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Abstract. We describe our current ongoing work using the Coq Proof Assistant to formally prove 
the soundness of the proof decomposition rules implemented in the SMV system. Our final goal 
is not only to verify this rules, but eventually to extract the code implementing these rules, using 
the extraction mechanism of Coq. 

1 Introduction 

Model checking provides an effective method for the formal verification of finite state systems. In practice, 
however, it is limited for complexity reasons to fairly small systems. To handle larger systems, and systems 
whose state space is not finitely bounded, we can apply compositonal methods. For example, the SMV 
proof system [lo] provides a collection of proof decomposition and reduction rules that can reduce a 
proof about a complex, infinite-state system to a finite number of sub-goals that can be discharged by 
model checking. 

The philosophy behind the SMV proof system is that a special-purpose prover tailored to particular 
style of proof will be more efficient and easier to use that a general-purpose system. This has been borne 
out to some extent in the application of the system to hardware designs. For example, the system yields a 
relatively simple proof of Tomasulo's algorithm for out-of-order instruction execution, when compared to 
general purpose provers [lo]. A proof strategy based on these techniques has also been used, for example, 
to verify the implementation of a multiprocessor cache coherence protocol in low-level hardware [5]. 

However, a disadvantage of this approach is that the proof rules used by the system are considerably 
more complex in their implementation than those of a general purpose prover. Thus, a programming 
error in the implementation can easily lead to an unsoundness in the system. At present, the system 
is implemented in an ad-hoc manner in the C programming language, and in fact, numerous cases of 
unsoundness have been found in this implementation during its development.' For this reason, we have 
begun an effort to  embed the system in the Coq prover [2], and to extract an implementation of it from 
its proof of correctness. Besides improving the security of the system, this embedding may also provide 
a means of extensibility, allowing derived proof rules to be added by the user. 

Related work There is now a fairly wide literature on combining model checking and theorem prov- 
ing. Most of it concerns the integration of a model checker as a decision procedure inside a theorem 
prover [16,12,8]. A concrete problem version, (very large or infinite), is defined using the theorem prover 
specification language, and then (a proved correct) finite abstract version of the problem is submitted 
to the model checker [4,3]. 

F o r  an interesting case of an unsoundness remaining in the implementation of an- 
other theorem prover for a considerable period of time, see the draft by N. Shankar at 
http://www.csl.sri.com/shankar/shostak2000.ps.gz. 



In this work, by contrast, we propose to use a general-purpose theorem prover to derive special- 
purpose prover supporting a particular proof methodology. The prover will be derived from a proof of 
correctness of a collection of proof decomposition rules. For this purpose, we are using the Coq theorem 
prover because of its capability to specify, prove and then extract programs from proved terms [13,15]. 
This technique of program extraction has been succesfully used for the proof of small and well-known 
algorithms [14,7], and also for some non-trivial examples [6] and medium size systems [1,17]. 

2 The SMV proof system 

SMV provides a proof system based on a first-order temporal logic. The proof system is designed to 
make it as straightforward as possible to reduce a complex verification problem to a collection of "finite 
state" proof subgoals that can be discharged by a model checker. A collection of proof decomposition 
and reduction techniques are provided by the system for this purpose: 

Circular compositional rule Proofs are decomposed structurally using a "circular compositional 
proof" technique. In effect, this allows us to prove a collection of temporal propositions by mutual 
induction over time [9]. The mutual induction is required because components of a system usually must 
assume their input is correct up to time t  - 1 in order to guarantee that their output is correct at  time t. 
For example, suppose we have two tempor pr erties $l ( t )  and $2 ( t ) .  The circular compositional rule 4.. n tells us that the following inference is soun . 

Since the antecedents can be expressed in temporal logic, it is possible to discharge them automatically 
by model checking. This rule can be generalized to any number of temporal properties and also to 
"zero-delay" dependencies, provided the zero-delay dependence relation is well-founded. Typically the 
properties proved in this way are "refinement relations", specifying some desired relationship between an 
abstract reference model and an implementation. Specifying refinement maps for internal variables of the 
implementation allows the localization of proof sub-goals to small components of the implementation. 
This localization is the primary method of decomposing a complex problem into model checking subgoals 
of tractable size. 

Conservative extension The system provides a mechanism of conservative extension that supports 
definitions that are mutually inductive over time. This makes it possible, for example, to define reference 
models, and to add "auxiliary" state variables into the system. These variables are generally used to 
store some history information, and assist in writing refinement relations specifying internal system 
variables. The system verifies that the definitions are well founded in the sense that every dependency 
cycle involves a t  least one time unit of delay. 

Parameterization Another important method of decomposing the proof of a property is to introduce 
a parameter. Verifying the property for any particular value of the parameter can be done using a more 
abstract model of the system than is required to prove the general property. For example, suppose we 
wish to prove the correctness of a memory subsystem. Typically we parameterize the problem on the 
address being read a t  the current time. For any particular address, we abstract away the state of all but 
a single memory location, thus greatly simplify the verification problem. Parameterization of a property 
is accomplished using a "temporal case splitting" rule, which allows us to make the following inference: 

where v is a temporal variable of type T. That is, for each value of the parameter i ,  we must show that 4 
holds at  those times t  when v has the value i .  

Data type reduction The system has a collection of conservative abstractions that it can use to 
reduce large or infinite state spaces to small finite state spaces [lo]. These abstractions are usually relative 



to  a choice of parameter values. For example, in the verification of our memory subsystem, the parameter 
is the address currently being read. For a particular value a of this parameter, the type "address" might 
be reduced to just two values: a and an abstract value representing all the address not equal to a. A 
suitable abstract interpretation of the logic guarantees conservatism, that is, that any property proved 
in the abstract model is true in the original model. 

Exploitation of symmetry Finally, the number of parameter valuations that must be checked can 
be reduced to a tractably small number by exploiting symmetry. This is done by introducing symmetric 
data types. Type checking rules guarantee that the semantics of formulas is invariant under permutations 
of these types. This makes it possible to choose a finite set of representative parameter values for any 
given symmetric type, such that every parameter valuation can be reduced to a representative one by 
permuting the type. Thus, the combination of parameterization, data type reduction and symmetry 
makes it possible to prove properties of infinite state spaces by checking a finite number of formulas on 
finite models. A similar abstraction and case reduction technique makes it possible to prove properties 
by induction over the natural numbers [Ill. 

3 Embedding the SMV proof system in Coq 

We will now consider the problem of embedding the SMV proof system in the Coq prover, and extracting 
an implementation of it from its proof of correctness. We should first note that the entire SMV proof 
system is probably too complex to allow it to be formally derived in this way. Our intention is, rather, 
to identify a kernel of the system that can be developed formally, while the remainder of the system 
(the greater part) is developed informally. The overall system is structured roughly as shown in figure 1. 
A compiler first translates the SMV external syntax into formulas of a much simpler base logic. This 
removes many language constructs that can be viewed as "syntactic sugar". This process produces a 
specification and implementation in the base logic, as well as various control declarations. The latter, 
combined with a collection of heuristics, determine the proof decomposition, which in turn yields a set 
of finite-state subgoals to be discharged by a model checker. We intend to develop an implementation 

INPUT TEXT 

Control 
Declarations 

Compiler , 
Base logic -, 1- 

I /__I Heuristics 1 1 Decomposition 

Subgoals 

I 1 Model Checker 1 
Fig. 1. SMV system structure 

of the "proof decomposition" component of the system formally in order to provide a strong guarantee 
of security of this part of the system. One fact that should prove helpful in this regard is that we do 



not require a highly efficient implementation of this part of the system, since its run time tends t o  be 
dominated by other components. This, of course, still leaves significant security risk in other areas. Note, 
however, that  while a large part of the complexity of the system is in the heuristics, the soundness of 
the system does not depend on their correctness. Thus, while an error in this code could prove very 
frustrating for a user, i t  cannot result in "proving" a non-theorem. Therefore we consider security of this 
code t o  be of a lower priority. The model checker, on the other hand is critical to  the soundness of the 
system. Unfortunately, in this case execution efficiency is critical. Thus, it seems more practical t o  use a 
model checker implemented a t  a very low level in the C language, and to rely for security on the fact that 
the model checker is a well established technology and has been in use for a long period of time. Finally, 
the "compiler" also presents a significant security risk. Since its implementation is considerably less 
subtle than that  of the proof decomposition component, we consider it a lower priority for formalization. 

In short, we would like to  obtain a compromise that provides substantial improvement in the robust- 
ness of the system in exchange for a reasonable effort in formalization. 

4 Progress to date, and future work 

We have begun a t  semantic level (i.e., with a shallow embedding of the logic in the Coq prover), and 
have thus far proved theorems underlying the "circular compositonal" proof technique and the soundess 
of conservative extension. Some results have also been obtained regarding the symmetry reduction tech- 
nique. In order to  continue, however, it will be necessary to  reason about syntax, and thus to  provide a 
deep embedding of the logic. It remains, in addition, to  prove correctness of the parameterization and 
data  type reduction steps, as well as a variety of transformation steps that are used in the process of gen- 
erating subgoals. Our objective is t o  extract an implementation of the proof decomposition component 
of the system that inputs a specification and implementation in the base logic, and outputs formulas 
t o  be verified on finite models. At this point it is far from clear that this can be achieved. However, 
we expect that the formalization effort will a t  the very least help to  clarify the theory underlying the 
system, and may lead t o  a cleaner and more robust implementation even if we do not obtain a complete 
proof of correctness. 
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Abstract 

The extensible Markup Language (XML) opens the possibility to start anew, on a 
solid technological ground, the ambitious goal of developing a suitable technology for 
the creation and maintenance of a virtual, distributed, hypertextual library of formal 
mathematical knowledge. In particular, XML provides a central technology for stor- 
ing, retrieving and processing mathematical documents, comprising sophisticated web- 
publishing mechanisms (stylesheets) covering notational and stylistic issues. In this 
paper, we discuss the overall architectural design of the new systems, and our progress 
in this direction (http: //ww. cs .unibo . it/-asperti/HELM/home . html). 

1 Introduction 

Existing logical systems are not suitable for the creation of large repositories of structured 
mathematical knowledge accessible via Web. In fact, libraries in logical frameworks are usu- 
ally saved in two formats: a textual one, in the specific tactical language of the proof assistant, 
and a compiled (proof checked) one in some internal, concrete representation language. Both 
representations are clearly unsatisfactory, since they are too oriented to the specific applica- 
tion: the information is not directly available, if not by means of the functionalities offered 
by the system itself. This is in clear contrast with the main guidelines of the modern Infor- 
mation Society, and with its new emphasis on content. Moreover, the information provided 
by such libraries usually lacks of a satisfactory form of presentation. This is a separate, still 
parallel aspect which is undoubtedly fundamental to  achieve a significant dissemination of 
mathematical knowledge. 

The extensible Markup Language (XML, see [2]), whose aim is to  encode information 
according to its structure and content, is rapidly imposing as the main tool for representation, 
manipulation, linking and exchange of structured information in the networked age. In this 
paper we advocate the pivotal role of XML in the development of a suitable technology for 
the creation and maintenance of large repositories of structured mathematical knowledge, 
and describe the overall architectural design of the new systems. 

The feasibility of describing mathematical structures using a markup language is already 
testified by the MathML project1 [3]. The Mathematical Markup Language is an instance of 
XML for describing mathematical expressions capturing both their presentation and content. 
Although the emphasis of MathML is just on mathematical expressions, (while we are also 
concerned with different mathematical entities such as proofs, definitions, theorems, sections, 
theories, metadata and so on) MathML is an essential component of our architecture, as 
discussed in section 6 (see also [ B ] ) .  

Let us finally remark that the broad goal of the project goes far beyond the trivial 
suggestion to  adopt XML as a neutral specification language for the "compiled" versions 

lWe joined the MathML Working Group of the World Wide Web Consortium in October 1999. 



of the libraries, or even the observation that in this way we could take advantage of a lot 
of functionalities on XML-documents already offered by standard commercial tools. First 
of all, having a common, application independent, meta-language for mathematical proofs, 
similar software tools could be applied to different logical dialects, regardless of their concrete 
nature. This would be especially relevant for all those operations like searching, retrieving, 
displaying or authoring (just to mention a few of them) that are largely independent from the 
specific logical system. Moreover, if having a common representation layer is not the ultimate 
solution to all interoperability problems between different applications, it is however a first 
and essential step in this direction. Finally, this "standardization" process naturally leads to 
a substantial simplification and re-organization of the current, "monolithic" architecture of 
logical frameworks. All the many different and often loosely connected functionalities of these 
complex programs (proof checking, proof editing, proof displaying, search and consulting, 
program extraction, and so on) could be clearly split in more or less autonomous tasks, 
possibly (and hopefully!) developed by different teams, in totally different languages. 

Readers already acquainted with XML can skip section 2, where we give a brief introduc- 
tion to the language, and start directly with the general overview (section 3). 

2 The extensible Markup Language 

Perhaps, the best way to introduce XML in few lines is to take a look a t  a simple example, 
given below: 

XML gives a method for putting structured data in a text file. Roughly speaking, the 
XML specification says that a XML document is made of tags (words bracketed by '<' and 
'>'), a t t r i bu tes  (of the form name="valueU) and text. Tags are used to delimit elements. 
Elements may appear in one of the following two forms: either they are non-empty elements, 
as r ec ipe  or ingredient  (they can contain other elements or text), or they are empty 
elements, as recipetype.  

The XML specification defines a XML document to be well-formed if it meets some 
syntactical constraints over the use of tags and attributes. For example, non-empty elements 
must be perfectly balanced. For this reason, someone can think of tags of non-empty elements 
as labelled brackets for structuring the document. 

It  is remarkable that XML does not specify any predefined tag set a t  all. Rather, it 
lets the user specify his own grammar by means of a Document Type Definition (DTD), a 
document which defines the allowed tags, the related attributes and which is the legal content 
for each element. The XML specification just defines the validity of a XML document with 



respect to a given DTD. This is why XML is a meta-language that can be instantiated to a 
potentially infinite set of languages, each with its own DTD. 

For example, the document above is valid with respect to the following DTD: 

<?xml version="l.O" encoding="ISO-8859-I"?> 
<!ELEMENT recipebook (recipe)+ > 
<!ELEMENT recipe (recipetype, title, ingredient+, step+) > 
<!ELEMENT title (#PCDATA) > 
<!ELEMENT ingredient (#PCDATA) > 
<!ELEMENT step (#PCDATA) > 
<!ATTLIST step number CDATA #REQUIRED > 
<!ELEMENT recipetype EMPTY > 
<!ATTLIST recipetype name CDATA #REQUIRED > 

We can note that a recipebook tag can contain one or more r ec ipe  elements, and that 
each r ec ipe  can contain exactly one recipetype followed by exactly one t i t l e ,  a positive 
number of ingredients  and a t  least one s t e p  element. t i t l e  is an example of element 
containing text only (PCDATA). name and number are attributes of s t e p  and recipetype tags 
respectively. The keyword REQUIRED states that an attribute is mandatory, i.e. it cannot be 
omitted when using its related tag. 

References to Documents Documents and resources in general must have a name in 
order to be accessible over the Web. This is accomplished via the use of URIs (Universal 
Resource Identifiers) as defined in [lo]. A generic URI is made of a formatted (structured) 
string of characters, without any intended meaning. URLs (Uniform Resource Locators) are 
a particular kind of URI specifically designed to name resources accessed by means of a given 
protocol (for example, HTML documents are accessed via the HTTP protocol). 

As an example, let us suppose that the DTD above is stored in a document whose URI 
is bookstore : /books/recipebook. dtd;  we can associate this DTD to a XML recipe book 
adding a special prologue: 

<?xu1 version="l.O" encoding="ISO-8859-19 
<!DOCTYPE recipebook SYSTEM "bookstore:/books/recipebook.dtd"!> 
<recipebook> 

Since URIs are designed to be arbitrarily extensible, standard browsers and processing 
tools can only be required to handle URLs, while UR.Is are meant to be processed by specific 
applications aware of them. 

3 The HELM project 

The overall architecture of our project, the Hypertextual Electronic Library of Mathematics, 
is fully described in Figure 1. 

Once XML has been chosen as the standard encoding format2 for the library, we must face 
the problem of recovering the already codified mathematical knowledge. Hence, we need new 
modules implementing exporting functionalities toward the XML representation for all the 
available tools for proof reasoning. Currently, we have just written such a module only for the 
Coq proof assistant 191. In the near future, we expect that similar exporting functionalities 

2~ standard format, not a standard language!. In other words, the standardisation we are pursuing is not 
at the logical level, but a t  the technological one. 
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Figure 1: Architecture of the HELM project. 

will be provided by the developers of the other logical systems. We will describe the exporting 
issues in section 4. 

To exploit and augment the library, we need several tools to provide all the functionalities 
given by the current "monolithic" proof assistants, such as type-checking, proof searching, 
program verification, code extraction and so on. Moreover, we can use the available well- 
developed and extensible tools for processing, retrieval and rendering of XML-encoded infor- 
mation. In particular, to  render the library information, we advocate the use of stylesheets, 
which are a standard way of associating a presentation to the content of XML files. This 
allows the user to introduce new mathematical notations by simply writing a new stylesheet. 
In section 5 we shall briefly discuss our implementation of a type-checking tool, while in 
section 6 stylesheets are addressed in details. 

The user will interact with the library through several interfaces that integrate the dif- 
ferent tools to provide an homogeneous view of the functionalities. We are developing two 
interfaces, described in section 7. 

Because of the nature of the library, we have also provided a model of distribution, which 
is discussed in section 8. 

4 Exporting from Coq 

Coq [9] is one of the most developed proof-assistant, based on a very rich logical framework 
called the Calculus of (Co)Inductive Constructions (CIC). The great number of functionalities 
(proof editing, proof checking, proof searching, proof extraction, program verification) have 
made the system very big and complex. In order to work on the information encoded in such 
a system, the only practical way is that of writing a new module that extends it, gaining 
access to its internal representation. 

Finding the right information inside the system itself is not a trivial task: first of all, 
information is encoded inside the data structures of Coq and data structures change from 
one version of the system to another; secondly, the information searched is often not directly 
available. For example, when a file is loaded, its path is completely forgotten, even if this 



information could be necessary thereafter (e.g. we need it for exporting). Due to these 
difficulties, Coq has proven itself a challenging test bench for exporting information to XML. 

To do the exporting, we have written a module in which we have implemented a set of 
top-level commands that, given the name of one or more CIC objects (variables, constants, 
types or axiom definitions), generate the corresponding XML file. The choice of writing a 
module without modifying the system itself seemed to be the best one, but we had to cope 
with the problem of information not directly available a.t this level. For example, the fact 
that the file pathnames are not present has forced us to structure the exported files into 
directories during a second phase. In this further phase, when moving files, we have also 
to modify all the URIs in all the files to reflect the changes of their position. This solution 
and those to similar problems are not acceptable because they add too much complexity 
without being necessary: we hope that the exporting functionality will be integrated within 
the system itself. 

To design the module, the first difficulty has been the identification of which information 
should be exported and what should be its structure. We have chosen not to export: 

Parsing and pretty-printing rules Parsing rules should depend only on the proof engine. 
To be able to use other proof engines different from Coq we need not to rely on Coq's 
own rules. Similarly, pretty-printing rules should depend only on the users choice and 
the type of available browser. 

Tactics-related information These, too, are proof engine dependent. Moreover, we do 
not think that the tactics used to do a proof are really meaningful to understand the 
proof itself (surely, they are not the real informative content). In fact, the level of 
tactics and the level a t  which a proof should be understood are not the same: what 
some simple tactics do (as "Auto" that automatically search a proof) is not a t  all 
obvious. Moreover, the sequence of tactics used is clearly reflected in the lambda-term 
of the proof; hence it is possible to add as an attribute to a subterm the name and 
parameters of the tactic used to generate it. 

Redundant information added by Coq to the terms of CIC Coq adds in several places 
a lot of information to CIC terms in order to speed up the type-checking. For example, 
during the type-checking of an inductive definition, Coq records which are the recursive 
parameters of its inductive constructors; this information is then used during the type- 
checking of fix functions to ensure their termination. This is an example of a clearly 
redundant information, useless for browsing purposes and that could be useless also 
for other type-checkers. We have then decided to discard it accordingly to a principle 
of minimalism: n o  redundant information should be exported. If the principle were 
not followed, every time we use an XML file we would have to add checks to verify the 
consistency of the redundant information. 

Sometimes Coq also adds some non-redundant rendering information, for example when 
the user asks the system to infer a type and does not want to view the inferred type 
thereafter. This information will eventually be exported, even if this is not implemented 
yet. 

The remaining, interesting information could be structured into three different levels that 
we have clearly separated in the XML representation. The first one is the level of terms.  
Terms (or expressions) could never appear alone, but only as part of an object definition. 
In Coq the terms are CIC lambda-expressions, i.e. variables (encoded as DeBrujin indexes), 
lambda-abstractions and applications, product types and sorts, augmented with a system of 
inductive types in the spirit of the ones of Martin-Lof, comprising (co)inductive types and 
constructors, case analysis operators and inductive and coinductive function definitions. The 
whole level is extremely dependent from the logical framework. 



The second level, that uses the previous one to encode both bodies and types, is the one 
of objects. Every object is put into a different file. The files are structured into directories 
that corresponds to sections in Coq, i.e. delimiters of the scope of a variable. Sections are 
also used in Coq to structure a large theory into subtheories. In HELM, the former usage is 
retained, while theories are described in another way (see the third level). 

Constants (definitions/theorems/axioms) Constant objects of Coq are used to repre- 
sent definitions, theorems and also axioms. Definitions and theorems are syntactically 
identical and have a body and a type. The only difference is semantical: theorems 
are usually opaque (only their type is used in CIC terms) because of proof-irrelevance, 
while definitions are transparent (their body is substituted in their occurrences in other 
terms during type-checking). Axioms, instead, are constants with a type but without a 
body. We choose, during extraction, to discriminate only axioms from definitions and 
theorems, that become indistinguishable once extracted. We leave to the next level 
(that of theories) the responsibility of "marking" non-axiom constants as theorems, 
definitions, lemmas, facts, . . . 

Variables Variables have only a type and not a body. A variable behaves like an axiom 
inside the section where it is defined and as a parameter when referring to another 
object of that section. Hence, sections are used to delimit the scope of variables. 

(Co)Inductive Definitions In Coq, blocks of mutual (co)inductive definitions can also be 
defined. Each definition inside such a block has a name, a type (called arity in Coq) 
and a possibly empty list of constructors. Each constructor has a name and a type. 
A simple example is the inductive type of natural numbers whose name is nat, whose 
t,ype is Set and whose constructors are 0 of type nat and S of type (nat + nat). 

Blocks, as constants, could depend on variables; the list of variables (parameters) on 
which all the definitions in the block depend is also exported from Coq. 

Proof in progress We choose also to export unterminated proofs. As terminated theorems, 
an unterminated proof has a name, a type and a body; moreover, it has also a list of 
conjectures on which the body depends. Each conjecture has a type but not a body: 
to end the proof you must provide a body for each conjecture. 

An example of an object file describing a constant (a  theorem) can be found in appendix 
A. Another one is the following where you can see the definition of the inductive type of 
natural numbers: 

<?xml version="i. 0" encoding="ISO-8859-I"?> 
<!DOCTYPE InductiveDefinition SYSTEM "http://localhost:808l/getdtd?ur1=~ic.dtd~~> 
<InductiveDef inition noParams="Ool params=""> 
<InductiveType name="nat" inductive="true"> 
<arity><SORT value="Set"/></arity> 
<Constructor name="On> 
<REL value="ll' binder="natM/> 

</Constructor> 
<Constructor name="S1'> 
<PROD> 
<source><REL value="il' binder="natl'/> 
</source> 
<target><REL value="2" binder="natl'/> 
</target> 

</PROD> 
</Constructor> 

</InductiveType> 
</InductiveDefinition> 



Tags of the term level (PROD, REL, SORT) have all the letters capitalized. Tags of the 
object level (InductiveDef i n i t i o n ,  InductiveType, Constructor) have only the initials 
capitalized. The remaining tags ( a r i t y ,  source, t a rge t )  are only "syntactic sugar". The 
meaning of each tag is clearly understandable to people acquainted with CIC. 

The last level is the level of theories which is completely independent from the particular 
logical framework. In our idea, a theory is a (structured) mathematical document containing 
objects taken almost freely from different sections. Writing a new theory should consist in 
developing new objects and assembling these new objects and older ones into the mathemat- 
ical document. It  is during the creation of a theory that objects must also be assigned the 
particular, semantical, meaning used to classify them, for example into lemmas, conjectures, 
corollaries, etc. Obviously, each theory, that is exported to a different XML file, does not 
include the objects directly, but refers to them via their URIs. 

Theory files have also sections delimiting the scope of variable declarations: to include 
(a reference to) a definition D depending on a variable V when both reside in a section 
(directory) R, you must open, inside the theory file, a section referring to R and put inside 
it the references to V and R. A very small example of a theory file will clarify the above 
statement: 

<?xml version="l.O1' encoding="ISO-8859-I"?> 
<!DOCTYPE Theory SYSTEM "http://localhost:808l/getdtd?url=maththeory.dtd"> 
<Theory uri="cic:/coq/INIT/Logic~ 
<!-- Require Export Datatypes --> 
(DEFINITION uri="True . indl'/> 
<DEFINITION uri="False . indl'/> 
(DEFINITION uri="not.con"/> 
<SECTION uri="Con junction"> 
(DEFINITION uri='and.indM/> 
(VARIABLE uri=O1A. varN/> 
(VARIABLE uri="B . varl'/> 
<THEOREM id="idlU uri="proj 1. con"/> 
<THEOREM id=I1id2" uri="pro j2. con1'/> 

</SECTION> 
<SECTION uri=ItDis junction1'> 
(DEFINITION uri="or . indU/> 
</SECTION> 

</Theory> 

All the URIs, but that of Theory, are relative URIs; so, the absolute URI of i d 1  is 
"cic  : /coq/INIT/Logic/Conjunction/idl" . In the example you can also see the usage of 
sections to bound the scope of variables: the scope of A and B is the section Conjunction. 

It is important to note that at the theory level, sections are not used to structure the 
document into, for instance, chapters, paragraphs and so on; many kind of (XML) markup 
languages have just been developed to do so. Accordingly to the spirit of XML, our the- 
ory markup will be freely and modularly intermixed with other kinds of markup, such as 
XHTML3; so, our language will play for mathematical theories the same role of MathML 
for mathematical expressions and SVG4 for vectorial graphics. The added value of using the 
theory level (instead of directly embedding the object markup) is that, while enriching the 
semantics of the objects of the previous level, it could also be used to enforce some constraints 
as, for example, on the scope of variables or on the links between theorems and lemmas. 



The module is full working and has been used to export the whole library provided with the 
Coq System, yielding about 64 Mb of XML (2 Mb after compression). All the obtained XML 
documents are valid with respect to the DTDs developed for the three levels; we cannot show 
the DTDs here because of lack of space. 

5 Type-Checker 

In order to verify that all the needed information was exported from Coq, we have developed 
a stand-alone type-checker for CIC objects, similar to the Coq one, but fairly simpler and 
smaller thanks to its independence from the proof engine. The type-checker is now almost 
finished, lacking only the management of universes. It is the first example of a tool working 
directly on the XML encoding. 

With respect to other type-checkers (as the one of Coq), it is fairly standard but for the 
peculiar management of the environment: usually, the type-checkers are used to check whole 
theories, i.e. sequence of definitions or proofs. Each time a definition is checked, it is added to 
the environment and then it is used in subsequent type-checkings. So, every theorem is always 
checked with the same, statically defined environment5. Our type-checker, instead, is also 
used to check single objects in an environment that could not yet have the definitions required 
(e.g. the empty environment). In this case, the environment (a cache, actually) is built "on- 
demand" during the type-checking of the object: every time a reference to another object 
not present in the environment is found, the type-checking is interrupted, processing the new 
object first. Checks are introduced in order to avoid cycles in the definitions, corresponding 
to an inconsistent environment. In order to make the user understand the strange behaviors 
described in note 5, that could in theory appear more often in our model, we advocate a way 
for the user to ask the system what is the inferred universe level of each type. 

6 XSL Transformations and MathML 

XSLT [7] is a language for transforming XML documents into other XML documents. In 
particular, a stylesheet is a set of rules expressed in XSLT to transform the tree representing 
a XML document (the Document Object Model, DOM [I]) into a result tree. When a pattern 
is matched against elements in the source tree, the corresponding template is instantiated to 
create part of the result tree. In this way the source tree can be filtered and reordered, and 
arbitrary structure can be added. A pattern is an expression of XPath [6] language, that 
allows to match elements according to their values, structure and position in the source tree. 

XSLT is primarily aimed to associate a style to a XML document, generating formatted 
documents suitable for rendering purposes. Once XML is chosen as the data description 
language to encode the mathematical information, it is quite natural to use stylesheets as 
the standard mechanism to automatically generate the associated notation from a XML 
mathematical document. 
In the same way MathML can naturally be chosen as the target formatting language for 
mathematics. MathML 131 is an instance of XML for describing the notation of a math- - - 
ematical expression, capturing both its structure and content. MathML has, roughly, two 
categories of markup elements: the presentation markup, which can be used to describe the 
layout structure of mathematical notation, and the content markup, whose aim is to provide 
an explicit encoding of the underly ing mathematical structure of an expression. 

5This is almost true: a user is free to load two theories in any order, changing in this way the environment 
used during the second type-checking. Sometimes this can lead to strange behaviors, i.e. two theories that 
are correct if loaded alone could not be if loaded together. This phenomenon is due to the type-inference of 
the universe level and in particular to the creation of cycles between the universe level constraints. 



Although the target of MathML is the encoding of expressions (so it cannot describe 
mathematical objects and documents), the use of MathML presentation markup as a privi- 
leged rendering format is clearly justified by the fact of providing a standard way to enable 
mathematical expressions to be served, received and processed on the world wide web. More- 
over, its presentation part has been already implemented by several applications. 

Also, the choice of using MathML content markup as an intermediate representation 
between the logic-dependent representation of the mathematical information and its presen- 
tation is justified by several reasons: 

Even if the content markup is restricted to the encoding of a particular set of formulas 
(the ones used until the first two years of college in the United States), it is essentially 
extensible and flexible6. 

Passing through this semi-formal representation will improve the modularity of the 
overall architecture: many specific logical dialects can be mapped into the same inter- 
mediate language (or into suitable extensions of it). Moreover several stylesheets can 
be written for this single intermediate language to generate specific rendering formats. 

The characteristic of portability of MathML content markup can be exploited for in- 
stance when cutting and pasting terms from an application to another. 

This content level simplifies the structure of a CIC term: there is no more syntactic 
sugar, but only "pure expressions". 

We can capture the semantics of well-known terms, as for example the disjunction, 
marking them with the corresponding content elements (e.g. or).  

--------.-----.--------- -------.--.-----.------- 
CIC XML TERMS 

HTML 

Figure 2: Transformations on the first two levels of CIC XML files: the backward arrows 
represent links from the content and presentation files to the corresponding CIC XML files. 

As you can see in Figure 2, there are two phases of stylesheets application: the first 
generates the content representation from the CIC XML one; the second generates from 
this intermediate representation two (and eventually several other) possible kinds of output 
format, either the MathML presentation markup or the HTML markup. We can immediately 
note that MathML content can only describe CIC terms (expressions) and so we have had 
to add a second language to describe CIC objects in the intermediate step. Every obtained 
document is valid with respect to the corresponding DTD developed for it; in particular, we 
use the DTD recommended by the last MathML specification. 

This is an example of content markup7: 

6The most important element for extensibility purposes is csymbol, defined for constructing a symbol 
whose semantics is not part of the core content elements provided by MathML, but defined externally. 

?This fragment belongs the example of content file in Appendix A. 



During the realization of the content stylesheets, we have had to face and solve several 
problems connected to the MathML specification: 

Objects in general, cannot be considered as terms. Hence, we have added to the 
MathML content markup a XML level to describe the level of objects (the mixing will 
be possible using the W3C namespaces [4]). Anyway, this language is still dependent 
on the particular logical framework. 

We need to semantically describe in content markup not only entities defined in CIC, as 
the conjunction, but also the primitive CIC operators, as the application or the lambda 
abstraction. When encoding the entities, MathML markup could be really exploited. 
To preserve their formal semantics, we keep pointers to the XML files of their CIC 
definitions. With regard to most CIC operators, there are no specific MathML content 
markup elements. To solve this problem we use the csymbol element. In particular, 
we have chosen to introduce also a csymbol for the CIC application (see the example 
above) instead of using the content element apply. The MathML application is the 
general way of building up a mathematical expression, and so it is different from the 
CIC application. We want to make a clean semantical distinction between the logical 
application between two terms, and the "application" of some operators (like the sin 
function) to its arguments. 

As you can see in Figure 2, we produce MathML content and presentation in two distinct 
steps. The only way to combine and link together content and presentation in compliance 
to the MathML specification consists of using the semantics element. This content element 
is quite ambiguous, a kind of "bridge" between content and presentation; moreover, it is 
currently ignored by all the browsers supporting MathML. For us, a natural improvement 
should consist of having content and the associated presentations in different files, one for 
the content expression and one for each presentation. Then we need to relate a presentation 
expression and subexpressions to the respective content expression and subexpressions. This 
can be achieved in a standard way using the machinery of XLink [5] .  

The above solution can also be exploited for the implementation of the links of Figure 2 for 
linking the content and presentation markup to the corresponding source CIC XML terms. 
In this way the user can browse the MathML presentation and also modify it: the changes 
will have effect on the corresponding CIC XML file. 

An example of MathML presentation markup generated after the second phase iss: 

BThis fragment belongs the the example of content file in Appendix A. 



To generate the presentation markup from the corresponding content markup, we use, 
among others, a stylesheet, compliant with the last specification of MathML, written by 
Igor Rodionovg. This stylesheet, written in collaboration with the MathML Working Group, 
transforms MathML presentation markup in MathML content one. Here, we want to stress 
that the possibility to re-use work done by other people is an essential aspect of the our 
general methodology of work. 

We have had to solve several problems regarding the presentation output: 

We have had to associate an output to every object and to every csymbol defined in 
the content phase. 

We have modified the MathML stylesheet to implement the policy of line-breaking and 
alignment for long terms: our choice consists of using tables made of multiple rows. 
The mtable element is specifically designed to arrange expressions in a bi-dimensional 
layout and in particular it provides a set of related elements and attributes to achieve 
proper alignment and line-breaking. Our policy consists of breaking expressions only 
in specific points and only when the row length exceeds a threshold (that could make 
the reading difficult), generating tables for alignment purposes. 

MathML is not the only format exploited: another presentation format is HTML, due 
to the wide-spreading of browsers for it and its native hypertextual nature. Thanks to the 
modular architecture (see Figure 2) ,  many others could be added too. 

gComputer Science Department of the University of Western Ontario, London, Canada. 



We will exploit the same modular architecture of the object level at  the level of theories. 
At this level we can use the same presentation formats of the previous levels; on the contrary, 
there is no standard language for describing theories at  the content level. So we will develop 
a new (XML) language that will be largely independent from the specific foundational di- 
alect and could aspire to become a standard in the same way MathML is for mathematical 
expressions. 

7 Interfaces to HELM 
Two of the main goals of the project are the easiness in augmenting and browsing the library: 

1. Every user with a small amount of http or FTP space should be able to publish a 
document. 

2. Every user with a common browser should be able to browse the library. 

To fulfill these aims, we must face the actual state of technology: 

1. Currently, almost all of the Internet users have a web space, but usually without being 
allowed to run any kind of program on the server, even simple CGIs. So no intelligence 
call be put on the publisher side. 

2. The browser technology is rapidly evolving in such a way that we can expect in a few 
time to have browsers able to understand MathML and, probably, even to apply XSLT 
stylesheets. At the same time, though, if we require the browser to be standard, then 
we have to put the intelligence on the other side, i.e. on the server. 

Therefore, where can we put the intelligence? A first answer is the creation of presentation 
sites able to get documents from distribution sites, process them (e.g. applying stylesheets) 
and return them to the users in the user requested format. We have been able to create 
presentation sites based on Cocoonlo, a XML server-based web-publishing framework. In a 
future work ([8]) we will describe in details how we have done this. 

Though this solution is perfect for browsing and doing simple elaborations, it gives the 
user too strict interaction possibilities, which are required for more complex tasks (as the 
creation of new theories, for example). Hence, more advanced interfaces with such capabilities 
are required. These interfaces must be run on the user's machine and should, at  least, be 
able to provide all the processing functionalities of the presentation servers, including XSLT 
stylesheets application. At the same time, they should also overcome the limitations of 
standard browsers through the addition of new interaction possibilities. 

Since our preferential browsing language will be MathML, our interface should a t  least be 
able to render its presentation markup. Unfortunately, there are no satisfactory implemen- 
tations available yet. Moreover, we need also to interact with the MathML rendered files, 
for example for editing. Not only forms of interaction with this kind of markup have never 
been proposed before, but we also need to reflect the changes on the source files of the XSLT 
rendering transformations. This has lead us to the development of a brand new engine with 
rendering and editing capabilities for documents embedding MathML presentation markup. 
This engine is designed to be stand-alone and will be made freely available as a Gtkl1 widget. 

We have just integrated our widget, the type-checker and an external XSLT processor 
into a minimal interface that we are going to extend with editing functionalities. 

10http://xml.apache.org/cocoon 
"http://www.gtk.org 



8 The model of distribution 

Mathematical documents have some peculiar properties. First of all a mathematical docu- 
ment should be immutable: the correctness of a document A that refers to a document B can 
be guaranteed only if B does not change. Notwithstanding this, new versions of a mathemat- 
ical document could be released (for example if a conjecture is actually proved). Secondly, 
a user cannot be forced to retain a copy of his document forever, even if other documents 
refer to it. So, it should be possible for everyone to make a copy of a document and also 
distribute it. When more than a copy is available, the user could be able to download it from 
a particular server (for example, from the nearest one). This implies that documents could 
not be referred to via URLs, but only with logical names in the form of URIs. A particular 
naming policy should then be adopted to prevent users to publish different documents under 
the same URI. 

To fulfill these requirements, we have adopted almost the same model of distribution of 
the Debian packaging system APT1' that has similar requirements (a  package could not be 
modified, but only updated, it is available on different servers, could be downloaded from the 
user preferred server). 

Every document is identified by an URI. "cic:/coq/INIT/Datatypes/nat. ind" is an 
example of such an URI that references an inductive definition (".indW) in the subsection 
Datatypes of the subsection INIT of the section coq. 
Similarly, the URI " theor ies  : /coq/INIT/Datatypes .theoryn refers to the mathematical 
theory named Datatypes located in the subdirectory INIT of the directory coq. 

