resource, it is hard to argue that it shouldn't be stored in
the database. Assuming that the database will do all the knowledge processing
is more questionable. Control is still a big part in a deductive system, and
deciding the best control strategy for answering a particular question is hard.
Most such systems still need some human guidance on control strategies to give
reasonable performance.

I don't want to assume that the database will be the only place (or the best
place) for inferencing. There should be basic support for knowledge manage-
ment and some kinds of deduction, but there also must be good linkages to
external inference engines. Consider an analogy. Graphical user interfaces will
be even more prevalent than inferencing capabilities in next-generation database
applications. Forms and display definitions will be stored in the database (this
already happens), but the actual activation and running of interfaces will be
handled mostly by windowing and presentation systems.

3.1.2 Integrity Constraints

Are "if-do" rules the best means to denote integrity constraints? I think not.
The semantics of integrity constraints are best expressed by a declarative state-
ment of the relationship involved, rather than with a procedural rule that says
how the relationship might be preserved. Further, integrity constraints often in-
volve non-directed relationship between entities, and "if-do" rules are one-way.
For example, to support a referential integrity constraint between collection A
and collection B, one has to write two such rules, one to cover insertions to A
and another to handle deletions from B.

Expressing constraints declaratively and automatically deriving rules to en-
force them is of course one approach to supporting integrity constraints, but not
the only one. Proving that transactions preserve constraints or automatic modi-
fication of methods to enforce constraints may be more efficient and controllable
approaches. Another possibility is an exception and handler mechanism in the
DML. Yet another approach are constraint programming techniques, such as as
the satisfaction methods of ThingLab.

3.1.3 Event Sequencing

Again, while "if-do" rules might be an implementation possibility for automatic
initiation of database events (sometimes called active databases), I think the
description of event dependencies should be at a higher level: state machines,
task decompositions, temporal constraints. Single rules are just too low a level
at which to understand the semantics of event ordering. As before, "if-do" rules
might be useful implementation technology, but I am unconvinced they should
be visible at the data model level. (An interesting historical note is that "if-do"
rules were in the 1969 CODASYL DBTG document, but were gone by the 1974
version .)

3.2 Propositions of Tenet 1

3.2.1 Proposit ion 1.1: A third-generation DBMS must have a rich
t y p e system

Following the discussion in Section 2.1 on type extensibility, I would rephrase
this proposition as "A third-generation DBMS must support manifest types."
The list of desirable features for a type definition system given in the 3GM are
all probably ones you'd want to support manifest types, particularly a rich and
freely composible set of constructors for structuring the representations of types.
But the list falls short of providing manifest types. In particular, abstraction is
required only for base types and not for all types. Why isn't abstraction a type
former in its own right? There is also nothing in the list that would guarantee
first-class or immediate types. The bottom line is whether databases are going
to remain with structural semantics forever, or go with more sophisticated type
definition systems.

Other comments

I'd like to see an "object reference" type former in the list.

Line is given as an example of a base type that one might want to add.
But many applications using lines would not want to treat a line as an
indecomposable scalar value. Consider a MacDraw-style application where
one might represent the situation that two lines have been linked by having
them share a common endpoint object.

One reason that manifest types are nice is that you can use them to
produce new type constructors. Thus, if you want a queue-constructor,
a programmer can define a QueueCT] type, rather than having to wait
around for the vendor to supply a queue constructor.

The 3GM cites several references to show that some of the desirable fea-
tures have already been proposed as extensions to or implemented as ex-
tensions of relational systems. A couple comments. To my recollection,
the method given in [STON831 for adding sequences of records to a re-
lational system works for one level of sequence constructor, but wouldn't
work well for deeper compositions, such as a sequence of sequences, a set
of sequences or a sequence of sets. The references on including an ADT
system only concern new base types, not new manifest types.

3.2.2 Proposit ion 1.2: Inheri tance is a good idea.

Depends on what's being inherited. I prefer to think in terms of hierarchies
that a database system might support. There are several possibilities, such
as a type hierarchy, where interface is inherited; an implementation hierarchy,
where representations and methods are inherited; and a subset hierarchy, where
membership of elements is inherited. These different hierarchies might have
different requirements as regards multiple inheritance or strictness.

