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Abstract 

Signal, noise, and the signal-to-noise ratio are defined, and a Walsh basis expression 
is derived for each. Signal is a measure of the force tending towards convergence within 
a competition partition. Noise is a measure of the force preventing the partition's signal 
from having effect. The signal-to-noise ratio is a measure reconciling these antagonistic 
effects. The conjecture is made that the relative magnitudes of signal and noise determine 
the degree to which convergence occurs in each competition partition. 

1 Introduction 

Genetic algorithms (GAS) function by sampling schema fitness, but because populations of 
modest size are generally used, schema fitness variance is a primary source of stochastic noise 
which can hamper correct evaluation of building blocks (Holland, 1973; De Jong, 1975). To 
account for this effect, Goldberg and Rudnick (Goldberg & Rudnick, 1991) have derived a Walsh 
basis expression for static schema fitness variance and shown how it can be used to  perform 
static population sizing to control the probability of incorrect evaluation of building blocks. 

In this note the previous work is extended. First, the conceptual context is set in section 2. 
Then, sections 3, 4, and 5 give rigorous definitions of signal, noise, and the signal-to-noise ratio, 
respectively. For each, a static Walsh basis expression is derived. Finally, section 6 briefly 
summarizes. 

2 GAS and Noise 

Each schema may be viewed as a partial solution defined by its fixed positions. Schemata are 
organized into competition partitions - competing partial solutions, or sets of schemata fixing 
the same bit positions. Thus, every complete solution, such as a member of a GA's population, 



belongs to  exactly one schema within each competition partition. In effect, the partial solutions 
within a competition partition compete for representation in the GA's population of complete 
solutions. 

Each schema has as its schema fitness, f (h), the average fitness of its elements. The partial 
solutions within each partition will, in general, have a spread in their fitnesses, which can be 
thought of as the partition's selection pressure, or convergence signal. The greater the fitness 
spread among the partition's schemata (partial solutions), the greater the partition's signal 
strength, and the greater will be the convergence occurring within the partition. It is this 
spread in fitness which enables the GA to select for the better partial solutions in the partition. 

The GA continually operates to enrich succeeding populations with respect to the fitness of 
the partial solutions represented within the population. It does this by preferentially selecting 
individual solutions having above-average fitness with respect to the current population. When 
some partitions have strong signals while other partitions have weak signals, the GA pays 
attention (through the mechanism of selection) to the strong signals at  the expense of the 
weaker signals. In effect, the GA has only so much selection attention to  distribute among the 
various competition partitions. 

Thus from the point of view of a particular partition, all other partition's signals contribute 
to noise competing with its signal. The net effect is that the 'signal' from partitions with weak 
signals is lost among the loud 'noise' from partitions with strong signals. This happens when 
the difference between the strong and weak partition signals is large relative to the size of the 
population. 

3 Signal 

Schema fitness variance, or collateral noise, may be expressed as 

-2 
where f 2(x) and f (x) are averages over h. 

Define the measure of the force tending toward convergence within a competition partition 
as the square root of the variance of the schema fitnesses of the schemata within the partition, 
and c d  it the partition signal strength, S(J) ,  or in mathematical form, 

The reason for the squaring is that variance is itself a squared measure. 
Restating equation 3.2 in terms of the variance expression given in equation 3.1, 

where h varies over the schemata in J. Tackling the first term in equation 3.3, 

from the definition of the mean, where IJI is the number of schemata in J. Substituting the 
expression for f (h)  from the Walsh-schema transform for a uniform population (Bethke, 1981; 
Goldberg, 1989), - 



where J;(h) is the standard Walsh-schema transform index set generated by replacing t s  with 0s 
in each schema template of each schema in h's partition, and interpreting the resulting binary 
strings as integers. Expanding the quadratic yields 

The two-dimensional Walsh function, +jlk(h), may be defined as the product of two one- 
dimensional Walsh functions, or 

where subscripts identify bits and *s in h are replaced by 0s. Note that all schemata within a 
single partition share the same index set, i.e., Ji(hj) = Ji(hk) for all hj ,  hk E J. Thus, the same 
Walsh coefficient products occur IJI times in the outer summation, but with possibly different 
signs due to the action of +j,j,k(h). In fact, because of the orthogonality of the Walsh basis and 
because each partition covers the genome space (the space of all genotypes), when j + k an 
equal number of plus and minus terms occur for each Walsh product pair, wjwk, resulting in 
the elimination of all off-diagonal products. Thus, equation 3.6 reduces to 

where J;(J) has been substituted for J;(h) by noting that all schemata in the same partition 
share the same index set. 

The last term of equation 3.3 may be expanded analogous to  equations 3.4, 3.5, and 3.6, 
resulting in 
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Likewise, because J covers the space of all possible genotypes and Walsh functions are orthog- 
onal, equation 3.9 simplifies to 

as it must since the average of the averages of equal sized partition elements is simply the 
average of the underlying space, which for genome space is wo. 