In order to translate the URI to a valid URL, a particular tool, named getter, is needed. It 
takes in input an ordered list of servers and an URI and returns the URL of the document on 
the first server in the list providing it. In order to know which documents a server provides, 
each server publishes a list of the URIs of its documents with the respective URLs. 

During the processing of an XSLT stylesheet, the processor must be able to open some 
documents, i.e. it should be able to ask the getter to resolve the URIs it needs. There 
is no standard way to tell the XSLT processor how to resolve URIs or concatenate ex- 
ternal programs to do this. So, we have implemented the getter as an HTTP proxy- 
daemon reachable through a known URL that takes the URI as a CGI parameter, downloads 
the document using the resolved URL and returns it. An example of the syntax we are 
currently using to contact the getter is "h t tp :  //phd. cs  .unibo . it: 808l/get?uri="cic:  / 
coq/INIT/Datatypes/nat . ind"" 

If the getter resides on the user machine, then the downloaded document could be cached 
for improving performances. Once cached, it could also be added to the list of documents the 
server has. In such a way, often referred to or simply interesting documents fast widespread 
over the net, downloading times are reduced and the author can freely get rid of his copy of 
the document if he needs it no more. 

This architecture imposes no constraints on the naming policy: up to now we have not 
chosen or implemented one yet. To face the issue, one possibility can be the choice of 
having a centralized naming authority, even if other more distributed scenarios will surely be 
considered. 

9 Further Developments 
We are soon going to develop: 



Tools for indexing and retrieval of mathematical documents, based on meta-data specified 
in the Resource Description Framework (RDF)13. RDF uses XML to define a foundation for 
processing meta-data, complements XML and provides interoperability between applications 
that exchange machine-understandable information on the web. 

Tools for the (re)annotation of mathematical objects and terms: the intuitive meaning 
of these entities is usually lost in their description in a logical framework. Even their auto- 
matically extracted presentations in a natural language are often unsatisfactory, being quite 
different from the typical presentation in a book. We believe that a feasible solution is giv- 
ing the user the possibility of enriching terms with annotations given in an informal, still 
structured language. 

10 Conclusions 
In this paper we have presented the current status of the HELM project, whose aim is to 
exploit the potentiality of XML technology for the creation and maintenance of an electronic, 
distributed, hypertextual library of formal mathematical knowledge. 

Our ultimate goal is the extension of the library to other logical frameworks and systems. 
This will also be an important test bench for the whole architecture. 

Another fundamental improvement would be the development of new modular proof en- 
gines, supporting step-by-step informal annotations on proofs in natural language (see [8] for 
a deeper discussion of this topic). 
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11 APPENDIX A 
Cic Xml file: 

<!DOCTYPE ETML SYSTEM "http://localhost:808l/getdtd?url=cic.dtd"> 
<Definition name="projl" params="O: A B"> 
<body> 
<LAMBDA> 
<source> 
<APPLY> 
<MlJTIND notype="O" uri="cic:/coq/INIT/Logic/Conjunction/and.ind"/> 
<VAR reluri="O,A"/> 
<VAR reluri="O,B"/> 

</APPLY> 
</source> 
<target binder="E1'> 
<APPLY> 
<CONST uri="cic:/coq/~~I~/~ogic/Conjunction/and_ind.con"/> 
<VAR reluri="O,A"/> 
<VAR reluri="0,B8'/> 
<VAR reluri="O.A"/> 
<LAMBDA> 
<source><VAR reluri="O,A"/></source> 
<target binder="EO1'> 
<LAMBDA> 
<source><VAR reluri="O,B"/></sourca> 
<target binder="Bl"><REL binder="HO" value="2"/></target> 

</LAMBDA> 
</target> 

</LAMBDA> 
<REL binder="H" value="l"/> 

</APPLY> 
</target> 

</LAMBDA> 
</body> 
<type> 
<PROD> 
<source> 
<APPLY> 
<MUTIND notype="O1' uri=" cic:/coq/INIT/Logic/Conjunction/and.ind"/> 
<VAR reluri="O,A1'/> 
<VAR reluri="O ,B1'/> 

</APPLY> 
</source> 
<target><VAR reluri="O,A"/></target> 

</PROD> 
</type> 

</Definition> 



Corresponding content file: 

<?xml version="l. 0" encoding="UTF-a"?> 
<Definition name="proj 1" xmlns :m="http: / / w w .  w3. org/1998/Math/FlathML"> 
<Params>O: A B</Params> 
<body> 
<m: math> 
<in: lambda> 
<m: bvar> 
<m:ci>ii</m:ci> 
<m:type> 
<m: apply> 
<m:and definitionURL="cic:/coq/INIT/Logic/Conjunction/and.ind"/> 
<m:ci>A</m:ci> 
<m:ci>B</m:ci> 

</m:apply> 
</m:type> 

</m: bvar> 
<m: apply> 
<m:csymbol>app</m:cspbol> 
<m:ci definitionURL="cic:/coq/INIT/Logic/Conjunction/and_ind.con">and~ind</m:ci> 
<m:ci>A</m:ci> 
<m:ci>B</m:ci> 
<m:ci>A</m:ci> 
<m: lambda> 
<m:bvar><m:ci>HO</m:ci><m:type><m:ci>A</m:ci></m:type></m:bvar> 
<m: lambda> 
<m:bvar>~m:ci>Hl</m:ci><m:type><m:ci>B</m:ci></m:type></m:bvar> 
<m:ci>HO</m:ci> 

</m: lambda> 
</m:lambda> 
<m:ci>H</m:ci> 

</m:apply> 
</m:lambda> 
</m:math> 

</body> 
<type> 
<m: math> 
<m: apply> 
<m:csymbol>arrou</m:csymbol> 
<m: apply> 
<m:and definitionURL="cic:/coq/INIT/Logic/Conjunction/and.ind"/> 
<m:ci>A</m:ci> 
<m:ci>B</m:ci> 
</m:apply> 
<m:ci>A</m:ci> 

</m: apply> 
</m: math> 

</type> 
</Definition> 



Corresponding presentation file: 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD IITHL 4.0//EN1' "http://uww.u3,org/TR/REC-html40/strict.dtd"> 
<m:math xmlns:m="http://uuu.w3.org/l998/Math/MathML"> 
<m:mtable align="baseline 1" columnalign="left" equalrous="false"> 
<m:mtr> 
<m:mtd><m:mrow><m:mtext>DEFINITION projl0 OF TYPE</m:mtext></m:mrov>c/m:mtd> 
</m:mtr> 
<m:mtr> 
<m:mtd> 
<m:mrow> 
<m:mphantom><m:mtext>~~</m:mtext></m:mphantom> 
<m: semantics> 
(m: IIVOV> 

<m:mo stretchy="false">(</m:mo> 
<m:mrow> 
<m:mi>A</m:mi> 
<m:mo><mchar name="uedge"></mchar></m:mo> 
<m:mi>B</m:mi> 
</m:mrow> 
<m:mo color="Blue">trarr;</m:mo> 
<m:mi>A</m:mi> 
<m:mo stretchy="f alse">)</m:mo> 
</m:mrow> 
<m: annotation-xml encoding="MathML1'> 
<m: apply> 
<m:csymbol>arrow</m:csymbol> 
<m:apply> 
<m:and definitionurl="cic:/coq/INIT/Logic/Conjunction/and.ind"/> 
<m:ci>A</m:ci> 
<m:ci>B</m:ci> 

</m:apply> 
<m:ci>A</m:ci> 
</m:apply> 
</m:annotation-xml> 

</m:semantics> 
</m:mrou> 
</m:mtd> 
</m:mtr> 
~m:mtr><m:mtd~<m:mrov>cm:mtext>AS</m:mtext></m:mrow></m:mtd></m:mtr> 
<m:mtr> 
<m: mtd> 
<m: mrou> 
<m:mphantom><m:mtext>~~</m:mtext></m:mphantom> 
<m:semantics> 
<m:mrow> 
<m:mo color="Red">Plambda; </m:mo> 
<m:mi>H</m:mi> 
<m:mo>:</m:mo> 
<m:mrov> 
<m:mi>A</m:mi> 
<m:mo><mchar name="wedge"></mchar></m:mo> 
<m:mi>B</m:mi> 
</m: mrou> 
<m:mo>.</m:mo> 
<m:mrow> 
<m:mo stretchy="false">(</m:mo> 
<m:mi>and-ind</m:mi> 
<m:mphantom><m:mtext>~</m:mtext></m:mphantom> 
<m:mi>A</m:mi> 
<m:mphantom><m:mtext>~</m:mtext></m:mphantom> 
<m:mi>B</m:mi> 
<m:mphantom><m:mtext>_</m:mtext></m:mphantom> 
<m:mi>A</m:mi><m:mphantom><m:mtext>~</m:mtext></m:mphantom> 
<m:mrow> 
<m:mo color="Red">Plambda;(/m:mo> 
<m:mi>HO</m:mi> 
<m:mo>:</m:mo> 
<m:mi>A</m:mi> 
<m:mo>.</m:mo> 
<m: mrou> 
<m:mo color="Red">kl~bda; </m:mo> 
<m:mi>Hl</m:mi> 
<m:mo>:</m:mo> 
<m:mi>B</m:mi> 
<m:mo>.</m:mo> 
<m:mi>HO</m:mi> 



</rn:mrov> 
</m:mrov> 
<m:mphantom><m:mtext>~</m:mtext></m:mphantom> 
<m:mi>H</m:mi> 
<m:mo stretchy="false">)</m:mo> 

</m:mrow> 
</m:mrow> 
<m: annotation-xml encoding="MathML"> 
<m: lambda> 
<m: bvax> 
<m:ci>H</m:ci> 
<m:type> 
<m:apply> 
<m:and definitionurl="cic:/coq/INIT/Logic/Conjmction/and.ind"/> 
<m:ci>A</m:ci><m:ci>B</m:ci> 

</m: apply> 
</m:type> 

</m: bvar> 
<m:apply> 
<m:csymbol>app</m:csymbol> 
<m:ci definitionurl="cic:/coq/INIT/Logic/Conjmction/and_ind.con">and~ind</m:ci> 
<m:ci>A</m:ci> 
<m:ci>B</m:ci> 
<m:ci>A</m:ci> 
<m:lambda> 
<m:bvar><m:ci>H0</m:ci><m:type><m:ci>A</m:ci></m:type></m:bvar> 
<m: lambda> 
<m:bvar><m:ci>Hl</m:ci><m:type><m:ci>B</m:ci></m:type></m:bvar> 
<m:ci>HO</m:ci> 

</m: lambda> 
</m:lambda> 
<m:ci>H</m:ci> 

</m:apply> 
</m: lambda> 

</m: annotat ion-xml> 
</m:semantics> 

</m:mrow> 
</m:mtd> 

</m:mtr> 
</m:mtable> 

</m:math> 
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Abstract. I motivate and describe work-in-progress on Proof General Kit . an evolution of the 
Proof General project. Proof General Kit introduces a new architecture for Proof General. Instead 
of the present monolithic implementation in Emacs Lisp, where each proof assistant is connected 
through a separate customization, Proof General will become a collection of pluggable commu- 
nicating components using a standard protocol. The Kit is centred around this protocol for in- 
teractive electronic proof, dubbed PGIP. The design of PGIP has been influenced by the generic 
mechanisms that Proof General presently uses to communicate with various interactive proof as- 
sistants. PGIP is a rationalization of these mechanisms, and will be proposed as an open standard 
for future proof assistants to support. Messages in PGIP are small XML documents. PGIP comes 
with an associated markup language, PGML, for representing structural aspects of concrete syn- 
tax. 
See the home page at h t t p  : //www . l f  cs . ac . uk/proof gen for more about Proof General. 

1 Introduction 

Proof General is a generic interface for interac- 
tive proof assistants, based on Emacs [I, 21. 

Proof General was first built to address the 
needs of a particular class of users. Many proof 
assistants still have a primitive command line 
interface. Even when sophisticated GUI alter- 
natives are available, it is observed that expert 
users often prefer the command line interface 
and work more effectively with it. This may be 
for several reasons: perhaps because the GUIs 
are poorly engineered, perhaps because they are 
overly restrictive or do not scale to large devel- 
opments, or simply because current experts do 
not want to change their working practices and 
spend effort on learning an interface. (For more 
opinions, see [ll]). 

Proof General targetted expert users, by fit- 
ting quite closely with their existing models of 
interaction, but making those interactions more 
effective and convenient by adding short-cuts 
and centralising development around the end 
product -the proof script. Recent improvements 
such as buttons, menus, and symbol fonts have 
made Proof General more accessible for novice 
users too. It now provides a middle ground in 

interface technology, largely text-based rather 
than graphical, but with sophisticated features 
like script management and proof by pointing 
(both inspired by the CtCoq GUI [5]), imple- 
mented in a lightweight and efficient way. Proof 
General's implementation of script management 
is particularly impressive, allowing an integra- 
tion with the file-handling system of the proof as- 
sistant. 

The strategy of targetting experts as well as 
novices has been a success. Proof General is 
now widely used in teaching as well as research, 
and in industry as well as academia. Perhaps 
the greatest and most unique aspect of the suc- 
cess of Proof General is its genericity. It exploits 
the deep similarities between systems by hid- 
ing some of their superficial differences. Just as 
a web browser presents a similar interface to dif- 
ferent protocols - http, ftp, or file, so Proof Gen- 
eral presents a similar interface to different proof 
assistants. This genericity is no empty claim or 
briefly tested design goal; the system is already 
in common use for LEGO, Coq, and Isabelle. Sup- 
port for HOL98 has recently been added. 



2 A New Architecture and that Emacs Lisp is not the best language 
for implementing some advanced aspects of the 

Although it has been a success, the present Proof . interface. To allow more generality, we envis- 
General has some drawbacks and scope for im- age a collection of alternative pluggable compo- 
provement. For example, from the user's point of nents, implemented in various languages, which 
view: can serve as user interface elements, proof assis- 

1. The Emacs-centric nature Puts off some tants, and eventually other proof tools. Second, 
people who don't use or don't like Emacs. to make this possible, we realize that the new 

2. Not enough system-specific options are 
provided, for example, to invoke common 
tactics or commands in a system. The in- 
terface degenerates to offering a command- 
line prompt for these cases. 

3. There is no allowance for interoperability 
with other tools, and only restricted facil- 
ity for internet-based distributed develop- 
ment. 

4. While Proof General presents a similar ap- 
pearance for different proof assistants, ulti- 
mately the user must be familiar with most 
commands of the underlying proof assis- 
tant. Further abstraction should be possi- 
ble. 

From the implementors point of view, Proof Gen- 
eral is not as easy to connect to proof assistants 
as we might like: 

1. Customization and extension is exclusively 
in Emacs Lisp. (Recently it has been drasti- 
cally simplified, but it still involves setting 
some tricky Emacs regular expressions). 

2. The implementor has too much choice, in a 
sense: each proof assistant is free to use its 
own communication triggers and markup 
schemes.' This makes it complicated to 
configure Proof General and inhibits com- 
munication with other tools. 

3. There is some duplication of information in 
the interface and the proof assistant, and 
some information is hard-coded into Emacs 
which would better belong in the proof as- 
sistant. 

To address these drawbacks, we propose a new 
architecture for Proof General. First, we recog- 
nize that not everybody shares a love for Emacs, 

architecture requires a common underlying inter- 
face language and interaction protocol. 

To take things further, we want to deepen the 
abstraction that Proof General provides, so that 
the logic and proof language, as well as  the in- 
teraction model, become generic. Ultimately the 
choice of logic and its syntax should fall under 
Proof General's organization, and we envisage 
implementing advanced aspects of logical frarne- 
works: a logic morphism from the core logic of 
each supported proof assistant into Proof Gen- 
eral's general form of the logic. Thus Proof Gen- 
eral would truly live up to its name: a generic 
system for doing proofs, with the underlying 
proof engine being almost a~bitrary.~ 

But that ultimate goal remains for the future; 
we prefer to build up towards it in stages. Right 
now, we are working on the first stage. 

3 Proof General Kit 
The Kit introduces a new architecture for Proof 
General. Instead of a monolithic implementa- 
tion inside Emacs, Proof General will become a 
collection of communicating components. In the 
spirit of the present system, we want to use care- 
fully designed lightweight protocols, which are 
easily supported by a range of present and future 
proof engines. The protocols and components 
will be developed in stages. The first stage is 
to develop the PGIP protocol and PGML markup 
language. 

PGIP is the protocol that we propose for com- 
municating the progress of an interactive proof; it 
is based on examining and clarifying the mech- 
anisms currently implemented. We give a short 
description in Section 4 below. 

PGML is the markup language used inside 
PGIP to annotate terms and formulae for display 

This is because we tried to make Proof General work with existing systems without requiring their modifica- 
tion. But this was only partially successful: for robustness and features like proof by pointing, it is necessary 
to modify the output routines of proof assistants anyway. 
This aspect is dubbed Logic General. Similar ideas appear elsewhere, e.g. in OMEGA 141. 
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by the interface. We give a short description in at a time, which means that it owns the current 
Section 5 below. proof de~elopment.~ The Proof Replayer is a re- 

stricted kind of input engine which only allows 
System architecture An overview of the archi- replay of previous proofs, perhaps over the inter- 
tecture of the Proof General Kit is shown in Fig- net. The Theory Browser is a component which 
ure 1. The proof assistant and filesystem are out- allows browsing of the theory store and/or the 
with the Kit; the other components are part of the theories which are loaded into the running proof 
system. assistant. 

Notice the central role of the Mediator here: 
it interfaces the various other components to 4 PGIP 
the proof assistant and filesystem, whereas the 
other components have no direct access to ei- PGIP is a protocol for conducting interactive elec- 

ther. Only the mediator and the proof assistant tronic proof. It has other features to enable the Kit 

use operating system calls to access the file sys- architecture, for example, various querying oper- 

tem (or internet) theory store. This separation al- ations on the filesystem or running proof assis- 

lows the Mediator to organize the synchroniza- tant. 

tion messages needed for script management. At Ultimately we hope that PGIP will be adopted 

the start of the project, the Mediator is even more as a standard by proof assistant implement or^;^ 

important, because it provides extra interfacing the benefit to them will be that they can connect 

mechanisms to connect to the proof a~s i s t an t .~  off-the-shelf interfaces, and with less effort than 

This is because we begin from proof assistants it takes to connect to Proof General currently. 

which do not natively or fully handle PGIP, ex- Essentials PGIP makes certain assumptions 
plaining the PGIP~A label on the arrow. about the way proof is conducted with a proof 

The remaining components are examples assistant. The essential aspect is that proof pro- 
only. In a particular session we might connect ceeds in steps, and that the proof assistant can 
several Display Engines (perhaps running re- be "fed" a step at a time, without needing to see 
motely, or displaying different aspects). Only one the whole proof. So we assume that the proof as- 
Input Engine is allowed to be active for scripting sistant itself maintains some state representing 

In the Proof General Kit white paper [3], the Mediator is decomposed into several subcomponents. 
* This is because we assume that the proof assistant is single threaded and maintains only a single proof 

state. Later on, we may treat proof assistants as a resource, and allow the Kit to connect to several at once; 
for the time being we will work within the current model of just a single proof assistant instance. 
This stands some chance, because it is being designed in conjunction with some of those very people! 



the proof development. A proof using PGIP has 
these parts: 

- Proof begins by issuing a target goal 

- Proof proceeds by successive proof steps 

- To reverse the effect of a proof step, the 
proof assistant has a command to undo. 

- A proof is closed, aborted, or abandoned 
by issuing a save-goal, quit-goal, or forget- 

with root <pgip>. We haven't yet decided on a 
particular transmission mechanism for packets. 
To begin with we are experimenting using Unix 
pipes and pseudo ttys; later we may use sockets 
and/or other mechanisms (probably http for in- 
ternet connectivity; perhaps a simple CORBA in- 
terface for desktop connectivity). PGIP messages 
are themselves structured in XML, and may con- 
tain embedded PGML. 

goal, respectively. 

We consider the goal, save-goal, and forget- 5 PGML 
goal operations to be proof steps themselves, 
whereas undo and quit-goal are not. Together, PGML is an XML-based document structure for 
the proof steps form a language for writing proof transmitting marked-up concrete syntax output 
scripts. There is much freedom on exactly what from proof assistants. 
a proof script is: for example, it may well be Most present proof assistants have their own 
a declarative rather than a procedural descrip- favourite concrete syntax and syntax defining 
tion of a proof. It matters little to Proof Gen- mechanisms, but little or no access to abstract 
eral whether scripts are forwards or backwards syntax. So we assume that the output is already 
proofs, or whether they use tactics or some more in concrete syntax; the reason to markup is to 
readable description of proof steps. The essential allow decoration of aspects of the syntax (e.g. 
aspect is that they have a textual, linear repre- special constants or variables), and also to allow 
sentation6 proof-by-pointing style interactions via subterm 

Proof scripts may have additional elements position annotations. We want to use a logical 
outside proofs, for example, to make definitions markup mechanism to make these things possi- 
or assumptions. (If definitions and assumptions ble, so that different renderers can display infor- 
are allowed inside proofs, we consider them as mation in different ways, allowing variations in 
proof steps and they must be undoable). More- fonts, colours, special characters, hidden anno- 
over, proof scripts may have additional structure tations, etc. 
both inside and outside proofs, to allow sections ~h~~~ are already emerging standards for 
or block structure which exposes some structure X M L - ~ ~ ~ ~ ~  document formats designed for dis- 
of the underlying proof tree and theory. playing mathematics (MathML, [14]), and trans- 

As well as controlling the progress of the in- ferring mathematical content between applica- 
teractive proof, PGIP is responsible for certain tions (OpenMath, [12]). Later on, we hope to use 
initialization and book-keeping tasks which re- these languages with PGML. the moment, it 
quire communication between the proof assis- is more feasible to implement our own simple 
tant and the rest of Proof General. It includes markup scheme since both M ~ ~ ~ M L  and open- 
messages to configure (proof assistant specific) Math go further into the abstract structure of 
user-level menus and preferences; messages to terms than we need, or than we can easily ac- 
display status or error dialogues, and messages commodate in a generic way. 
to retrieve theory files. Term structure annotations are an effective 

For specifics of the PGIP format including an half-way house, and can be included by those 
XML DTD, see 131. proof assistants capable of generating them. Al- 
Sending PGIP messages A PGIP message is ready for systems like Isabelle it is a highly 
sent in a "packet", which is an XML document non-trivial task to relate the abstract syntax to 

Many interfaces like to develop proofs graphically based on trees or graphs, since their authors argue that 
this is the true nature of a proof. Yet the abstract syntax of a program is also tree-based, and text-based 
linear description and development of programs is hardly obsolete. Proof General takes the linear text to be 
primary, but may later offer adjuncts for browsing or developing proofs graphically, perhaps using depen- 
dency analysis 1131 for exposing the structure of proof scripts. 



<pgml> 
<statedisplay name="Level 3" id=t1avocado.dcs.ed.ac.uk/951858790/12480/101tt> 

Level 3 (2 subgoals) 
<br/> 
<statepart kind="initialgoaltt> 

A & B - - > B & A  
</statepart> 
<br/> 
<statepart kind=ltsubgoaltl name="lI1> 1 .  

<statepart kind=ltasmstt> [ I  A ;  B I ]  </statepart> -- --> 
<statepart kind="bodyt1> A </statepart> 

</statepart> 
<br/> 
<statepart kind="subgoal" name="2"> 2.  

<statepart kind=t'asms"> [I A ;  B I ]  </statepart> 
=I> 

<statepart kind="bodytt> B </statepart> 
</statepart> 
<br/> 

</statedisplay> 
</pgml> 

Fig. 2. Example of outer structure PGML markup for Isabelle 

the concrete, and generate annotations. But we 
believe that more proof assistants will provide 
structured output in the future. 

PGML documents Here is a proof state display 
in Isabelle: 

Level 3 ( 2  subgoals) 
A & B - - > B & A  

1 .  [ I  A; B I ]  = = > B  
2 .  [ I  A; B I ]  ==> A 

In Figure 2, the skeleton of a PGML marked-up 
version of the same display is shown. Isabelle 
has a rich structure on the subgoal display, al- 
ways including the overall goal and a list of lo- 
cal assumptions for each subgoal. The PGML 
markup makes this structure apparent within 
the concrete syntax. It is simple to implement 
this markup scheme in the output routines of 
Isabelle. And with the marked-up version of the 
subgoal display, it will become easy for display 
engines to hide or reveal parts of the display, 
quickly navigate through large displays, etc. 

PGML can go a bit further into the structure 
of terms than shown in Figure 2, in particular us- 
ing these elements: 

Terms The purpose of <term> is to add enough 
structure to annotate subterm position informa- 
tion, for mouse-sensitivity and proof-by-pointing 
actions. The pos annotation achieves this; typi- 
cally it is a position indicator in the abstract syn- 
tax tree corresponding to the surounding term. 
The position is not displayed or interpreted by 
the display engine, but should be recoverable by 
mouse pointing, so that it can be sent back to the 
proof engine. 

Actions Terms may have action texts attached 
to them. Zero or more <action> texts appear im- 
mediately after an operning <term>. The idea 
behind actions is that they allow additional hid- 
den annotations which may be revealed to the 
user (e.g. typing information, proof hints), or 
used to generate commands to the proof assis- 
tant to allow fine-grained proof-by-pointing style 
interactions. 

Atoms Atoms in terms can be decorated by 
the display engine to indicate their logical status 
and to attach extra information. The logical sta- 
tus is suggested by the kind name, which may 
be used by the display engine to generate differ- 
ent colours or balloon popups. It is appropriate to 



use different kinds when the atom is named from 
a distinct namespace (e.g. if we want to help the 
user distinguish between a variable "x" and a 
constant "x"). 

Symbols Proof General at present can use the 
XEmacs package XSyrnbol [I51 to display a vari- 
ety of mathematical symbols, Greek letters, etc, 
which are not part of ASCII. PGML will allow 
these extra characters to appear via the <sym> 
tag. 

For specifics of PGML and a DTD, see 131. 

6 Design and Engineering 
Careful design and good engineering are both 
important to achieve a usable system. And even 
when building research prototypes, we believe 
that software quality deserves serious attention. 

One design question for a framework like 
PGIP is where to make the split between inter- 
face and proof engine. One might expect the part 
of the system which records the state of the proof 
development to be closely coupled to the inter- 
face, where it is always manipulated; perhaps 
with a functional API for constructing proofs in 
the engine. But experience with Proof General 
shows, perhaps surprisingly, that the stateful de- 
velopment mechanisms already implemented in 
diverse provers are compatible enough to have 
a generic interface at a higher level, sending 
proof commands. This is more efficient, since the 
data structures associated with proof develop- 
ment (e.g. list of current subgoals) are rather 
closely coupled with the proof engine. This ex- 
plains the form of PGIP described in Section 4. 

An engineering factor that seems important 
in the success of Proof General is the incremental 
way it has been constructed, by successive gen- 
erali~ation.~ It began as "LEG0 mode", an inter- 
face for one system. Then support for Coq was 
added, generalizing to "Proof Mode". In the last 
couple of years, support for Isabelle was added, 
generalizing further, and giving birth to "Proof 
General." Each stage of generalization involved 
a mix of modifying and re-engineering the basic 
core of the system, and adding new features, all 
the while carefully maintaining support for pre- 
vious proof assistants. This process is synergis- 
tic: supporting a new system typically improves 

support for the other systems. Features which 
are useful or easy to add for the new system 
get added back to previous systems, as innova- 
tions there; a direct and novel cross fertilization 
method. 

We hope that this engineering approach can 
help the future success of Proof General Kit. That 
is why we start from a restricted and "bottom 
up" plan, rather than a "grand design" prornis- 
ing the world. It means we can refine and extend 
a series of useful working prototypes, rather than 
struggle for a long time on something unwieldy. 

7 Conclusions 
We have described and motivated ideas for the 
Proof General Kit. At the moment, we are at an 
early stage, conducting experiments and apply- 
ing for funding. More details of what was de- 
scribed here appear in the white paper 131, which 
is being discussed on the Proof General devel- 
oper's mailing list. Just now, we are consider- 
ing the viability of PGIP for handling interaction 
methods other than text-based script process- 
ing; in particular, we hope to connect to a generic 
direct manipulation interface developed at the 
Universities of Bremen and Freiburg [lo]. 

I welcome feedback and discussion on this 
paper and 131. For information about the Proof 
General project or to try Emacs Proof General 
visithttp://www.lfcs.ac.uk/proofgen. 

Related work Interoperability is in the fashion, 
and several folk in the theorem proving commu- 
nity are taking it seriously. Other diverse projects 
include OMEGA 141, OMRS [8], Prosper [6] and 
HELM 171. Compared to these, Proof General Kit 
has a rather different focus, concentrating on 
protocols for use during interactive proof, rather 
than communicating or storing semantic con- 
tent. That said, we hope to consider semantic 
content as an extension to PGIP in the future, 
perhaps linking up to one of the other projects. 
Another difference of the projects mentioned is 
that most grew from other communities, which 
favour different proof assistants to the ones we 
are working with. But seems that the interoper- 
ability drives are making some links between the 
theorem proving cliques, at last, and we hope 
that Proof General Kit will add to this. 

This is reminiscent of a product line architecture in sc 3ftware engineering. 
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Reasoning about Order Errors in Interaction 
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Abstract. Reliability of an interactive system depends on users as well 
as the device implementation. User errors can result in catastrophic sys- 
tem failure. However, work from the field of cognitive science shows that 
systems can be designed so as to completely eliminate whole classes of 
user errors. This means that user errors should also fall within the re- 
mit of verification methods. In this paper we demonstrate how the HOL 
theorem prover [7] can be used to detect and prove the absence of the 
family of errors known as order errors. This is done by taking account 
of the goals and knowledge of users. We provide an explicit generic user 
model which embodies theory from the cognitive sciences about the way 
people are known to act. The user model describes action based on user 
communication goals. These are goals that a user adopts based on their 
knowledge of the task they must perform to achieve their goals. We use 
a simple example of a vending machine to demonstrate the approach. 
We prove that a user does achieve their goal for a particular design of 
machine. In doing so we demonstrate that communication goal based 
errors cannot occur. 

1 Introduction 

People commonly make mistakes when interacting with computer-based devices. 
Whilst some errors cannot always be prevented, such as those caused by users 
behaving randomly and maliciously, there are whole classes of error that have 
distinct cognitive causes and are predictable 1131. Furthermore, changes t o  the 
design of systems can eliminate such errors [9,3]. Formal verification aims t o  
either detect system errors or show their absence. If user errors can be eliminated 
using appropriate design then their detection ought t o  be within the remit of 
formal verification methodologies. However, formal verification is generally done 
in a machine-centered way. A consequence is that avoidable user errors are not 
detected or corrected as part of the verification process. 

In this paper, we describe a verification methodology for detecting user er- 
rors. Our approach is t o  formally model rational users as part of the system being 
verified. We focus here on errors resulting from a mismatch between the device 
design and the order a user expects to  supply information or objects. This ex- 
tends earlier work concerning a different class of errors known as post-completion 
errors [5]. Our verification approach is capable of detecting both classes of error 
simultaneously. The verification described has been fully machine-checked using 
interactive proof with the HOL theorem prover 171. 



We define a generic user model that can be instantiated for different ma- 
chines. This user model describes rational user behaviour based on established 
results from cognitive science [ l l ] .  The verification approach therefore detects 
rational user errors. This differs from similar approaches in which the environ- 
ment of the machine is specified to provide the input required (treating users 
as logical as opposed to rational agents). With such an approach user errors are 
treated as never occurring. Our approach is also different from assuming that 
the environment could perform any action a t  any time (users as "monkeys at  
keyboards"). That would amount to saying that whatever the user's goal and 
whatever actions they perform, they will eventually achieve the goal. This is not 
appropriate for interactive systems as the functionality of such a system would 
need to be trivial for it to be considered "correct". Instead, our approach recog- 
nises that users are important but do not act randomly. The user is described in 
terms of the things they wish to achieve; the actions they may perform in order 
to achieve those goals and in terms of the device-independent knowledge they 
have about the task. We are interested in eliminating errors from systems that 
occur when users act in this way as such errors are liable to be persistent. 

2 Formal User Modelling 

There are, broadly speaking, two main approaches to formal reasoning about 
the usability of systems. One approach is to focus on formal specification of 
the user interface; Campos and Harrison [4] review several techniques that take 
this approach. However, such techniques do not support reasoning about errors. 
The alternative, which we take in this work, is based on formal user modelling. 
This involves generating a formal specification of the user in conjunction with 
one of the computer system, in order to support reasoning about their conjoint 
behaviour. It  should be noted that a formal specification of the user is a de- 
scription of the way the user is, rather than one of the way the user should 
be, since users cannot be designed in the way that computer systems can [I]. 
Examples of formal user modelling include the work of Duke e t  a1 [6], Butter- 
worth e t  a1 [2], Moher and Dirda [lo] and Paterno' and Mezzanotte [12]. Each 
of these approaches takes a distinctive focus. Duke et a1 [6] use a mathematical 
notation to express constraints on the channels and resources within an inter- 
active system; this makes their 'syndetic modelling' technique particularly well 
suited to reasoning about multi-modal interaction (such as that combining the 
use of speech and gesture). Butterworth e t  a1 [2] use Lamport's [8] TLA to rea- 
son about behaviour traces and reachability conditions within an interaction; 
this approach describes behaviour at an abstract level that does not support 
re-use of the user model from one computer system to another, so while it can 
support reasoning about errors, each model has to be individually hand-crafted. 
Moher and Dirda [lo] use Petri net modelling to reason about users' mental 
models and their changing expectations over the course of an interaction; this 
approach supports reasoning about learning to use a new computer system - 
which, in turn may be an important source of errors, but focuses on changes in 



user belief states rather than proof of desirable properties. Finally, Paterno' and 
Mezzanotte [12] use LOTOS and ACTL to specify intended user behaviours and 
hence reason about interactive behaviour; their approach corresponds closely to 
that which is done in state space exploration verification, but because their user 
model describes how the user is intended to behave, rather than how users might 
actually behave, it does not support reasoning about errors. 

3 Classes of User Error 

A common form of error made by humans in a wide variety of situations is the 
Post-completion Error [3]. Examples include taking the cash but leaving a bank 
card in an Automatic Teller Machine and leaving the original on the platen and 
walking away with the copies when using a photocopier. Most ATM machines 
have been redesigned to force users to remove their cards before cash is delivered 
to avoid this problem, but the phenomenon persists in many other environments. 
There are of course other situations where a user does not complete all the sub- 
tasks associated with a main goal. For example, if a fire alarm went off whilst 
a person was using a photocopier, they might not take their original. However, 
such an error would not be a post-completion error in our sense as it would have 
a different underlying cause. A design that eliminated post-completion errors 
would not necessarily guarantee the user would not make the same surface level 
"mistake" for other reasons. 

Post-completion errors are interesting because they are not predictable (i.e. 
they do not occur in every interaction) but they are persistent. They are not 
related to missing knowledge so cannot be eliminated by increased user train- 
ing. They can, however, be eliminated with careful system design. Curzon and 
Blandford [5] illustrate the use of HOL to reason about such errors by consid- 
ering alternative device designs. Here we develop that approach by extending 
the generic user model to identify a new class of errors with a distinctive cogni- 
tive cause. In particular, we look at errors that occur when there is a mismatch 
between the design of a device and the knowledge that a user has about the 
task (independent of the particular device used to complete that task). A user 
will often know of specific information that must be communicated to any such 
device for the task to be completed. They may not know precisely how or when 
the information must be imparted to a particular machine. They thus maintain a 
mental list of communication goals: information that they must communicate a t  
some point. If the order that the information must be imparted to the machine 
is not known, or the user's mental model of the task suggests a different order 
then order errors can result. The user attempts to fulfill their goals in an order 
different to that required by the machine. 

Order errors can also arise due not to information that must be commu- 
nicated, but to objects that must be supplied: an ATM card, coins, etc. For 
example, with a vending machine, the user will know they must make a selec- 
tion of chocolate and that they must supply money, but for a given machine they 
will not necessarily know the order. If they know exactly what they want but not 



the price, they may be inclined to press the selection first (some machines would 
display the price at  this point). Alternatively, they may have the coin in their 
hand and so insert it first before working out exactly which buttons to press to 
make their selection. 

Each of the above classes of errors have distinct cognitive causes. We provide 
a verification approach that detects such errors in a structured way. Whilst we 
cannot eliminate all user errors, we can eliminate whole classes of error that have 
such specific cognitive causes. 

4 Proving Usability 

A proof of usability, in the sense that particular classes of errors cannot occur, 
involves proving a theorem of the form 

I- V(ustate: ustate-type) (mstate: mstate-type) . 
MACHINE-USER ustate mstate A MACHINE-SPEC s mstate 3 

MACHINE-USABLE us ta t e  mstate 

MACHINESPEC is a traditional machine specification: a relation over an inter- 
nal state s and inputs and outputs mstate. The latter represents the interface 
between the device and its users. States and signals are represented by history 
functions: functions from time to the value at  that time. MACHINE-USER is also a 
specification of a component of the system: the user of the device. It describes 
the actions a rational user might take based on their knowledge and goals. It  is 
a relation on an internal user state ustate and the inputs and outputs of the 
device. We will look a t  in more detail in the next section. The conjunction of 
these two relations provides a specification of the system as a whole: both device 
and user. The conclusion we prove about this combined device is not phrased 
in terms of what the device can do, or explicit properties of it. Instead it is 
a specification of whether the user achieves their goal in interacting with the 
device. 

Note that the above usability theorem is of the basic form 

I- implementation 3 specification 

It can thus easily be combined with a traditional correctness theorem that an 
implementation of the machine meets the given specification [5 ] .  

In one sense the user model fills a similar role to an environment machine 
in traditional model-checking based verification. It provides inputs to the device 
being verified. The difference is not in the fact that such an environment is pro- 
vided but in the kind of environment provided. Rather than providing values 
based on what the machine specification requires, or on other devices connected 
to the device, it is modelling the way people behave based on results from cogni- 
tive science. The user of course may not be providing all the inputs to the device. 
Thus unlike with an environment machine, the combined user-device system is 
not necessarily closed. We are treating the user as part of the system under ver- 
ification, rather than just a test rig to verify the system. The kind of errors we 



are looking for are those that result from the user component of the system, but 
which can be eliminated by modifying the device component of that system. 