The discussion for this proposition continues to confuse types and collections,
thus mixing up type and subset hierarchies. I might indeed want to enforce
subset relationships between two collections that each contain instances of many
types. It is also not obvious that I always want to regard all instances of a
subtype as instances of a supertype.

In the example of Figure 1, would it be enough if an object could belong
to both the Employee and the Student collections? With multiple collection
memberships, is multiple inheritance necessary in the subset hierarchy?

3.2.3 Proposit ion 1.3: Functions, including database procedures a n d
methods, a n d encapsulation a r e a good idea.

That should be "are good ideas." Here we see the type-collection confusion
again, with functions being associated with a collection, rather than directly
with instances of a type. If the ra i se - sa l method is associated with Employee
instances, then an Employee object can participate in several collections while
retaining uniform behavior. (Of course, methods can be associated with collec-
tions as well.) There is also an assumption made that the envelope for encap-
sulation is the collection, rather than the single instance.

I disagree that functions or methods should only be written in a sepa-
rate high-level language (HLL) with embedded DBMS calls. Why throw the
impedance mismatch in the programmer's face? Why not give the DML enough
power to that it suffices for writing methods. (It can still contain an associative

access sublanguage.) With that approach, the method compiler can do much
more in the way of type checking them. In addition, type implementors do not
become dependent on having a compiler beyond what's in the database, for a
particular HLL. Thus type implementations are portable to other instantiations
of the database in other computing environments. Note also that if methods
are written in a separate HLL, the database query optimizer understands little
about what those methods do and will be very limited in the optimizations it
can do.

If functions or methods are written in the DML, then "navigational" access
is not such a problem, as the DML compiler can expand methods inline in other
methods, to give large expressions with more opportunities for optimization.

The discussion that follows on opaque and transparent types is misguided in
a couple respects, insisting that the structure of data elements must be visible to
have efficient execution. First off, the particular problem in the example comes
from assuming that EMPLOYEES are encapsulated at the level of collections rather
than individual instances. Second, nothing says that what is encapsulated to
clients of a type (such as an application program or another type definition)
need be hidden from a trusted system component, such as the query optimizer.
Third, transparent types let clients of the type create data dependencies on the
internal representation of instances, making modifications to type implementa-
tions hard to insulate. In the example, if the EMPLOYEE type were transparent,
the application programs could become dependent on the fact that the salary
field is explicitly stored. This dependency creates a mess when one decides to
change the representation to store the monthly salary and calculate the yearly
salary from that.

Other comments:

Reading towards the end of the section, the point is raised that some
current relational systems can store procedures written in a HLL with
embedded database calls, so modulo a little fussing with inheritance, they
already satisfy this proposition. This discussion gives me the feeling that
the goals of the 3GM are being set on the basis of what relational exten-
sions might achieve rather than what is actually desired by users.

This section indicates that it is useful for an application to be able to
call a function on a data item. That implies to me that a function call is
a good unit of communication between an application and the database,
which contradicts later claims that such communication should always be
via a query language statement.

3.2.4 Proposit ion 1.4: Unique Identifiers (UIDs) for records should
be assigned by t h e DBMS only if a user-defined pr imary key
is no t available.

I have huge problems with this proposition. A key is a property of a collection,
stating that-within the collection-elements are distinguishable by some part
of their states. A UID, on the other hand, uniquely identifies an object in any
context. Here again I see the "each instance belongs to exactly one collection"
thinking. An entity in the real world can be a member of many collections.
What might distinguish it in one collection might not distinguish it in another.
For example, model numbers might serve to differentiate the products of one
company, in its sales catalog. They would not necessarily distinguish products
uniquely on an invoice issued by a wholesaler who carried products from many
companies. The identity of an entity shouldn't depend on what collections it
currently participates in.

The first paragraph of discussion is almost its own counterargument, talking
of a primary key "that is known to never change." Never is a long time. It is
hard to predict how collections of interest will evolve in an application. Room
number might seem like a unique identifier for offices, until your company builds
the second building. Companies merge--employee numbers may cease to be
unique. Social security numbers may no longer be unique when your company
goes multinational.