A Walsh expression for a partition's squared signal, S2(J) ,  may now be formed by substitut- 
-2 

ing the Walsh basis expressions for f2(h)  and f (h )  from equations 3.8 and 3.10, respectively, 
into equation 3.3, producing 

2 2 S 2 ( ~ )  = wj - w,. 
j~ J i ( J )  

Since wo is in every J;(J), the effect of subtracting wi is to  remove it from the equation 
altogether, which is equivalent to removing zero from the index set, and equation 3.11 may be 
restated as 



where the minus sign in the index expression denotes set difference. As an example, the squared 
signal of partition J = f f * is S2(  f f *) = wi + wi + wz. Equation 3.12 is a remarkably simple 
expression - a partition's squared signal strength is just the sum of the squares of the Walsh 
coefficients of order one or greater in the partition's index set. Further, it is completely general, 
in the sense that nothing has been assumed about the form of the fitness function. 

4 Noise 

Other partition's signals contribute to noise competing with the signal of the partition under 
consideration for the control of the GA's selection process. Define partition root mean squared 
noise, C(J ) ,  as the square root of the average of the collateral noise values for each schema in 
the competition partition under consideration, or 

1 
C 2 ( ~ )  = var( f (h)) = - var( f(h)), 

I J I  ~ E J  

where var( f (h))  is the average collateral noise among the schemata in the partition. 
Goldberg and Rudnick (Goldberg & Rudnick, 1991) derive var( f (h)) as 

where J$(h) denotes the set of index pairs for which the sum over h is nonzero, and J?(h) is 
the cross product of J;(h) with itself. Since equation 4.14 assumes the uniform population, the 
resulting expression for noise also assumes the uniform population. Substituting equation 4.14 
into equation 4.13 yields 

As with equation 3.6, and for the same reason, the off-diagonal product terms are zero and can 
thus be eliminated from the index set. Note that the remaining (diagonal) entries in the inner 
summation's index set are exactly the elements which are not in J;(J). Thus, the index set is 
J;(J),  the complement of J;(J). As in equation 3.6 the outer summation cancels against the 
1/IJ( term because each term is added (JI times, and equation 4.15 simplifies to 

Continuing the previous example, the squared noise of partition J = f f * is C2 ( f f *) = wf + 
w; f w; + wg. 

Note that signal plus noise equals a constant determined by the particular fitness function 
used, or 

S2(J )  + C2(J) = c wj". (4.17) 

Thus signal and noise can each be expressed in terms of the other, as in 



and 

Next the equations for signal and noise are combined to  give a measure of which has the 
upper hand in a particular situation. 

5 Signal-to-Noise Ratio 

The signal-to-noise ratio, R(J ) ,  is a measure reconciling the antagonistic effects of signal 
strength and noise. It is defined as 

S(J) R(J)  = - 
C(J)' 

(5.20) 

Substituting in the expressions for squared signal and squared noise from equations 3.12 and 
4.16 gives 

I 

Completing the ongoing example for partition J = f f t ,  

Note the way in which each Walsh coefficient other than wo occurs exactly once in equa- 
tion 5.21, contributing to either squared signal (the numerator) or squared noise (the denomi- 
nator). That wo, the average fitness over the entire genome, does not participate in S ,  C, or R, 
makes sense since both signal and noise are composed exclusively of combinations of variances, 
in which the genome's average fitness plays no part. That equation 5.21 is so simple is yet 
another demonstration of how the Walsh basis respects competition partitions. 

Finally, note that R(J)  is undefined for the competition partition containing order 1 sche- 
mata, since its noise is zero. Likewise, R(J)  for the competition partition whose single element 
is the order-zero schema is zero, since S(J )  = 0. 

A partition's signal, noise, and signal-to-noise ratio each induce a total order on competition 
partitions. That is to  say, each may be used to rank competition partitions into a linear sequence 
in which ties are possible. We conjecture the signal-to-noise ratio is a measure appropriate to 
reconciling the antagonistic effects of signal and noise. If true, the signal-to-noise ratio gives 
convergence order among competition partitions due to selection in the absence of operators. 
And of course, R(f f . . . f) ,  the signal-to-noise ratio of the partition fixing all positions, gives 
the net convergence force acting on the GA population. 

6 Conclusion 

We have defined signal, noise, and the signal-to-noise ratio for competition partitions. For each 
a Walsh basis expression has been derived. 

The signal-to-noise ratio has long been used in decision theory to make probabilistic state- 
ments about the likelihood of an event based on the relative magnitude of the event's signal and 



noise. Further research is needed to clarify the function of competition partition signal-to-noise 
ratio in GA convergence. 

Acknowledgments 

The authors wish to thank Kalyanmoy Deb and Dirk Thierens for useful discussions. This 
material is based upon work supported by the National Science Foundation under Grants CTS- 
8451610 and ECS-9022007 and by U.S Army Contract DASG60-90-C-0153. The first author 
acknowledges departmental support from the Oregon Graduate Institute Department of Com- 
puter Science and Engineering. 

References 

Bethke, A. D. (1981). Genetic algorithms as function optimizers (Doctoral dissertation, Uni- 
versity of Michigan). Dissertation Abstracts International, 41(9), 3503B. (University 
Microfilms No. 8106101) 

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems 
(Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 
36(10), 5140B. (University Microfilms No. 76-9381) 

Goldberg, D. E. (1989). Genetic algorithms and walsh functions: Part I, a gentle introduction. 
Complex Systems, 3, 129-152. 

Goldberg, D. E., & Rudnick, M. (1991). Genetic algorithms and the variance of fitness. Complex 
Systems. in press 

Holland, J .  H. (1973). Genetic algorithms and the optimal allocations of trials. SIAM Journal 
of Computing, 2(2), 88-105. 