5 A Generic User Model 

We could adopt the approach of providing a separate user model for each dis- 
tinct device that we wish to verify. However, this approach could lead us back 
into a machine-centered specification approach, specifying users that do exactly 
what the specific device requires of them. Moreover, we wish to detect classes 
of user error that are widespread and not just confined to specific devices. It  
therefore makes sense to provide once-and-for-all a generic user model that in- 
corporates cognitive science theory about the way people behave in general. 
Such a generic model can then be targeted to specific machines, simply by pro- 
viding details about the machine state, the user's knowledge of the task and 
their goals. Higher-order logic provides an elegant framework in which to specify 
such a generic model. It allows functions and relations providing details of a 
specific interaction to be an argument to the generic user model. For example to 
support reasoning about post-completion errors the user model contains general 
machinery regarding termination conditions. This is defined in terms of a vari- 
able representing an interaction invariant: a relation indicating the part of the 
state that should be restored for the task to be considered completed. The user 
model takes a specific instance of such an invariant as an argument. 

The generic user model is given as a relation USER over the user and machine 
states as described above. In addition however, it takes a series of other argu- 
ments representing the details of the specific machine. To instantiate the user 
model for a given machine, we must provide: 

- concrete types for the state of the machine and of the user, 
- a list of actions a user might take (inserting coins, pushing buttons, etc), 
- a history function to record the communication goals of users of the device 

at  each instant in time, 
- a list giving the user's initial communication goals, 
- a list pairing device outputs with user inputs, indicating relationships where 

the output is intended to make the user react by taking the action resulting 
in the input (for example, a light might be located next to a button, with 
the light being on indicating the button should be pressed), 

- history functions recording the possessions of the user and how they change 
over time as the interaction progresses, 

- a history function recording when the user terminates the interaction (by 
leaving the device) together with that signal's position in the list of possible 
actions, 

- the goal users of the device are trying to achieve, and 
- a history function describing an interaction invariant that should hold both 

at  the start and end of the interaction. 



We will discuss each of these in more detail below as we describe the definition 
of the user model. 

The core of the user model is a series of temporally guarded statements 
about possible actions a rational user might take. For example, one disjunct is 
associated with each of the paired lights and actions, reflecting the fact that a 
rational user could react to a light coming on by pressing the associated button. 
This is specified by: 

k LIGHT user-actions l i g h t  action ppos (mstate: 'm) t = 
( l i g h t  mstate t = T) A 
NEXT user-actions (action mstate) ppos t 

This states that if the light is on at a time t then the next action performed by 
the user from the list of possible actions u s e r a c t i o n s  will be the one paired 
with the light (act ion).  Since this is just one clause of a list of disjuncts, it is not 
guaranteed that the action will be taken. A recursive definition LIGHTS forms a 
disjunct of all the pairs in the given list of lights and actions. Note that mstate 
(similarly ustate) has a polymorphic type in this and the other definitions of this 
section representing the fact that we are defining a generic user model that can 
apply to machines and users with different states. 

The relation NEXT specifies the next action to occur. To define it we first 
define relations LSTABLE and LF. The former is used to specify that the signals 
do not change in some interval. The latter then states that at  the end of that 
interval all but one of the signals remains false. 

More formally, LSTABLE is a temporal operator that states that all the history 
functions in the given list have a value v between the start and end time. 

k (LSTABLE [I tl t 2  v = T) A 
(LSTABLE (CONS a 1) tl t 2  v = 

(Vt. t l  <= t A t < t 2  3 (a t = v)) A 
(LSTABLE 1 t l  t 2  v ) )  

LF states that all but one of the actions in the list (that indicated by position 
ppos) are false at  a given time. This is defined recursively on the action list. 

k (LF n [I P ppos t = T) A 
(LF n (CONS a 1) P ppos t = 

( ( (n = ppos) V - (a  t )  ) A (* miss the numbered s ignal  *) 
LF (n+l)  1 P ppos t ) )  

Note that we can not simply use a list MEMBER function here as it would 
check whether the values in the list were equal to one being checked. We wish to 
identify a specific action, not the value of an action. In the absence of a syntax 
for user actions, we use the position in the list to identify the action. 

NEXT uses the above definitions to specify that there is a time later than that 
given when the action identified by the position occurs (its history function is 
true), the other actions do not occur (their history functions are false), and for 
which all the actions do not occur in all the intervening time instances. 



I- NEXT a1 P ppos t i  = 
3 2 .  t l  <= t 2  A (LSTABLE a1 t l  t 2  F) A (LF 0 a1 P ppos t 2 )  A (P t 2 )  

If the temporally guarded statements that make up the user model were based 
only on the pairs of lights and actions as defined above, we would be specifying 
a reactive user who did exactly what was required. However, other clauses are 
included to reflect rational behaviour based on user goals and knowledge. The 
first such disjunct describes the fact that a rational user may terminate the 
interaction on achieving their goal. If this action is taken, before the user's 
interaction invariant is restored, a post-completion error is made. 

COMPLETION user-actions f in ished finishedpos goalachieved ustate  t = 
(goalachieved ustate  t = T) A 
NEXT user-actions (f inished ustate)  f inishedpos t 

In this paper we are primarily concerned with errors that result from devices not 
taking communication goals of users into account. For more detail of verification 
of designs with respect to post-completion errors see [5]. 

As discussed earlier, a user of a device generally enters into an interaction 
with some knowledge about the task. Specifically they are likely to know of some 
of the information that must be communicated to the device, because they know 
the task cannot be completed, whatever the device design, unless it receives this 
information. They will not necessarily know the order the information must be 
communicated, however. 

We model this using a list of actions, corresponding to the communication 
goals. We first extract the communication goal list from the user state for the 
time of interest. This allows COMMGOALS to be defined recursively on that argu- 
ment. 

I- COMMGOALER user-actions actions goal ustate  mstate t = 
COMMGOALS user-actions (actions ustate  t )  goal ustate  mstate t 

This gives a list of communication goals with their position in the list of all 
possible actions the user could perform. We recurse on this list to  produce a list 
of action disjuncts based on the communication goals. 

1- (COMMGOALS userac t ions  [I goal ustate  mstate t = F) A 
(COMMGOALS user-actions (CONS a actions)  goal  ustate  mstate t = 

((COMMGOALS user-actions actions goal ustate  mstate t )  V 
(COMMGOAL user-actions (FST a) (SND a) goal ustate  mstate t ) ) )  

COMMGOAL describes a temporally guarded action similar to LIGHT and COMPLETION 
given earlier. A separate relation is defined for this for consistency throughout 
the user model: each guarded action is given by a similar definition. Provided 
the user's main goal has not yet been achieved, the next action they will take if 
this disjunct is activated (i.e. true) is the given communication goal. 

I- COMMGOAL user-actions action n goal ustate  mstate t = 
-(goal ustate  t )  A 
NEXT user-actions (action mstate) n t 



Since all the communication goals are disjuncts and all have the same guard, 
no ordering of them is prescribed by these definitions. The user may attempt 
to complete them in any order. Once a communication goal related action has 
been completed, it will cease to be a communication goal. We examine how this 
is specified below. 

Each of the actions that a rational user might make when confronted with the 
machine are combined in a single definition GENERAL-USER-CHOICE. It  contains 
a final default disjunct, ABORTION. It asserts that if none of the guards of the 
other disjuncts hold (and so no rational action is available) then the user will 
terminate the interaction without having achieved their goal. 

I- GENERAL-USER-CHOICE user-actions comgoals lights-actions 
finished finishedpos goalachieved mstate ustate t = 

COMMGOALER user-actions commgoals goalachieved ustate mstate t V 
LIGHTS user-actions lights-actions 0 mstate t V 
COMPLETION user-actions finished finishedpos goalachieved ustate t V 
ABORTION user-actions finished finishedpos goalachieved commgoals 

lights-actions ustate mstate t 

This relation describes the series of options that a user has open to them on 
any given cycle. There are other conditions that must apply at every instance 
in time, however. For example, we assume it is always the case that if the user 
terminates the interaction then they cannot then continue with it. 

Vt. finished ustate t 3 finished ustate (t+l) 

We similarly assume various rules about the possessions of a user. For exam- 
ple, we assume it is always the case that if a user gives up a possession then they 
have one less of that possession. These rules are encapsulated into a relation 
POSSESSIONS. We omit the details of this relation here. 

We also assert universal properties of the communication goal list. It  is not a 
constant over time. As the user performs the actions associated with a commu- 
nication goal, that goal is discharged and so is removed from the user's internal 
list of things to do: it ceases to be a communication goal. This behaviour is 
modelled by asserting that if an action that appears on the communication goal 
list occurs at  a time t ,  then that action will be removed from the communication 
goal list on the subsequent cycle. 

I- (FILTER [I mstate t = [I)  A 
(FILTER (CONS a actions) mstate t = 

if (FST a) mstate t then (FILTER actions mstate t) 
else (CONS a (FILTER actions mstate t))) 

I- FILTERHLIST mstate hlist = Vt. hlist (t+l) = FILTER (hlist t) mstate t 

I- FILTER-USERHLIST ustate mstate hlist = FILTERHLIST mstate (hlist ustate) 

The separate relations describing universal properties are cojoined together 
into a single relation GENERAL-USER-UNIVERSAL. 



I- GENERAL-USER-UNIVERSAL commgoals possessions finished ustate mstate = 
(Vt . finished ustate t 3 finished ustate (t+l)) A 
(POSSESSIONS possessions ustate mstate) A 
(FILTER-USERHLIST ustate mstate commgoals) 

We need two further elements to our generic user model, however. We must 
assert that at  the start of the interaction, the user's communication goals are in 
fact those supplied as the initial list. 

I- USER-INIT cgoals init-cgoals ustate = (cgoals ustate 0 = init-cgoals) 

Finally we must describe the situation where the user terminates the inter- 
action normally. We have considered the situation where a user completes their 
goal and leaves. However, we argued that this may lead to post-completion er- 
rors. Normal, non-erroneous termination involves leaving not just when the goal 
is completed, but also when any necessary house-keeping tasks have been com- 
pleted. A non-device specific way of describing this is by using the notion of 
an interaction invariant that the user wishes to maintain. The invariant may be 
perturbed in the course of the interaction, but must be reinstated by the time 
the interaction is terminated. 

If the goal is achieved and the interaction invariant satisfied, then we assume 
that the rational user will always terminate the interaction as the next action. 
If either condition is not fulfilled, the user will take some action from the set of 
options. This is combined with the initialisation and universal relations to give 
the complete generic user model. 

I- USER user-actions commgoals init-commgoals lights-actions possessions 
finished finishedpos goalachieved invariant ustate mstate = 

(USER-INIT commgoals init-commgoals ustate) A 
(GENERAL-USER-UNIVERSAL commgoals possessions finished ustate mstate) A 
(Vt . 

if ((invariant ustate t = T) A (goalachieved ustate t = T)) 
then NEXT user-actions (finished ustate) finishedpos t 
else GENERAL-USER-CHOICE user-actions commgoals lights-actions 

finished finishedpos goalachieved mstate ustate t) 

This user model, instantiated with the details of a specific machine, specifies 
aspects of a general rational user of that machine. Because all the options are 
modelled as guarded disjuncts, the model does not specify that users always 
make mistakes, just that they are capable of making mistakes of specific kinds. To 
verify that the modelled user always achieves their goal, the device specification 
must be such that the opportunities for such errors are not present. For example, 
if a chocolate machine design always gives out change before chocolate, the guard 
on the COMPLETION disjunct will only be activated when the interaction invariant 
has already been restored. In this way we have provided a facility which can be 
used to verify that whole classes of errors cannot occur with a given design. 



6 Case Study: A Chocolate Machine 

To demonstrate how our user model can be used to verify the absence of classes 
of errors we will look at  a simple case study. In [5] we used an earlier, less 
sophisticated version of the user model to investigate the verification of simple 
vending machines with the potential for post-completion errors. Here we consider 
a similar example, but instead concentrate on communication goal related errors. 
The design consists of features that appear in real machines. However, it has been 
reduced to the simplest form with which to demonstrate our approach. 

Our chocolate machine takes exact money only and it is assumed it will only 
take a single coin of that value. To release the chocolate a button must be pressed 
(this is intended as a simplified version of the selection that most machines would 
offer). The design of the machine could require a specific ordering: coin inserted, 
then button pressed, or button pressed then coin inserted. In either case order 
errors could result. The problem can be eliminated if either order is allowed. We 
verify here a machine that does allow either ordering. We will also discuss the 
effect of trying to verify faulty designs. We assume for the sake of simplicity that 
the chocolate machine always contains chocolate. 

We formally specify the chocolate machine using a traditional finite state 
machine description (see Figure 1) within higher order logic. The specification is 
represented by a relation on the machine's inputs and outputs. We group these 
inputs and outputs into a tuple of history functions to represent the machine 
state. We define a new type mstate-type to represent this. The machine has 
two inputs indicating that the button has been pressed and that the coin has 
been inserted. It has a single output that releases chocolate. Each of the history 
functions is a function from time (a natural number) to booleans indicating 
the value of the signal at  that time. We define a series of accessor functions to 
obtain the values of particular components of the state. For example the function 
Insertco in  extracts from a machine state the history function representing the 
coin slot. 

We define a new enumerated type ChocState to represent the 4 finite state 
machine states (as opposed to the state representing the values input and output 
discussed above). 

ChocState = RESET-STATE I COIN-STATE I CHOC-STATE I DONE-STATE 

The RESET state is the initial state. In the DONE state the chocolate is released. 
The COIN state is the state in which a coin has been inserted but the button 
not pressed and vice versa for the CHOC state. 

For each state we define a relation indicating the value on the single output 
in that state, together with a relation indicating the next state. These are then 
combined in a relation giving the full specification for that state. For a small 
example such as that considered here, it might be simpler to just have one 
definition giving the whole automaton. However such an approach would not 
scale: in particular the resulting specification would be much less readable. 

For example when in the RESET state the machine does not release chocolate 
so the value of the output is false. 



-1nsertCoin and 
-PushChoc 

Insertcoin 

-Insertcoin 

\4c/ GiveChoc 

Fig. 1. Finite State Machine Specification of the Chocolate Machine 

I- RESET-OUTPUTS ( m s t a t e :  m s t a t e - t y p e )  t = ( G i v e C h o c  m s t a t e  t = F) 

We also give a relation representing the next state for each state. If a coin is 
entered it moves to a COIN state in the next cycle, if the button is pressed it 
moves to the CHOC state and otherwise it remains in the RESET state. 

k RESET-TRANSITION s m s t a t e  t = 

if Insertcoin m s t a t e  t t h e n  ( s ( t + l )  = COIN-STATE) 
else if P u s h C h o c  m s t a t e  t t h e n  ( s ( t + l )  = CHOC-STATE) 

else ( s ( t + l )  = RESETSTATE) 

For each state these two relations are combined in a relation that gives the whole 
behaviour (for example RESETSPEC for the RESET state). A single definition 
then gives the full specification of the machine in terms of these definitions. 

I- CHOCJlACHINE-SPEC s m s t a t e  = 
V t .  if (s t = RESET-STATE) t h e n  RESET-SPEC s m s t a t e  t 

else if (s t = COIN-STATE) t h e n  COIN-SPEC s m s t a t e  t 
else if (s t = CHOC-STATE) t h e n  CHOC-SPEC s m s t a t e  t 

else DONE-SPEC s m s t a t e  t 

7 Instantiating the User Model 

To target the generic user model to a given machine we must provide values for 
all the arguments to USER except for the user state and machine state. For these 
we provide concrete types to instantiate the type variables given as their type. 

The type of the machine state is just that used in the machine specification 
defined above: a tuple of history functions. For the user state we must provide 
a state consisting of a tuple of 6 elements. These elements are history functions 
that record for each time instance whether the user has chocolate, whether they 



have a coin, whether they have terminated the interaction, a count of the amount 
of chocolate they possess, a count of the number of coins they possess, and a 
list of their communication goals paired with numbers giving the position of the 
corresponding action in the full list of actions. An accessor function for each part 
of the state is defined. For example, Usercommgoals extracts the communication 
goal list from the state. 

The first argument we provide to USER is a list of all the possible user actions 
indicated by their history functions: the state extractor applied to the appropri- 
ate state tuple. 

[InsertCoin mstate; PushChoc mstate; UserFinished ustate] 

The second argument is the state extractor for the communication goals, 
Usercommgoals. We must also provide the initial communication goal list with 
which the user enters the interaction. In this case we assume that the user knows 
they must insert a coin at  some point and that they must make a selection (push 
the chocolate button). This would be determined using a device-independent task 
analysis of the task of getting chocolate. We use the state extractor function to 
represent each communication goal. These are paired with a number giving their 
position in the full action list. 

[(InsertCoin, 0) ; (PushChoc, 111 

Note that, strictly speaking, inserting a coin is not a communication goal as 
it is concerned with property rather than information about a selection to be 
made. We intend in a later version of the user model to deal with these two 
kinds of knowledge separately. The main ramification for the theorem proved 
here is that as a communication goal no check is made in the user model as to 
whether the user has a coin as one of its possessions. This means the correctness 
theorem though not explicitly stating it says nothing about what happens if the 
user tries to insert a coin that they do not have. 

Our particular machine provides no output to the user to indicate what 
must be done so an empty list is provided as the next argument for the pairings 
between outputs and the corresponding reactive input. A case study concerning 
post-completion errors where reactive pairings are provided can be found in [5].  

We must also indicate the possessions of the user and how they are affected by 
particular actions. A relation CHOCPOSSESSIONS gathers this information into 
an appropriate form, given the history functions for the user having chocolate 
and coins, the machine giving chocolate, the user inserting a coin and counts of 
the number of coins and chocolate bars possessed. 

CHOCPOSSESSIONS UserHasChoc GiveChoc CountChoc 
UserHasCoin InsertCoin Countcoin 

We specify which accessor functions to the user state indicate when the user 
has terminated the interaction, UserFinished, together with the number of its 
position in the list of actions (as with the communication goals). We also specify 



the state accessor specifying the user's main goal in taking part in the interaction, 
UserHasChoc. 

Finally we must provide the invariant that the user wishes to restore by the 
end of the interaction. For vending machines this can be based on the value 
of the user's possessions. After interacting with a vending machine a user does 
not wish the value of their total possessions to be less than they were at  the 
start. This is described by a history predicate VALUE-INVARIANT. We omit the 
definition here. 

The general model for the chocolate machine is specified by providing each 
of the arguments discussed above to the generic user model and restricting the 
types of the states to be the concrete types for the chocolate machine. 

k CHOCAACHINE-USER (ustate:ustate-type) (mstate:mstate-type) = 
USER [Insertcoin mstate; PushChoc mstate; UserFinished ustate] 

UserComgoals [(Insertcoin. 0); (PushChoc. 111 
. . . ustate mstate 

8 Verifying Usability 

The usability correctness theorem we have proved in HOL has the following 
form: 

k 'dustate mstate s. 
CHOCAACHINE-USER ust ate mstate A CHOCAACHINE-SPEC s mstate 3 

(S 0 = RESET-STATE) A ~(UserHasChoc ustate 0) 
3 ( 3 2 .  UserHasChoc ustate t2) 

This is of the general form discussed earlier. The usability specification part 
of the theorem states that if we assume the vending machine starts in its reset 
state, and the user does not have chocolate but has communication goals of 
inserting a coin (paying money) and pushing the chocolate button (making a 
selection), then there will exist some time at which the user does have chocolate 
(i.e., has achieved their main goal). 

This theorem is essentially proved using simulation by proof. An induction 
principle concerning the stability of a signal is used repeatedly. This essentially 
states that: 

- if the value of some boolean signal P is stable over an interval, 
- a second signal, Q,  is true at  the start of that interval, and 
- if Q is true at  some time, but P has the stable value at that time, then Q will 

be true at  the subsequent time, 
- then Q will be stable over an interval starting at the same point but extending 

one cycle later. 

This is used to step the simulation over periods of inactivity. 
In proving the usability theorem we have not proved that users using the 

machine will never make an error. We have, however, proved that no user will 
make the classes of errors with known cognitive causes specified in the user 



model. In particular, we have proved that a user will not make order errors 
due to communication goal mismatches, provided they start with the stated 
communication goals. If these communication goals are identified using a device- 
independent task analysis then they will be consistent with the majority of users. 
Since such errors are both common and persistent as discussed in Section 3 the 
reliability of the system as a whole is consequently improved. 

Consider an attempt to verify a design which requires the coin to be inserted 
before the button was pushed. This proof attempt would fail because the user 
model allows the user to do either of the communication goals first. If they 
pushed the button first, this action would be removed from their list of goals: 
they would believe the selection made. On then inserting a coin to complete 
their other goal, there would be no longer anything in the user model to compel 
them to press the button. We thus would be required to prove that they pushed 
the button, with no assumptions with which to do this. Of course a real user 
would in this case eventually work out the problem and go on to complete the 
interaction. However, the user error has already occurred. 

9 Conclusions 

We have described a formal verification methodology which detects classes of 
user error. In particular we have so far considered order errors based on com- 
munication goal mismatches and post-completion errors. These classes of errors 
are considered because they can be eliminated by appropriate design. 

Our approach involves defining a generic user model which describes the be- 
haviour of rational users. As with real users, erroneous behaviour is not specified 
to occur during every interaction. It is just specified as a potential behaviour. 
Given that potential behaviour exists, if it can be proved that the user does even- 
tually achieve their goal, then it has been proved that the erroneous behaviour 
cannot manifest itself with the device under verification. 

The use of a generic user model reduces the work required to produce a user 
model for each new device considered. More importantly, it reduces the chances 
that the user model is created in a device-centered way, specifying that the user 
behaves as expected by the designer of the device. It  is based only on cognitive 
science theory that is generally applicable. 

As alternative approach would be to write liveness properties corresponding 
to a list of known user errors for each system to be verified. However, to do so 
would require informal reasoning to determine the manifestation of the error from 
rational behaviour for every new device considered. For example, the order errors 
considered here are errors because the user does not have perfect knowledge of 
the design. Post completion errors are errors dependent on the user's goals. It is 
only by reasoning about the user's goals and knowledge that we determine the 
actions for which the ordering is important and determine what that ordering 
should be. In our approach, this reasoning is formalised and machine-checked. 
The general rational behaviour is specified once and the errors emerge. 



The fact that a common user model is used means that the proofs for different 
devices are very uniform, increasing the possibilities for automation of the proof. 
For examples as simple as that presented here to illustrate the ideas it is likely 
that fully automated model checkinglstate-space exploration based verification 
tools could be used. However, when more realistic devices are considered it is 
likely that the additional power of an interactive theorem prover will be required. 
Furthermore, higher-order logic provides an elegant way in which a generic user 
model can be specified. It  seems likely that this kind of proof would be a good 
application for a combined verification tool. The instantiated user model would 
be instantiated in HOL and exported to the automated system. Higher level 
details of the proof would be dealt with in HOL, with state exploration con- 
ducted in the automated tool. HOL could also be used to combine the usability 
correctness theorem with more traditional system verification theorems. 

We used a very simple example of a chocolate machine to demonstrate the 
approach. We instantiated the generic user model with the details of a specific 
machine designed to avoid order errors. Despite the machine giving no indication 
of the steps required, because its design works with the communication goals of 
the task, it is usable. We also discussed how the proof would fail if other er- 
roneous designs were considered. The design works because it has a permissive 
interface, allowing users to supply information in any order. It might be argued 
that such an approach could always be used. However, post-completion errors 
occur if the ordering of actions by the user is such that the user can complete 
their main goal before other required actions have been completed. Thus to avoid 
post-completion errors we must do the opposite of making the interface permis- 
sive. We must instead force a specific order. For example, if a machine dispensed 
change, it would be important that it was not dispensed before the chocolate. 
We investigated the verification of post-completion errors in an earlier paper (51. 
There we investigated vending machines with and without post-completion er- 
rors. Our present user model has the ability to simultaneously detect order errors 
and post-completion errors. In future work we will investigate more complex ma- 
chines and other classes of user errors. We will also look at  machine designs with 
the potential for making multiple classes of errors. When considering a single 
class of error in isolation, it is relatively easy to ensure it is not present. When 
multiple kinds of errors are considered it is very easy to remove one kind of error, 
only to introduced another. This is where having a single generic user model is 
beneficial, since it ensures errors are not missed. It  is in this situation that our 
verification approach will be of most use. 
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Abstract 

This paper presents novel techniques for functional verification of synthesized analog designs. 
The work focuses on extraction of formal models of the implementation from circuit net-lists (Spice 
net-list), extraction of specification from a behavior description (VHDL-AMS) and development of a 
formal reasoning system to prove the relationship between the extracted implementation and speci- 
fication models. Implementation model of the circuit consists of characteristic component equations 
and equations depicting current-voltage laws. Some of these equations can be nonlinear. Specifi- 
cation model of the circuit typically consists differential and algebraic equations (DAEs). In order 
to validate the design we have to establish an expected relationship between the two models in a 
formal reasoning system. Traditional theorem provers (like PVS) support linear algebra and can 
be used to prove such relationships in a linear domain, but they fail to handle nonlinear equations. 
This paper shows that by using the support of the nonlinear reasoning mechanism of a computer 
algebra system,CAS (like Mathematica) in a restricted manner, a theorem prover can be used to 
automatically verify functional properties of analog designs described over nonlinear equations. 

1 Introduction 

The process of hardware design is error prone. Simulation is the principal tool used t o  detect design er- 
rors. Several simulation tools are available t o  verify a design a t  different levels of abstraction. Simulators 
have also been developed for different kinds of designs (digital, analog and mixed). However, simulators 
suffer from two fundamental shortcomings as they may leave design errors undetected and they are com- 
pute intensive in nature. The quality of the simulation is essentially determined by the design coverage 
of the excitation signals and exhaustive simulation of circuits is often not feasible. Formal hardware 
verification methods overcome these difficulties by proving the expected functionality as a symbolic rela- 
tionship which holds forall possible values of the symbols and are found to be extremely useful tools for 
detection of design errors. Most of the formal verification effort has concentrated on digital designs and 
have found reasonable success. Design verification of analog designs using simulation suffers from the 
problems discussed before and a formal verification technique would greatly aid the design process but 
there have been relatively negligible attempts t o  apply such techniques to  verify analog and mixed signal 
designs [I], [2]. These existing techniques use decision procedures (solvers) based on linear algebra and 
so they use piecewise linear (PWL) and rectilinear approximations to  represent structural description of 

'This work is sponsored by USAF, Air Force Research Laboratory, WPAFB under contract number F33615-96-C-1911 
$currently at Cadence Designs Systems. Work done at University of Cincinnati. 



analog circuits using linear algebraic equations. Approximating nonlinear analog component behavior 
by linear equations can lead to inconsistency and it is difficult to make any judgment about nonlinear 
behavior in the absence of nonlinear reasoning mechanism. 

We can see that in order to prove functional properties about analog designs using nonlinear component 
models we need nonlinear reasoning support. There has been significant effort by researchers to integrate 
theorem provers (typically written over higher order logic) with CASs [3], [4], [5], 161. Theorem provers 
and CASs are powerful mathematical tools and are extremely useful for their domain specific applications. 
Logical soundness and proof management of theorem provers find their usefulness in proving complicated 
properties expressed in their underlying logic. There are popular theorem provers which provide user 
interaction to guide the proof process as well as proof script languages to automate proof processes. 
CASs on the other hand are useful to establish numerical and symbolic equivalence in a variety of 
mathematical and engineering applications. 

There are specific application domains where we are aware of the nature of symbolic expressions we are 
dealing with and it is possible to integrate these two tools supplementing each other such that we have 
a stronger reasoning system. In this paper we present analog circuit verification as such an application 
where we can use the combined power of theorem provers and CASs. We begin our discussion by 
motivating the reader to the issues involved in analog verification in section 2, where we mention that 
a verification tool must have model extraction, proof management and reasoning mechanisms. We 
illustrate our model extraction strategy for implementation and specification models in section 3. In 
section 4, we present the detailed comparison between the theorem prover and CAS and the issues 
involved in combining them. This is followed by the discussion about our proof effort and the nature of 
support we need from the CAS where we describe the nature of nonlinear reasoning obtained from CAS 
and how it aids the rewriting ability of our theorem prover. We also present the details of integrating our 
specific theorem prover (PVS [7]) and CAS (Mathematica [8]). Section 5 presents results of application 
of our technique. 

2 Formal Verification of Analog Designs: Motivation and Chal- 
lenges 

Verification of analog designs needs a formal system in which we can represent the specification and 
implementation and a reasoning mechanism in the formal system which will prove the relation between 
them. In the following subsection we discuss issues involved in analysis of analog systems and then we 
will illustrate the properties of the required formal system. 

2.1 Analyzing the Analog circuit 

Analog components exhibit continuous time behavior often represented as an algebraic function of several 
parameters. Theory of analog circuit analysis is well established [9]. There are a number of well 
understood techniques such as nodal analysis and tableau analysis which have been automated and used 
widely [lo]. The basic idea of these methods is as follows: 

Model a circuit in terms of primitive components such as independent voltage and current sources, 
controlled sources and resistive elements, 

a Setup equations relating the above using Kirchoff's Voltage and Current Laws, 

Solve these equations using Cramer's rule (if the equations are linear) and use Numerical techniques 
like Newton Raphson (for nonlinear equations). 



Active analog components have different regions of operation and correspondingly different models for 
them. This kind of behavior is expressed with linearlnonlinear algebraic functions and is often dependent 
on the frequency of signals applied. This leads to each component's behavior being abstracted into a set 
of models according to operating frequencies. For example, an operational amplifier has different models 
for different operating frequencies. Many analog devices have inherent nonlinearity in their behavior. 
For example, a transistor has at least three regions of operation (cutoff, linear, and saturation) distinct 
from one another [ll], [9]. A greater difficulty of understanding arises when several such components 
interact with each other in an analog system. It becomes quite difficult to  determine which mode a 
component is operating on. In order to correctly certify the behavior of a circuit we must analyze all 
these possible regions of operation. The task of analog verification boils down to proving that one or 
more components never go into certain regions of operation based on the prevailing circuit conditions. 

[MI ... McO] 

[MI ... Mcl] [MI ... Mc2] 

Figure 1: A Component in a General Circuit 

For example consider an analog circuit shown in Figure 1. It  consists of several components Co,. . . , Ck 
where each component can be in several modes of operation [ M I , .  . . , Mj] .  Here the mode in which a 
component goes into depends upon the modes of operation of other components to which it is connected. 
The circuit works correctly for particular configurations of modes among the components. In order to 
guarantee the correctness of the circuit we must be able to prove that those are the only configurations 
possible for the circuit. 

2.2 Formal system to verify Analog Designs 

We know that differential and algebraic equations (DAEs) represent analog components and some analog 
components have conditional behavior. Analog circuit components typically exhibit algebraic relations 
among their inputs and outputs. Interconnections of such components follow Kirchoff's Voltage and 
Current Laws (KVL, KCL) which are again algebraic equations. Hence any analog circuit implementation 
can be captured as a set of algebraic equations. (Differential equations are used to represent some 
circuits and we can Laplace transform them to algebraic domain). At the same time, specification (or 
expected properties) of the circuit is also a set of algebraic equations. Here we can conclude that an 
analog circuit verification tool must be able to prove that the set of algebraic equations representing the 
specification (the expected properties) are derivable from another set of algebraic equations representing 
the implementation. If ComponentProperty, is the characteristic algebraic property of component c 
in terms of the voltage Vc and current I, appearing at  its terminals and its physical attributes A,, 
VoltageCurrentLaws are the algebraic relations representing various KVL and KCL being followed in 
the circuit then the set of such equations over all components in the circuit must imply the algebraic 
relation ExpectedProperty representing the circuit property we are interested to verify in terms of the 
voltages and currents V, I at  the external terminals of the circuit. 

PC ComponentPropertyc(Vc, Ic, A,) A VoltageCurrentLaws(V, I)] 3 ExpectedProperty(V, I )  



Here it can be seen that such the verification effort consists of proving a logical relation (implication in 
the above case) between sets of algebraic equations. From the above discussion we can conclude that in 
order to verify analog designs we need a formal system Veri fyAnalog defined over arithmetic algebra 
as 

Veri f yAnalog < A,, A,, LogicRelation > 
where A, is the set of equations corresponding to the structural implementation of the circuit, A, is the 
set of properties of the circuit and LogicRelation is the expected relation between A, and A, which are 
sets of algebraic equations. Traditional ways of proving such a relation is to solve the set of simultaneous 
equations and show that those solutions satisfy the expected relation. 

Circuit Netlist Behavior Specification 

I I 
Implementation Model Extraction Specification Model Extraction 11 

Figure 2: Verification Technique 

There have been very few efforts for formal verification of such circuits. Difficulties lie in the reasonable 
modeling of such components and properties. In the above discussion we have seen that a formal 
verification system should have the ability to capture the speczfication and implementation as sets of 
algebraic equations and a reasoning mechanism to prove the expected logic relations between the two 
sets. We have also seen that analog components can have conditional behavior and the expected behavior 
of the analog circuit can also be conditional, our formal system needs to address this issue. In other 
words our verification tool must have a proof manager to examine every possible mode of operation 
of the analog circuit and in each one of them it must be able to prove that the implementation has 
the expected logic relation with the specification. Thus we can summarize that the proposed analog 
verification tool must have 

Prove the Theorem 

Implementation => Specification 
Model Model 

model extraction mechanism for the implementation and specification as sets of algebraic equations, 

Proof Management 

Reasoning System > + 

a proof manager which handle conditional cases, 

a reasoning system (decision procedures) to prove relationships between sets of algebraic equations. 

We have depicted such a technique in figure 2. We can see that a theorem prover is an ideal candidate for 
such a verification system. A theorem prover has a proof manager and a set of decision procedures (over 
linear algebraic equations) which can prove the expected relationships. Decision procedures of a theorem 
prover apply for linear algebraic equations and so we are handicapped to use piecewise linear models 
and are not able to prove any non linear relations. We can overcome such an handicap by enhancing the 
decision procedures to support nonlinear algebraic equations. 

2.3 Nonlinear reasoning mechanism 

Algebraic decision procedures supported in theorem provers are linear in nature. This had prompted 
researchers to use piecewise linear (PWL) models for non-linear analog components [I], [2]. Due to 



inherent approximating nature of PWL models they introduce errors in our component modeling. Al- 
though PWL behavior models have been extensively used for study, analysis and simulation of analog 
components for their ease of understanding and availability of mathematical techniques to handle them, 
they lead to inconsistencies in the structural modeling of analog circuits. Inconsistent modeling in a 
formal verification effort like ours can lead to false positives and in our verification attempt we have to 
be extremely careful to avoid them. 

Typically functionality is verified for known values of circuit paprameters, it is possible to verify func- 
tionality of analog designs written over symbols representing terminal values and circuit parameters. 
These are stronger relationships which are valid over all values of circuit parameters. Algebraic equa- 
tions describing such circuit implementations are nonlinear and proving such relationships will again 
require support for nonlinear reasoning. Hence we see that, in order to use correct models of analog 
components and prove more generic properties we need the support of nonlinear reasoning. Our formal 
verification tool Veri fyAnalog < A,, A,, LogicRelation > needs to be extended with a new reasoning 
mechanism (nonlinear decision procedures). In this paper we have discussed such a new formal sys- 
tem Veri f yAnal~g,~,~~,,,, < A,,non~~ne,,, A,,non~,nea,, LogicRelation > which can produce judgments 
about LogicRelation between sets of nonlinear algebraic equations As,nonlinear and Ap,nonlinear. 

3 Formal Model Extraction 

It is our attempt to compare a circuit implementation (given as a netlist) against a specification (given 
in a behavioral specification language). In the previous section we mentioned that formal model ex- 
traction was the first step in a verification attempt. We have attempted to extract the implementation 
and specification models from a synthesis environment, VASE [12]. CAD tools are indispensable in 
modern design environment and they adapt well for the purpose of verification as they provide hard- 
ware description language (HDL) for behavior specification and a well characterized component library 
whose components can be expressed in logic. In the following subsections, we briefly present strategies 
to extract models for the implementation and specification. Details of such model extraction strategies 
can be found in [2], [13]. 

3.1 Implementation Model Extraction 

A circuit is given as a hierarchical net-list of components such that primitive components appear as 
the leaf nodes. In the following subsections we describe the modeling of such a circuit. We first need 
to characterize the primitive components. This is followed by the process of capturing the Kirchoff's 
Voltage and Current Laws. Finally we compose the hierarchical components consisting of primitive ones 
and continue the process upwards in the hierarchy till we can describe the complete circuit. 

3.1.1 Characterization of the primitive components 

Each component is modeled by a Boolean-valued function whose parameters are the voltages and currents 
at  its terminals and the attributes of the component. Body of the function must be the relation which 
must be satisfied by the parameters. Suppose we want to describe a simple analog device like a resistor. 
It has two terminals, say a and b. The voltage at the two terminals are Va and Vb, there is a current 
of I flowing through it and it has a non zero resistance of R, then it will satisfy the following Boolean 
predicate. 

Following is the description of a capacitor in terms of the Laplace variable s. Here s is a complex number 



and this description can be expanded into equivalent real and imaginary parts over real variables. 

capacitor(Va,Vb,I,C:real) : bool = sC(Va-Vb)= I 

We use the above description of the capacitor for frequency domain analysis of analog circuits. 

opamp-nonideal(Vl,V2,Vout,Iin,A,Rin:real) : bool = Vout=A*(V2-Vl) and V2-V1 = Iin*Rin 

We have the above boolean function opamp-nonideal representing a simplified low frequency small signal 
behavior of the non-ideal operational amplifier. Here VI and V2 are the voltages at the input terminals, 
VOut a t  the output terminal, Ii, is the current into the input terminals, A is the open loop gain and R,, 
is the input resistance. A and Ri, are the imperfections of the opamp and in its ideal behavior A = oo 
and Rin = co. An ideal opamp is expressed below is frequently used in circuit analysis, 

opamp-ideal(V1,v2,Iin:real) : bool = V2=V1 and Iin=O 

Following is the description of a transistor having Cutoff, Linear and Saturation regions of operation. 

tmnsistor(Vg,Vd.Vs ,Ids,Vt ,beta:real) : bool = 
if Vg-Vs-Vt <= 0 

then Ids=O 
elsif Vg-Vs-Vt > Vd-Vs 

then Ids= beta* (Vd-Vs) * (Vg-Vs-Vt) 
else Ids= beta*(Vg-Vs-Vt)*(Vg-Vs-Vt) 

endif 

/ * Linear * / 
/ * Saturation * / 

V,, Vd, Vs are the terminal voltages at the gate, drain and source respectively, Ids is the drain to 
source current and threshold voltage Irt and beta are the physical attributes of the transistor. It can be 
noticed that transistor is described by non linear algebraic equations in Linear and Saturation modes of 
operation. 

3.1.2 Interconnection of Components 

In the previous sections primitive analog components were described as the relations being satisfied 
by the attributes of the components with respect to the terminal voltages and currents. A circuit is a 
collection of such components where in addition to the laws of the individual components being satisfied, 
Kirchoff's Voltage and Current Laws of the circuit must also be followed. 