Actually, immutability of a property is not enough for it to be a key. There
are also existence and one-to-one constraints. People sometimes end up with
two social security numbers. What do you do when trying to enter an instance
and the key value is as yet unknown or unassigned? Consider you have students
keyed on student number, and you want to extend the database to keep track
of people starting when they first apply (for first send for application material).
Do I now have to assign student numbers to all applicants, even if they aren't
admitted or don't accept?

Other comments:

There is no reason that elements of views cannot have UIDs. If the view
is a collection of existing objects, then they have UIDs already. If the
view defines new objects, several schemes have been devised for generating
UIDs, by people working on "object logics."

Keys are useful, but in addition to UIDs, as an alternative for identify-
ing an element in the context of a collection, or enforcing an integrity
constraint. But having UIDs for global identification in addition gives
more flexibility. An immutability requirement on keys might be too strict;
uniqueness at a given point in time is sufficient. For example, an em-
ployee's number might change when he or she changes sites within a com-
pany. I've been told that Swiss social security numbers are unique, but a
woman's number can change when she marries. You might want to insist

that such a number is a key, even if it is not immutable. In other words,
why enforce immutability in order to have a unique, human-readable han-
dle on elements of a particular collection? A collection of customers might
want two keys, an old account number and a new account number. Why
should a key be restricted to local state? We might want items in a col-
lection distinguishable on the basis of some other class of entities to which
they are related. For example, an awards committee might have one mem-
ber from each division, so we would want the division of each employee's
department to be a key in that context.

3.2.5 Proposition 1.5: Rules (triggers, constraints) will become a
major feature in future systems. They should not be associ-
ated with a specific function or collection.

The first problem here is that the proposition seems to equate rules, triggers
and constraints, which are different beasts to me. (Also, if you just say "rules,"
you might not get the kind you wanted.) I've already discussed rules at length,
so here I just address a couple points in the discussion of this proposition. First,
there is the assertion that if rules were associated with methods or functions,
then the code for a the rule has to be duplicated in many many methods. This
assertion is nonsense, as the code can be put in one place and invoked by name.
Vbase had method combination features that allowed such code sharing. This
approach also addresses the later remark about being able to query rules or
constraints. The bodies or declarations of rules could all be kept in one collection
for querying. An alternative, of course, would be to have appropriate rule or
trigger code automatically inserted by a compiler. Note that enforcing rules or
constraints in methods is not incompatible with declaring them independently.

In regard to support for event sequencing, it might at first seem a good
model feature if triggered actions are all defined centrally, and not associated
with methods. "I want this action to happen whenever an update of this form
happens, no matter how the update came to be made." I grant that this seman-
tics is what you want in some cases, but in thinking through some examples, I
thought of many cases where the action triggered (or whether it is triggered)
should depend on the intent of an update. For example, a newspaper might
have a "change fee" if an advertiser wants to modify the copy in ad after it has
been accepted. However, if an advertising editor orders a change (say during
copy editing, to change the layout slightly), there is no charge. Two updates,
one of each kind, might have exactly the same effect on the text of an ad object,
but only one should trigger the action that adds a charge to a customer account.
This case can be handled by having two methods, one for customer changes and
one for editorial changes, with only one triggering another action.

Another reason for sometimes associating event triggering with methods is
that some events might need to be triggered by actions that cause no updates.
Suppose that you want certain bank account statements to be numbered con-

secutively for each customer. Then, after the operation of generating a monthly
statement, which only reads database state, you want to initiate an event that
increments the "last statement number" information with the account. Such a
linkage is easy to accomplish with a trigger associated with a method, but hard
to do with a trigger on changes to object state.

Which brings us to the Joe and Sam example. This example scares me,
because it illustrates how unwisely a programmer might use a rule mechanism,
and points to the wisdom of declarative notations for integrity constraints and
event sequencing. What is the real intent of "Whenever Joe gets a salary ad-
justment, propagate the change to Sam"? It seems to me that the intent is to
keep Joe and Sam's salary the same. If that is the intent, then there should
have been another rule to propagate changes in Sam's salary to Joe. (And prob-
ably another to deal with the case that the Joe item is created anew after the
constraint has been defined.) Better to have a single declarative constraint that
say the two salaries are equal. But take a step back. Why would someone want
to keep two salaries the same in real life? Probably because both employees are
in the same job category and tied to the same salary scale. This rule looks like
a hack trying to fix up a botched schema design; it's treating the symptom and
not the disease. The Sam and Joe data items ought to be referring to a common
"salary category" item. I worry that if-do rules will get database users in a lot
of trouble, especially if they are used with insufficient forethought. Someone
might think naively that Sam and Joe are in the same salary category, so their
salaries should be tied together (along with everyone else in that category). But
what about merit increases? Should Sam get one because of Joe's good work?

Other comments:

I don't see how rules can be independent of a collection in the types =
collections model of the 3GM. How is one going to identify Joe or Sam if
not by a key relative to some relation?

The 3GM claims that some relational systems have rules or triggers al-
ready. I haven't seen much reported yet about how and how successfully
these capabilities are being used. (But perhaps I'm not looking in the
right places.)

The discussion throughout seems to assume that rules or constraints are
indicated at the schema level. In design applications, there are many uses
for instance-level constraints. For example, "The layout of this functional
unit in this VLSI design must fit within that bounding rectangle."

I wonder if this obsession with rules might come from creative listening
to customer desires. Customers want support for inferencing, or integrity
constraints, or event sequencing; what the relational developer hears is
"Oh, they want rules!" I repeat my opinion that if-do rules are one possible
implementation mechanism, but that the requirement should be expressed
at a higher level.

3.3 Tenet 2: Third generation DBMS's must subsume sec-
ond generation DBMSs.

I agree, but with the caveat that "subsume" means "include the features of"
rather than "be directly upward compatible." Looking back, second generation
DBMSs certainly didn't subsume first generation systems in the latter sense.
The main points here concern query languages and data independence.

The discussion of query languages starts by knocking down a strawman that
nobody even tried to put in a cornfield, the strawman being the position that
some applications never wish to run queries. CAD applications are used to push
over the scarecrow. I don't know anyone in the OODB community who holds
this opinion. The point is not whether an application will never require a certain
kind of access, but that other kinds of access are more important. There is no
point in providing one kind of access if a more important kind is not present.
Where is the highest efficiency needed in CAD? Probably in the display of
graphics, which involve traversals of networks of heterogeneous objects, rather
than in getting back a table of the cost of components in a design. Yes, certainly
CAD designers will want to query data associatively sometimes. The question
in the short term is which is more tolerable: fast display with somewhat slower
queries, or slower display rendering in exchange for fast associative access. (Not
to say that I don't think it possible someday soon to give them both.)

True, OODB developers did not spend lots of time on their associative access
initially, but probably rightly so. Good associative access wouldn't be worth
much to their target markets if they couldn't deliver the speed in navigational
access. Adding a query language didn't seem like the most pressing problem
facing OODBs initially, although now companies are adding that functionality.

Next, I'd like to inject a little reality into the discussion. I think there
is a "Myth of the Query Language," which is that relational query languages
allowed end users to formulate ad hoc queries to answer their own questions.
The problem is that answering a question is a matter of extracting the proper
information and displaying it in an intelligible manner. Query languages gave
little help with the latter. (For example, query languages return tuples from
one relation, and the desired answer might need display of related tuples from
several relations.) It wasn't until relational systems started adding report gener-
ators, graphing utilities and windowing systems that end users had much success
with answering their own questions. And even with those tools, getting from a
question to a query that involves three or more relations is still pretty daunting.

To me the essence of querying is to be able to describe regularity in data,
and provide a language to exploit those regularities. SQL and its brethren really
only exploit a very limited kind of regularity-sets of structurally homogeneous
records. What if the regularity is in the operations, and not the structure?
What if the top level structure is a matrix or a sequence, rather than a set.
Current query languages return sets of homogeneous records. What if the client
needs a group of related objects of different types? (It might not be acceptable

to join the tuples together if they must be individually identifiable for update
~ u r ~ o s e s .) Current query languages are also not very good when the query
is against information encoded as structure rather than data values, such as
looking for a consecutive pattern in a sequence.

Other comments:

The authors of the 3GM say they have talked to many CAD application
designers, and that all specify a query language as a necessity. Again, I
wonder about "creative listening." Is perhaps the requirement actually
that associative access be supported, independent of whether that access
is through SQL or some other mechanism?