Let us consider a simple adder, as shown in Figure 3. The analog components Resistors (Rl,R2,R3,Rf) 
and Opamp (op) are connected to the external terminals (a,b,Out) and internal nodes (1,2). We can 
see that for the circuit to function correctly, each of the components must satisfy their own behavior 
described by the functions of the previous section. 

Rf 

Out 

Figure 3: An Example to explain Interconnection of Components 

In Figure 3 an expanded view of the adder circuit has been depicted. By Kirchoff's Current Law, we 



know that the sum of all currents at a node is zero. Hence a t  the internal nodes, we must have 

Currentlawl(Il,I2,If,Iin:real) : boo1 = I1 + I2 + If + Iin = 0 /* A t  Node 1 */ 

Currentlaw2(Iin,I3:real) : boo1 = Iin + I3 = 0 /* A t  Node 2 */ 

The Boolean functions Currentlawl and Currentlaw2 must be satisfied by the components of the adder. 

3.1.3 Composition of Components 

There are many ways to represent circuits. We will view a circuit (see Figure 4) as consisting of; 

rn a set of nodes (nl . nk); 

rn a set of components (cl . . . c k )  whose terminals (called the internal terminals of the circuit) are 
connected to the nodes; 

rn a set of external terminals (el e k )  also connected to the nodes. 

A sub-circuit can be written as a predicate over all voltages and currents at its external terminals such 
that there exist some voltages and currents at the internal nodes satisfying the constraints imposed 
by the characteristic behaviors of the individual subcomponents and the conserving the Current and 
Voltage Laws. Here we have used current at a node to indicate the currents flowing into the node from 
all connected branches. 

Figure 4: A Sub-circuit 

A circuit or a sub-circuit called Hcomp is shown in Figure 4. Attaching (voltage, current) tuples with 
all nodes, external as well as internal, Hcomp can be described as, 

Hcomp(Vel,Iel,Ve2,Ie2,Ve3,Ie3,A1,A2,A3) : bool = 
Exists(Vnl,Inl,Vn2,In2,Vn3,In3): 
C1(Vel,Iel,Vnl,Inl,Vn2,In2,Vn3,In3,A1) and C2(Vnl,Inl,Vn2,1n2,Vn3,In3,A2) and 
C3(Ve3,Ie3,Vnl,Inl,A3)and VoltageCurrentLaws(Vel,Iel,Ve2,Ie2,Ve3,Ie3,Vnl,Inl,Vn2,In2,Vn3,In3) 

In the above description, attribute of a component Cj is given by A j .  We have shown only one attribute 
per component where as a component can have any number of them. Using our implementation model 
extraction technique discussed above, we can extract the structure of the adder circuit shown in Figure 
3 as the following boolean function. We have not used any explicit voltage laws here, but we have 
associated each node in the circuit with a single voltage variable which follows the Kirchoff's Voltage 
law. 

adder (Va,I1,Vb,I2,Vg,I3,Vout:real,R1,R2,R3,Rin,Rf,A:posreal): bool = 
Exists (VlSV2,Iin,Ifb:real): 
resistor(Va,Vl,I1,Rl)and resistor(Vb.Vl,I2.R2)and resistor(V2,Vg,I3,R3)and Currentlaw2(Iin,I3) 
and resistor(Vout,V1,1fb,Rf) and opamp(Vl.V2,Vout,Iin,A,Rin) and Currentlawl(I1,I2,If,Iin) 



ENTITY adder IS 
GENERIC ( RI, R2, R3, Rf, A, Rin : real) 

PORT (QUANTITY Va, Vb: IN real ; 
QUANTITY Vout : OUT real ) 

END ENTITY ; 

ARCHITECTURE behavioral OF adder IS 

Vout = - ( V a l  + Vb/R2) 1 
(1Rf + IlA*Rin + ((Rin+R3)l(A*Rin)) *(l/Rf + l/Rl + llR2) 

adder (Va, Vb, Vout: real, RI, R2, R3, Rf, Rin, A: posreal): boo1 = 

Vout = - (VaIRl+ VblR2) I 
(I/Rf + l/A*Rin + ((Rin+R3)1(A*Rin)) *(l/Rf + 1lR1 + 1R2) 

Figure 5: Specification Model Extraction 

3.2 Specification Model Extraction 

A behavior specification of the circuit is given by the user in a specification language whose formal 
semantics is understood. A subset of VHDL-AMS [14] is used as the input specification language for 
some Analog Synthesis Tools. There has been effort on part of researchers [12] to use a subset of this 
specification language for synthesis purposes. The idea here is to give the user ability to specify a wide 
range of analog behaviors and retain the ease of transformation of the language constructs into analog 
circuit. We have used a similar subset of VHDL-AMS for behavior specification. In our subset a set of 
DAEs and conditional statements can describe a wide range of analog behavior. Algebraic equations are 
capable of describing time-invariant behavior which are constant algebraic relation between input and 
output. Differential equations are used to describe frequency dependent behavior. We have identified 
some constructs of VHDL-AMS which can be translated to a formal behavioral model, 

external terminals of an ENTITY are the PORTS; 

body of the ARCHITECTURE of an ENTITY consists of simple simultaneous statements which 
can be DAEs or conditional statements; 

Translation of such a specification of an adder into a formal model is shown in Figure 5. PORTS are 
translated as the external terminals, GENERICS are attributes of the design, CONSTANTS are vari- 
ables having a constant value, local QUANTITIES used inside the ARCHITECTURES are existentially 
quantified in the boolean functions and simultaneous statements in the body of the ARCHITECTURE 
are directly translated as conjuncted algebraic relations. 

We verify the behavior written in terms of differential equations by frequency domain analysis. In order 
to facilitate this we apply Laplace transformation to the differential equations. Laplace transformation 
of a differential equation is an algebraic equation in terms of the Laplace variable s. A specification 
having differential equations is Laplace transformed into equivalent s-domain algebraic equations which 
are then translated into behavioral models as boolean functions in real and imaginary domains. 

Apart from top level behavior specification we can also specify properties we might be interested to verify. 
We can look at  the verification of such properties as query evaluation over the circuit implementation. 
We can specify these properties in our subset of VHDL-AMS and extract property models from such 
specifications by our technique discussed in this section. 



4 Proof Management 

In figure 2 we have illustrated that the verification tool must prove the theorem that there is a relationship 
between the extracted implementation and specification models. We know that these models contain 
boolean predicates written over conditional cases. A theorem prover has the ability to manage such 
prove attempts. It provides user interface by which user can guide a proof attempt using basic proof 
commands and it also supports scripts which help automate such attempts. Theorem prover maintains 
a proof tree where each node is a proof goal. Through the process of proving, user has to complete 
the tree such that all the leaves are true. Each node or proof goal is a sequent which is a sequence of 
formulas in the antecedents and consequents. Conjunction of antecedents must imply the disjunction of 
consequents. Theorem we have to prove has the following sequent : 

t Q e ( 3 i,a : Implementation(e,i,a) + Specification(e)) 

Here e represents the external variables, i represents the internal variables and a represents the attributes 
of the implementation. Our proof strategy essentially is, 

Remove the existential quantification in the antecedent using skosimp, so that we have 

Implementation(e!,i!,a!) k Specification(e!) 

Recursively use expand to  rewrite the functions at  the circuit, block and component levels. 

Use split, lift-if to remove the conditional cases. Now we have a set of algebraic equalities and 

inequalities in the sequent. 

Invoke the decision procedures to finally prove the consequents. 

We have used PVS theorem prover as our proof manager and also mentioned the basic PVS proof 
commands used. 

5 Non linear reasoning mechanism 

In the previous section we saw that last step of the proof strategy is to invoke a decision procedure to 
prove the sequent. If we only had linear algebraic equations in our sequent then we could have invoked 
the theorem prover's own decision procedures to prove the relationship but we are dealing with nonlinear 
algebraic equations and so we need support of an external nonlinear reasoning mechanism. In this section 
we illustrate how a theorem prover can be interfaced with a CAS to develop a stronger reasoning system. 
We first compare the theorem prover and CAS as separate systems and various types of integrations 
possible depending on specific problem domains. In the following subsection we describe our problem 
domain and illustrate how they can be interfaced in such a scenario to form a sound reasoning system. 

5.1 Comparing theorem provers and computer algebra system 

Problem solving in mathematics often requires the application of both procedural algebraic knowledge 
(algorithms) and deductive knowledge (theorems). The advantages of combining both strategies have 
been recognized by both communities: symbolic computation and analytical reasoning. Some of these 
advantages concern the introduction of mathematical theories and arithmetics, in particular real num- 
bers, into provers, as well as providing logical languages and justifications to symbolic calculators. Two 
aspects must be further investigated: (i) the problem of combining algorithms and theorems into one 
system, (ii) the heterogeneous integration of several packages. 



On one hand classical CAS like Mathematica usually offer a straightforward programming language with 
ad-hoc implementations of rewriting. On the other hand theorem proving has shown to be an important 
field interfacing artificial intelligence and mathematics. It attempts to perform symbolic calculations of 
mathematical proofs by computers. However, there are no environments integrating theorem provers 
and CAS which consistently provide the interface capabilities of the first and the powerful arithmetic of 
the later systems. 

5.1.1 Interaction between theorem provers and computer algebra systems 

The major aspect is the integration of several systems in a common environment. Different possibilities 
to integrate symbolic calculators and theorem provers are given in [3]. We discuss some of them here 

a A well known approach towards introduction of theorem proving into CAS is Analytica [4], a 
Mathematica package to prove theorems in elementary analysis. It  is able to deal with internal 
mathematical knowledge of mathernatica and garauntee correctness of certain operations. 

a [15] introduces a architecture for open mechanized reasoning systems which consists of reasoning 
theory as well as control and interaction component. 

a [5] describes a bridge between the theorem prover HOL and a CAS, whose interaction can be 
classified as master-slave (HOL as master). CAS is used as a oracle guiding the proof rigorously 
done in HOL. 

a [6] describes an interaction between theorem prover Isabelle and CAS Maple as a master-slave 
relation. This is a first step in a more general direction of open heterogeneous environment. 

We have described different forms of interaction between theorem provers and CASs. These interactions 
are based on the notion of trust  between the two systems. In some of approaches there is complete 
trust between the two components, where as other approaches work on more domain specific restricted 
trust. Typically, theorem provers are used as the front-end proof handlers and CASs are used as back- 
end support reasoning systems. The results from the CASs are verified by the theorem provers for 
correctness. 

5.1.2 Computer algebra systems as term rewrite systems 

Computer algebra systems contain equation solvers. It would be desirable to use them as unification 
procedures for algebraic equation based theories. Unfortunately, this is not possible in all cases. This is 
the reason why such decision procedures are not available as part of theorem provers rewrite procedures. 
Conditional rewrite rules can be used to model the calculations performed by the CASs and CASs can 
be considered as term rewrite systems. Premises in the rules are important to prevent the CASs from 
incorrect calculations. In design of a hybrid system these premises should be carefully selected. In order 
to use CASs for term rewriting we have to study the problem domain. 

5.2 Our problem scenario 

From our discussions before, we know that in order to use the support of a CAS in formal reasoning 
we must understand the problem domain in which we are trying to use it and the nature of support we 
need from the CAS. Based on the above we can design an interaction between the theorem prover and 
the CAS. 



Our proof attempt (as shown in Figure 6 )  is to formally establish a relation between two sets of algebraic 
equations. The first set consists of equations representing the circuit implementation and the second set 
represents the specification (or expected behavior). The set of equations representing the implementation 
are in terms of both internal and external terminal symbols, where as the specification is only in terms 
of the external symbols. In our proof attempt we have to symbolically eliminate the internal symbols 
such that we can establish the desired relation amongst the external symbols. This kind of variable 
elimination by algebraic manipulations is possible if the equations are linear in nature. In absence 
of any support for sound non linear reasoning we piece wise linearized some non linear equations in 
the structural model. We can make sound judgment using linear equations but they do not correctly 
represent the implementation. Linearization can also lead to false positives and jeopardize our proof 
attempt. 

Equations in terms of 
set of Linear equations e * , - " c , * * ( - >  - - InternallExternal terminal symbols 

Circuit Implementation - - - -  - -  

Set of LinearINonlinear equations 
External terminal symbols 

Circuit Specification - -  

Figure 6: Our Basic Proof Attempt 

Looking carefully at the nature of non linear equations we can notice that they are quadratic in nature. 
These are the equations denoting the DC transistor behavior. We know that any quadratic equation 
is equivalent to two linear equations. A quadratic equation like ax2 + bx + c = 0 can be written as 
x = -b/2a + (b2 - 4ac)'/'/2a and x = -b/2a - (b2 - 4a~) ' /~ /2a .  If a, b, c are constants then x can take 
real or complex values but if they are variables then we cannot obtain such transformations for x where 
it can take exact (real or complex) values. At the same time we must remember that we are not trying 
to solve independent quadratic equations but these equations are part of a set of other linear/ quadratic 
equations. The symbols a, b, c can be constants or other free variables which are internallexternal 
symbols. We have already mentioned that it is our attempt to eliminate the internal symbols. Hence 
given a set of linearlquadratic algebraic equations in terms of internallexternal symbols (SetA), we can 
try to eliminate the internal symbols with the aid of a CAS to get an equivalent set of equations in 
terms of the external symbols (SetB). This is illustrated in figure 7. Examining the set of equations 
SetB returned by the CAS we can see that following three cases are possible, 

Equations in SetB are decomposed linear equations among external variables such that all constants 
are real. In this case we can completely replace SetA by SetB. Using the set of linear equations in 
SetB we can proceed in our proof attempt. The real constants here can be rationals or irrationals. 
In this case we can use the CAS again to check if the solution represented in SetB satisfies the 
equations representing the specification. 

Equations in SetB are linear equations among external variables such that some of the constants 
are complex. As we understand that all relations or values for the external symbols are real, so we 



can use this case as a false. The symbols typically represent voltage/current values can we know 
that should always assume real values. A complex relation in SetB can only mean that equations 
in SetA represent a circuit not working correctly as the equations are inconsistent with each other. 

Equations in SetB are nonlinear equations among external variables. In this case we can check 
if that is the nonlinear relation (in the specification) which we wanted to verify. Using the CAS 
we can check the equivalence of such nonlinear equations. If they are equivalent then we say that 
specification is derivable from the implementation otherwise we cannot conclude anything from 
the manipulations provided by the CAS and the verifier cannot say anything in that case. 

Set A of equations - 
Theorem Prover Computer Algebra System 

Figure 7: Theorem prover interacting with CAS 

PVS 

5.3 Integrating PVS and Mathematica 

In the previous section we discussed the issues of using a CAS as a support reasoning system. We 
presented the peculiarities of our particular problem domain and described how we are going to interpret 
the results provided by the CAS. In this section we describe the implementation of the technique using 
PVS as the theorem prover and Mathematica as the CAS. 

4 
Set B of equations 

We know that the decision procedures of the theorem provers rewrite symbolically equivalent expressions. 
Rewrite rules of typical theorem provers like PVS are based on equality of expressions. These equality 
rules can be provided by the user given axioms or can be generated by underlying decision procedures of 
the theorem prover. When we aid the theorem prover's decision procedures with CAS support, we are 
using CAS as a slave in the master slave configuration. PVS sends the set of equations to Mathematica 
asking it to  eliminate the internal variables. Mathematica returns the manipulated set back which is 
interpreted based on the cases discussed before. In figure 8 we show such an interface between PVS and 
Mathematica through an Interface Unit. 

Mathernatica 

I Mathematica I 

Figure 8: PVS interacting with Mathematica 

- 
Extended Term Rewriter 4 

Reasoner 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  .---- 

I Logics, Theories. Decision Procedures : 
I----.....--------------.......-.-' 

User interacts with the PVS proof manager. Term rewriting is performed by the reasoner which rewrites 
expressions based on axioms and decision procedures. This rewriting has been extended using an Ex- 
tended Term Rewriter which on invocation of certain proof commands uses Mathematica to rewrite a 
set of equations by an equivalent set. It interacts with Mathematica over an Interface Unit by dumping 
the sequents into a prefixed file, say IntFile. Mathematica on the other hand has an evaluator which 

I Interface : - 
Unit j 

L - - - - - - - - - - - - - - - -  

Evaluator 

Symbolic 
Simplifier Calculator -I:, -.----- -- - - - - - - - - - - - - - -  - - - - - - -  

i Algebraic Algorithms, Normal Forms; 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - . . - - - - - 8  



works over the simplifier and symbolic calculator. There are underlying algebraic algorithms to aid the 
process of simplification. 

Interface Unit is a process which waits on IntFile to be written by PVS. Once IntFile has been written by 
PVS with the new set of equations, Interface Unit translates it into the equivalent syntax of Mathematica. 
It uses the Mathlink library interface to interact with Mathernatica and asks it to solve the given set. 
Mathematica solves the given set of equations and returns the equivalent set. Now the interface unit 
examines the returned set of equations for the three cases and writes the appropriate response into a 
predetermined file (ResFile) on which the PVS proof manager in waiting. PVS then proves the current 
sequent with the help of this response. Interface Unit algorithm has been explained in figure 9. 

PVS 

Wait on IntFile to be written 

Read the set of equations from IntFile (SetA) 

Ask Mathernatica to Solve SetA 

Receive the solved set from Mathernatica (SetB) 

Examine SetB (3 cases discussed before) 

Respond to waiting PVS by writing appropriate 
response to ResFile 

Mathernatica i:' 
Interface Unit 

Figure 9: The Interface Unit 

6 Results 

In this section, we illustrate how interaction of PVS and Mathematica discussed in this paper can be used 
for functional property verification. Firstly, we present functionality verification of the adder discussed 
in section 3. We show how a complicated expected functionality can be proven by our technique. In the 
next subsection we apply our technique to other familiar circuits with well known transfer functions. We 
further present application of our technique for DC analysis of transistor netlists using nonlinear models 
of constituent transistors. We had extracted the implementation and specification models of the adder 
and i t  is our aim to prove the theorem: implementa t ion  + specijication. Following is one of the sequents 
generated during the proof of the adder-theorem. 

(-1) resistor(Va!l, V1!1, I1!1, Rl!i) 
(-2) resistor(Vb!l, V1!1, I2!1, R2!1) 
(-3) resistor(V2! 1, 0, 13! 1. R3! 1) 
(-4) resistor(Vout!i, Vl!1, Ifb!l, Rf!l) 
(-5) opamp-nonideal(Vl!l, V2!1, Vout!l, Iin!i, A!1, Rin!l) 
(-6) Currentlaul(Il!l, I2!1, Ifb!l. Iin!l) 
(-7) Currentlav2(Iin!l. I3!1) 

I - - - - - - - 
111 Vout! 1 

= -(Va!l / R1!1 + Vb!l / R2!1)/ 
(1 / Rf!l + 1 / (A!1 * Rin!l) 

+ 1 / R1!1 * ((R3!1 + Rin!l) / (A!1 * Rin!l)) 
+ 1 / R2!1 * ((R3!1 + Rin!l) / (A!1 * Rin!l)) 
+ 1 / Rf!l * ((R3!1 + Rin!l) / (A!1 * Rin!l))) 



Expanding the boolean functions in the sequent, we can extract the following set of algebraic equations 
to represent this implementation. 

Using the above equations we will be able to show the following relation for the Adder 

V a  Vb 

vat = - , E + E  
1 Rin R3 1 1  m + m +  A*&n * ( & + ~ z T + E )  

Now we present the proof steps in verification of the above theorem. We can notice that we have used 
a special proof command ASSERTALL. This is a proof strategy written in using PVS's script language. 
It  invokes the interface unit by sending the current sequent from PVS, waits for the interface unit to 
give the simplified formula (obtained from Mathematica) and replaces the formulas in the antecedent 
with the simplified formula. The goal in the sequent is thus proven with Mathematics's assistance. 

(ladderproof1 
( I  adder-theorem1 "" (SKOLEM! ) 
( (" " (FLATTEN) 

((I"' (EXPAND "adder-behavior") 
(("I1 (EXPAND "adder-structure") 
(("" (SKOLEM!) 
( ( " " (FLATTEN) 
(("" (EXPAND "resistor") 
( (la" (EXPAND "opamp-nonideal") 
(("" (EXPAND "Currentlawl") 
( ("" (EXPAND "Currentlau2") 
( ( " " (FLATTEN) 
(("" (ASSERTALL) 
(("" (PROPAX) NIL)))))))))))))))))))))))))) 

6.1 Proving known symbolic relations 

We have applied our verification technique to other analog designs. We present them in Table 1. The 
examples presented here are typical opamp-resistor networks, similar to the adder example presented 
before. The circuits are categorized according to the number of different analog components (opamps, 
resistors, capacitors) used in them. The last column indicates the number of universal variables over 
which their functionality can be expressed. 

The circuits presented here have well understood behaviors, in other words their functionality can be 
expressed as algebraic or differential equations over symbols representing voltages, currents at  their 
external terminals and physical attributes (like resistance, capacitance etc). 

Behavior of circuits (1-5) can be expressed as pure algebraic equations. Circuits (6-12) have been verified 
in the Laplace domain as the DAEs representing their behavior are Laplace converted to equivalent 
algebraic equations in real and imaginary domains. Implementation models of these circuits are again 
extracted as algebraic equations in real and imaginary domains. The execution time for verification of 
these examples is of the order of less than a minute on Sun Sparc Ultra 2 workstation (296 MHz, 128Mb 
RAM). The execution time consists of proof management by PVS and interaction of the interface unit 
with Mathematica. 



Table 1: Proving characteristic relations of well known circuits 

6.2 DC Analysis of Transistor Netlists 

We know that transistors behave nonlinearly in linear and saturated modes of operation. In order to make 
judgment about them using linear algebra we have to use piecewise linearization to approximate such 
behavior. We have used our integration of the theorem prover with CAS for establishing DC conditions of 
transistor net-lists using nonlinear models of transistors. In table 2 we have presented some of transistor 
net-lists whose DC conditions were checked. Columns 4,5 present the number of unknown variables and 
equations in these circuits. We know that transistors have three possible regions of operation and so a 

Table 2: DC Analysis of Transistor Netlists 

circuit with four transistor has 81 possible configurations. The circuit has been constructed to perform 
correctly for a few of these configurations. Exhaustively checking the correctness of these circuits in 
all such modes is an exponentially complex task. Simulators like Spice [lo] are used to establish DC 
conditions of such circuits. Simulators take user inputs, make guesses, use convergence algorithms and 
employ several heuristics to determine the stable DC operating modes for prevailing circuit conditions. 
Our approach is certainly more correct as we try to solve the set of equations completely in each possible 
circuit configuration but at  the same time number of possible configurations increase exponentially with 
circuit size. The execution time for verification of these examples is of the order of a few minutes on Sun 
Sparc Ultra 2 workstation (296 MHz, 128Mb RAM). The execution time consists of proof management 
by PVS and interaction of the interface unit with Mathematica. 

7 Summary 
In this paper we have seen that integration of a computer algebra system with a theorem prover enhances 
its ability to handle more complicated proofs. The theorem prover is still used as a proof manager where 
as the CAS provides additional power of nonlinear reasoning to its decision procedures. We have to 
realize that we cannot provide CAS support for all situations and results obtained from CAS has to be 



correctly interpreted. Nonlinear equations have multiple solutions which need t o  be  analyzed correctly. 
We have studied the  type of algebraic equations we are dealing with and have provided ways t o  interpret 
the  results obtained from the  CAS. We have presented interaction of a theorem prover PVS with a 
CAS Mathematica and have found such an integrated approach useful for verification of analog design 
functionalities. 
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Abstract. The verification of implemented algorithms can be decomposed into (i) showing prop- 
erties of an abstract representation of the algorithm and (ii) showing the abstract representation 
is correctly implemented. In this paper we discuss an approach t o  (ii) based on automatically 
extracting formal logical models from the output of the CV3 Verilog compiler. CV3 output is pro- 
cessed by inference using HOL, but the use of HOL is completely hidden from the user. The model 
extraction is packaged as a Unix tool that reads a Verilog source file and creates a HOL theory 
file. Command line options are used to select the kind of model produced and the form in which 
it is represented. This work illustrates the approach being explored by the Prosper project [9] in 
which user level tools make use of an internal proof engine. 

1 Introduction 

Formal verification is often applied to algorithms represented abstractly. For example, Harrison [5] verifies 
the correctness of floating point algorithms expressed in a simple imperative programming language 
semantically embedded in HOL, and Paulson [B] verifies properties of cryptographic protocols modelled 
directly in Isabelle/HOL1. 

There are several approaches to  ensuring that abstract representations of algorithms are correctly 
realised by concrete implementations, for example: 

- formally refine the algorithm to  implementable code or hardware; 
- use a verified compiler; 
- use an unverified compiler, but check for each run that the output is equivalent to  the input. 

The approach described here is similar to the last of these: we automatically extract logical models 
from the output of an unverified (and rapidly evolving) Verilog compiler. These models are in higher order 
logic and are suitable for further analysis by theorem proving or model checking. Application scenarios 
include post synthesis checking of properties of the implementation and showing that the synthesised 
implemention matches previously formulated abstract models. 

Industrial tools exists to  check the equivalence between HDL input and the results of synthesis, but 
as far as we know these use ad hoc semantics of the input HDL and are mainly intended to  ensure 
that if synthesisable HDL is verified by simulation, then this verification will also apply to  the results of 
synthesis. 

The rest of the paper proceeds as follows: first an overview of the relevant aspects of CV3 is given, 
next the modelling in HOL of the result of compiling Verilog is discussed, then the various options for 
processing by HOL of the synthesis output are described. 

Isabelle/HOL is Isabelle's instantiation to simply typed higher order logic [7]. 



CV3 is a tool written by David Greaves that reads a Verilog source file and generates output in a variety 
of formats. It  is implemented in a version of Standard ML2 and "supports compilation of nearly the 
whole Verilog language but has some bugs".3 

The output of CV3 is determined by a technology library. The library used here is called cv2.100 
and consists of various combinational components and a positive edge-triggered Dtype. The example in 
this paper only uses inverters ( INV) ,  2-input exclusive-or gates ( ~ 0 ~ 2 )  and Dtype flip-flops (DFF). These 
components have simulation models written in Verilog. The models of the combinational components all 
have small delays4 to avoid asynchronous (zero-delay) loops. 

module INV(o, i )  ; 
output  0 ;  
input  i ;  
a s s ign  #2 o = - i ;  

endmodule 

module XOR2 (0,  il , i 2 )  ; 
input  il,  i 2 ;  
output  0 ; 
as s ign  #3 o = il i 2 ;  

endmodule 

The Dtype has a more complex model that includes additional variables ( last-dl  l a s t - c lk )  and 
tasks for generating and displaying simulation output. 

module DFF(q, d ,  c l k ,  ce ,  a r ,  spa re ) ;  
output  q ;  
r e g  q ;  
i n i t i a l  q  = 0 ;  
input  c l k ;  // Clock (pos i t i ve  edge t r i gge red )  
input  d ;  // Data input  
input  ce  ; //  Clock enable 
input  a r ;  / /  Asynchronous r e s e t  
input  spa re ;  

i n t e g e r  l a s t - d ,  l a s t - c l k ;  

always Q(posedge c lk  o r  posedge a r )  
i f  ( a r )  q <= #I0 0 ;  
e l s e  i f  (ce)  

begin 
i f  ($time - l a s t -d  < 5) 

$display("Time %t,DFF %m v io l a t ed  set-up timel ' ,$time) ; 
l a s t - c l k  = $time; 
q <= #10 (d & 1 ) ;  
end 

always Q(d)  
begin 
l a s t - d  = $time; 
i f  ($time - l a s t - c l k  < 4) 

$disp lay  ("Time %t ,DFF %m v io l a t ed  hold time", $time) ; 
end 

endmodule 

CV3 is written in a version of ML implemented by David Greaves. 
h t t p :  //www. c l .  cam. ac .uk/users/djg/localtools/oldindex .html 
#n specifies a delay of n units of simulation time 



One possible output from CV3 is an unflattened (i.e. module hiererarchy preserving) Verilog netlist 
(vnl), another output form is an ML datatype representing the unflattened netlist (mlout). The former 
is more readable, but the latter is used in the interface to HOL. 

To illustrate CV3, suppose the file COUNT2. cv contains the following Verilog module definitions: 

module CLK-DIV(clk, ce) ; 
input clk; 
output ce; 
reg ce; 
always Q(posedge clk) ce = !ce; 

endmodule 

module COUNT2 (clk , out) ; 
input clk; 
output C1: 01 out ; 
reg [1:0] out; 
wire ce; 
CLK-DIV Ml(clk,ce); 
always Q(posedge clk) if (ce) out = out+l; 

endmodule 

Executing the command 

cv3core cv2.100 -root CLK-DIV -vnl $PWD/COUNT2.cv -0 CLK-DIV.vn1 

will write the file CLKDIV. vnl with the following Verilog n e t l i ~ t : ~  

module CLK-DIV (clk, ce); 
supply0 LGND; supplyl LVCC; 
input clk; 
output ce; 
wire 1100; 
DFF ce(ce, 1100, clk, LVCC, LGND, LGND) ; 
INV IlOO(I100, ce); 

endmodule 

Executing the command 

will write the file COUNT2. vnl with the following Verilog netlist: 

module COUNT2 (clk, out); 
supply0 LGND; supplyl LVCC; 
input clk; 
output C1: 01 out ; 
wire g102,IlOO; 
wire ce; 
CLK-DIV Ml (clk, ce) ; 
DFF ilout 103(out Cl1 , g102, clk, ce, LGND, ; 
XOR2 gl02 (g102, out Cll , out LO1 ) ; 
DFF i~out 101 (out COI , 1100, clk, ce, LGND, LGND) ; 
INV 1100(1100, outCO1); 

endmodule 

Automatically generated comments have been removed and the format of the output Verilog has been made 
more compact. 
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3 Importing CV3 output into HOL 

It  is very easy to import the netlists output by CV3 into HOL, because CV3 can generate its output 
as an ML datatype. The standard representation of structure in HOL [3] associates predicates with 
components, variables with wires and then expresses the structure using conjunction and existential 
quantification. For example, when COUNT2 is imported into HOL the Verilog module declaration becomes 
the following definition. 

I - COUNT2 CLK-DIV (clk, out-1 , out-0) = 
31100 g102 ce. 

CLK-DIV (clk,ce) A 
DFF (out-1 ,g102, clk, ce, LGND, LGND) A 
XOR2 (gl02,out~l,out~0) A 
DFF (out-0,1100, clk, ce ,LGND, LGND) A INV (1100, out-0) 

The components in the cv2.100 technology library (e.g. XOR2, DFF) are predefined with a user-selected 
semantics that is discussed below. Any module that has not been predefined (e.g. CLKDIV) is made a 
paramenter. 

The translation to a HOL-netlist is achieved by the command6 

cv2hol COUNT2.cv COUNT2 COUNT2 

The first argument is the Verilog source file (COUNT:!. cv). The second argument (COUNT2) is the name of 
the Verilog module in the source file that is to be imported into HOL, and the final argument (COUNT2) 
is the name of the theory to be created. This call to cv2hol creates a theory COUNT2Theory (which is 
represented by two files: COUNT2Theory. sml and COUNT2Theory. sig) containing the definition above. 

Often one wants to read in a sequence of modules and create a theory containing them all. If a module 
M1 is defined and then used in a subsequently defined module M2, then Ml will not be a parameter to M2. 
However, if M2 is defined first then M1 will be a parameter. The order in which modules are defined is 
specified by the order they are listed when cv2hol is invoked. For example 

cv2hol COUNT2.cv CLK-DIV COUNT2 COUNT2 

first reads CLKDIV and then COUNT2 from the file COUNT:!. cv and creates a theory COUNT2Theory con- 
taining 

I - CLK-DIV (clk,ce) = 
31100. DFF (ce, 1100, clk,LVCC,LGND,LGND) A INV (IIO0,ce) 

I - COUNT2 (clk,out-1 ,out-0) = 
31100 g102 ce. 

CLK-DIV (clk,ce) A 
DFF (out-l,gl02,clk,ce,LGND,LGND) A 
XOR2 (g102 ,out-I, out-0) A 
DFF (out~O,Il00,clk,ce,LGND,LGND) A INV (1100,out-0) 

Since CLKDIV was defined when COUNT2 was processed, it is treated as a predefined constant and not 
made a parameter. To get CLKDIV as a parameter to COUNT2 use 

cv2hol COUNT2.cv COUNT2 CLK-DIV COUNT2 

The general form of a command to create a netlist theory is 

cv2hol <source> <module> . . . <module> <theory> 

where <source> is a Verilog source file, each <module> is the name of a module declared in the source 
file and <theory> is the name of the theory to be created. 

See Section 8 for current status of implementation. 



4 Extracting models from netlists 

The meaning of a term like COUNT2 (clk, out) defined by cv2hol depends on the meaning of the com- 
ponents INV, XOR2, DFF e t ~ .  This is determined by the parent theory that predefines these constants. 
Currently four theories are provided, each giving a different model of the components. 

simTheory approximates the "golden" simulation semantics, complete with combinational delays; 
edgeTheory gives all combinational components zero delay and DFF a unit delay on a rising edge; 
tickTheory gives all combinational components zero delay, shrinks clock cycles to a single 'tick' and 

models DFF as a unit delay on a tick; 
cycleTheory cycle-based semantics: clock lines are ignored and DFF is modelled as a pure unit delay. 

The default theory is cycleTheory. The other three theories are selected by giving cv2hol the 
argument -sim, -edge or -tick before the Verilog source file. 

4.1 The theory simTheory 

Example definitions of the combinational components in simTheory are shown below. Note that the 
delays correspond to the Verilog simulation models of the components. 

LVCC(t) = T 
LGND (t = F 
INV (0, i) = Vt. o(t+2) = ~ ( i  t) 
XOR2(o,il,i2) = vt. o(t+3) = il t xor i2 t 

The HOL model of DFF in theory simTheory approximates the simulation model, though the waveform 
monitoring is ignored. A rising edge is defined by 

rise clk t = ~ ( c l k  t) A clk(t + 1) 

and then DFF is defined by 

DFF(~, d, clk, ce, ar, spare) = 
(Vt. t<lO * (q t = F)) 
A 
vt. if ((rise clk t) V (rise ar t)) 

then (if ar(t+l) 
then q(t+lO) = F 
else if ce(t+l) then q(t+lO) = d t 

else q(t+lO) = q t) 
else (q(t+lO) = q t) 

Although the HOL models in theory simTheory of the cv2.100 components use the same delay 
values as the Verilog simulation models, it is far from clear how the representation of behaviour in HOL 
corresponds to that generated by the Verilog simulation cycle. This is an important question, since one 
would like verification by simulation and formal verification to produce consistent results [4]. Attempts 
so far at  reconciling simulation and formal verification semantics are at  best rather preliminary (e.g. [2]). 

The combinational delays in the Verilog models of the cv2.100 components are in practice mainly 
to ensure well behaved simulation, rather than to support timing analysis. The model supports the 
implementation of storage via combinational loops and the implementation of simulators is such that 
the delays do not get in the way of efficient modelling. 

The HOL theory simTheory leads to rather messy formal models that are hard to analyse. In partic- 
ular, additional state variables are needed to define transition relations (see Section 6 ) .  Thus the model 
simTheory is really only of academic interest. 

A more tractable model is edgeTheory in which there are no combinational delays, but clock edges 
are still explicit, and transparent latches and gated and derived clocks can be represented. 



4.2 The theory edgeTheory 

The theory edgeTheory is obtained from simTheory by setting all combinational delays to zero, and 
giving DFF unit-delay. 

LVCC (t ) = T 
LGND(t) = F 
INV(o,i) = Vt. o t = ~ ( i  t) 
XOR2(o,il,i2) =Vt. o t = il t xor i2 t 

DFF(~, d, clk, ce, ar, spare) = 
(q 0 = F) 
A 
Vt. if ((rise clk t) V (rise ar t)) 

then (if ar(t+l) 
then q(t+l) = F 
else if ce(t+l) then q(t+l) = d t else q(t+l) = q t) 

else (q(t+l) = q t) 

This model is appropriate when one wants to model transparent latches, or flip-flops triggered on 
rising and falling edges. If every register is clocked on the positive edge of a single clock line, then 
a simpler representation is obtained by merging the steps between a positive edge and the following 
negative edge into a single abstract 'tick'. Thus there is no sequence of times when the clock is high. 

4.3 The theory tickTheory 

The theory tickTheory is obtained from edgeTheory by regarding the clock as a sequence of abstract 
ticks: clk t = T means there's a tick at time t and clk t = T means no tick a t  time t. There is no 
distinction between positive and negative edges and no interval between successive edges of the same 
clock phase. tickTheory is a temporal abstraction [6] from from edgeTheory. As with edgeTheory all 
combinational delays are zero. The model of DFF is 

DFF(q, d, clk, ce, ar, spare) = 
(q 0 = F) 
A 
Vt. if clk t 

then (if ar t 
then q(t+l) = F 
else if ce t then q(t+l) = d t else q(t+l) = q t) 

else (q(t+l) = q t) 

This model is appropriate when only one kind of edge is used to trigger flip-flops and there are no 
transparent latches, but gated or derived clocks need to be modelled. With tickTheory a clock cycle is 
atomic and is associated with a single time. With edgeTheory a clock cycle can take several unitis of 
time (e.g. between rising edges). 

If every register is clocked on a single clock line, then a simpler representation is obtained by ab- 
stracting all signals to their values at  successive ticks. This corresponds to a 'cycle-based' interpretation. 
The theory cycleTheory in the next section interprets the cv2. I00 components at  this abstraction. 

4.4 The theory cycleTheory 

If all registers have the same clock line, then the following simplified model of DFF can be used. 

DFF(~, d, clk, ce, ar, spare) = 
(q 0 = F) 
A 
Vt. if ar t 

then q(t+l) = F 
else if ce t then q(t+l) = d t else q(t+l) = q t 



Note that the clock line c l k  is ignored7 - time is modelling succesive cycles. There is thus a further 
temporal abstraction from the timescale used in theory tickTheory. If flip-flops are clocked by more 
than one clock then translation to HOL will give an incorrect model. 

4.5 Selecting a parent theory 

The component model to be used is specified as the first argument to cv2hol 

where <model> is one of s i m ,  edge, t i c k  or cycle. If no model is specified, then cyc le  is assumed. 
The theory named <theory>Theory that is created will have <model>Theory as a parent. 

5 Deriving equations from netlists 

When cv2hol is invoked, the default is to create a theory just with the translated netlists. If the argument 
-eqn is given, then each translated module is unwound using the definitions of the cv2. I00 components 
and other modules in the source that are defined earlier. For example, invoking 

cv2hol - s i m  -eqn COUNT2.cv CLK-DIV CLK-DIV 

creates a theory CLKDIVTheory that, as well as the HOL netlist of CLKDIV, also contains the automat- 
ically proved theorem 

I -  CLK-DIV ( c lk , ce )  = 
31 100. 

v t .  
((t < 10 j l c e  t )  A 

( i f  l c l k  t A c l k  ( t  + 1)  then 
ce (t + 10) = 1100 t 

e l s e  
ce  ( t  + 10) = ce  t ) )  A 

(1100 ( t  + 2) = l c e  t )  

Invoking 

cv2hol -edge -eqn COUNT2.cv CLK-DIV CLK-DIV 

creates a theory containing 

I -  CLK-DIV ( c lk , ce )  = 
l c e  0 A 
v t .  

( i f  i c l k  t A c l k  ( t  + I )  then 
ce  ( t  + 1)  = l c e  t 

e l s e  
ce  ( t  + I )  = ce t )  

Invoking 

cv2hol - t i c k  -eqn COUNT2.cv CLK-DIV CLK-DIV 

creates a theory containing 

' Currently the clock line is retained as an input variable, but ignored. This is inefficient for model checking, so 
in the future the clock variable may be eliminated. 



I -  CLK-DIV (clk,ce) = 
-ce 0 A 
Vt. 

(if clk t then ce (t + 1) = Tee t else ce (t + I) = ce t) 

and invoking 

cv2hol -cycle -eqn CLK-DIV CLK-DIV 

creates a theory containing 

I -  CLK-DIV (clk,ce) = lce 0 A vt. ce (t + I) = ice t 

If several modules are specified and the -eqn argument given, then all the modules are unwound. For 
example, invoking 

cv2hol -cycle -eqn COUNT2.cv CLK-DIV COUNT2 COUNT2 

creates a theory COUNT2Theory containing the HOL netlists of CLKDIV and COUNT2 and the theorems 

I - CLK-DIV (clk,ce) = -ce 0 A Vt . ce (t + I) = lce t 

I-  COUNT2 (clk,out-1,out-0) = 
Ice. 
lce 0 A lout-1 0 A lout-0 0 A 
vt . 

(ce (t + 1) = -ce t) A 
(if ce t then 

out-1 (t + 1) = -(out-1 t = out-0 t) 
else 
out-1 (t + 1) = out-1 t) A 

(if ce t then 
out-0 (t + 1) = lout-0 t 

else 
out-0 (t + 1) = out-0 t) 

6 Deriving state transition systems 

The equations produced using -eqn are useful for theorem proving. For model checking, it is convenient 
to derive a state transition system. To support this cv2hol can automatically derive a predicate giving 
the initial state (which has all the variables initialised to F) and a transition relation R defined so that 
if s is the vector of boolean state variables and s' is the corresponding vector of primed variables then 
R(s ,  s t )  means that s' is a possible successor of s .  

The state vector of the transition system for a module consists, in general, of a pair (sl ,sZ) where 
sl is a vector of the inputs and outputs of the module and s2 is a vector of the local variables. If 
there are no local variables, as in CLKDIV, then the state vector is just sl. For COUNT2 the vector sl is 
(clk,out-1 ,out-0) and s2 is ce. 

Invoking cv2hol with argument -trans generates definitions of <module>Init and <module>Trans 
for each module specified. For example, invoking 

cv2hol -cycle -trans COUNT2.cv CLK-DIV COUNT2 COUNT2 

puts the following definitions and theorems into COUNT2Theory 



I - COUNT2Init ( (clk, out-1 , out-0) , ce) = Tee A lout-1 A lout-0 

I -  COUNT2Trans(((clk,out~l,out~O),ce),(clk~,outl,outOJ),ce') = 
(ce' = ice) A 
(if ce then out-1' =  out-1 = out-0) else out-I' = out-1) A 
(if ce then out-0' = lout-0 else out-0' = out-0) 

In addition to these definitions, for each module M a theorem is automatically proved of the form 

I - VP. (Vsl s2. Reachable MTrans MInit (sl , s2) + P sl) * 
Vvl.. .v,. M (vl, . . . , v,) + Vt . P (vl t , . . . , V, t) 

This shows that if P is true of all reachable states of the derived transition system then P (vl t , . . . , v, t) 
holds a t  each time t. This theorem is a bridge from model checking to theorem proving [I]. For example, 
invoking 

cv2hol -cycle -trans COUNT2.cv CLK-DIV COUNT2 COUNT2 

puts the following theorems into COUNT2Theory 

I -  VP.(Vs. Reachable CLK-DIVTrans CLK-DIVInit s + P s) 
=+ 
Vclk ce. CLK-DIV (clk,ce) + Vt. P (clk t,ce t) 

I -  VP. (vsl s2. Reachable COUNT2Trans COUNT2Init (sl,s2) =$ P sl) 
=+ 
Vclk out-1 out-0. 
COUNT2(clk,out~l,out~O) + Vt. P(clk t,out-1 t,out-0 t) 

7 Discussion and future research 

cv2hol packages an off-the-shelf hardware compiler (CV~) and a proof engine (HOL) into an easy-to-use 
turnkey semantics extractor for Verilog. The output can be loaded into other tools (including HOL) for 
further processing. 

In the future it is hoped that the various models could be derived from a single model, ideally a 
representation in logic of the HDL simulation cycle. The current tool is a pragmatic compromise: the 
different models correspond to different definitions of the cv2.100 primitives and are not formally related. 
However, the implementation methodology of cv2hol does insure that if you trust the specified model, 
then the other derived representations (as selected by -eqn, -trans) are guaranteed to be logically 
consistent with it. This is a step towards ensuring the different representations needed for different 
purposes are consistent with each other. 

The long term goal is to provide a platform supporting the easy scripting of bespoke checkers that au- 
tomatically verify special purpose properties. cv2hol is an initial experiment and is part of Cambridge's 
contribution to the Prosper project [9]. 

8 Implementation status 

Currently cv2hol is implemented as a Moscow ML standalone executable that parses the command line 
arguments, creates an ML script, and then loads the script into HOL to create the desired theory. The 



dynamically created script loads one of simTheory, edgeTheory, t i ckTheory  or cycleTheory according 
t o  the  argument given t o  cv2hol.  Currently the  -eqn and - t r a n s  options are not available if - s i m  
(1.e. simTheory) is specified. It is possible that  this implementation strategy might change in the  future 
(e.g. t o  use Holmake and/or the  Prosper tool integration mechanisms). 
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Abstract. We describe how to interface a model checker SPIN with a theorem prover HOL through 
a language called GAS. GAS programs specify concurrent transition systems with guarded assign- 
ments. The language is expressively a subset of Promela. We formally define the GAS semantics 
in HOL, define a semantics of LTL formulae on GAS programs and provide a translation from 
GAS to Promela. We use this to add SPIN as an external decision procedure to HOL for proving 
properties of the form "GAS program G satisfies the LTL formula 9". 

1 Motivation 

When doing a verification of a property of a protocol or a concurrent program, often some significant 
reasoning is required to reduce the problem to one that is suitable for model checking. Abstractions may 
need to be performed on the data space to reduce it from an infinite space to perhaps a two point space. 
We may need to prove a fact about a protocol involving an arbitrary number of processes, but where it 
is possible to argue that it suffices to show that the protocol works when there are at most, say, 3 or 5 
processes. For an example of such a reduction see [2]. Once these reductions are performed, then a model 
checker is the most efficient way of finishing the verification. However, these reductions are outside the 
scope of a model checker such as SPIN, but require as much rigor as the parts that are handled by the 
model checker. Therefore it is often appropriate that they should should be done with an interactive 
theorem prover. 

By having the theorem prover directly call the model checker, instead of the human verifier recoding 
the problem, we get higher assurance that the same program is model checked as was reasoned about in 
the theorem prover. Also the correctness of the translation may be examined once for all translations, 
instead of on a per translation basis. 

We are not the first to  see a need to connect model checkers to theorem provers. PVS has incorporated 
a BDD-based decision procedure for the relational p-calculus for use in the verification of protocols [8, 
12,131. Isabelle/HOL also provides a connection [ll] to a model checker (the Eindhoven model checker) 
based on the p-calculus. To the best of our knowledge, this is the first time such a connection has been 
made with SPIN. 

The language GAS (for Guarded Assignments) is the bridge between the model checker SPIN and 
the interactive theorem prover HOL. While GAS is fairly similar to other languages, such as Unity [lo], 
it is designed to be a close fit to  the execution model of SPIN, and at the same time to be reasonable to 
write programs in. 



2 Syntax of GAS and LTL 

In this section we describe the syntax of the GAS language. GAS programs are very similar to SPIN 
automata, the intermediate representation used for translating Promela programs into Biichi automata. 

A GAS program consists of a collection of concurrently running processes. A process is a transition 
system, whose nodes represent control points. We assume that there is a collection of integer variables, 
all of which are shared among the processes. Each transition has two control points associated with it: 
origin and destination. Additionally, each transition is labeled with a guard and a parallel assignment. 
A guard is a boolean predicate on the space of all variables. Parallel assignment can change the value of 
one or more variables. The formal grammar is shown in Table 1. 

Table 1. GAS Grammar 

<Guard> ::= true I false <Expr> ::= < Var> I <Const> 
I < Guard > V < Guard > I <Expr> + <Expr> 
I < Guard > A < Guard > I <Expr> - <Expr> 
I <Guard> -+ <Guard> 
I i< Guard> <Var> : :=x,y,z,  . . .  
I <Expr> < <Expr> 
I <Expr> > <Expr> <Const> ::= 1,2 ,3 , .  . . 
I <Expr> 5 <Expr> 
I <Expr> 2 <Expr> 
I <Expr> = <Expr> 
I <Expr> # <Expr> 

Initially, all the variables are set to zero and every process has a distinguished starting control point. 
At every step, only one process can make a move. A move consists of taking an enabled transition whose 
origin is the current control point of the process. More precisely, a process P currently at control point 
cl can take the transition cl % cz if the guard g evaluates to t rue ,  given the current state of all the 
variables. As a result, P will change its current control point to ca and update the variables according 
to the parallel assignment a. Variables are updated in two steps: 

1. Evaluate the right-hand sides of all the singleton assignments in a. 
2. Assign those values to the corresponding variables on the left-hand side in the order from left to 

right. 



We can represent GAS programs as transition diagrams. Figure 1 shows graphical representation of 
the GAS program G P  = [PI, Pz], where 

p 1 = ( 1 , { ( l , x < 2 , [ ~ : = ~ + 1 1 , 2 ) ,  P 2 = ( 1 , { ( l , x 2 2 , [ 1 , 2 ) ,  
(2, y 2 3, [x := x + 11, l ) ,  (2, y < 3, [x := x - 11, I),  
( 2 , t r u e , [ ~ : = y + l ] , 2 )  1) (2, true, [y := y - 1],2) 1). 

true; y:=y+l true; y:=y-1 

Fig. 1. Graphical representation of a sample GAS program 

A sample execution fragment of the above program might go as follows. First a process is selected, 
say PI .  The current control point for PI is 1. There is one transition in PI with an initial control point 
of 1, namely the first one. Since in the initial state all variables have 0 for a value, we have x < 2, and 
so the guard condition is satisfied. Therefore, the transition is enabled and we generate a new state in 
which y now has the value 1 and the control point for the first process is 2. The control point for the 
second process is still 1. In the next move, if we were to select the process P 2 ,  no transition is enabled 
so no change of state would occur. If we select the process PI again, only the third transition is enabled. 
This transition increments y and retains the control point for PI at  2. As long as the control point for PI 
is at  2, this transition may execute an arbitrary number of times. Once it has executed enough times to 
cause y to be at  least 3, then the second transition for PI also becomes enabled. Should this tranistion 
be chosen, then x is incremented, y is left alone, and the control point for PI is returned to 1. Since 
the value of x is now 1, we still have that only PI has an enabled transition, which is the first one. 
After the first transition of Pl executes for a second time, both the second and third transitions of PI 
are enabled. If at  this point the second transition is chosen, then x is incremented a second time and 
the control point for PI is returned to 1. This time no transition of PI is enabled, but finally the first 
transition of P2 is enabled. This transition doesn't change the state, but sets the control point for P2 to 
2. Now only the third transition of P2 is enabled. It decrements y and retains the control point for P2 a t  
2. After it has executed enough times, eventually the second transition will also become enabled. Once 
the second transition of P2 executes, the control point for P2 is set to 1. At this point P2 once again 
becomes blocked, but the first transition of PI is once more enabled. 

Some facts that we can prove about this program in HOL include that always exactly one of PI or 
P2 is enabled, and that the value of x is always between 0 and 3. 

The main statement that we are interested in making about a GAS program is that it satisfies a given 
linear temporal logic formula [9]. Linear temporal logic formulae are constructed in layers. Atomic linear 



temporal logic formulae are the boolean expressions over the program variables that may occur as guard 
statements in programs. These may then be combined with the standard propositional connectives, V, 
A, 7 and +, together with the special temporal connectives (always), 0 (eventually), 0 (next), U 
(until), and W (waiting, or weak until). 

3 Semantics of GAS and LTL 

To be able to reason about GAS programs in the theorem prover HOL, we need to give a semantic 
embedding of GAS programs as HOL terms. We choose to do so using a method referred to as "shallow" 
embedding. In a shallow embedding, constructs of the object logic are implicitly interpreted directly as 
logical operators in the meta-language (HOL). The alternative approach is to encode the syntax of GAS 
programs as datatypes of abstract syntax trees, and then give an explicit evaluation or interpretation 
function in the meta-language explicitly describing the meaning of the various constructs. This method 
is usually called "deep" embedding. Deep embedding is more general. It  facilitates reasoning about the 
whole programming language which is being embedded, while shallow embedding allows only reasoning 
about the meaning (i.e. embedding) of individual programs. We choose to do a shallow embedding, 
because it is simpler, yet expressive enough for our purpose. 

The method we use for giving the shallow embedding is to lift the various constants and operators 
to functions over states for guard expressions, and to functions over sequences of states for temporal 
formulae. This method is fairly standard, similar to the one used in [3] and [I]. We will interpret GAS 
programs as sets of state sequences. A state is a mapping from program variables to values, integers 
in our case. To begin, we view constants as constant functions over states, and variables as variable 
lookup (i.e. we apply the state to the variable to find its value). From here we can define expressions 
and guard statements by applying a lifting operation (which we shall write as a superscripted asterisk) 
to the operators for constructing expressions and guards. Thus, for example, the guard statement 

becomes 
Xstate.((state x) = 1) A (state y) = 2). 

The result type of a guard expression is an HOL boolean, and the result type of an expression is a value 
(integer). The reason for parameterizing expressions and guard statements fundamentally is to have state 
available for calculating variable values in assignment statements and guards. Similarly, an assignment 
is viewed as an update function from states to states. 

Just as assignments, expressions, and guard statements are viewed as functions parameterized by 
states, each process is viewed as a relation parameterized by a pair of a control point and a state. 
To make this definition precise, we will associate with each process a transition relation defined on 
(control point, state)-pairs. 

Let T be the set of transitions corresponding to some process, let c and d be control points and 
T 

let sl and sz be states. The transition relation + describes one step of process execution. Each step 
changes the current control point and the current state by executing an enabled transition. The relation 
is formally defined by the following rule: 

(c, g, a, d) E T,  g(s1) = true, ~ ( s I )  = SZ. 

(c, ~ 1 )  3 (d, s2) 

Notice that the above definition treats guards and assignments as functions parameterized by a state, 
as described earlier. This transition relation has a natural extension to lists of processes. Consider a 
GAS program G = [(cl,Tl), . . . , (c,,T,)]. Let T = (TI,.  . . ,T,) be the vector of transition sets and 
- c = (cl, .  . . , c,) be the vector of control points (one for each process), shortly called a control vector. 



- 
T 

We now define the relation ---+ between (control vector, state)-pairs. The first rule says that the state 
changes when a single process executes a transition: 

There is one more rule that takes care of the situations where no transition is enabled. If this is the 
case, the state and the control vector stay unchanged: 

(Block) 
V i ,  g. (ci, g, -, -) E Ti + g(s) = false 

- 
( E ,  s) -5 (E, s)  

This describes an asynchronous execution model, similar to that of Promela [6,7,5], which facilitates 
an easy syntax-directed translation of GAS, discussed in Section 4. Another important correspondence 
is between semantics of the arithmetic. Instead of using the exact arithmetic already defined in HOL, 
we use the standard 32-bit signed word integer arithmetic that exists in Promela [6 ] .  

We now define executions of GAS programs as certain infinite sequences of (3,s)-pairs. We 
say that a sequence {(Ek,sn)}k>o of (control vector, state)-pairs is a behavior of a GAS program 
G = [(el, TI), . . . , (c,,T,)] if adjacent elements in the sequence are connected through the transition 
relation: - 

vk 2 0. (ck,sk)  5 (??Ii+', sk+l), 

while having i? = (el, .  . . ,en) ,  T = (TI,. . . , T,), and so being the state where all variables evaluate to 
zero. 

By projecting behaviors to the second component (pointwise), we get admissible state traces. We say 
that a sequence of states { ~ k ) ] c > ~  is an admissible state trace of G if there exists a sequence of control 
vectors such that { ( Z ~ > ~ ) } ~ > O  is a behavior of G. 

Finally, wedefine the semantics of LTL formulae on GAS programs. LTL has a natural interpretation 
on state traces [9], which defines when a state trace satisfies an LTL formula. We say that a GAS program 
G satisfies an LTL formula cp and write 

G kHUL $0 

if every admissible state trace of G satisfies cp. 

We defined all of the above semantic relations (including both the standard and GAS semantics for 
LTL) in HOL. In addition, we proved soundness of the several proof rules for LTL found in [9]. This 
is helpful for HOL reasoning about GAS programs in the context of LTL formulae. However, our main 
goal is to show how to use automated tools, such as SPIN, to help us carry out the proofs. This is the 
topic of the next section. 

4 Connecting SPIN and HOL via GAS 

This section describes the way we used GAS language to connect SPIN and HOL. There are three 
essential parts to this process: 

1. Provide a meta-function P which, given an HOL term containing a well-formed GAS program t, 
computes a "faithful" translation P ( t )  o f t  in Promela. 

2. Provide an HOL tactic SPIN-TAC that can be used for proving theorems of the form t satisfies cp, 
where t is a GAS program and cp is an LTL formula. The tactic should invoke the SPIN verifier. 

3. Provide a way to incorporate the result returned by SPIN back to HOL. For this task, we use a 
method called semantic tagging [4], designed to support safe addition of external decision procedures 
to HOL. 

The only difference is synchronous communication, where a 'send' in one process can execute simultaneously 
with a 'receive' in another process. However, this does not appear in our translations. 



4.1 Translation from GAS to Promela 

For a Promela program p and an LTL formula cp, we denote by p F S P I N  cp the fact that p satisfies 
cp (i.e. every execution trace of p is a model of cp). The annotation is motivated by the fact that the 
SPIN verifier is a decision procedure for k S P I N .  Our translation function P must have the following 
faithfulness property: for every GAS program t and an LTL formula cp, 

t kHoL cp iff P ( t )  bSPrN cp. 

This property says that the translation function P preserves the LTL semantics. P is a meta-function, 
written in a meta-language (ML, in our case), so its faithfulness is established informally. I t  may seem 
that this is a potential source of integrity problems for HOL. However, this is not the case-one of the 
fundamental properties of semantic tagging is that incorrect results from the external decision procedures, 
while often useless, can not introduce inconsistency. 

Because of the large number of technical details, we do not present the full code for our translation 
function P. Rather, we will concentrate on describing the essential aspects of the translation. Each GAS 
process will be translated into a Promela process. Control points will be translated into Promela labels 
and program variables will become Promela integer variables. To illustrate the translation of transitions, 
consider the following set of transitions with the common origin c: 

Guards and assignments are translated into Promela expressions. We denote this translation by P[ 1. 
Using this convention, the following Promela fragment is a translation of T: 

C : 
if 

:: Plg-11 -> d-step PCa-11 3 goto c-1; 
: :  PCg-21 -> d-step C PCa-21 1 goto c-2; 

. . . 
: :  PCg-nl -> d-step C PCa-nl 1 goto c-n; 

f i ;  

The fact that GAS is shallowly embedded in HOL makes the task of translating from GAS to 
Promela somewhat tricky. In HOL, we operate only on semantic GAS objects. We do not have access to 
the original syntactic objects whose embedding created their HOL representations. For instance, it is not 
quite clear how to tell if a given HOL term is a representation of a well-formed GAS program, let alone 
to translate it into Promela. We solve this problem by relying on the specific syntax of HOL terms that 
represent GAS programs. In order to do that, we define, for every GAS construct, the corresponding 
HOL constant that encodes its meaning. Only HOL terms which correctly use those constants (and 
nothing else) to represent GAS programs are considered valid for the purpose of translation. Obviously, 
this can be established only by looking at  HOL terms from the meta-level, since HOL itself can not 
distinguish between the terms with different syntax, but identical meaning in the logic (e.g. Xx.Xy. x + y 
and Xx.Xy. y + x).  Essentially, translation as our major goal forces us to perform a "syntax-preserving" 
embedding, which is a special, "deeper" case of shallow embedding. 

4.2 SPIN as an External Decision Procedure for HOL 

The general form of an HOL theorem is 

where as l ,  . . . ,as, are the assumptions and s is the statement of the theorem. Such a theorem can 
be established by providing a proof or by deriving it from already existing theorems by using built-in 



inference rules, such as Modus Ponens. Both methods are safe, in the sense that they can not generate 
false theorems. However, accepting external results into a theorem prover has the obvious problem 
concerning preservation of integrity. The theorem prover does not know whether the result is correct 
or not. If it does, there is no point in using an external decision procedure in the first place. Semantic 
tagging solves this problem by tagging every externally produced result by a special tag. Every theorem 
which is subsequently proved using the external result will have this tagged result among its assumption. 
The only way to eliminate tagged results from the assumption list is to actually prove them. 

We designed an HOL tactic called SPIN-TAC, which can be applied to HOL goals whose statement 
is of the form t satisfies cp, for a GAS program t and an LTL formula cp. The tactic first computes the 
Promela program P( t ) ,  then invokes the SPIN LTL verifier with inputs P ( t )  and cp. The tactic succeeds 
if all of the following conditions hold: 

1. The goal is of the required form. 
2. Term t is a well-formed GAS program. 
3. cp is an LTL formula not containing the next operator (0). 
4. SPIN completes the verification and finds no counterexamples. 

If all this holds, HOL generates a theorem with the tagged assumption t satisfies cp added to the assump- 
tion list. In principle, the tagged assumption can later be eliminated, using the HOL semantics for GAS 
and LTL described in Section 3. 

5 Example 

This section describes a GAS program that implements Peterson's Mutual Exclusion Protocol. Graphical 
version of the program is shown on Figure 2. Control points and variables are given descriptive names 
for the sake of clarity. 

PO: A P1: A 

true; turn:=O, activel:=l 

activel :=0, 
critl :=0 

activeO=O V turn=l ; 

true; - true; - 

Fig. 2. Peterson's Mutual Exclusion Protocol in GAS 

Processes PO and P1 are trying to enter a shared critical region. If a process is outside of the critical 
region and wants to get in, it first goes through the request (Req) state. Flag active0 (resp. activel) is 
set to  1 if PO (resp. PI )  is requesting to enter the critical region or is already inside the critical region. 

This is to ensure stutter-closedness of the formula, which enables SPIN to use powerful optimizations 



Variable turn is supposed to prevent the situation in which both processes are in the critical region at  
the same time. Flags critO (for PO) and critl (for P I )  denote whether the corresponding process is inside 
the critical region. 

GAS code for the protocol is given below: 

P O  = (0, { (0, true, [x4 := 1,xO := 11, I ) ,  P1 = (0, { (0, true, 1x4 := 0,x l  := 11, I), 
(1,xl = OVx4 = O,[x2 := 1],2), (1,xO = 0 V x4 = 1, [x3 := 1],2), 
(2, true, [ ]l 2>1 (27 true? [ I > 2 > ?  
(2, true, [xO := 0,x2 := 0],0) )) (2, true, 1x1 := 0,x3 := 0],0) 1 ) .  

Variables and control points in the textual version of the code are renamed, since in HOL we represent 
them with indices. In the code above, a variable with index i is denoted as xi. Indices are assigned 
according to the following table: 

Variable / Control Pointlactive~lactivelI critO I critl 1 turn 11 Out I Req I In 
Index 1 0  1 1  1 2 1 3 1 4 1 1 0 1 1 1 2  

Since GAS is shallowly embedded in HOL, the above GAS program is represented as an HOL term, 
shown in Table 2. The term is a pair consisting of the initial state and process list. The initial state 
assigns constant 0 to every variable. The process list contains two processes, each represented as the 
initial control point paired with the set of transitions. Initial control points for both processes are 0 
(corresponding to Out in Figure 2). Transitions are encoded using HOL-defined constructs that closely 
follow the GAS syntax. For instance, functions for reading and assigning variable values are read and 
assign, constant representing the empty assignment is I, boolean disjunction operator for guards is I I, 
and so on. 

Table 2. Peterson's Mutual Exclusion Protocol: GAS represented in HOL 

val Peterson = 
"(\x. INT 0). 
CO, 
{O,True,assign [Var 4,con (INT 1); Var O.con (INT 1)],1; 

1,read (Var 1) eq con (INT 0) I I read (Var 4) eq con (INT 0). 
assign CVar 2,con (INT 1)1,2; 

2,True,I.2; 
2,True.assign [Var 0,con (INT 0); Var 2,con (INT 0)1,0); 

0, 
{O,True,assign CVar 4 . ~ 0 ~  (INT 0); Var 1,con (INT 1)1,1; 

1,read (Var 1) eq con (INT 0) I I  read (Var 4) eq con (INT 1). 
assign CVar 3,con (INT 1)1,2; 

2,True,I,2; 
2,True,assign [Var 1,con (INT 0); Var 3,con (INT 0)1,0)1" 

: term 

Table 3 shows the Promela code generated for this GAS program. Notice that there are two declared 
variables for every index i. One of them, vi, is used to store the value of the right-hand side of the 
assignment, while the final assignment is performed on ri.  This is to ensure that individual assignments 
inside a parallel assignment do not interfere (i.e. to ensure that the assignment is indeed parallel). 

Consider the three LTL properties given in Table 4. Property MutEx states that processes are never in 
the critical region at  the same time. When we invoke SPIN-TAC on the HOL goal Peterson kHoL MutEx, 
the system invokes SPIN which successfully verifies the claim. 



Table 3. Peterson's Mutual Exclusion Protocol: generated Promela translation 

int v4, r4,vO. rO,vl, rl,v2, r2,v3, r3; 
proctype process-0 0 
{ 
goto label-0; 
label-0: if 
: :true-> d-step <v4 = 1;vO = 1;r4 = v4;rO = vO;) goto label-1; 
fi; 
label-1: if 
::((rl==O)ll(r4==0))-> d-step Iv2 = l;r2 = v2;) goto label-2; 
fi; 
label-2: if 
: :true-> d-step {skip;) goto label-2; 
: :true-> d-step {vO = O;v2 = 0;rO = vO;r2 = v2;) goto label-0; 
fi; 
> 
proctype process-1 0 
f 
goto label-0; 
label-0: if 
::true-> d-step {v4 = 0;vi = l;r4 = v4;rl = vl;) goto label-1; 
fi; 
label-1: if 
::((rl==O)II(r4==1))-> d-step Cv3 = l;r3 = v3;) goto label-2; 
fi; 
label-2: if 
: :true-> d-step {skip;) goto label-2; 
::true-> d-step {vl = O;v3 = 0;rl = vl;r3 = v3;) goto label-0; 
fi; 
1 

init 
I 
run process-0 0 ;  
run process-1 0; 
) 

Table 4. LTL properties of the protocol 

I Name I LTL property ~LTL property with Promela variables1 - -  - - -  - 
MutEx 

Progress 
CondProgress 

O ~ ( c r i t 0  A cri t l ) ,  
O(active0 3 OcritO) 

0 0 ~ c r i t l  a Progress 

0-(rO = 1 A r3 = 1) 
O(r0 = 1 a O(r2 = 1)) 

OO(r3 = 0) a O(r0 = 1 + O(r2 = 1)) 



However, the tactic fails if we attempt to prove Progress, which states that if PO requests permission 
to  enter the critical region, it would eventually get it. This is because the property is violated if P1 
decides to  stay inside the critical region indefinitely. 

CondProgress states that this is exactly the only case when Progress is violated. Precisely, it states 
that Progress for PO is guaranteed as long as we know that P1 is out of the critical region infinitely 
often. SPIN-TAC managed to prove this goal as well. 

6 Conclusions and Future Work 

We have demonstrated a way to  interface a SPIN model checker with the interactive theorem prover 
HOL through a common sub-language called GAS. GAS has the four essential properties: 

1. It  is expressive enough to write interesting and nontrivial programs in it. 
2. It  can be straightforwardly compiled into Promela. 
3. It  has a trace semantics which can be subjected to LTL verification. 
4. Its semantics can be relatively easily encoded into HOL. 

SPIN can be invoked from HOL to verify a conjectured satisfaction of an LTL formula by a GAS program. 

If a theorem to  be proved in HOL can be reduced to  some finite state transition system, our framework 
enables an appropriate split of the work between HOL and SPIN-HOL can be used to  prove the 
reduction and SPIN can be used to finish a potentially tedious case analysis. Communication between 
HOL and SPIN is automatic and safe, in the sense that it does not compromise the integrity of the 
verification. 

Looking a t  the expressive power, GAS is a subset of Promela. It is a proper subset, meaning that 
there are Promela programs that can not be naturally represented in GAS. GAS was designed primarily 
as an experimental language and as such it does not support many of Promela's features. Some of those 
features can be simulated. An example is asynchronous channel communication, which can be simulated 
by using shared variables. Others, such as dynamic process creation, can not be easily simulated. A 
possible future work direction is extension of GAS with more Promela constructs. 

Another idea is to  consider extensions of the LTL semantics for GAS which would incorporate notions 
of weak and strong fairness. For instance, in some cases we may want to ignore the behaviors in which 
a particular transition stays enabled indefinitely, but is never taken. 

Finally, interesting extensions are possible concerning the HOL/SPIN interaction. The current sys- 
tem accepts only positive verification answers from SPIN. In cases where verification fails due to a 
counterexample found by SPIN, a proof of the negation of the original conjecture could be automatically 
generated from the counterexample. 
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Abstract. We are improving equality reasoning in automatic theorem-provers, and congruence 
classes provide an efficient storage mechanism for terms, as well as the congruence closure decision 
procedure. We describe the technical steps involved in integrating logic variables with congruence 
classes, and present an algorithm that can be proved to find all matches between classes (mod- 
ulo certain equalities). An application of this algorithm makes possible a percolation algorithm 
for undirected rewriting in minimal space; this is described and an implementation in ho198 is 
examined in some detail. 

1 Introduction 

There has been a long-standing difficulty in theorem-proving of blending together deduction steps (such 
as Modus-Ponens or specialization) with equality steps (Leibniz' rule of substituting equals for equals). 
On the equality side, there are useful rewriters in most interactive theorem-provers: these are able 
to  call decision procedures and perform 'simplifying' deductive steps. On the deduction side, there 
are powerful resolution theorem-provers such as Gandalf [13]: these include special deductive rules for 
handling equality but still this is where they are weak in practice. - - 

We are interested in combining these two worlds, and in this paper we present a method to  improve 
the handling of equality in deductive provers, using congruence classes. To motivate this work, consider 
the following example from group theory that a deductive prover would find difficult to  handle: 

{Vxyz. [(x*y) * z  = x *  (y*z) ] r \  [ e * x  = x] r\ [i(x) * x  = el) 

+- { V x . x * i ( x ) = e )  

Here the antecedent is enough to  axiomatize the group operation (*), identity (e) and inverse (i), and 
the consequent is the right inverse group law. Here is a proof in the form of a chain of equalities [2]: 

e = i (x* i (x) )  * (x *i(x)) 

= i (x * i(x)) * (x * (e * i(x))) 

= i (x * i(x)) * (x * ((i(x) * x) * i(x))) 

= i (x * i(x)) * ((x * (i(x) * x)) * i(x)) 

= i(x * i(x)) * (((x * i(x)) * x) * i(x)) 

= i(x * i(x)) * ((x * i(x)) * (x * i(x))) 

= (i(x * i(x)) * (x * i(x))) * (x * i(x)) 

= e * (x *i(x)) 

= x * i(x) 

* Supported by an EPSRC studentship 



The problem is that the chain is long, and to find the proof a deductive prover would have to  generate a 
very large number of terms using the given equalities. Note that this example would also pose a problem 
for a basic rewriter because the rewrite set requires completion to solve the problem. 

Using congruence classes to store a set of terms maximizes subterm sharing and performs the con- 
gruence closure decision procedure, thus reducing the memory and time requirements of the deductive 
prover. There is however an incompatibility that needs addressing: deductive proving relies on logic 
variables that can be instantiated to arbitrary terms during the proof search, while congruence classes 
treat all variables in the terms as constants (and hence congruence closure does also). 

The contribution made in this paper is an exploration of some of the ramifications of using congruence 
classes to store terms with logic variables, and a demonstration of how the underlying data structure may 
be exploited to find all possible term matches modulo certain equalities. An immediate application of this 
is a percolation algorithm that performs undirected rewriting on congruence classes; we also describe this 
and characterize what it can and cannot prove. As a secondary contribution, the algorithms presented in 
this paper have all been implemented in the ho198 theorem-prover, and some preliminary results with 
the percolation algorithm are examined. 

The structure of the paper is as follows: Section 2 defines a set of congruence classes with the basic 
operations, Section 3 is on matching: we precisely define the problem, present the match-finding algorithm 
and prove that it always terminates with all matches. We describe the percolation algorithm in Section 4, 
and in Section 5 we briefly examine the functionality and performance of the HOL implementation. We 
draw some conclusions from the work in Section 6, and finally in Section 7 relate our approach to others. 
Appendix A contains the details of the HOL implementation. 

Note: this paper has been submitted to the Journal of the IGPL. 

1.1 Notation 

Terms in HOL are either constants, variables, function applications app(tl, t2) of terms to terms, or 
lambda abstractions lambda(v, t )  of variables from terms. 

2 Congruence Classes 

2.1 Introduction 

A congruence class set is a data structure that allows a set of terms to maximize the sharing of their 
subterms (and hence stores them in the minimum possible space). This property provides the basis of 
the congruence closure decision procedure [I] for the theory E in which the only interpreted function 
symbols are = and #. 

We define a congruence class to be a set of terms and a representative, so we can write a set of 
classes like this: 

{ { elt(1,1)7 ezt(1,2), . . . , ezt(1,rnl) 1, 
rep2 { elt(2,l) , elt(2,2) , - . . , elt(2,rnZ) 1, 
. . . 
rep* { elt(n,l), elt(n,2), . . . , eEt(n,m") 1 1 

This class set C has n classes; we write Ci for the ith class, which here has mi elements. The set of 
elements of a class can never be empty; the representative is always an element. We also insist that there 
is a distinguished true class containing T and a false class containing I. One more piece of notation: 
given an element elt in class C with representative rep, we will sometimes write class(e1t) for C and 
[elt] for rep. 



2.2 Normal Form 

A term t is in normal form with respect to a congruence class set C if t is an element of a class in C, 
and all the proper subterms of t are representatives of classes in C. A congruence class set is in normal 
form if all its elements are in normal form. 

In practice it is convenient to keep the class set C in normal form at  all times. This is not a burden; 
the empty class set is already in normal form, and we add an arbitrary term t to C by the following 
procedure: 

1. We may assume by recursion on the term structure that the immediate subterms of t are equal to 
terms in normal form. 

2. Thus since the immediate subterms are equal to elements of C we may rewrite them to be their class 
representatives, to get t'. 

3. If t' is an element of C then we are done, otherwise we add the new class t'{tf}. 

This procedure adds t to  the class set C, and as a side effect produces the theorem t = t' where t' is 
in normal form. 

Henceforth we will assume that congruence class sets are always in normal form, unless we explicitly 
state otherwise. 

2.3 Congruence Closure 

We define a close operation on a class set C: whenever two classes Ci and C j  in C have an element in 
common, then merge the two classes using the following algorithm: 

1. First choose rep to  be the smaller term of repi and repj.' 
2. Replace Ci and C j  in C with a new class C with representative rep and which contains all of the 

elements of Ci and C j .  
3. Finally we must rewrite all occurrences (in proper subterms) of repi and repj within C to rep. 

So far the effect of this operation is the same as the standard congruence closure decision procedure, 
but we also need two more features in our close operation: 

- Look for terms of the form A = B in the true class, where A is not the same term as B, and merge 
the classes with representatives A and B. 

- Look for terms of the form A = A in all classes except the true class, and merge all the classes where 
we find such terms with the true class. 

We now present a small example of congruence closure in action:' 

1. Start with a minimal set of classes: 
{ T { T } ,  

I { I )  1 
2. Add the fact f (f (f (a))) = a to the true class: 

{ T  { T ,  a = a  1, 
I (1 1, 
f { f 1 7  

a { a ,  f ( f  ( f  (a))) 1, 
f (a) f (a) 1 7  
f (f (a)) { f ( f  (a)) } 1 

Unfortunately, this is not quite enough to make our matching algorithm complete. In addition, for every logic 
variable X in rep that is not in both repi and repj, we must instantiate X in rep to an arbitrary value. This 
will always be possible, since if X is in repi but not repj, say, since the classes contain a common element we 
must have that Vx. repi[x/X] = repj, so rep;[arb/X] = repj and V x. repi[x/X] = repi[arb/X]. 
The same example is also in the appendix with more implementational details. 



3. Now when we add the fact f (f (f (f (f (a))))) = a, we get a neat collapse: 
{ T { T , a = a 1 ,  
1{1 1 7  
f { f  1, 
a { a ,  f ( a )  1 1 

There is nothing novel so far; the congruence closure decision procedure has already been imple- 
mented in HOL by Boulton [4] using term graphs, as part of his implementation of the Nelson-Oppen 
combination of decision procedures [ll, 121. We preferred the current data structure because it seemed 
easier to integrate logic variables and perform our matching algorithm on HOL terms, where we could 
use the standard HOL functions for operating on them. However, the underlying closure algorithm (using 
UnionIFind) is the same in both cases, and both implementations perform a fully expansive proof. 

2.4 Terms with Logic Variables 

We assume that our terms contain logic variables from a set V. To avoid confusion between the two 
types of variable, we will always write logic variables in upper case and normal 'HOL' variables in lower 
case. Thus the term f (X)  contains a logic variable but the term f (x) does not. 

We store terms in a congruence class set treating logic variables as normal variables. This has the 
effect that tl and t2 will be in the same congruence class if and only if for every variable instantiation 
a we have a t l  = a tz .  