I see no reason why OODBs can't have views. I've already seen a half-
dozen reasonable proposals on how to add them.

The reason query languages can be made efficient is that one can predict
1 / 0 accesses to bulk data from them, hence optimize and schedule those
accesses. You don't need sets to be predictive. Knowing that one is going
to traverse a graph structure or multiply two matrices gives foreknowledge
of I/Os, and ought to be equally amenable to optimization and planning.
Current query evaluation technology doesn't deal with those cases (al-
though some vectorizing compilers do optimize 1 / 0 on array operations).

There is no reason to believe that current calculus-based query languages
are the last word. To me the essentials of a query language are that it
be high-level (more "what" than "how"), efficient and generic. (The last
term means that it works with data of new types as soon as those types
are defined, without the need to create special display interfaces on them.)
I can imagine systems besides a calculus query language that satisfy those
requirements.

OODBs seem to me to provide a high degree of data independence, because
changes in either the logical or physical structure of the data can be masked
by the message interface to an object.

3.4 Propositions of Tenet 2

3.4.1 Proposit ion 2.1: Essentially all programmatic access t o a database
should b e th rough a non-procedural, high-level access lan-
guage.

A lot of misperceptions in the discussion of this proposition. One is the failure
to distinguish methods from application programs. Having an application pro-
gram make a separate call to the database to traverse each reference between
records is one thing. Having methods that make such accesses is another. The
database has knowledge of methods and can combine them into bigger chunks

for optimization and evaluation. I agree that having an application program
issue a lot of low-level accesses to the database is not a good idea, but this is
not what OODBers advocate. Application programs can communicate with the
database using high-level message expressions, each which expresses many in-
dividual accesses against database objects. Sending messages can be high level
and declarative.

Another point is that navigational notation doesn't mean naive evaluation.
Making that assertion is like saying relational query languages must be inefficient
because their semantics involves cross products. (And I'm sure that claim was
probably made in the early days of relational systems.) Writing navigational
expressions in a method is not a terrible thing. If the method gets called directly
from an application, then a query language probably couldn't do any better
on a simple access. If the method is called by another that applies it over a
collection, then the access can be optimized and take advantage of indexes and
other auxiliary access paths. The order that data is accessed need not be the
one that results from naive invocation of the methods involved. Navigational
access is a notation-one that SQL isn't very good at expressing (although I
expect later versions of SQL will have path notation).

When access is navigational and not predictable-say traversing a structure
based on some complicated search function-it is better to handle it by hav-
ing methods call each other withing the database process rather than by an
application program issuing droves of small queries to the database.

Other comments:

Having the user always specify the data he or she is interested in via SQL
says he or she is only allowed to be interested in homogeneous sets.

It has been advocated that queries as a data type is a better way to express
linking than reference. But consider that a reference is guaranteed to lead
to exactly one item, while a query can lead to 0 or more.

I detect some underlying assumptions. One is that object reference must
be implemented by pointers. With encapsulated state, a reference could
be captured as a pointer, or it could be represented via access to some
relationship. I agree that two-way relationships are wanted sometimes, but
that doesn't mean that a reference need only be traversed in the direction
it is defined. Some OODBs support automatic maintenance of inverses
of one-way relationships. Another assumption seems to be that pointers
can only be processed by immediate pointer following. Having pointers
doesn't preclude a join that collects all pointers from many objects and
reorders them before accessing them in secondary storage.

3.4.2 Proposit ion 2.2: There should be at least two ways to specify
collections, one b y using enumeration of members a n d o n e
using t h e query language to specify membership.

This discussion muddles together a number of concepts, two of which are spec-
ification and implementation. Whether or not a collection is independent or is
derived from another collection is a modeling issue. It depends on the semantics
of the application. In any application, some sets will have to be explicit enu-
merations. The base relations in a relational database, for example, are going
to be explicit enumerations. In the example offered, ALUMNI will have to be
represented as an enumeration. "Old guard" is a derived set, but the alumni
travel club will be another enumerated set.

How to implement independent and derived sets is another matter. A good
DBMS should provide choices. One way to implement a derived set is by storing
an expression to compute its extension (and OODBs can certainly cope with
such a representation). Another is to store an explicit list of elements with sup-
port for propagating updates between it and the base collection. The latter has
the advantage that it allows either the base set or the derived set to be updated.
The extensional representation can be fast for certain classes of queries, such
those involving intersection of two collections. One can also use expressions
or explicit lists for independent collections, although expressions get clunky for
large sets, as the size of the expression will grow with the size of the set. There
is also a possibility that a derived set need not be a separate named entity. Its
existence might be captured by a method attached to another collection. For
example, the ALUMNI collection might understand the oldGuard message.

Another concept that is being mixed in here is that of constraints between
collections. The discussion ignores the fact that two collections can be related
without one being derivable from another. The collection of teaching assistants
might be constrained to be a subset of the set of fulltime graduate students.
That doesn't mean that the teaching assistant collection can be derived from
the graduate student collection. Both can change independently, as long as the
subset constraint is preserved.

Other comments:

It makes sense to me that a DBMS might support collections that are a
mixture of independent and derived components. Consider the collections
of books in different branch libraries on campus. Probably the division of
books between branches can mostly be derived for the master collection
by selection on call number, but there might be some books that need
to be explicitly listed, such as reference volumes available in all branches,
and some books that are in the rare books collection rather than in the
topical libraries.

There needs to be a better vehicle than SQL for derived collections of
heterogeneous elements.

Independent vs. derived sets is not exactly the same thing as manual vs.
automatic set membership in CODASYL. But in an OODB it is certainly
possible to arrange that new instances of a type are automatically added
to some enumerated collection on creation.

There are several possibilities for how to represent an explicit enumeration.
It might be as a list of values, or as a list of UIDs, or as a list of logical
keys, each of which would be most efficient under certain conditions. For
example, one might want a list of values when the collection is actually
part of the private state of some object. If I represent a polygon by a
set of points, it makes sense to store that set as a list of coordinate pairs
directly, rather than to make them first-class objects and refer to them by
UID or key value.

The example is given that if explicit enumerations are used for collections
derived from ALUMNI, then every time an application programmer inserts
an element into ALUMNI, he or she must manually update all the derived
collections. This scenario is nonsense. Methods on the ALUMNI object can
propagate these updates automatically.

Footnote 2 at the beginning of the paper gives a very limited (and rela-
tional) vie of collections by saying they are named sets of homogeneous
records (i.e., they are relations). I take a broader view that collections can
be any bulk type with member elements, possibly of heterogeneous types
and which might or might not be explicitly named.

3.4.3 Proposition 2.3: Updatable views are essential.

OODBs give you some nice mechanisms to support updatable views. They can
provide views that select a subset of objects from a collection, or that provide
a different protocol to instances of a type. By keeping track of the identity of
the original elements, it helps in implementing view updates. Such views can be
used to preserve an application interface when the implementation of elements
of a collection changes.

Views can also be defined with virtual objects as members. Just because
the members have no physical existence, it doesn't mean they can't be provided
with UIDs. I've seen several proposals for deriving UIDs for derived objects
based on the UIDs of the object or objects from which the virtual object was
created.

3.4.4 Proposition 2.4: Performance indicators have almost nothing
to do with data models and must not appear in them.

True, but complex object structure and logical groupings of objects can be part
of the semantics of the data and should be expressible in the model. Such infor-
mation affects the meaning of operations such as archiving, concurrency control,

copying, encapsulation, authorization, recovery, ~ r o ~ a g a t i o n of updates and ver-
sioning. A database that isn't given such semantic information in its model can't
enforce it and can't use it to optimize queries and physical placement. It's very
useful to know that a given record is a part of the private state of an object, and
not reachable except through the object, compared to knowing that the record
is just a tuple in a relation that might or might not be referenced from several
places. Complex object structure also tells you something about expected access
patterns to data. It's useful to visualize a database as a parking garage. We can
imagine a parking garage where cars are disassembled when they arrive, and all
tires put on one floor, all engines blocks on another, and so forth. This organi-
zation is great if I want to know what percentage of people drive on Michelins
or I want to wash all the windshields quickly. But if customers mostly want to
manipulate individual cars in their entirety, it is useful to reflect that view in
my enterprise.