We are now in a position to define equality modulo C for a class set C, which we write=c. If t l  =c ta, 
then tl can be transformed to t2 by a sequence of rewriting operations which always replace an element 
of C with another element in the same class, treating logic variables as constants. 

To illustrate this central definition, if we have a class in C containing both X and X + 0, then we can 
certainly say that X = c X + O  and 7+( (X+0)+O)=c7+X,  but not that 5+O=c5 or that Y +O=cY. 

We also define t Ec Ci to mean t =c repi. 
Note that =c is an equivalence relation, and if C is closed then for all t there will be at  most one Ci 

such that t Ec Ci. 

3 Matching Algorithm 

Suppose we have a congruence class set C that is closed and in normal form. The precise version of the 
matching problem that we would like to solve is: given classes Ci and Cj, what variable instantiations a 
allow Ci to match to Cj? A particularly important example of this problem for deductive proving occurs 
when Ci contains the goal term and Cj is the true class, when the question is equivalent to asking what 
instantiations of variables in the goal term make it true. First we define these terms, and then present 
a solution. 

3.1 Definitions 

We define a variable instantiation a : V + 7 to be a function from logic variables to terms (which 
may themselves contain logic variables). Given a term t E 7, we write a t  to  mean the instantiation of 
variables in t according to u. 

For a congruence class set C containing classes Ci and Cj, we say that a allows Ci  to match to 
C j  if 

3 t i t j .  t i E c C i  A t j  E c C j  A a t i = t j  

We define a function x : V x C -+ 'P(V -+ 7 )  from variable-class pairs to sets of variable instantiations 



and let d be 

So 4(S) is the set of all functions from V to 7 that, for every (X, C) pair in S ,  map variable X to a 
term 'provably in C'. We call sets of variable-class pairs subst i tut ions.  

3.2 T h e  Algor i thm 

The reason that we defined the function 4 in the previous subsection is that for every pair (Ci, Cj) 
of classes the algorithm we present finds substitutions S such that every variable instantiation in +(S) 
allows Ci to match to Cj. Let match(Ci, Cj) be the current set of substitutions between (Ci, Cj). 

We initialize each match(Ci , Cj) as follows: 

1. First set match(Ci, Cj) = {). 
2. If repi and repj have different HOL types, then finish. 
3. For every logic variable X with cEass(X) = Ci, add {(X, Cj)}. 
4. If i = j then add {(X, class(X)) I X a logic variable in repi). 

And now we inductively build up match, terminating when it is no longer possible to add anything 
new to any match(Ci, Cj): 

- Given an element in class Cj  of the form lambda(v, repb) and a substitution S E match(CB, Cb); if 
there exists an element lambda(v,  rep^) in some class Ci then add S to match(Ci, Cj). 

- Given an element in class Cj  of the form app(repf, rep,), and substitutions S E match(CF, C f )  and 
St E match(CA, C,); if both 

a S and St are compatible, (i.e., for every variable X there is at  most one element in S U S' of 
the form (X, C)). 

a there exists an element a p p ( r e p ~ ,   rep^) in some class Ci 

then add S U S' to rnatch(Ci, Cj).  

Note that here we are using the fact that C is in normal form. 
We will illustrate the algorithm on an example. Unfortunately, all real-life examples are too large 

to represent, so the example will necessarily have to be rather artificial. We invent an 'if-and-only-if' 
operator, f ,  which return true exactly when its two boolean arguments are equal. The example shows 
what matches occur on the term f T (f T T) .  

1. Here is the result of adding the fact f X X and the term f T (f T T)  to a minimal class set: 

{ T  { T, f x x ) ,  
I 1 1  

f X  { f X  1 7  
f T { f T  ) 9 

f T T  { f  T T  1, 
f T ( f T T ) { f T ( f  T T )  1 )  

2. The initial matches are easy to calculate, every class matches itself, and the boolean logic variable 
X matches all the boolean classes: 



match(T, T )  = {{)) 
match(I ,  I )  = {{)) 

match(f, f )  = {{I) 
match(X1 X )  = {{(X, X))) 

match(f Xl f X)  = {{(X, X) ) )  
match(f T ,  f T)  = (0)  

match(f T T ,  f T T) = {{I) 
match(f T ( f  T TI ,  f T ( f  T TI) = (0) 

match(X, T )  = {{(X, T)))  
match(X, I )  = {{(X, 1 ) ) )  

match(X, f T T )  = {{(X, f T T)))  
match(X, f T ( f  T TI) = {{(X, f T ( f  T T))))  

All other match sets are empty. 
3. After one inductive step, we gain the following extra match: 

match(f X ,  f T )  = {{(X, TI)) 
This comes from the application inductive step, using the compatible substitutions {) and {(X, T)),  
contained in match( f ,  f )  and match(X, T )  respectively. 

4. After two inductive steps, we gain the following extra match: 
match(T, f T T)  = {{(X, TI))  
Again from the application inductive step: this uses the substitution from the previous step, and the 
compatible substitution {(X, T ) )  contained in match(X, T). Since f X X has representative T ,  this 
is how the match appears. Notice that there are no matches from T to f T (f T T), because the 
relevant substitutions are incompatible. 

5. The algorithm now terminates, because no more substitutions can be added to any match set. All 
the match sets are returned to the calling application. 

We will return to this example in Section 4, to show how the percolation algorithm makes use of the 
returned match sets. 

There are two significant optimizations that can be made to the theoretical algorithm. Firstly, we do 
not add a substitution S that is less general than a match S' that we already have (i.e., #(S) g #(Sf)), 
though the algorithm above adds anything that is different. This costs nothing and promotes faster 
convergence. 

Secondly, we divide the inductive stage into passes, so that on pass n + 1 we add matches that arise 
from the result of pass n. This allows us to optimize by considering only the matches that were new at 
pass n, instead of every match. This is most significant for the application inductive step, where if there 
are m new and M old matches at  pass n, it only has to consider 2mM + m2 combinations instead of 
(m + MI2. 

3.3 Proofs 

We will prove three theorems about the algorithm: firstly, it terminates on all inputs; secondly, a sound- 
ness result that every match that it finds is valid; thirdly, a completeness result that every possible match 
is found. The purpose of these theorems is to show that the theoretical algorithm is logically sound3 and 
also to provide some useful information on the scope of the ideas. They can be used in proving facts 
about procedures that make use of the Matching Algorithm: we will see in Section 4 that the Percolation 
Algorithm relies on the termination and completeness results. 

Theorem 1 (Termination). The matching algorithm terminates on all inputs. 

Though in ho198, the design of the theorem-prover forces all inferences to be expressed as combinations of 
primitive inferences and these are checked by the logical kernel, so in this environment we are protected against 
proving false theorems. 



Proof. Let c be the number of classes in  C ,  and let v be the number of logic variables in C .  Note that the 
algorithm does not create any new classes or logic variables, so c and v are fixed. 

The number of variable-class pairs that may arise in  the matching algorithm is bounded above by vc,  
and so the number of possible sets of variable-class pairs, i.e., substitutions, is bounded above by 2vC. 

Define the termination measure to be the sum of the number of substitutions i n  all the match  sets. 
Since there are c2 match sets, this is bounded above by c22"'. 

The algorithm terminates when it cannot add any new substitutions to any match set, so the termi- 
nation measure must increase on every inductive step. But it is bounded above, so the algorithm must 
terminate. 

Lemma 1. For all substitutions S and S t ,  we have that 4 ( S  U S') = $ ( S )  n 4 ( S t ) .  

Proof. 

Theorem 2 (Soundness). For every substitution S E match(Ci ,  C j ) ,  for every variable instantiation 
a E $ ( S ) ,  we have that a allows Ci  to match to C j .  

Proof. W e  proceed by structural induction on match,  and assume that we have just added substitution 
S to match(Ci ,  C j ) ,  and that a E $ ( S ) .  

Firstly suppose S is one of the initial substitutions; for step 3 i t  is clear from the definitions that 
X Ec Ci and a ( X )  Ec C j ,  similarly for step 4 we have that repi Ec Ci and arepi Ec Ci. 

Now consider the lambda inductive step. By  the induction hypothesis there must exist t~ EC C B  
and tb EC Cb with u t g  = t b ,  SO therefore we have that lambda(v , tB)  Ec C i ,  Eambda(v, tb)  Ec C j  and 
alambda(v ,  t ~ )  = lambda(v, t b ) .  

Finally consider the application inductive step. There must exist classes C F ,  C f ,  C A  and C ,  such 
that a p p ( r e p ~ ,   rep^) is an element i n  Ci and app(rep f ,  rep,) is an element in  C j .  I n  addition, there 
must exist compatible substitutions S f  E match(CF, C f )  and S ,  E m a t c h ( C ~ ,  C,) such that S = S f  U S,, 
and so by Lemma 1 we know a E $ ( S f )  and a E $ ( S a ) .  Now we may apply the induction hypothesis 
to get t~ Ec C F ,  t f  Ec C f  , t~ Ec C A ,  t ,  EC Ca with  at^ = t f  and  at^ = t,. Therefore we have that 
a p p ( t ~ ,  t ~ )  Ec Ci, app( t f ,  t a )  Ec Cj  , and a a p p ( t ~ ,  t ~ )  = a p p ( t f ,  t,), as required. 

Lemma 2. For every class C i ,  all the logic variables in  repi are also i n  every element of C i .  

Proof. This is true when the class initializes, and the case when two classes merge is taken care of i n  
the footnote to Subsection 2.3. 

Lemma 3. For every t EC C ,  there is an element x in  C such that one of the following holds: 

- t is a logic variable, constant or normal variable and t = x. 
- t = lambda(v , tb) ,  x = lambda(v, repb) and tb EC C b .  
- t = a p p ( t f ,  ta) ,  x = app(repf ,  rep,), t f  Ec C f  and ta Ec Ca. 

Proof. Consider a counter-example t with minimal term depth. t =c rep,  so consider the first t ime we 
meet an element x in  C in the rewriting chain between t and rep. If x is a logic variable, constant or 
normal variable then we must have that t = x because there can be no previous step i n  the chain. If x is a 
lambda or application term, then it must always have been so, and now we can appeal to the minimality 
o f t  to show that the proper subterms must satisfy the necessary conditions. 



Theorem 3 (Completeness). For every variable instantiation a that allows Ci to match to C j ,  there 
exists a substitution S E match(Ci, Cj)  such that a E 4(S) .  

Proof. Assume the result is false and pick a counterexample a .  There must exist ti EC Ci and t j  EC Cj 
with uti = t j ,  and we may assume that the term depth of ti is minimal over all counterexamples. Using 
Lemma 3 we perform a case split on ti: 

Suppose ti is a logic variable X .  Then we will have that a E 4 ( { ( X ,  C j ) ) ) ,  and since the HOL type of 
ti is the same as the HOL type of uti this substitution was added to the set in step 3 of the initialization. 
Contradiction. 

Suppose ti is a constant or normal variable. Then ti = t j ,  and since C is closed we have that Ci = C j .  
By Lemma 2 the representative of Ci contains no logic variables at all, and so the set {) was added to 
match(Ci, Ci) in step 4 of the initialization. 4 ( { ) )  contains every variable instantiation, so certainly 
contains a .  Contradiction. 

Suppose ti = Iambda(v,tB), so t j  = lambda(v,tb), and we must have classes such that tB  Ec CB and 
tb EC Cb. Since atg = tb and tB  has strictly smaller term depth than ti (by the normal form property), 
we must have a substitution S E match(Cg, Cb) such that a E +(S) .  Therefore S must have been added 
to match(Ci, C j )  in the lambda inductive step. Contradiction. 

Finally suppose ti = a p p ( t p , t ~ ) ,  so t j  = app(tf , ta),  and we must have classes such that t p  Ec CF,  
tA  EC CA, t f  EC C f  and t ,  Ec Ca. Since  at^ = t j  and tF has strictly smaller term depth than ti ,  we must 
have a substitution S E match(Cp, Cf  ) such that a E $(S) .  Similarly we must have S' E match(C~,  C,) 
such that u E 4(S1) .  By Lemma 1 we have that 4 (S)  n 4(S1)  = 4(S U S t ) ,  so a E 4(S U S f ) ,  and hence S 
and S' are compatible. This implies that S U S' was added to match(Ci, C j )  in the application inductive 
step. Contradiction. 

4 Percolation Algorithm 

The Percolation Algorithm performs undirected rewriting on the congruence classes, and is an easy 
application of the Matching Algorithm. Here is how it works: 

1. Perform the Matching Algorithm. 
2. For every substitution S in match(Ci,Cj) and for every element t in Ci, create the element t' by 

applying the substitution S to t ,  and add t' to  C j .  This step is illustrated in Figure 1. 
3. Perform a close operation. 

This is one iteration of the percolation algorithm. There is no hope here of always reaching a fixed- 
point after many iterations; this would allow us to decide the word problem for the equalities in C, which 
is undecidable 121. In general our algorithm is a semi-decision procedure for the word problem, and in 
particular cases where a fixed-point is reached it is a full decision procedure. 

Returning to the example used in Section 3 to illustrate the matching algorithm, suppose the perco- 
lation algorithm had performed step 1 and been returned the match sets we created in the example. In 
step 2 it would be able to make exactly one addition: adding T to  the class with representative f T T .  
After the close operation in step 3, this is how the classes look: 

{ T  (7-1 f X X , f T T ) l  
1 ( 1  1, 
f { f  1 1  

x { X  } 1 

f X { f X  1 1  

f T { f T  1 1  
In practice we give each element a level number, and we define the level of a substitution S in 

match(Ci, C j )  to  be the maximum level of: the element in Cj that was matched; and the substitutions 
used to create S .  When we add new elements to Cj we give them the level of the match plus one. Now if 



we insist that the level of all elements added is less than some maximum then we can run the percolation 
algorithm until a fixed-point is reached, since now it is guaranteed to exist. This method of allocating 
level numbers was chosen so that we can give our rewrite rules (like X + Y = Y + X) an initially high 
level number, which will then stop them being rewritten like everything else! 

5 Results 

The examples we chose to test the program are listed in Table 1, and the results for these examples 
are detailed in Table 2. The Percolation Algorithm is not the most efficient way to prove the test 
theorems, and gets bogged down when the maximum level is set above about 4 (depending on which 
rewriting theorems are used). The first example is a triviality that is impossible for standard congruence 
closure [2]; the second example (from the introduction) derives the right inverse law from the group 
axioms; the other examples depend on the usual arithmetic rewrites and are designed to show what 
happens in such a rich theory. We give each example in Table 1 a number which is used in Table 2, and 
also show the minimum level necessary to prove the result. The columns in Table 2 in order are: example 
number, iteration number, number of classes, number of elements, number of matches, time to find the 
matches, time to add the new elements (assimilation), time to perform congruence closure, and total 
time spent on the iteration. We measured the number of elements and classes before each iteration. At 
the end of all the iterations we write in bold the total time spent in each phase.4 Note that the standard 
first order prover in HOL, MESON-TAC, proves examples 1, 3 and 4 in under 2 seconds, but can't prove 
the others at  all (at least, not in any reasonable time). 

The first thing that can be noticed from Table 2 is that the times to perform the three phases are 
of the same order: no one phase relatively dominates or vanishes. The second thing is that there is an 
awfully large number of matches for even small maximum levels, bringing in a correspondingly large 
number of new classes and elements. The congruence closure phase can reduce the size of the class set 
by a factor of 10 after an assimilation, and if we weren't using congruence classes this reduction in space 
would not be possible. However, despite this saving, undirected rewriting causes a subterm explosion; 
all congruence classes can really do is postpone the point beyond which we lose control. 

6 Conclusions 

We have described the technical steps involved in integrating logic variables with congruence classes, and 
presented an algorithm to discover matches between classes. This problem is analogous to the problem of 
finding the shortest path between two points on a weighted graph: in both cases the solution algorithm 
computes seemingly more than is required. Dijkstra's Algorithm [6] solves the shortest path problem but 
must compute the shortest path from the source point to every other point; and the matching algorithm 
presented here computes all matches between every pair of classes. 

This 'side-effect' is exploited in the Percolation Algorithm: finding every match is exactly what we 
want for undirected rewriting, and congruence classes provide a efficient storage mechanism. However, 
the results show that it is not efficient enough to stem the tide in theories such as arithmetic with 
large sets of equalities, and it cannot compete with a rewriter when there exists a directed rewrite set. 
This suggestas a natural compromise: for all equalities that make up such a rewrite set, let the rewriter 
work and feed the resulting simplifications to the congruence classes, we can then run the Percolation 
Algorithm on these and the rest of the equalities. 

This further integration will form the basis of future work, as well as the original aim of building a 
deductive proof procedure on top of the congruence classes. Unification is frequently used in deductive 

* All times are in seconds, using version Taupo 2 of ho198 running on an Intel Pentium I11 60OMHz. The memory 
use for the examples is less than lOMb, and garbage collection accounts for about 10% of the matching time, 
5% of the assimilation time, and 20% of the closing time. 



Table 1. Examples Chosen to Test the Percolation Algorithm. 

Example Level Theorem 
1 1 ( Q x .  f ( f  ( X I )  = g ( x ) )  * ( f  M a ) )  = g ( f  ( a ) ) )  
2 2 ( V x y z .  ( ( x * y ) * z = x * ( y * z ) ) A ( e * x = x )  

A ( i ( x )  * x = e ) )  j ( x  * i ( x )  = e )  
3 1 abc = cba 
4 2 abcd = dcba 
5 2 abcde = edcba 
6 3 ( a + l ) ( a + l ) = a a + a + a + l  

Table 2. Detailed Profiles of the Percolation Algorithm on the Examples. 

Total 
0.015 
0.009 
0.024 
0.031 
0.234 
1.893 
2.670 
3.188 
3.048 
2.757 

13.821 
0.156 
0.089 
0.245 
0.224 
4.480 
1.995 
6.699 
0.332 
9.007 
3.050 

12.389 
0.201 
2.390 

25.793 
11.219 
12.240 
51.843 

Match Assim. Close 
0.003 0.005 0.007 
0.004 0.005 - 
0.007 0.010 0.007 
0.008 0.011 0.012 
0.040 0.125 0.069 
0.738 1.034 0.121 
1.308 1.283 0.079 
1.962 1.138 0.088 
1.738 1.242 0.068 
1.578 1.179 - 
7.372 6.012 0.437 
0.027 0.054 0.075 
0.035 0.054 - 
0.062 0.108 0.075 
0.033 0.083 0.108 
0.499 1.348 2.633 
0.826 1.169 - 
1.358 2.600 2.741 
0.045 0.126 0.161 
0.665 2.053 6.289 
1.074 1.976 - 
1.784 4.155 6.450 
0.033 0.092 0.076 
0.399 1.034 0.957 
5.929 8.950 10.914 
5.617 4.995 0.607 
5.403 6.837 - 

17.381 21.908 12.554 

Ex It 
1 1 

2 

2 1 
2 
3 
4 
5 
6 
7 

3 1 
2 

4 1 
2 
3 

5 1 
2 
3 

6 1 
2 
3 
4 
5 

#C #E #M 
17 21 26 
15 22 24 

28 36 46 
28 40 126 
67 101 754 
85 134 857 
76 122 994 
77 129 951 
80 145 857 

51 70 109 
59 98 118 

56 75 143 
76 129 1047 

189 401 1168 

61 80 177 
89 154 1413 

188 477 1562 

53 72 131 
69 114 770 
83 179 3507 
96 228 2609 

200 406 2501 



proof search, and perhaps there exists a unification algorithm on classes analogous to the matching 
algorithm presented in this paper. We have briefly investigated this, and the problem seems to be more 
difficult: a t  the separation of variables phase we may have to create new classes to accommodate the new 
variables, so even our termination proof fails in the new context. There are also some improvements to 
be made to the current congruence class component, including allowing type variables to match (which 
will be useful in polymorphic theories), and allowing higher-order matching by including conversions on 
the underlying lambda calculus. This could perhaps work in a similar way to the Percolation Algorithm, 
looking for terms of the form app(lambda(v, Ci), Cj), and then producing a new term by replacing all 
occurrences of v in Ci with Cj. 

7 Related Work 

McAllester [lo] has also used congruence classes for storing terms, in order to perform rewriting in non- 
confluent theories. The application is different but the theory is very similar, since it is motivated by 
the same goal of reducing the space needed to store terms. One notable difference is that McAllester 
uses context-free grammars to represent the current state of the congruence classes, whereas we use an 
ad-hoc representation. However, in higher-order logic this doesn't really matter, because there are only 
two term constructors. Another difference is that in our system the equations for rewriting come from 
the congruence classes, whereas in McAllesterls setup they are prescribed in advance. This is in keeping 
with our respective applications, McAllester is seeking to improve rewriting performance, and we want 
to improve the handling of equality in deductive proof procedures. 

Apart from this, the most frequent use of congruence classes has been in the heart of the Nelson- 
Oppen combination of decision procedures [ l l ,  121, which uses congruence closure to propagate the 
equalities generated by the component decision procedures. Since traditional congruence closure treats 
term variables as constants, most of the work in equality reasoning has concentrated on rewriting. There 
is much theory on this (see Baader & Nipkow [2] for a comprehensive overview), and many systems 
(powerful simplifiers exist in many theorem provers, including HOL5, Isabelle6 and PVS7; and the OBJ 
family of languages is based on rewriting logic [7]). 

There have been many attempts to integrate equality reasoning with deductive proving, with varying 
degrees of sophistication. The first-order prover Gandalf [13] includes paramodulation as a basic proof 
step, as do many others, while Harrison's implementation in HOL of Model Elimination [8] axiomatizes 
equality and relies on deductive proof alone. A comparison of the two [9] suggests that paramodulation 
is more effective than pure deduction. In this paper we have argued that even more infrastructure would 
improve performance again. 

On the more general note of interleaving equality and deductive steps, we observe that Boyer and 
Moore [5] have argued for a tighter integration of decision procedures into provers, and Zammit [14] has 
made use of rewriting interleaved with deductive proof steps by generalizing proof rules with simplifiers. 
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A HOL Implementation 

A. l  Notation 

Terms in HOL are either constants, variables, function applications of terms to  terms (app( t1 ,  t2)) ,  or 
lambda abstractions ( l a m b d a ( v , t ) ) .  Thus 5 + 3 is really app($+ 5, 3), which in turn is app(app($+, 5), 
3). Note that infix operators gain the prefix $ when they are not in their usual infix position. 

The HOL constants T and F represent the logical true and false. We use HOL variables called 
lvO, l v l ,  l v 2 ,  . . . to  denote logic variables. 

HOL theorems can be created only using primitive inferences, and are printed in the form 
[. .] I - f l v 3  = l v 3 .  The I - represents the logical I- to  mean syntactic derivability of the conclu- 
sion on the right from the assumptions on the left. [. . I  represents two assumptions, which by default 
HOL does not show explicitly. 

There is a fixed set of HOL primitive inferences, and some that are relevant to this paper are: ASSUME, 
REFL, SYM, TRANS, and MK-COMB. 

- ASSUME takes a term t and returns the theorem t I- t .  
- REFL takes a term t and returns the theorem I- t = t. 
- SYM takes a theorem of the form I' I- tl = t2 and returns the theorem r I- t2 = tl . 



- TRANS takes two theorems of the form r l- t l  = t2 and A l- t2 = tS, and returns the theorem 
r U A t- t, = t3. 

- MK-COMB takes two theorems of the form r I- fi = f2  and A l- a1 = az, and returns the theorem 
r u A t- app(f1, all = app(f2, a2). 

A.2 Congruence Classes 

To implement congruence classes in HOL we define the following ML datatypes: 

datatype e l t  = E l t  of term * thm; 
datatype c l a s s  = Class of term * e l t  l i s t ;  

Note firstly that type1 * type2 is the way ML represents a cartesian product type. The term in the 
c l ass  type is the class representative; within e l t  the term is the class element and the t h m  is the equality 
theorem 'the element is equal to the class representative'. The reason we include the term separately 
when it is always the left hand side of the theorem is to speed up access. 

To give a feeling for the set-up, we give a simple example. Here is the initial class set to which we 
will be adding terms: 

- c l a s s e s - n u l l ;  
> v a l  it = 

[Class(T, CElt(T, [I I - T = T ) l ) ,  
C lass (F ,  [E l t (F ,  [I I -  F = F ) ] ) ]  
: c l a s s  l i s t  

Now we are going to add a fact to the class set using introduce-f a c t ,  a function which adds the 
conclusion of the theorem to the class set (involving a conversion to normal form), then performs a close 
with the information that the fact should be in the true class. 

- v a l  c s  = in t roduce- fac t  (ASSUME 'f (f (f l v 3 ) )  = ( l v 3 : ' a ) ' )  c l a s s e s - n u l l ;  
> v a l  c s  = 

[Class ( l v 3 ,  [E l t  ( l v 3 ,  I - l v 3  = 1 ~ 3 1 ,  
E l t ( f  ( f  ( f  l v 3 ) ) ,  [.I I -  f  (f  (f l v 3 ) )  = l v 3 ) 1 ) ,  

Class ( f  l v 3 ,  [ E l t ( f  l v 3 ,  I -  f  l v 3  = f 1 ~ 3 ) 3 ) .  
Class  (f (f lv3)  , [El t  (f (f 1 ~ 3 1 ,  I - f  (f lv3)  = f  (f lv3)  11 ) , 
C l a s s ( f ,  CElt(f ,  I -  f  = f ) ] ) ,  
Class($=.  CElt($=, I -  $= = $ = ) I ) .  
Class(T,  CElt( lv3 = lv3 .  [.I I -  ( l v 3  = lv3)  = T I ,  

E l t ( T ,  I -  T  = T I ] ) ,  
C l a s s  ($= l v 3 ,  [E l t  ($= l v 3 ,  [. 1 I - $= 1v3 = $= 1 ~ 3 1 1 )  , 
Class (F ,  [E l t (F ,  I -  F  = F)])]  
: c l a s s  l is t  

Note that we have precisely one logic variable (lv3); the others are normal variables. We now add 
another fact which produces the following collapse: 

- v a l  c s '  = in t roduce- fac t  (ASSUME ' f  (f (f (f (f 1 ~ 3 ) ) ) )  = ( lv3:  ' a )  '1 c s ;  
> v a l  c s '  = 

[Class ( l v 3 ,  [El t  ( l v 3 ,  I - l v 3  = lv3)  , 
E l t ( f  1 ~ 3 .  [ . .I  1 -  f  l v 3  = 1 ~ 3 ) l ) .  

C l a s s  (T, [El t  ( l v 3  = l v 3 ,  [. 1 / - ( l v 3  = lv3)  = T) , 
E l t ( T ,  I -  T  = T I ] ) ,  

Class($=.  [El t($=.  I -  $= = $ = ) I ) ,  
C l a s s ( f .  CElt(f ,  I -  f  = f ) ] ) ,  
C lass  ($= l v 3 ,  [E l t  ($= l v 3 ,  [ . I  I - $= l v 3  = $= 1 ~ 3 1 1 )  , 
Class (F ,  [E l t (F ,  I -  F  = F)])] 
: c l a s s  l is t  



Finally we add a new term to the class set: 

add-term ' f  ( f  ( f  (f ( l v 3 : ' a ) ) ) ) '  c s ' ;  
> val  it = 

( [ . . I  I -  f (f (f (f 1 ~ 3 ) ) )  = l v3 ,  
[Class ( l v3 .  
... same c la s se s  as l a s t  time ... 
Class(F, [Elt(F, I -  F = F)])]) 

: Thm.thm * c l a s s  l ist  

Notice the theorem that we get back in addition to the new class set, which tells us the normal form. 

A.3 Matching Algorithm 

In our implementation, we combine all the match(Ci, Cj) sets for each class Cj, and define a match 
datatype to store the substitutions: 

datatype match = Match of (term * ( in t  * term) l i s t )  * (thm * thm); 

The first term is repi, and the ( i n t  * term) l i s t  represents a substitution (logic variables are 
numbered, and the t e r m  is the class representative). Finally the first theorem is of the form t = repi 
and the second is t' = repj, where if we apply the substitution to t we will get t'. We need this to prove 
to HOL that the substitution is really valid. 

Initializing the match sets is easily implemented, and we will briefly comment on the method for the 
application inductive step, as illustrated in Figure 2. We assume there are compatible substitutions S 
taking F to f and S' taking A to a. We have the term app([F], [A])8 in class Ci and term app([f], [a]) 
in class Cj, and want to construct the application match. The two theorems we need are of the form 
t = [app([F], [A])] and t' = [app([f], [a])], for any t and t' such that the substitution S U S' takes t to t'. 
If we choose t = app(F, A) and t' = app(f, a ) ,  then the required two theorems can be created like this: 

Et = TRANS (MK-COMB (EF , EA))  Ei 
El = TRANS (MK-COMB (Ef ,  E,)) Ej 

Note that we are using HOL theorems at every stage, which may result in a bottleneck in the logical 
kernel. Boulton [3] provides a lazy-theorem approach to avoid such problems if they arise. 

Recall that [XI is the notation for the class representative of the term X. 



Fig. 1. One Step of the Percolation Algorithm. 
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X Y A term equal to X matches to a term equal to Y (using substitution S )  

Fig. 2. Matching through an application. 
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Abstract. There are many algorithms that make use of probabilistic choice, but a lack of tools 
available to specify and verify their operation. The primary contribution of this paper is a light- 
weight modelling of such algorithms in higher-order logic, together with some key properties that 
enable verification. The theory is applied to a uniform random number generator and some ba- 
sic properties are established. As a secondary contribution, all the theory developed has been 
mechanized in the ho198 theorem-prover. 

1 Introduction 

The Miller-Rabin primality test takes as input an odd integer n, and returns either the result T or the 
result I. If n actually is prime, then it is guaranteed to return T .  If n is composite, then it will return 
the result I with probability at  least one half. 

There are many such algorithms with a probabilistic specification, and more that make use of prob- 
abilistic choice in their operation. Examples of algorithms with probabilistic specifications are certain 
capacity allocation algorithms on multimedia networks and soft real-time scheduling algorithms, where 
the quality of service is stated as "the probability that things will go wrong (the combined demands of 
the clients will be more than the physical capacity of the network/the deadline will be missed) is less 
than 2-'", where s is some appropriately large number [6] .  Examples of algorithms with deterministic 
specifications that make use of probabilistic choice abound in randomized versions of basic algorithms, 
where the purpose of the probabilistic choice is to stop there being a deterministic class of 'bad' inputs. 
For instance, the randomized version of quicksort chooses pivots at  random, to stop there being a fixed 
class C(n)  of input permutations that result in O ( n 2 )  performance. Instead for any given run of the 
algorithm there is a probability IC(n)  l/n! that it will take O ( n 2 ) .  

We would like to be able to manipulate and reason about probabilistic algorithms in higher-order 
logic, but to date there are no tools to support this. The reason for choosing higher-order logic is that it 
is an expressive logic to state and prove properties of algorithms, and it has been implemented in various 
theorem-provers containing many pre-established theories which we can use to formalize our results. 

The primary contribution of this paper is an approach for modelling probabilistic algorithms in 
higher-order logic, allowing us to specify and verify their operation. In order to write specifications we 
need to make precise the notion of probability, and we do this by formalizing some mathematical measure 
theory in higher-order logic. We also demonstrate how to apply this framework, by stating a probabilistic 
specification of the Miller-Rabin algorithm and proving some properties of a uniform random number 
generator. 

The secondary contribution is the mechanization of this theory in the higher-order logic theorem- 
prover ho198', and in the conclusion we briefly comment on this experience. 

The structure of the paper is as follows: Section 2 sets out the fundamental model of probabilistic 
algorithms; Section 3 builds up the necessary measure theory to define event probability; Section 4 

* Supported by an EPSRC studentship 
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covers independence which turns out to be critically important; and Section 5 applies the theory to a 
uniform random number generator. Finally in Section 6 we draw some conclusions from the work, and 
in Sections 7 and 8 we look at future prospects and related work. 

1.1 Notation 

We use some types and definitions from higher-order logic, and it is worthwhile to gather their expla- 
nations into one place. Let B = {T, I) be the type of booleans, N = {0,1,2,. . .} the type of natural 
numbers and R the type of real numbers. W is the type of boolean lists, F* is the type of lists of 
boolean lists, and Bw = N -+ I5 is the type of infinite sequences of booleans. For s : Bm we write si 
to mean the ith element of s, instead of the technically correct but odd-looking s(i). We also use set 
operations throughout the paper, but it should be kept in mind that all sets in higher-order logic are 
typed, modelled by the type a -+ I5. 

We also use some primitive functions that should be explained. We assume basic arithmetic operations 
on the number types, including suc (successor) on the naturals and sup and inf on the reals. The functions 
fst and snd have their usual meanings on pairs, as do hd, tl, cons, length, map and append on lists. The 
higher-order function curry takes a function defined on pairs and converts it to curried form, uncurry 
does the opposite, and o is function composition. 

We define sequence analogues of the list functions hd, tl, take and drop, named shd : Bm -+ B, 
st1 : Bw -+ Bw , stake : N -+ Bw --+ B* and sdrop : N -+ Bw -+ Bw . Here are the logical definitions: 

shd s = so 

st1 s = s 0 suc 

stake 0 s = [I A stake (suc n) s = cons (shd s) (stake n (st1 s)) 

sdrop 0 s = s A sdrop (suc n) s = sdrop n (st1 s)  

Finally, let sdest s = (shd s,stl s).  

2 Modelling Probabilistic Algorithms 

We model a random number generator with an infinite sequence of 'randomly chosen' booleans. There 
are no global variables in higher-order logic, so functions that require random numbers must provide an 
extra argument to pass in the sequence, and must pass back a subsequence of 'unused random booleans' 
in addition to the normal results. 

As an example, here is a (top-level) implementation of the Miller-Rabin algorithm in ML: 

fun MR n = let  val a = uniform (n - I) 
in MR-det (a + 1) n end; 

uniform is a uniform random number generator, and MR-det performs the deterministic Miller-Rabin 
test. 

Definition 1. Miller-Rabin is modelled in higher-order logic as follows: 

Vn s. M R  n s = let (a, s f )  = uniform (n - 1) s 

in (MR-det (a + 1) n, s') 

Since M R  : N --+ Bw -+ B x Bw and uniform : N -+ Bw -+ N x Bw rely on random numbers, they 
take an additional boolean sequence argument (s), and return a sequence of unused booleans. M R  does 
not refer to any elements of the sequence in its body, so it can safely pass back the same sequence that 
uniform passed back. Note that since MR-det : N + N -+ I5 is deterministic, its definition has not changed 
at all. 



A random bit generator Bm + N x Bm provides a further example: 

As. (if shd s then 1 else 0, st1 s )  

This takes a sequence and returns a bit together with a sequence of unused booleans, which in this case 
is the tail of the sequence. 

This model of a random number generator is not a new one; it is a monadic state transformer used 
in pure functional languages such as Haske112 to pass around state [8,13]. Translating into the language 
of monads gives our theory some guidance: 

Definition 2. Let the higher-order logic type a monad denote the type Bm + a x Bm . Define the two 
functions unit : a + a monad and bind : a monad + (a  + /3 monad) + /3 monad as follows: 

unit x = As. (x, s )  

bind f g = uncurry g o f 

All the monad laws hold for this definition, and the notation allows us to write functions without 
explicitly mentioning the sequence that is passed around. For example, the random bit generator above 
is equal to: 

bind sdest (Ab. if b then unit 1 else unit 0) 

As well as simplifying the definition of probabilistic algorithms, there are further advantages to using 
monadic notation: these will be explained in Section 4. 

Now we have a basis to talk about probability. Suppose we have a probabilistic algorithm and a 
specification; this splits Bm into a set E of 'good' sequences that result in the algorithm meeting its 
specification, and a set Bm - E of 'bad' sequences that do not3. The precise meaning of " the  probability 
that the algorithm meets the specification" is P(E),  the probability of the set E. 

Definition 3. Here is  the specification of the Miller-Rabin algorithm:4 

V n .  odd n + (prime n ( V s .  MR n s = T ) )  

A (lprirne n =+- P ( { s  : MR n s =I)) 2 112) 

We now have two formalization tasks ahead of us: enough measure theory to precisely define our 
probability measure P : P(Bm) + R, and some key results of probability theory to assist us in the 
verification of probabilistic algorithms. These are accomplished in the next two sections. 

3 Lightweight Measure Theory 

In this section we take a mathematical measure theory based on sets [14], and apply it to our problem 
of defining in higher-order logic a probability measure P on subsets of Bm . 

3.1 Theoretical Definitions 

Suppose we have a measure function p : P(Bm) + R from sets of sequences to the reals. Here are two 
desirable properties of p: 

h t t p :  //UWW . h a s k e l l .  org/ 
The good and bad sets are obviously disjoint, and since in higher-order logic all functions are total these two 
sets together make up the whole of B" 
Note that  the prime n case is not the same as P({s : MR n s = T)) = 1, saying the property is true for every 
sequence is much stronger than this. 



- Positivity: V E .  0 5 p(E) < 1 with p(Bm) = 1. 
- Additivity: V EE'. E n  E' = 0 + p ( E  U E') = p(E)  + p(E1). 

Unfortunately a celebrated result of Banach and Tarski showed that if the Axiom of Choice is as- 
s ~ m e d , ~  then there exist sets that are non-measurable, so we have to be more cautious than simply 
asserting that such a p exists. Instead we carve out a subset of P(Bw ), a measurable space, upon which 
a particular p does exist with the desired properties. This motivates the next few definitions. 

Definition 4. Consider the function em1 : B* + P(Bm) from lists of booleans to  subsets of Bm, where 

So eml(1) is the set of all sequences that have initial segment I. 
Now we define our embedding function em : B** + P(Bm) by 

Definition 5. A set E c 1" is measurable if there exists an 1 : F* such that em(1) = E .  W e  define 
the measurable space A C P(Bw) to  be the set of all measurable sets. 

Proposition 1. I t  can be shown that A is an  algebra, i.e., that i t  contains the empty set and is closed 
under finitely many intersection, union and complement operations on its elements. 

Definition 6. W e  next define a measure m : B** + R on the representation type: 

m(110,. . . , In-11) = C 2- (length 1 ; )  

O<i<n 

W e  may now define a measure function p : A + R on the algebra, by reference to  the underlying 
B** type: 

p(A) = inf{m(l) : em(1) = A) 

Notice we have to be rather careful in this definition, because for a given A E A there may be many 
I : B** with em(1) = A. As an example, both [[TI] and [[T, TI, [T, I], [T, TI] embed to the set of all 
sequences beginning with T .  The definition respects this property, and since for every 1 : B** we have 
that m(1) 2 0 the infimum is always well-defined.6 

Theorem 1. p satisfies the positivity and additivity conditions. 