3.5 Tenet 3: Third generation DBMSs must be open to
other subsystems.

Certainly, but what's wrong with the database having a single language to
write methods, with a well-integrated declarative component, and invoking those
methods from multiple HLLs?

3.6 Propositions of Tenet 3

3.6.1 Proposit ion 3.1: Third generations DBMSs mus t b e accessible
f rom multiple HLLs.

Here I see the assumption again that the application language must be the
same as the method language. Certainly when the two are the same (giving
a persistent programming language), a very nice programming system results.
But one can also have a system where database types are implemented using
methods written in one language, and instances of those types are manipulated
via messages sent from an application written in another language. Nobody
seems to complain that relational databases typically have only one language
for data manipulation. I don't see the problem then in having one language for
methods, as long as there is a mechanism for applications in other languages to
invoke those methods. I'm not convinced that an embedded query language is
necessarily superior to, say, a message-passing syntax. What seems important to
me is that a large unit of work be transmitted to the database in one interaction.
A single message send can invoke just as much processing as a query.

Other comments:

The fact that an application, such as LOTUS 1-2-3, is coded in a partic-
ular language doesn't mean that methods have to be written in the same

language. My Prolog programs do just fine talking to a file system written
in C.

Are particular programming languages really the issue here anyway? Twenty
years from now almost no one will write HLL code directly. It will be
written by other programs that generate if from specifications, applica-
tion generation tools, or compilers of more abstract representations of
program actions. If that is the case, what difference does it make what
language those programs spit out?

3.6.2 Proposition 3.2: Persistent X for a variety of X's is a good
idea. They will all be supported on top of a single DBMS by
compiler extensions and a (more or less) complex run time
system.

Maybe. But even if there is a single underlying data subsystem, it is not clear to
me that the best implementation of persistent X is to keep a cache of objects in
the application's address space. The object cache and its run time has a lot of
responsibility for matching up X types and database types, and for managing the
movement of objects. Should this cache be something outside the database, or
should it be part of the database buffer space, but that resides at the application
site? (See Proposition 3.4 for more on the point that the workstation-server
boundary need not be the application-database boundary.) There is a lot to be
said for trying to make as much as possible of the runtime for the persistent
language an integral part of the DBMS. First off, all the program caches for
different X's are going to have much of their functionality in common. Why
duplicate this functionality in N runtimes for N different languages (particulary
when some of it might already be implemented in the database itself)? There is a
big maintenance problem here-changes or extensions to the database interface
require modifications to N runties and object caches. There is also the claim
that the run time must implement the types from language X that don't map
directly to database types. It seems much better to provide these types via
manifest-type-definition facilities within the database. That way the database
can know something about those types for query optimization. The example of
a data element being updated 100 times is offered as evidence that there must
be an object cache in the application process space, otherwise there will be 100
calls to the database. It seems likely to me that those 100 updates were part
of a small number of higher-level actions. Those higher-level actions can be
expressed as methods, and each invoked with a single call to the database.

3.6.3 Proposition 3.3: For better or worse, SQL is intergalactic
dataspeak.

Are we talking a standard for machines or people here? More and more, SQL
is being generated by programs, not people, via graphical and form interfaces,

4GLs and application generators. So though it may end up being a standard
for system interoperability, that doesn't mean it will remain a standard for
programmers or end users. Furthermore, SQL is a changing standard. SQL3
might be an object-oriented language.

Other comments:

If SQL eventually does become something manipulated only by programs,
then it should probably be replaced by a more structured Query datatype,
with operations for constructing and modifying queries, rather than a
string representation.

The 3GM notes that to support persistent X, the database will have to
support persistent variables for X. Note that this requirement does not
mesh well with the current relational practice of only relations having
persistent names.

There is a claim made that lack of an SQL interface was the downfall
of some early OODB products. I know of only one OODB product that
was taken off the market, Vbase. There seems to be a fair amount of
agreement that the main problem was a non-standard object extension to
C. The same company is still in business with a follow-on product, Ontos,
that uses C++.

3.6.4 Proposition 3.4: Queries and their resulting answers should
be the lowest of communication between a client and a server.

This might be a moot point. The authors advocate having stored procedures
or functions in the database. If new version s of SQL can call those functions,
then a call to a single function could be a legal SQL query. On the other
side, the interface to many OODBs from an application includes the ability
to send an arbitrary expression over the database types to the database for
evaluation. Such an expression could easily express an associative query. So the
two paradigms might not end up being that different.

Be that as it may, the real problem with the discussion here is that it confuses
the application-database interface with the workstation-server boundary. The
two need not be the same. In particular, part of the DBMS can be executing on
the workstation, to manage local buffers and optimize queries, for example. In
a local network of personal workstations and database server machines, even if
the servers have more powerful processors, the bulk of the available cycles will
be on the workstations. It makes sense to do as much database processing on
them as possible, leaving the servers free to work on just the tasks that can best
be done centrally.

This confusion is carried over into mixing the logical result of a database
request with physically how the data in conveyed across a network. Say a
request returns a selection from a relation. The server could extract the tuples

from that relation, package them into messages and send them across the net.
But if the workstation maintains database buffers, why not leave the data in
its disk format on the server? Send across the relevant pages intact and let
the workstation extract the right information from those pages. Deppisch and
Obermeit ["Tight database cooperation in a Server-Workstation Environment,"
7th Intl. Conference on Distributed Computing Systems, IEEE, 19871 describe
an implementation that moves page images sometimes, even though requests
are formulated as high-level queries.

Finally, the 3GM offers the Hagmann and Ferrari paper as evidence that
any internal interface at a level lower than SQL will be inefficient. I point out
that their work is aimed at determining the best partitioning between a shared
central processor and a dedicated backend database machine (though they do
mention workstation-server architectures briefly). So, for example, where com-
bined CPU time might be a good metric for a pair of central machines, its utility
is not obvious in a network with many inexpensive workstations. Secondly, their
benchmark was chosen to reflect an data processing workload, not access to, say,
design databases. Finally, those authors did not experiment with the sensitivity
of their results to physical aspects of the data (such as clustering) or to relative
buffer sizes between the two machines.

Other comments:

One problem with SQL as it is now constituted is that it only returns sets.
That is not always the most appropriate semantic unit of transfer for an
application. A CASE system might want a syntax tree as the result of a
query. Scientific applications often want matrices or sequences as results.

If Persistent X is going to use an application cache, are SQL queries the
best way to populate it? Perhaps transitive closures of single objects are
a better idea.

It may be that for inter-DBMS communication, requests and interchange
of data must be value-based and of restricted form. But that requirement
shouldn't limit the internal interfaces of a single DBMS.

If database functions are a useful mechanism for application-database com-
munication, then maybe query languages should be functional rather than
based on predicate logic.

Under most implementations, embedded SQL ends up being a procedure-
call mechanism anyway, after preprocessing.

Perhaps the point being argued against here is a get-objectlget-field inter-
face from the application to the database. I agree that such an interface is
not a good idea. But I see the natural interface to an OODB as methods
requests, which are a higher level than single-object and get-field access.

3.7 Tenet 4: Third generation DBMSs should be simple,
formally defined and clean.

This tenet doesn't actually appear in the 3GM. I have my doubts that it could
be satisfied by DBMSs that are relational systems with bags and buckets wired
on. I don't think that a DBMS that attempts to provide all the features in the
3GM without taking into account advances in type theory and programming
language design can possibly hope to satisfy this tenet.

4 Parting Shot and a Warning

In the summary, the authors of the 3GM say that 20 years of history show that
query language access to databases is the only way to go. But for 20 years
relational systems haven't supported CAD or multimedia applications. Object-
oriented programming is here to stay-why make application programmers deal
with multiple paradigms? Applications want to deal with objects, not structural
access to particular representations.

"Object-oriented" is a current synonym for "good" in sales literature. Re-
lational vendors are starting to advertise their products as object-oriented or
as supporting object-oriented programming. In most cases the conversion to
object-orientation was carried out more by marketing departments than by
engineering groups. (It's faster and cheaper that way.) Don't let them fool
you-BLOBS do not an OODB make.

5 Acknowledgements
Some of this was written while I was visiting at GIP Altai'r.