In itself Definition 6 is not complete since all functions in higher-order logic must be total, so we 
must make a decision about what to do with the non-measurable sets. Here is the final definition of the 
probability function P : P(Bm) -+ IW: 
Definition 7. 

P does not always satisfy the additivity condition (which was of course inevitable from the Banach- 
Tarski result), but it does at  least satisfy monotonicity: E E' + P(E)  5 P(E1); this follows from 
the definition of P and the additivity property of p. 

and it certainly is in the higher-order logic we use, in common with most of mathematics. 
This follows immediately from the fact that we are working in the real numbers, though it will later turn out 
that for every A E A there is always an 1 : S* with em(1) = A and m ( 1 )  = p(A) .  



3.2 Canonical Forms 

The previous subsection contained all the theory we need in order to precisely define what we mean by 
probability. However, the definitions as they stand are completely unworkable. We cannot even easily 
calculate P(Bm), the probability of the whole space. Why not? Because although ern([[]]) = Bm and 
m([[]]) = 2" = 1, there may also be an 1 : F* with ern(1) = Bm and m(1) < 1. 

To resolve this, we introduce a (computable) canonicalization function 

having two important properties: 

- Vlll. c(1) = c(ll) ern(1) = ern(ll), i.e., c(1) is a representative of the equivalence class containing 
1. 

- YE. m(c(1)) 5 m(l), i.e., the representative chosen has minimal measure. 

Now to find the probability of a set A E A, we first find any 1 : B** with ern(1) = A, and then we can 
evaluate c(1) in the logic to give P(A) = m(c(1)). 

Although it would be tedious to go through the proofs of these theorems, it may provide some insight 
to explain what c is doing. Firstly, it sorts 1 according to an order defined on B*. Next it throws away 
any x in 1 where there is a y in 1 that is a prefix of x. This is valid because ern(x) 5 ern(y), as can be 
seen from Definition 4. Finally, it merges elements with their twins. x : B* and y : B* are twins with 
parent z : B* if x = append z [TI and y = append z [ I ] .  If x and y are twins with parent z and x and y 
are both in I, then we can throw away x and replace y with z .  The order function is carefully chosen to 
keep the list in order after a move like this, and after all three phases the canonicalization is complete. 

With this technology, we can prove 

Proposition 2. 
Vn. P({s : s, = T)) = 112 

which says that for every boolean in the sequence, there is a probability of 112 that it is T ,  which fits 
well with our intuitive picture of a random number generator. 

The canonicalization algorithm is not just useful to calculate probabilities, it also gives us an induction 
principle on elements of the algebra A. We could just use list induction on the underlying B** type, but 
this does not fit well with the natural structure of our sequence space N + I5 where we would like to 
use the sequence head and tail functions to give us a strong induction hypothesis. Here is the induction 
principle for lists in canonical form: 

Theorem 2. 

VQ. &([I) A &([[I]) A (VEll. ( 4 )  = 1) A (~(1') = 1') A Q(E) A Q(ll) 
+ Q(append (map (cons T) 1) (map (cons I )  1'))) 

+ Vl. (c(1) = 1) + Q(1) 

The base cases are the lists [ I  (embedding to the empty set) and [[I]  (embedding to  the universe 
Bm); the step case builds a set in canonical form from two others. To prove instances of the step case 
very often all we need to do is a case split on the sequence head followed by some rewriting with 1 or 1' 
as appropriate. 

3.3 Limitations 

Our definition of probability is a finite measure; defined on fewer sets than definitions of probability 
that appear in most mathematical textbooks. Having defined a measure function on an algebra, they then 



extend it to  a measure on the smallest enclosing u-algebra (using Caratheodory's extension theorem). 
A a-algebra is an algebra that is also closed under countably many union operations on the elements. 

We considered this unnecessary, because all the events that arise in the verification of probabilistic 
algorithms are members of A, and so they already have a meaningful probability. However, it does lead 
to some anomalies in the underlying theory. If we start with Bm , and for every list 1 : F we remove the 
sequence with initial segment 1 and continuing TT . . ., then the set we are left with has probability zero 
(with our definition of probability). 

Interestingly, there is a comment in Williams [14] (referring to the a-algebra definition of measure) 
that makes an analogous point: "although not all sets are measurable, it is always the case for probability 
theory that enough sets are measurable". 

4 Independence 

Definition 8. Two measurable sets E and El are independent if 

P ( E  n El) = P(E)P(Ef) 

We write this as E 11 El. 

Intuitively this says that knowing whether or not s E E gives you no information at  all about whether 
or not s E El. 

It  is easy to underestimate the importance of this definition. Here are two reasons why it deserves 
attention: 

1. Independence provides sanity checks on our definitions. It  is not enough for us to prove that every 
boolean in the sequence has probability 112 of being T. This is also true in the case where every 
element of the sequence is always equal to every other element, and this certainly does not fit our 
intuitive picture of 'an infinite sequence of random booleans'. We also need to show that every 
element is independent of all the other elements, and only then will this establish that our sequence 
of booleans is genuinely Independent Identically Distributed (IID) [2]. 

2. Independence is essential for ease of verification. Many sets that naturally arise in a verification proof 
are of the form E n  E f ,  and it would be tedious in the extreme to evaluate probabilities of this kind 
directly, instead of just multiplying the probabilities of E and El. 

Proposition 3. For every number n : N, function r : B* + a ,  predicate p : a + I% and measurable set 
E: 

{s : p (r (stake n s))) LI {s : sdrop n s E E) 

Intuitively, this is obvious. Consider a probabilistic algorithm that reads n bits from a random number 
generator to compute a result (of type a ) .  Knowledge of the result (from the predicate p) cannot give 
you any information about future bits from the random number generator, and conversely knowing the 
future bits of the random number generator gives no information about the result. It  is this picture that 
allows us to generalise the result. 

Given 1 : W*, say that 1 is a cover set if both em(1) = Bm and for every two x and y in I we have 
that eml(x) n eml(y) = 0. Observe that for every sequence s there is a unique x E I with s E eml(x). 
Define the cover function covl for 1 to be the function that takes s and returns the unique x E 1. 

Proposition 4. For every cover set 1, function r : B' + a ,  predicate p : a + B and measurable set E: 

{s : p ( r  (covl s)))  LI {s : sdrop (length (covl s)) s E E) 

The intuitive picture is not much different from the previous one; again suppose a probabilistic algorithm 
is reading bits from a random number generator to compute a result. If a t  any point the list of bits read 
so far is a member of 1, then immediately return. Again the result gives no information about future bits 
from the random number generator, and vice versa. 



Definition 9. S a y  a function f : a monad is  split independent if there exist a cover set  I and a 
function r : l* -i a such that  

Vs. f s = ( r  (covl s),  sdrop (length (COV~ s ) )  s)  

And now the following theorem is a trivial consequence of Definition 9 and Proposition 4: 

Theorem 3. I f f  : a monad is  split independent then  for every predicate p : a -+ iB and measurable set 
E: 

{ S  : p (fst (f s ) ) )  LI {s : snd (f s) E E) 

This says that if a function is split independent, then the result and returned sequence will always 
be independent.7 Split independence precisely formalizes the felicity condition that a function should 
not misuse the random number generator by 'reading ahead', and the next theorem shows how such 
functions compose: 

Theorem 4. 1. For every x, unit x i s  split independent. 
2. sdest i s  split independent. 
3. I f f  i s  split independent and g ( x )  is  split independent for every x, then  bind f g i s  split independent. 

This says that any function that we define using the unit, sdest and bind operations on sequences is 
guaranteed to be split independent, and thus the result and returned sequence will always be independent. 

In Definition 1 we defined M R ,  a higher-order implementation of the Miller-Rabin algorithm. We can 
write this definition as 

Vn. M R  n = bind (uniform (n - 1)) (Xa. unit (MR-det (a  + 1) n))  

and now using Theorem 4 it is trivial to  see that if uniform is split independent for every n then so will 
be MR. 

5 Uniform Random Numbers 

We start with the following definition of unif : N + N monad. 

Definition 10. 

unif  n s = if n = 0 then ( 0 , s )  

else let (m, s f )  = unif (n div 2) s 

in (if shd(sl) then 2m + 1 else 2m, stl(sl)) 

Proposition 5.  For every n we have that  unif  n is  split independent, and has the following probabilistic 
specification: 

Vnm. ( n = m = O )  V 2m-1 5 n < 2m 

=+ V k. P({s : fst (unif n s) = k ) )  = (if k < 2m then  2-m else 0) 

This says that unif returns a number that has a uniform distribution on its range, but that its range 
can be up to twice as large as n. 

We would like to use unif  in the definition of a new function uniform that takes an argument n and 
returns a uniformly distributed number in the range 0, .  . . , n - The naive idea of calling unif n ,  and 



Fig. 1. The distribution of a naive attempt a t  uniform. 

subtracting n from the result r if r > n does not work: it produces the distribution as shown in Figure 1,' 
whereas the ideal distribution is completely flat. 

Unfortunately, it is impossible to get a terminating uniform distribution on any n that is not a power 
of 2, because a simple argument shows that all events derived from initial segments of the sequence 
will have a probability that is rational and can be expressed with a power of 2 denominator, and all 
terminating algorithms can only read a finite number of booleans from the sequence. So in particular 
there is no terminating algorithm on sequences that returns an element of {O,1, 21, with probability 113 
each. 

We compromise with the following definition: 

Definition 11. 

uniform t n s = i f t = O V n = O t h e n  (0,s) 

else let (m, st) = unif (n - 1) s 

in if m < n then (m, s') else uniform (t - 1) n s 

This uniform function repeatedly evaluates unif, stopping when either unif returns a number in the 
correct range or when the 'cut-off' parameter t is zero. Its distribution is shown in Figure 2. 

n 

Fig. 2. The achieved distribution of uniform. 

' Is the converse true? No: the function Xs.(so = sl ,s t l  s) is a counter-example. 
For n > 0 of course, uniform should probably be undefined for n = 0. 
The numbers close to zero have twice the probability of numbers close to n - 1, because two results of unif n 
map to the smaller numbers, but only one to the larger numbers. 



Theorem 5. For every n : N, uniform n terminates, is  split independent, and has the following specifi- 
cation: 

V t n  k. k < n + [ ~ ( { s  : fst (uniform t n s) = k)) - l l n l  < 2-t  

6 Conclusions 

We have introduced a way to reason about probabilistic algorithms in a higher-order logic, described 
some of the technical difficulties that arise and their resolutions, and finally applied the theory to a 
simple example. 

We used the ho198 theorem-prover to do this work, creating a purely definitional theory to ensure 
soundness (in common with most other ho198 theories). Particularly important for this work were the 
theories of real numbers [5] and predicate sets, although of course we found invaluable the basic theories 
of arithmetic, lists, well-founded recursion and the like. This paper represents approximately a month 
of work, and the resulting script files are about 5000 lines long. Automatic tools considerably sped up 
the whole development, particularly useful were the simplifier, first-order prover and function definition 
package. However, there is no substitute for picking the right definitions and coming up with general 
proof principles such as the canonical form induction theorem. These things had the most dramatic 
effect on the amount of labour required, and in addition resulted in a theory that was cleaner and more 
coherent than it would have otherwise been. The process of formalization gave insight. 

There was only one area where the probability theory concepts and the corresponding models in 
higher-order logic did not fit well together, and that was termination. Consider the following probabilistic 
algorithm: "read bits from the sequence, and terminate when you first hit a I". This is undefinable as a 
computable function in higher-order logic, because there is one sequence, namely TT . . ., upon which the 
algorithm does not terminate at  all. But the probability that the algorithm will terminate is 1, because 
P(Bm - {TT . . .)) = 1. If termination with probability 1 is an important enough concept, then it may 
be possible to create a new defining principle to allow it. 

7 Future Work 

Now that we have set up the basic model, there are many directions in which to take this further. 
In the short term, it would make sense to further develop the probability theory, to make the theory 
cleaner, easier to use and create some better automatic tools. One idea would be to take a Markov Chain 
(such as a random walk on the integers), recast it as a probabilistic algorithm, and try and establish 
the well-known properties. Once the theory is mature and stable, we can then look to verify some real 
programs with probabilistic guarantees, such as the allocation or scheduling algorithms mentioned in 
the introduction. 

In another direction, there are computer algebra packages (such as Mathematicalo) that offer basic 
statistical analysis functions, as well as many specialist statistical packages (such as SPSS"), but so 
far there is no theorem-proving system able to verify their results. This interaction has benefitted both 
theorem-provers and computer algebra systems in other domains; perhaps we could apply the technology 
to probability. 

Finally, there are many application domains in which it is natural to use continuous distributions in 
the model. The obvious approach is to model the probability density functions directly with higher-order 
logic functions R + R. Curiously, the current approach as it stands fits in very nicely if we use only 
infinite precision real arithmetic algorithms on the continuous distributions. All requests to the random 
number generator will be of the form "produce a random number between 0 and 1 with precision n", 
which directly transforms to "produce n random bits". Any algorithm of this form can be specified and 
verified using the techniques presented in this paper. 

lo http  : / / w u .  wolf ram. corn/ 
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8 Related Work 

Sometimes we can replace the probabilistic choice in a program with a stronger requirement, and prove 
the specification with this. An idea along these lines is to substitute demonic non-determinism for 
probabilitistic choice, which requires that every possible sequence of choices will satisfy the specification. 
Another version exists within the UNITY framework, which requires that every fair sequence of choices 
will satisfy the specification, where a sequence is fair if every choice point eventually chooses infinitely 
many of each choice. Demonic non-determinism is just universal quantification in higher-order logic, and 
UNITY has been also been integrated and mechanized [12,10]. However, neither of these two approaches 
can deal with specifications that refer to probabilities strictly between 0 and 1 (such as Miller-Rabin), 
and even when no such references exist their requirements might still be too strong to give a proof. 

Kozen [7] produced some early work in the verification of programs containing genuine probabilistic 
choice, and this was extended by Feldman and Harel [3]. The essential concepts of their system are the 
same as ours; programs operate on a sequence of random variables; the analysis is measure-theoretic, and 
cylinders (our measurable sets) play an important role; a computation level (where programs operate 
on concrete values) is distinguished from an analysis level (where the probability reasoning takes place). 
However, the logical embedding is very different. Their language is a two-level extension of first-order 
logic, with an axiomatised proof system, whereas our theory fits cleanly into higher-order logic. In 
summary, their model is more general (their sequence of random variables can have arbitrary distributions 
and they reason about partial functions), and ours is simpler, embedded in a more expressive logic, and 
integrated into an existing theorem-prover. 

Members of the Oxford Programming Research Group have recently generalised Dijkstra weakest 
precondition semantics to probabilistic analyses [ l l ,  91, and have used this to generate some paper proofs 
of various examples. We could easily have chosen this method instead of the one presented to model 
probabilistic programs; we felt however that the method chosen would involve less overall effort and 
would again integrate more cleanly with the existing theories. 

Finally, theoretical results of combining probability and various (first-order) logics have been well- 
researched; papers of Halpern and Abadi [4,1] give some decidability and complexity results. 
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A Executing Probabilistic Algorithms 

Suppose we have proved that the Miller-Rabin algorithm MR (Definition 1) meets its specification 
(Definition 3). Then if a particular (odd) n is composite we have an algorithm for proving it in higher- 
order logic: evaluate MR n on different sequences until we find an s with 1MR n s.12 This is one situation 
where we would like to  execute our probabilistic algorithms in higher-order logic; another arises when 
we have defined a probabilistic algorithm and would like to  debug it. 

This is possible by defining a pseudo-random number generator in the logic, and for this we just need 
an initial seed d : a and an iteration function i : a --+ B x a. For example, we could choose d = 0 and 
i = X n. (even n, An + B mod (2N + 1)). 

We now make use of the following proposition, which creates a sequence from an iteration function. 

Proposition 6. 

V f .  3 g. (Vx. shd (g x) = fst (f x)) A (Vx. st1 (g x) = g (snd (f x))) 

Specializing this proposition t o  i gives us a g, and we can now pass in the sequence g(d) t o  our 
probabilistic algorithm. During evaluation calls will be made to shd and st1 on sequences of the form 
g(x),  and a t  this point we don't do this by rewriting with the definitions of shd and stl, but rather we 
use the above proposition which merely requires the evaluation of i(x). In this way it closely simulates 
a real random number generator by carrying around its state, and avoids the horrible situation where 
t o  calculate the 100th bit of the sequence it must calculate the 99th, the 98th, etc., all the way back to 
the beginning. 

l2 On a practical note, for implementation purposes we may not want to execute costly algorithms in the logic 
unless we know that they will succeed in the proof. Perhaps we could execute the algorithm in ML first until 
we find the right sequence for the proof, and then execute the algorithm in the logic just once. 
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Abstract. We present our formalization of the PC1 protocol using inference rules written in the 
PVS theorem prover. We created an abstractin of PCI, called PCI', and have shown that PC1 
is a refinement of PCI'. The refinement proof was done by induction on PC1 traces-using each 
inference rule as an inductive subgoal. The producer/consumer property for the PCI' protocol was 
then exhaustively verified at  the bus/bridge level using the Murd model checker in just under two 
minutes. No violations were found in the reduced model, implying that the PC1 model also satisfies 
the producer/consumer property. The use of inference rules to describe the operational semantics 
of PC1 and PCI' facilitated the trace-inclusion refinement proof and provided a convenient model 
for use in both the theorem prover and model checker. 

1 Introduction 
The refinement proof discussed here arises in the context of a recently completed case study involv- 
ing the PC1 2.1 local bus protocol [PCI95]. The goal was to show that the protocol, extended with 
local master IDS, and implemented over arbitrary acyclic networks satisfies the producer/consumer 
transaction ordering property at  the bus/bridge level. The PC1 2.1 protocol is a popular I/O inter- 
connect standard widely used by many PC and peripheral manufacturers and will appear in SOC 
applications as a legacy interconnect. 
The PC1 2.1 specification document requires the PC1 protocol to satisfy a "producer/consumer" 
transaction ordering property. The published PC1 2.1 protocol violates the producer/consumer 
property due to a phenomenon called "completion stealing" as pointed out by Corella. Corella [Cor96] 
proposed the inclusion of local master IDS to prevent completion stealing and bring the protocol 
into compliance with the producer/consumer property. 
While protocols over branching networks are increasingly important in DSM or MP applications, 
little reasoning support exists for reasoning about them. The majority of recent verification work 
in unbounded, or parameterized, processes has focused on linear [ K M M + ~ ~ , C J L W ~ S ] ,  rather than 
branching, topologies. Protocols over branching networks present unique challenges tomodel check- 
ing, theorem proving and hybrid techniques. 
Our first attempts to solve this verification problem [MHG98,MHJGOO] relied on theorem proving, 
and later an informal combination of theorem proving and model checking, applied directly to 
the PC1 protocol. We found that the direct theorem proving approach was too difficult due to 
the complexity of identifying and proving auxiliary invariants (as will be discussed later). We 
also found that model checking applied directly to limited finite instances of the protocol quickly 
became mired in capacity issues (as is discussed in [MHJGOO]). Our current solution reduces the 
PC1 2.1 protocol to a an abstract; protocol, called PCI', which can be exhaustively verified using 
the Murd [ID961 model checker. The refinement proof relates the abstract model to the concrete 
model and was carried out using the PVS [ORS92] theorem prover. 
In this paper, we present our higher-order logic formalization of PC1 and PCI'along with a sketch 
of the refinement proof. The next section presents the specific verification problem in more detail 
and outlines our overall solution. Section 3 discusses the definitional theories of both protocols and 
the refinement proof. Section 4 briefly discusses the use of the Murd model checker to verify the 
reduced model. After presenting the details of the refinement proof and how the proof was carried 
out, we close with a discussion of how to eliminate the need for such a refinement proof. 



2 The Problem and a Solution 

We give an overview of the PC1 protocol and the requirements on the topology of a PC1 network. 
We then describe the PC transaction ordering property specified in the PC1 2.1 specification. An 
acyclic PC1 network is an acyclic hypergraph of agents and bridges connected by busses such that 
there exists a unique path between any two agents. Agents are connected to one bus while bridges 
are connected to two busses. Agents and bridges each contain two queues: one in each direction. 
The other queue in a bridge or agent is referred to as the "opposite queue". The opposite queue 
of the opposite of q is q.  
A PC1 network supports two types of transactions: posted and delayed. Posted transactions are 
unacknowledged transactions that can not be deleted and can not be passed. Delayed transactions 
are acknowledged transactions that can be dropped before being committed and can be passed 
at  any time by other delayed or posted transactions. Committed delayed transactions are delayed 
transactions that have been attempted at  least once, but not necessarily latched, on a local bus. 
Delayed transactions leave a trail of committed copies of themselves in every bridge through which 
they pass. The response to a delayed transactions is called its completion. Completions travel back 
from target to source following the trail of delayed transaction copies. Completions can be deleted 
and passed-except for delayed write completions, which can not be passed. A posted transaction is 
considered complete on a bus as soon as issued, while a delayed transaction is considered complete 
after its completion has returned to the local bus. The transaction reordering and deletion rules 
are intended to prevent deadlock while preserving the transaction ordering required by the PC 
property. 
The PC1 specification requires that PC1 buslbridge networks have the PC transaction ordering 
property. For the purposes of PCI, the PC property is stated as follows. If the following precondi- 
tions are satisfied: 

(1) An agent, the producer (Prod), issues two write transactions: W D , ~ ,  (a posted or delayed write 
transaction to the address Data) followed by Wplag (a posted or delayed write transaction to 
the address Flag), 

(2) An agent, the consumer Cons issues two Delayed Read Request transactions RFlag followed 
by R~ata ,  

( 3 )  Wplag is committed on the originating bus after the completion of Woata on the originating 
bus, 

( 4 )  R D ~ ~ ~  is committed on the originating bus after the completion of Rplag on the originating 
bus, 

( 5 )  Rplag is completed on the destination bus after W F ~ ~ ~  completes on the destination bus, and 
Then, assuming no other agents write to the data address, the value returned by Cons Rdata is 
the value written by the producer's Wdata. The central problem in this case study then is to show 
that all execution traces of all PC1 networks satisfy the PC property. 
Initially, we applied theorem proving directly to the PC1 protocol. The standard approach to 
showing an invariant over an infinite state protocol using a theorem prover is to break the protocol 
into steps and show that each step preserves the invariant. We represent the steps using inference 
rules. The precondition of a rule describes the conditions under which the protocol step is enabled; 
the postcondition of a rule describes the effects of a protocol step. For each inference rule ri we 
show that if state s satisfies the invariant inv, then the all possible states created by ri applied to 
s also satisfies inv: 

The problem is that inv(s) might not constrain s enough so that we can show inv on ri(s). This 
requires identifying and proving another set of invariants, which we call auxiliary invariants, so 
that, for some set of auxiliary invariants auxi, we have the following: 

In practice, identifying and proving each of the auxiliary invariants can be difficult and time 
consuming. 



For the PC1 case study, we identified a set of invariants which we believed could be used to show 
the transaction ordering property invariant. We created a hypothetical proof tree showing the 
relationships between the auxiliary invariants and the primary invariant that filled a 2 meter by 1 
meter white board. After approximately 3 months of proof effort by an experienced PVS user, only 
a few of these invariants had been proven. One of those invariants read "if a transaction exists in 
a bridge, then there exists a previous state in which that transaction was created" The proof of 
this invariant required approximately one and a half weeks of effort. 
Rather than continue our brute-force PVS proof of the PC property, we chose to define an abstrac- 
tion that would reduce the original unbounded problem to one suitable for model checking. The 
abstraction of PC1 eliminates all sources of unboundedness in the original problem resulting in the 
abstracted PCI' protocol. The abstraction has four components: 
- Reducing arbitrary instances of the PC property over PC1 networks to one of four1 reduced 

networks. The reduction is done by keeping only significant paths in the abstract network. 
Significant paths are the paths between PC1 devices required by an instance of the PC property. 
The four network classes created by this reduction were identified by a proof in PVS [MHJGOO]. 

- Coalescing bridges in a significant path. Bridges are coalesced by concatenating their contents. 
The number of bridges in a significant path is unbounded, coalescing bridges maps all paths 
of n bridges to the same abstract path. 

- Ignoring all transaction except significant transactions. Significant transactions, like significant 
paths, are the transactions required by an instance of the PC property. 

- Ignoring all but the newest committed copy of a significant transaction. Recall that delayed 
transactions leave committed copies as they travel from bridge to bridge. Since a path may 
contain n bridges, an abstract path might contain up to n copies of a significant committed 
delayed transaction. Since n is unbounded, the number of states in an abstracted PC1 network 
would also be unbounded. 

While the preceding abstraction results in a small model with under 6,000 states, the abstraction 
is sufficiently convoluted that one should not be easily convinced that the properties of PCI' apply 
to the PC1 model. We formally relate PCI' to the concrete PC1 model by showing that the concrete 
model is a trace inclusion refinement of PCI'. This relationship was established using a PVS proof. 

3 Refinement Proof 

Trace inclusion refinement requires showing that for every concrete PC1 trace, there exists an 
abstract PCI' trace such that each state in the abstract trace is equal to the abstraction of the 
corresponding concrete state [ALSl]. Trace inclusion refinement weakly preserves safety properties. 
In the context of PCI, for each concrete trace, u ,  we need to show that there exists an abstract 
trace, OA in PCI', such that the following relationship holds: 

where each next state is created by applying a PC1 transition to a particular transaction in a 
particular network. Each abstract state A, in u is created by applying the abstraction function to 
concrete state Ci. The refinement relationship will be shown by induction on the length of a .  The 
abstraction function includes the network symmetry reduction. 
The proof is outlined in Figure 1. The states in the concrete trace are shown on the top of the 
figure while the states in the abstract trace are shown at  the bottom. The abstract and concrete 
traces are related by the abstraction function, a. The basis case is shown on the left. It requires us 
to show that the abstraction of the initial concrete state is equal to the abstract initial state. The 
inductive hypothesis assumes that for any trace of length n,  there exists some abstract trace, also 
of length n (PCI' includes a "no-op" transition to allow stuttering), such that the abstract and 
concrete states are related by the abstraction mapping. The inductive step requires us to show that 

Previously, we claimed we could reduce the problem to three networks. This incorrect claim is due to a 
misinterpretation of the theorem proven about PC1 networks 
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Fig. 1. Outline of proof that PC1 is a refinement of PCI'. 

for every application of every concrete rule, denoted 65, there exists an application of an abstract 
rule, SA,  such that the abstraction of the next concrete state equals the next abstract state. 

The refinement proof was carried out in the PVS theorem prover using formalizations of the PC1 
and PCI' models and the abstraction. The inductive step of the refinement property is stated in 
PVS2 as: 

refine-p-compl : THEOREM 
FORALL (R: concrete.rule, cPos:concrete.index,c:concrete.state) : 
R'pre(cPos,c) AND 
(not (osig (trans-at (cPos,c)))) 
IMPLIES 
(EXISTS (a : nat) : aRules(j)'pre(index-abs(cPos,c),state-abs(c)) AND 

aRules(j)'action(index~abs(cPos,c),state~abs(c)) = 
state-abs(R'action(cPos,c))) 

The theorem reads that "forall indices, cPos, in all PC1 states, c, if the transaction at cPos satisfies 
the preconditions to a concrete rule R, then there exists a PCI' rule a such that the abstraction of 
cPos in state c satisfies the preconditions of rule a and the PCI' state created by the action of rule 
a applied to the abstraction of cPos in state c is equal to the abstraction of the PC1 state created 
by the action of R applied to cPos in state c." The refinement theorem was proven for each of the 
rules representing the PC1 execution steps. 

Both PC1 and PCI' protocols were formalized using sets of inference rules to define their operational 
semantics. Inference rules are represent as records with three fields: a "pre" field for modeling the 
precondition as a predicate, a "post" field which maps states to next states and a "name" field 
which was included to aid readability. We begin by giving the formalization of the PC1 p-latch and 
discussing the various effects PC1 p-latch might have on the abstract trace. We then give the PCI' 
rule needed to model the effects of PC1 p-latch on the abstract trace. 

All PVS excerpts slightly modified to enhance readability 
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Fig. 2. Case analysis in p-latch refinement proof. 

(# name := "p latch", 
pre := lambda(cPos:concrete.index,c:concrete.state): 

(head-of-queue (cPos)) AND 
(not (final-queue (cP0s.c))) AND 
(posted(cPos.c)), 

action := lambda(cPos:concrete.index, c:concrete.state): 
let nextq = next (cPos,c), 

t = trans-at (cPos,c), 
cPos2 = (side(cPos) ,nextq,c1net (side(cPos1 ,nextq)'length) 

in 
insert (cPos2,t,(delete (cPos,c))) 

#) 

If a posted transaction has reached the head of a queue in a bridge, the p-latch rule moves the 
transaction to the tail of the next queue. The "pre" field for p-latch checks that the transaction: 
- has reached the head of its queue, 
- is not in its final queue and 
- is a posted transaction. 

If the precondition is satisfied, then the function in the "post" field creates a new reachable state 
in which the posted transaction at  "cPos" has been deleted and inserted a t  the tail of the next 
queue (labeled "cPos2" in the definition). 
Rule p-latch is parameterized by a location, or index, and a state. For a concrete state c, we assume 
c satisfies the preconditions to p-latch and perform a case analysis on the concrete index, cPos. 
The case analysis on cPos partitions the effects of p-latch on the abstraction of the next state. The 
structure of the case analysis is outlined in figure 2. 
The first case split is on whether or not cPos lies on a significant path. If cPos does not lie on a 
significant path, then the transaction at  cPos is not a significant transaction and is discarded by 
the abstraction. In this case, PC1 rule p-latch has no effect on the abstraction of the next state and 
the PCI' no-op rule models the effects of p-latch. In t he next case split, we assume cPos lies on a 
significant path and split on whether or not the transaction at  cPos is a significant transaction. If 
the transaction at  cPos is not a significant transaction, then it is also discarded by the abstraction; 
and p-latch does not affect on the next abstract state so we use the PCI' no-op rule here as well. 
If the transaction at cPos is a significant transaction, then the next case split is on whether or 
not the bridge containing cPos lies on a path boundary. If the transaction does not lie on a path 



Fig. 3. Non-determinism in p-latch PCI' transition. 
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boundary, then moving the transaction from the head of one bridge to the tail of the next has no 
visible effect in the abstraction because bridge contents are coalesced. The PCI' no-op rule applies 
here as well. But if the transaction is at the head of a bridge on a path boundary, then moving the 
transaction to the next bridge moves the transaction to the next path in the next abstract state. 
This potential effect on the abstract trace is mirrored by the PCI' p-latch rule, given below: 

a 

(# name := "p latch next", 
pre := lambda (aPos : abstract.index, a :abstract.state) : 

(head-of-path (aPos)) AND 
(not (f inal-path (aPos ,a) ) ) AND 
(posted(aPos,a)), 

action := lambda (aPos : abstract.index , a : abstract.state) : 

a 

let t = trans-at capos, a), 
next-aPos = (side(aPos) ,path(aPos)+l, 
a'net(side(aPos) .path(aPos)+l) 'length) 

in 
if (not (f inal-path Capos, a) ) 
then 
insert (next-aPos,t,(delete(aPos,a))) 
else a 
endif 

t ) 

1 

2A1': P 

A : - I  P I 

p-latch ~ 2 ' : n :  P 1 

The PCI' p-latch rule is similar to the PC1 p-latch rule. The precondition checks that a posted 
transaction has reached the head of a queue. The postcondition deletes the transaction out of the 
current queue and inserts it into the next queue. 
However, the PCI' no-op rule may also apply to states which satisfy the preconditions to the PCI' 
p-latch rule. This non-determinism is created by the information lost when bridges are coalesced 
to form paths. For example, consider an abstract state a in which a posted transaction p appears 
at  the head of a path. If we take the pre-image of a under the abstraction, then any state in which 
a posted transaction appears as the final significant transaction in a set of bridges may appear a t  
the head of a path in a .  This is illustrated in figure 3. Two concrete state fragments, S1 and S2, 
appear at  the top of the figure and an abstract state fragment, A, appears a t  the botton. States 
S1 and S2 both contain a single significant posted transaction in one of three queues. A path 
boundary is indicated by the dashed line between queues 2 and 3. In S1, queue 2 is empty. Under 
the abstraction, S1 and S2 map to the same abstract state fragment, A. 
Next we apply a p-latch transition to states S1 and 52  to create the next states S1' and S2'. In 
Sl', the posted transaction now appears in queue 2, but in S2' the posted transaction has crossed 



the path boundary. Despite the fact that S1 and 52  map to the same abstract state, S1' and S2' 
map to different abstract states, labeled Al' and A2'. In the abstract trace, the transition from S1 
to S2' is mirrored by a PCI' no-op transition; while the transition from S2 to S2' is mirrored by 
a PCI' p-latch transition. 
In this case, the non-determinism is easily handled by the no-op rule in PCI'. The no-op rule has 
a precondition of "true" and is thus always enabled. However, the preconditions of p-latch in PCI' 
allow more behaviors than the PC1 version of p-latch. For example, the posted transaction in S1 
from figure 3 may move to the next path in Al'. This is clearly not possible in a single execution 
step from S1' because the transaction must first pass through bridge 2 before moving to the next 
path. The additional behaviors allowed by PCI' are acceptable for a trace inclusion refinement, 
but may lead to a false negatives. 
The refinement proof for the PC1 p-latch rule is completed using the PCI' rules p-latch and no-op 
with a case analysis similar to that in figure 2. The completed PVS proof of refinement for p-latch 
uses approximately 100 proof commands. 
Similar case by cases analyses were completed for the remaining 9 PC1 transition rules. However, 
non-determinism appears in more complex forms in the refinement proofs for other PC1 rules. In 
the case of the delayed transaction completion rule, non-determinism created by information lost 
in the abstraction can not be modeled by no-op transitions, as is the case for p-latch. In the case 
of delayed completions, the non-determinism requires the creation of additional rules in the PCI' 
model. These rules also allow more behaviors in PCI' than PCI. 
The refinement proof was developed in one month's time by a single experienced PVS user and 
requires about 1000 PVS proof commands (determined by taking the number of lines in the proof 
file and dividing by two to account for pretty-printing of right parentheses). The PCI' and PC1 
protocols were modeled using definitional theories of about 500 (determined using wc -1)lines each. 
The abstraction was modeled using an axiomatic theory containing about 700 lines and 51 axioms. 
We chose to axiomitize the effects of the abstraction, rather than defining the abstraction and 
reasoning about the effects, to save time in the development of the theory. While most axioms 
describe properties of the abstraction, a few are PC1 invariants needed for the refinement proof. 
All PVS theory and proof files are available online at [JonOO]. 

4 Model checking PCI' 
The same inference rules used to define the operational semantics of PCI' in PVS were used to 
create a model of PCI' for the Murd model checker. Both the PVS and the Murd model were 
created manually. The rule-based notation used in the input language of the Mur4 model checker 
leads to a relatively trivial manual translation between Mur4 and PVS models. For comparison to 
the PVS definition of p-latch, we give the Mur4 definition of the p-latch rule below. 

& 
Rule "p latch" 

(posted(trans)) & ! (f inal-path (trans, i)) 
==> 

begin 
enqueue (network[route(trans,i)l, trans); 
delete-trans (path, trans); -- delete from old path. 

end ; 

While the PVS version includes three clauses in the precondition, the Murd version includes only 
two. This is because this Murd rule is part of a rule-set which is defined only for the first entry in 
a path. Hence there is no need to check that the transaction is at  the head of a path. We claim 
that the postconditions of both rules are semantically equivalent. 
Using the Murd model of PCI', we can exhaustively check the producer/consumer property for all 
execution traces in all abstract network classes. The time and number of states required to check 
each reduced network is given in table 4. No violations were found in any of the networks. 



Table 1. Model checking results for PC property on PCI'. 

Since all traces in all configurations of the abstract protocol satisfy the PC property and the PC1 
protocol is a refinement of the abstract protocol, we conclude that all traces of all networks in the 
PC1 protocol also satisfy the PC property. 

B 
C 
D 
Total 

5 Remarks 

This case study combining theorem proving and model checking demonstrates the use of a manually 
derived abstraction to reduce a difficult infinite state problem to a finite state problem amenable to 
model checking. The reduction depends on a mechanically checked proof of the refinement relation. 
While the proof was completed in one month, the amount of effort and expertise required (not to 
mention the 51 axioms describing the abstraction) to complete the proof suggest that eliminating 
the need for a refinement proof is the next logical step in our ongoing research. 

Based on our experience thus far, we believe that the effort required to verify a difficult property 
on a complex system can be expended in either the abstraction or the verification. In our previous 
work on the unreduced PC1 protocol, we expended very little effort on the abstraction and a great 
deal of effort in the (unfinished) verification. In the work reported here, we have expended very 
little effort on the verification but a great deal of effort on the abstraction. In our current work, we 
are aiming for a better balance between the effort required to do the verificaiton and abstraction. 
Our goal is to simplify the abstraction process by eliminating the need for a refinement proof. We 
anticipate that this will result in abstractions which are easier to derrive, but harder to verify. 

We are currently working to eliminate the need for a refinement proof by using a version predicate 
abstraction [GS97] for parameterized processes and a structural abstraction over acyclic networks. 
There are still several obstacles to overcome in this predicate abstraction scheme, but the basic 
idea is simple. The predicate abstraction technique uses parameterized predicates to represent the 
states of some or all nodes in a path using existential quantification. The user pravides a list of 
predicates, cpf . . . cpk, paramerterized by a node i. Two abstract state variables, 6:@;, are then 

created for each predicate j and each abstract network path p. The 6: variable indicates that a 

node exists in path p that satisfies or does not satisfy predicate Oj depending on the value of 8:. 
For example, if 8:-t@: appears in an abstract state, then a node exists in path p that does not 
satisfy predicate cpj in the concretization of that abstract state. A structural abstraction, similar to 
the one used for PCI, based on topologically non-isomorphic spanning trees over n-terminal nodes 
is used to divide the unbounded configuration space of acyclic networks into a finite number of 
abstract network classes. We then plan to check the resulting abstract system over each network 
class using state exploration. 

The primary obstacle is the use of quantification in the concretization of the abstract state variables. 
This translates to quantification in the proof obligations in the abstract transition relation. A 
similar problem involving quantification for predicate abstraction on parameterized proccesses was 
encountered by Das [DDP99]. However, Das' work was done in an extended model checker and we 
plan to use a theorem prover. The use of a theorem prover will allow the use of decision procedures, 
or even interactive proof as a last resort, to deal with the quantification. 
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Abstract. We present a mechanisation of a resource-sensitive logic that 
allows us to capture the notion of state transitions being logical opera- 
tions that consume resources while generating new ones. These so-called 
substructural logics have been around for a while; our innovation is in 
embedding Higher Order Logic within a substructural logic and imple- 
menting this system within Isabelle, thus allowing us to exploit this log- 
ical system for verification of computational systems. We illustrate our 
approach with the verification of a run of a simple program. 

1 Introduction 

Computations involve change: to  values assumed by variables, to  bits stored in 
particular memory locations, or more generally to  a global state. Formal verifi- 
cation of computational systems must employ an adequate mathematical model 
for systems and changes to  systems. Most current verification methodologies do 
not do this in a direct way, and the complexity of representing change is partly 
responsible for the perceived difficulty in applying theorem provers in verifi- 
cation. While formal verification is a mature area of research, with a growing 
industrial intake, it is still limited by the practical difficulty of modelling large 
representational systems in low-level mathematical notations. 

We propose to address this limitation in theorem proving technology by ex- 
ploiting the development of substructural logics such as linear logic [ 5 ] ,  which 
provide proof systems that naturally address some of the problematic issues 
associated with the use of more traditional logics in reasoning about dynamic 
systems. The aim of the project is to examine variant substructural logics and 
use them for building tools for specification and verification of dynamic systems, 
both directly and as meta logics. Our emphasis will be on case studies and con- 
crete applications. We work with Isabelle [14], a well-known proof tool, instead 
of creating a completely new proof system. Isabelle provides a quick route from 
a formal logic to  a proof environment that can be applied directly in verification 
tasks. 

While several toy examples, such as in the "blocks world" or concerning the 
purchase of cigarettes and chocolates, have been used to  demonstrate the ap- 
plicability of linear logic to  capture the concept of resources in the real world, 
linear and other substructural logics have not yet been successfully used to  model 
temporal properties, which are necessary for verification of computing systems 



(software and hardware). Traditionally, such s stems are specified using vari- 
ants of temporal logics, which capture many o the notions of behaviour over 

reasoning about each step of the computation. 

1 
a possibly infinite computation; however, they are not ideal for describing and 

Linear logic can be seen to model single computation steps directly, as it is 
often claimed that linear logic captures the notion of state, and a single step 
in a computation is a change of state. If a computation step consumes certain 
properties of state and generates new properties, it can be represented by a linear 
formula 

Pl (s)-oP2(5) 

where s is the representation of state and PI and P2 are predicates characterising 
each state. Programs consist of actions, which can either be single commands 
represented as above or structuring constructs. 

2 Substructural logics 

A common starting point for describing formal logics is Gentzen7s Sequent Cal- 
cudus [3]. A sequent, written P t- C, is valid if the consequences C can be proved 
from the premises P. A logic, or a deductive system, is a set of schematic rules 
that state the conclusion of each rule is valid if all the hypotheses are valid. 

The rules of traditional logic systems can be divided into two groups: struc- 
tural rules, which manipulate the structure of a sequent (by duplicating an ex- 
isting premise, discarding a premise, or even changing the order of premises) 
and rules that define the meaning of connectives of the logic, when they appear 
within a formula on either the left or right side of a sequent. A typical collection 
of structural rules is shown in Figure 1. The exchange rule states that the order 
in which premises are stated does not matter, and the weakening and contrac- 
tion rules state that the same premise can be discarded or used once or more 
as necessary for a proof. Often, especially in logics which are not substructural, 
the structural rules are hidden within the rules of the connectives and thus do 
not appear explicitly in the deductive system. Most deductive systems of this 
form could however be reformulated to separate the structural rules from those 
defining the connectives. 

Typically, in what we call traditional logics, the structural rules are always 
accepted and the logics differ in the rules defining connectives. In substructural 
logics [3], one or more of the structural rules are restricted. If they were all 
simply removed, the resulting logic would be rendered too weak to be useful, so 
expressive power is restored by creating new connectives. Furthermore, modify- 
ing the structural rules usually implies that connectives such as the conjunction 
and the disjunction can have different interpretations, and therefore one usu- 
ally considers two variations on these connections: the multaplicatives and the 
additives. 

Substructural logics have been of interest to logicians for a variety of reasons. 
One of the earlier substructural logics is the Lambek Calculus [lo], developed for 
representing sentences in natural languages. Relevance logic rejects weakening 
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Fig. 1. The rules of Intuitionistic Linear Logic 



with the intuition that all premises of a sequent must be relevant to entail the 
consequence relation [3]. 

Linear logic is a particular substructural logic with restricted weakening and 
contraction [5]. The deductive system naturally leads to an interpretation of 
premises as 'resources' that are consumed and can normally be used only once. 
Expressive power is added by introducing exponentials, which provide a mecha- 
nism for controlled use of weakening and contraction. The implication connec- 
tive in linear logic (also called linear implication) also reflects consumption of 
the premise of a deduction. 

Linear logic has been the target of much interest in the research community, 
particularly with regards to theoretical issues such as its semantics and time 
complexity. A lot of the development in the proof theory of linear logic builds 
on the concept of proof nets, graphical links that are added to existing proofs to 
illustrate the creation and consumption of resources. 

The notion that some valid formulae are consumed in the proof process and 
are therefore transient suggests that some substructural logics may be natural 
formalisms for expressing dynamic properties, which require the invalidation of 
old properties and the validation of new properties over the computation. In 
fact, they have already been proposed and used as a metalanguage to describe 
models of computation, with varying degrees of success [6,2,15,1]. 

3 A substructural logic for verification 

F'rom a logical view, most of the computations we might wish to examine can 
be represented by an initial state, init, being mapped to final by zero or more 
computation steps involving prog. As explained above, the added value linear 
logic brings by formulating the computation as init, prog t- final is the natural 
consumption of resources. Thus, in the process of performing a proof, out-of-date 
information is consumed in favour of new results, helping keep the description 
of state consistent. 

It is of course true that a pure substructural logic in itself is not sufficient to 
represent non-trivial computations. Real programs have typed variables of with 
associated values. Additionally it may be necessary to represent induction and 
define numerous distinct data types to properly translate a program. A logic for 
the verification of programs should therefore be able to represent these concepts. 
Here we propose to incorporate the power of HOL in a substructural logic by 
embedding HOL formulae as its atomic propositions. 

3.1 Embedding HOL in (many-sorted) intuitionistic linear logic 

The power of HOL within a linear formulation is possible by means of an em- 
bedding function that maps objects in HOL to propositions in intuitionistic 
linear logic. This has the type propHor, + propLL and gives an almost com- 
plete separation between the HOL and linear worlds. This logic, which we call 
ILL[HOL], is propositional intuitionistic linear logic whose atomic propositions 



are parameterised by HOL formulae. Provided this embedding is done with care 
linear sequents can express x = 1 as a resource in a computation. Quantification 
must however be dealt with differently. To preserve the linearity of a quantified 
statement a linear quantifier is required, but, as in the case of assignment, quan- 
tification must be over HOL objects. Universal and existential quantification 
shall be represented by V L ~ ,  and 3~ i ,  respectively to indicate they are "one use 
only" linear quantifiers. Introduction of these quantifiers means that, in terms of 
semantics, we no longer have pure intuitionistic linear logic, but a many-sorted 
variant. This is because the objects quantified over exist in HOL. 

Additionally a rule to deal with the case where something is trivially true 
in HOL is required. The statement True : propeor, is meaningless in the linear 
world so the embedding function should map it to a sensible equivalent in linear 
logic. It is important to observe that a truth statement in HOL should not 
lead to resource consumption. The solution is to consider something that is a 
tautology in HOL to be a tautology in linear logic and consider True in HOL to 
be equivalent to I in linear logic. The rule for this is:' 

In practice, this rule is often required when dealing with the clause of a condi- 
tional which in general should not consume resources. 

It  is also necessary to properly define how to represent x = 1, where x 
represents not a value but a location in memory. Although x = 1 is a visually 
pleasing way of asserting a statement about the state of the system, in practice 
it introduces inconsistencies into our proofs because of the way substitution is 
dealt with in HOL. HOL represents facts in a very denotational way whereas 
the linear world is dealt with in an operational manner. Thus the assertion that 
x = 1 will have the effect of instantiating x with 1 in every place it occurs, even 
in subformulas which are intended to assert some "new" statement, x = a,  after 
x = 1 is consumed. This is illustrated in the statement below where substitution 
transforms 

x = l,VLinn.(C 8 x = n )  -0 x = n +  1 

into 
x = l,VLi,n.(C 8 1 = n) -o 1 = n +  1 

Clearly this is inconsistent since on one side of the implication n must be instan- 
tiated with 1 and on the other, 0. In our original implementation we created a 
function V of type loc + nat and continued to use equality. Thus V x = 1 was 
the statement that 1 was in location x. However this had similar problems and 
qecessitated a messy substitution rule: 

r , V  x = n,  P (n )  -o Q  I- G 
h o l ~ u b s t  

r , V x = n , P ( V x )  - 0Q I -G  

In the rest of the paper we will omit the annotation for k as we will be using F L L .  



Here only the left side of the implication is substituted and the right is deferred 
till after application of the implication rule. It  turns out that predicates and 
not equality are the most effective way to assert statements about the state 
of a system. Thus, as a resource, V x n will be used to assert that location 
x has value n. For the moment V will be considered as a function of type 
loc -+ nut  -+ PTOPHOL, though in general we need not restrict it to nat- 
ural numbers (we can think of V being of type loc -+ a' -+ propHoL and having 
a specialisation of this function for the natural numbers). Thus x is a location, 
type loc, and n is of type nut. Using this, the inconsistent example above is 
reformulated as: 

This predicative notion of state makes our implementation more robust by both 
guaranteeing that x is necessarily the same on the left as on the right of a linear 
implication and avoiding the inconsistencies introduced by using equality. 

Correctness and generality of embedding The embedding of HOL in linear 
logic we now have keeps the two logics quite separate apart from three 'bridges': 

1. the mapping of tautologies from HOL to multiplicative unit in linear logic; 
2. mapping of quantifications from one logic to the other; 
3. using unification to instantiate formulas of the form QLi,a.V x a -o V x (a+l)  

where there exists a resource of the form V x n in the context. 

The tautology mapping is straightforward. Quantification is introduced by 
considering ILL to be a many sorted variant. In its current form, the usage of 
unification is also straightforward, however further work is required to generalise 
it such that it can be applied to subformulas of larger HOL terms. 

Apart from these three cases, we have linear and higher order worlds im- 
ported directly. Of course, we may need to establish more links when we want 
to integrate proof strategies for these two logics. 

3.2 Representation of programs in ILL[HOL] 

A translation of common programming constructs such as assignment, choice, 
conditionals and iteration into linear logic is necessary if it is to  be used as a 
basis for verification. 

The price paid for using a substructural logic like linear logic is that all truth 
values (often referred to as resources) must be accounted for. Particular care 
must be taken not to throw away assertions when processing the guard of a 
conditional if their value is required elsewhere. Conversely a careless program 
might reach a state in which two distinct assertions about the value of a variable 
exist. 

We suggest, however, that if the translation is adhered to correctly, these 
events should not occur in practice. 



- Assignment in the computational world is similar to linear implication in 
that t o  assign a value to a variable, or location, the old value must be for- 
gotten. Linear logics' notion of resource consumption is an obvious way to 
"forget" about assertions in this way. The general form for x := f (x) is 
VLinn.V x n -0 V x (f (n)). Universal quantification over n serves to gener- 
ate a resource on the left of the implication which matches an assertion of 
the form V x v and consumes it. This was alluded to in in Section 3.1. 

- Non-deterministic choice is represented by additive conjunction on the left 
and additive disjunction on the right of a sequent (Figure 1). 

- If-then-else translates in much the same way as in classical logic. How- 
ever, care must be taken to duplicate consumed resources still required on 
the right side of the implication. This often occurs in practice since in- 
stantiation of variables whose values are asserted as resources is often re- 
quired to process conditions. For example i f  x > 0 then A will translate 
as VLi,n.V x n 8 n > 0 -o V x n 8 A with V x n duplicated on the left 
and right of the linear implication. 

- ! ( A  + B )  encodes iteration. A should be strong enough to fail when the loop 
is finished in addition to containing any resources requiring consumption or 
to instantiate B. 

4 A GCD algorithm 

The GCD example below exemplifies the use of HOL embedded in ILL. Here, as 
explained above, x and y are of type loc and the statement V x n asserts that 
the value at  location x is n,  or more simply, that the value of the variable x 
is n. The sequent is merely a implementation of a naive difference algorithm in 
ILL[HOL]. It  is important to note that we are not proving this to be a correct 
implementation of a GCD algorithm. However assuming we made no mistakes 
and it is indeed a correct implementation, a proof will exist for the case when a ,  
b and gcd are mutually correct (i.e. gcd is the greatest common divisor of a and 
b) and there will be no proof where this is not the case. 

t- (V z 0 8 V y gcd)  @ (V x gcd 8 V y 0) 

Let us see what this means: the initial state for the computation is specified 
by assigning the values a and b to x and y, respectively. The guard of the loop 
ensures it is only enabled if both values are greater than 0. It  is also important to 
note that we quantify over both values and locations in the loop. The algorithm 
could be equivalently encoded as a choice of two symmetric actions using additive 
conjunction, one for when the value at  x was less than or equal to that at  y and 
another for the reverse. The implementation offered here is more compact and 
does not require x and y to be stated explicitly in the program by the use of 
universal quantification. Finally, the desired final state of the computation is 



reached when either x or y becomes 0, in which case the other variable contains 
the calculated gcd. 

The description of the program illustrates the some of the translation schemes 
proposed in Section 3.2: an initial state, a program loop, and a conclusion that 
serves as a final state. 

5 Implementation in Isabelle 

5.1 Combining ILL and HOL in Isabelle 

The first step in implementation was to create a modified version of Sequents 
based on Curried functions (rather than the default of bracketed predicates). 
This is called CSequents and is necessary to allow Sequents (and thus ILL) to  
be combined with the existing HOL implementation. This marriage is achieved 
using an auxiliary theory called HOLSequents which combines CSequents with 
HOL and defines the embedding function as described below and in Section 3.1. 
HOLSequents is the base theory for HOLPILL. HOLPILL stands for HOL and 
Propositional Intuitionistic Linear Logic and is a very slightly modified version 
of the existing ILL theory is Isabelle [S]. Finally, ILLHOL (which corresponds to 
ILL[HOL]) inherits HOLPILL and defines the linear quantifiers V L ~ ,  and 3 ~ ~ ~ .  

The most important aspects of the implementation of ILL[HOL] are: 

- The embedding function called HolProp : boo1 -+ lino which maps HOL 
objects into the linear world. Currently parsing still necessitates the use 
of special syntax to encapsulate HOL formulas. Ideally the parser would 
consider all HOL constructs to bind more tightly than ILL connectives. 

- The linear quantifiers VLin and ?lLi,. These are based on the quantifiers in LK 
(another theory inherited from Sequents) but their implementation adapted 
to be "one use only" linear quantifiers. 

- A theory of locations which implements V : loc -+ nat + p r o p ~ o ~ .  This 
actually inherits ILLHOL and is therefore not strictly part of the ILLHOL 
theory. This is because we consider the theory of locations to be of a slightly 
higher level than the embedding of HOL in ILL. 

Figure 2 summarises the inheritance structure of the implementation. (The- 
ory numtrans contains some auxiliary pretty-printing for numbers.) Figure 3 
shows the two extra axioms necessary for the embedding. 

5.2 Implementing the GCD algorithm 

The theory of GCD (Figure 4) inherits directly from ILLHOL (as well as the 
theory of locations). This defines the locations x and y as constants as well as 
the algorithm as presented in Section 4. The algorithm is split into manageable 
chunks but essentially follows the init, prog t final model described previously. 
The values of a,  b and gcd are also defined here. 

This example shows the surface syntax of the embedding. The multiplicative 
conjunction, linear implication, additive conjunction and additive disjunction 



I 
HDLJILL 

'I 
ILLHOL 

'I \trans l o c  

Fig. 2. ILLHOL's inheritance graph 

(* quantifiers *) 
l a l l r  "(!!x.$H I -  P(x)) ==> $H I -  LALL x.  P(x)" 
la111 "$H, P(x), $G I -  X ==> $H, LALL x .  P(x), $G I -  X u  

lexr "$H I -  P(x) ==> $H I - LEX x.  P(x)" 
lexl  "(!!x.$H, P ( x ) ,  $G I -  X) ==> $H, L E X x .  P(x), $G I -  X n  

(* l inear tautology *) 
"Llf l  I= 11 [= True =] 11 

Fig. 3. The axioms required to embed HOL in (many-sorted) ILL 

are represented as ><, -0, &&, and I I respectively. The embedding of HOL terms 
as ILL atoms is done using the [= . . . =I notation. (While Isabelle's parsing 
strategy can support doing away with this, we thought it would be useful for 
now to show clearly the separation between higher-order and linear objects.) 

5.3 Proofs of the computation 

Having implemented the algorithm in ILLHOL, we proved some runs of this 
algorithm on particular inputs. Note that we haven't proved the correctness 
of the algorithm! This would involve using a recursive definition of GCD and 
proving-by induction-that the algorithm works in all cases. We hope to prove 
this general correctness of the algorithm as a test case when we develop the logic 
further. For now, we have a prover that works to show that given a certain pair 
of numbers, the computation stops when one of the locations has the correct 
result. 

The basis of the implementation is gcd-tac which is summarised in Fig- 
ure 5 .  This succeeds if gcd is indeed the greatest common divisor of a and b 



gcd = ILLHOL + loc  + numtrans + 

consts 
x,  Y :: loc  

constdefs 
i n i t  : : l i n o  
" i n i t  == [= V x a =] >< [= V y b = ] I '  

prog :: l i n o  
"prog == ! (LALL v l  v2 (a: :na t )  (b: :nat)  . 

( ( [= V v l  a =] >< [= V v2 b =] >< [= a <= b =] >< [= 0 < a =]) 
-0 ([= V v l  a =I >< [= V v2 (b - a)  = I ) ) ) "  

f l  : : l i n o  
"f 1 == ([= V x 0 =I >< [= V y (gcd: :na t )  =])I' 

f i n a l  : :  l i n o  
" f i n a l  == f 1 I I f 2" 

a : : nat "a == 99" 
b :: nat  "b = = 6 9 "  
gcd :: nat  "gcd == 3" 

end 

Fig. 4. The Isabelle GCD theory file 



and fails otherwise. gcd-tac works by successively performing stage-tac fol- 
lowed by match-tac. s tage-tac contracts the program loop and performs one 
iteration of the GCD loop (with appropriate back-tracking if the incorrect in- 
stantiation of locations is chosen). If s tage-tac fails it means one of the values 
is 0. match-tac tries to match each side of the conclusion to the current state 
of the context by weakening on the left to remove the program and checking via 
identity. If match-tac fail then either one or more applications of s tage-tac are 
still required or gcd is not the GCD of a and b. Note the guard of the condition- 
als in the loop prevent the program from entering an infinite loop. The result is 
that if gcd is not the gcd of a and b then both match-tac and s tage- tac  will 
fail and thus gcd-tac will fail. 

val stage-tac = 
EVERY [tensl-tac 1,  copy-tac 1, choosel-tac 1, clean-up-tac]; 

val match-tac = EVERY [weaken-tac 1,  chooser-tac 1,  r tac  identity 11; 

fun gcd-tac s ta te  = 
(DETERM stage- tac THEN (match- tac  ORELSE gcd- tac) ) s ta te  ; 

Fig. 5. GCD's Isabelle tacticals 
- 

Although gcd-tac automates the entire process, it can of course be performed 
interactively (Figure 6). An interactive proof done in this way shows the state 
changes involved in the computation with each application of s t a g e  t a c .  

6 Open questions and future work 

This paper describes a rather simplistic use of linear logic operators for describing 
algorithms. There are still many issues to be addressed - such as how to represent 
concurrency, or data scoping, or non-determinism, or how to perform correctness 
proofs, or which variant of linear/substructural logic is ideal for this kind of 
use, from the semantical point of view. It is hoped that this presentation will 
fuel further discussion and result in collaboration between logic developers and 
the applications community keen on exploring new avenues to facilitate formal 
verification. 

6.1 Proving temporal properties of computations 

Up to now we have only considered how to develop a sufficiently expressive logic 
into which to translate programs. A logic for verification should not be restricted 
to reasoning about successive states in a computation but over, for example, the 
whole computation or even over all computations. In the context of the GCD 



> goalw gcd.thy gcd-defs " i n i t ,  prog I -  f i n a l " ;  

Level 0 (1 subgoal) 
i n i t ,  prog I -  f i n a l  
1. [= V x 99 =I >< C= V y 69 = I ,  

! (LALL v l  v2 a b. 
([= V v1 a =] >< [= V v2 b =] >< [= a <= b =] >< [= 0 < a =]) -0 

([= V v1 a =I >< [= V v2 (b - a )  = I ) )  
I -  ([= V x  0 = 1  >< C = V  y 3 = I )  1 1  [= V X  3 = 1  >< C = V  y 0 =I 

va l  it = [I : thm list 
> by s t age - t ac ;  

Level 1 (1  subgoal) 
i n i t ,  prog I -  f i n a l  
1. [= V y 69 =I >< [= V x 30 = I ,  

! (LALL v1 v2 a b.  
([= V v l  a =] >< [= V v2 b =] >< [= a <= b =] >< [= 0 < a =]) -0 

([= V v1 a =I >< [= V v2 (b - a) = I ) )  
I -  ([= V x O - I  >< [ = V  y 3 = I )  1 1  C= V x 3 = 1  >< [ = V  y 0 =I 

va l  it = 0 : u n i t  
> by s t age - t ac ;  

(* sn ip  *) 

> by s tage- tac ;  

Level 9 (1  subgoal) 
i n i t ,  prog I -  f i n a l  
1. C= v x  3 =I >< C= v y 0 = I ,  

! (LALL v l  v2 a b.  
([= V v l  a =] >< [= V v2 b =] >< [= a <= b = ]  >< [= 0 < a = ] )  -0 

- ( [=  V v l  a =I >< [= V v2 (b - a) = I ) )  
I -  ([= V x O = ]  >< [ = V  y 3 = I )  I I  [= V x  3 = 1  >< [= V y 0 =I 

va l  it = 0 : u n i t  
> by match t a c ;  

Level 10 
i n i t ,  prog I -  f i n a l  
No subgoals! 

va l  it = () : un i t  

Fig. 6. Sample (interactive) Isabelle session with the GCD algorithm 



example in Section 4 this might mean having a specification of the algorithm and 
proving the program implements it. Some classes of proof that may be required 
are well-known to  the temporal logic community: 

Possibility: that eventually some situation will arise. In our GCD example we 
are able to prove the property of the final state, but we do not have facilities 
to  state or prove that that final state will occur. 

Impossibility: temporal logics allow us to state that something will never oc- 
cur, which is necessary for modelling safety conditions. While proofs in our 
GCD example fail if given wrong inputs, it is not clear why the proof has 
failed. 

Invariance: a property that is true of every intermediate proof state, modelled 
by the temporal 'always', which on the surface is quite similar to  the linear 
exponential, but with a very different proof system. 

Presently it is unclear how we can represent these properties within the 
ILLEHOL] theory. The solution might be to add a temporal logic to  the imple- 
mentation. A prototype for linking a temporal logic to a logic of states or actions 
on states is Lamport's TLA [ll, 71, where certain proof rules link together prop- 
erties that are proved a t  the action level with a general temporal logic. These 
proof rules link together fairness properties of sub-processes to allow the deriva- 
tion of fairness properties of the whole process. Unfortunately, the form of some 
of these rules makes it difficult to  use them adequately in a semi-automated and 
robust proof strategy. For us, more strongly than simply the ability to imple- 
ment these in the logic is the consideration that the logic should not become 
too unwieldy to perform proofs. We expect that because linear logic gives us a 
stronger basis that the typical calculi of state transitions such as given in TLA 
and UNITY, we may be able to use a simpler and more direct temporal logic. 

There are some attempts at adding temporal logic to  linear logic [9,15] but 
it is unclear how they maintain the identity of each of those components. We 
hope to  build an integration between ILL[HOL] and temporal logic that gives 
the same level of separation between the temporal and ILL[HOL] worlds that 
we achieved in ILL[HOL] with the ILL and HOL worlds. 

6.2 Choice of substructural logic 

We have so far exploited a fairly standard version of intuitionistic linear logic. 
However, there are several options worth considering: 

Classical Linear Logic We have chosen to remain in the intuitionistic frag- 
ment of linear logic, not because of a conviction that this is strictly necessary, but 
to keep our options open pending further work. In terms of representing compu- 
tations, there is no obvious reason for having multiple conclusions or a classical 
negation. And as we are keen on developing a general method of embedding HOL 
into a substructural logic, it seemed best to  concentrate on ILL. 



Non-commutative Linear Logic In our first attempt, we used non-commut- 
ative linear logic for two reasons: it seemed to us that the ordering of assertions 
in the context could imply a linear progression from one state to the other, such 
that the first assertion would represent the initial state and the last assertion 
the final state. This would correspond quite closely with the sequentiality im- 
plicit in most programs. Another advantage would have been the tightening of 
proof search mechanisms, as the exchange rule is often a source of difficulty 
with automated proof search in linear logic. However, the semantics of non- 
commutative linear logic is more complicated, and trying to attach the notion 
of time sequence to the context was not straightforward. Retore and Ruet have 
both done work on capturing computations using non-commutative substruc- 
tural logics in a semantic sense [16,17] but we found the syntax of the resulting 
embedding counter-intuitive for verification purposes. In the end we decided to 
use the commutative version and describe the flow of control with a guard; but 
the case has not yet been made that non-commutativity is not a desired feature. 

Bunched Implications A substructural logic that attempts to re-formulate 
the fundamental concepts is O'Hearn and Pym's Logic of Bunched Implications 
[13]. A bunch is the structure given to the antecedents of a sequent, which is 
a tree rather than a sequence. An important feature of Girard's linear logic is 
the relation between the linear implication with the traditional intuitionistic im- 
plication. Girard proposes the mapping of A + B to !A-B and this certainly 
makes it possible to map proofs in traditional intuitionistic logic into intuition- 
istic linear logic. O'Hearn and Pym, however, propose the coexistence of both 
linear and intuitionistic implications, and do away with the exponential. As lin- 
ear implications and exponentials make up a substantial part of our formulation 
of state changes, iterations, and if-then-else control flow, it would be very in- 
teresting to see how the same concepts can be expressed in BI. We could also 
see how a bunched structure for a sequent could help us maintain state-sensitive 
and persistent statements in an easier way. 

6.3 Implementation matters 

Work on the implementation continues apace. A translation from a more-user 
friendly notation to the linear notation would be useful, as linear logic is char- 
acterised by an often bewildering array of operators. 

The full power of proof mechanisms in Isabelle-namely unification and proof 
search-has not yet been harnessed. We currently perform only rewriting on the 
HOL terms individually, but do not really use any of the proof strategies that 
involve instantiation of logical variables and exploiting backtracking over a set of 
rules, strategies that feature strongly in any serious Isabelle proof. A generalised 
solution for substitution will also be required to allow HOL terms separated by 
linear connectives to share information in a denotation manner. 

Proof search in linear logic is itself a subject of extensive study and experi- 
mentation. There are results concerning search complexity for various fragments 



[12,4,18]. Our interest lies in developing a general strategy for proofs in ILL 
that explores existing proof algorithms for the embedded HOL logic. What we 
envisage as a key success is a LL-prover (modelled around say fast-tac) that 
calls an appropriate HOL tactic (such as the powerful blast-tac) as part of its 
subgoaler mechanism. A further goal would be to develop a general theory (and 
implementation!) for prover embeddings that follows the idea of logic embed- 
dings. 

7 Conclusions 

While interactive theorem provers have been used as analysis tools for compu- 
tational systems for a while, there is still a difficulty in reasoning about state 
changes, which need an explicit notion of time or state to provide a handle on 
non-monotonicity of the information involved. A controlled form of deduction 
such as in linear logic might be useful, and in fact linear logic has always been 
proposed as a model for concurrent systems, and many researches have looked 
a t  the semantic aspects of embedding formalisms such as x-Calculus, Petri Nets, 
etc in linear logic. Practical analysis of problems (i.e. verification) using these 
correspondences is the obvious next step. However, this would involve building 
a complete formalisation of every domain of interest, something that can take 
years, as has been illustrated by the various provers for Higher-Order Logics in 
existence. 

What we propose and have been developing is a combination of higher order 
and linear logics, so that all the theories and tools for verification already devel- 
oped can be exploited to handle the most intensive part of the verification effort, 
such as numerical operation correctness, case analysis, induction over datatypes 
and so on. By associating these results with linear operations from a substruc- 
tural logic, we make sure these results do not 'overstay their welcome' when 
there is a change in state, which would result in inconsistencies. The typical 
solution is to consider each variable as a function from time or state to value. By 
using linearity, we get rid of this extra clause in the descriptions. The resulting 
assertions may look a bit more complicated, and further work will be needed 
to develop the right surface syntax, but the proofs themselves will hopefully be 
easier to find and faster to execute. 
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Abstrac t .  NuPRL and Isabelle are two general purpose theorem prover- 
s. Both of them are based on a version of Constructive Higher Order Type 
Theory. In an earlier work the author has proposed an informal semantics 
of Isabelle Meta Logic in an extension of NuPRL Type Theory. Based on 
this semantics an automated converter that translates Isabelle theorem 
statements into NuPRL has been developed. 
This work presents a formalization of the above semantics in NuPRL. 
I t  starts with a deep embedding of Isabelle type and term syntax into 
NuPRL Constructive Type Theory. Next, two internal NuPRL functions 
are defined. One of them maps Isabelle types into NuPRL types and the 
other maps Isabelle terms into elements of appropriate NuPRL types. 
These two functions provide an interpretation of Isabelle in NuPRL. 
Finally, interpretations of all Isabelle Meta Logic rules are proven as 
theorems in some classical extension of NuPRL Type Theory. 
This formalization is aimed to provide a more secure foundation for the 
interaction between two systems. 

1 Introduction 

This work studies connection between two different proof development environ- 
ments: Isabelle [14] and NuPRL [2]. Previous works in this area were directed 
towards creating effective semi-automated procedures for translating mathemat- 
ical results from one system into another. D. Howe in [5] and [4] defined a shallow 
embedding of HOL [3] into a classical extension of NuPRL Type Theory, proved 
its soundness using set-theoretical semantics of NuPRL, and wrote a converter 
from HOL into NuPRL based on this embedding. 

Following Howe's approach, in [ l l ]  we defined an embedding of Isabelle Meta 
Logic into NuPRL and wrote a converter that automates such translation. An 
important novelty of [12] was in the way the soundness of the embedding is justi- 
fied. Instead of relying on semantical arguments, it is done in a purely syntactical 
proof that shows how the translation of any instance of an Isabelle inference rule 
can be decomposed into several NuPRL inference rule applications. A similar re- 
sult for Howe's embedding of HOL into NuPRL was independently obtained by 
J. Meseguer and M.-0. Stehr [8]. 

* This work was done at  the Computer Science Department of Cornell University and 
it was supported by DARPA grant F30602-98-2-0198 



The syntactical soundness proof opens the door to two new directions in the 
research. First, it becomes feasible to convert formal proofs, not just statements 
of the theorems, from one system into another. Such proof translation mechanis- 
m will actually eliminate the need for justification of conversion soundness, since 
all translated results will have proofs in the target system. The second oppor- 
tunity is that now the justification argument can be formalized. Although such 
formalization does not completely eliminate the need for one system to trust 
the soundness of another, it provides a more secure foundation for interaction 
between theorem provers. 

In this work we have explored the second opportunity. We have defined a deep 
embedding of Isabelle syntax into NuPRL Constructive Type Theory, formalized 
the translation as an internal NuPRL function and proved translations of Isabelle 
Meta Logic inference rules as theorems in a classical extension of NuPRL. 

In addition to providing a secure foundation for the translator, this work also 
shows that NuPRL, as Type Theory and a proof development environment, is 
mature enough to reflect not just one particular mathematical theory, but an 
entire formal system. 

The paper is structured as follows. Section 2 describes NuPRL formal nota- 
tions, used throughout the manuscript. Section 3 deals with generic mathemat- 
ical facts that were added to standard Nuprl 4.2 library in order to accomplish 
the formalization of Isabelle. Sections 4 and 5 formalize Isabelle type and term 
syntax correspondingly. Together they define a deep embedding of Isabelle Meta 
Logic into NuPRL Type Theory. Section 6 defines the interpretation of Isabelle 
Meta Logic in NuPRL as an internal NuPRL function. The final Section 7 shows 
that this function maps Isabelle meta inference rules into NuPRL propositions, 
derivable in a classical extension of NuPRL Type Theory. 

The presentation of the material closely follows to corresponding formal 
NuPRL theories. In particular, all key theorems are reproduced the way they are 
formalized in NuPRL. For space considerations, proofs are omitted and some long 
formal definition are presented informally. Complete NuPRL theories in HTML 
format are available from the author's Web technical report [lo] contains 
more detailed version of this paper. 

2 NuPRL Formal Notations 

One of the features that makes NuPRL stand out among the other formal proof 
development environments is its advanced graphical user interface. Terms are 
entered into NuPRL not by typing in an ASCII text, but by filling fields in a 
structural term editor. The same term editor is normally used to display for- 
mal theories. Hyperlink mechanism, provided by the editor, allows the reader 
to inspect the abstraction definition just by clicking on any instance of this ab- 
straction in any term. The editor also relies on an extensive use of abstraction 
display forms to achieve better readability. For example, the default display form 

http://www.cs.cornelI.edu/horne/pavel 



for the addition operator add(x, y) is x + y and the one for universal quantifi- 
er all(T, x.P) is Qx : T.P. Display forms can be set to hide some of operator 
parameters if their values are assumed to be obvious. For instance, equality op- 
erator equal(T, x, y) which states that elements x and y of type T are equal, is 
normally displayed as x = y. Parameters missing from the operator display form 
are known among NuPRL users as hidden parameters. 

Because of mentioned above features, conversion of NuPRL proofs into a 
paper-based form is not trivial. The standard NuPRL printing function, which 
converts NuPRL formal theories into BQX files, uses abstraction display forms, 
and, as a result, loses all hidden parameters. Therefore, NuPRL theory printouts 
do not provide enough information to reconstruct formal definitions and proof- 
s in their original form. Instead, they should be considered as "semi-formal" 
descriptions of original theories. 

In this work we will be incorporating fragments of these formal library print- 
outs in the text. In most cases we will benefit from this approach since it allows to 
present formal results in a form close to the original. Nevertheless, in some cases 
these fragments are ambiguous and will need additional comments. In any case, 
it will be important to keep in mind that these printout fragments are not the 
real formalization. The other facts about NuPRL library structure, important 
for understanding of the formalization, are 

1. Each abstraction, theorem, or display form is normally stored in its own 
library object. Any object printout contains four fields that show object 
kind (theorem (T), abstraction (A), display form (D), etc). 

2. In most cases there are three objects in the library that correspond to a 
definition: a display form, an abstraction, and a well-formness lemma. To 
save space, here we usually reproduce only abstraction object from each 
definition. In some rare cases well-formness lemmas also will be given. 
Majority of recursive functions are defined in NuPRL using Y-combinator. 
Since such definitions are hard to read, appropriate abstraction object is 
hidden in the library and a more intuitive recursive "definition" is displayed 
instead. 

3 Auxiliary Mathematical Facts 

Before presenting Isabelle syntax and semantics formalization, we need to state 
some general mathematical facts and notations that will be used in this work, 
but which are not parts of standard NuPRL 4.2 library. These facts can be 
divided into three categories: NuPRL library enhancement, extension of NuPRL 
type theory by parametrized recursive types, and a classical extension of NuPRL 
Constructive Type Theory. Below all three categories are discussed in details. 

3.1 Library Enhancement 

List Equality For any decidable type T ,  type T List is also decidable. In other 
words, if there is a boolean equality relation E on type T, there is one on type 
T List. We denote it by as = l .  This notation hides parameter E .  



Records While defining terms recursively, we need to deal with bindings of 
bounded variables in partially dis-assembled terms. Such binding is basically a 
mapping from variable names into type names. Since Isabelle bound variables are 
named by de Bruijn [l] indices, binding is a function from an initial segment of 
natural numbers into a type of Isabelle type names. Such functions are commonly 
called records. In type theories which support dependent function types, record 
is a more general notion than a list, because different fields can have different 
types. We will be using this feature later. 

There are three basic operations on records that are used in this work: update, 
shift,  and tail. Update function f Cn + a1 extends a record f of length n by 
a new element a, added in the end of the record. This function is similar to 
appending a single-element list to the end of a given list. Shift function [s >> 
f] extends record f by a new element s, added in the beginning of the record. 
New element gets number 0 and all other element numbers are incremented by 
1. This function is similar to cons on lists. Tail function (f In) is similar to the 
n-th tail on lists. It removes first n elements of record f and re-enumerates the 
rest accordingly. 

3.2 Parametrized Recursive Types 

Recursive (inductive) type is a widely studied type constructor. It allows for 
any monotonic function b : U -+ U to define a new type rec(X.B(X)) that can 
be informally viewed as the minimal solution of the type equation X = B(X). 
This equation naturally leads us to a more general type constructor that gives 
the minimal solution to a system of type equations: Xi = bi(X1, . . . , X,), 1 5 
i 5 n. Another way to express the same system of equations is to think about 
variables XI , .  . . as about a function from index type I into the type universe: 
X = Xi.b(i,X), where X : I -+ U, b : I + ( I  + U) + U. This approach 
allows for infinite systems of type equations if type I is infinite. If Xo is the 
minimal solution of the above equations, we will denote the application of Xo 
to an element io of type I by parec(X, i.b(X, i)@io). 

Inference rules and semantics for such types have been introduced in [7] and 
[6]. These rules were added to NuPRL as an extension of Constructive Type 
Theory by the author in [9]. 

3.3 Classical Extension of NuPRL Type Theory 

Isabelle syntax formalization will be done entirely in Constructive Type Theory. 
A classical extension is used only to provide a semantics of Isabelle Meta Logic 
in NuPRL. In fact, since Meta Logic is itself intuitionistic, non-constructivity 
probably can be avoided. 

The main reason for using a classical extension of NuPRL is that we want 
results, brought over from Isabelle theories, to be useful in NuPRL proofs. Thus, 
ideally, Isabelle type of meta-propositions o should be mapped into NuPRL 
type of propositions B. Unfortunately, this mapping is hard to implement since 
NuPRL type P has infinitely many elements and Isabelle type o is assumed to 



have only two elements: true and false. It means that, for example, Isabelle meta 
rule 

I41 [+I 
1L dJ 

would not be valid when Isabelle propositions are interpreted as NuPRL propo- 
sitions and Isabelle equality z is translated as NuPRL equality. A possible way 
around this problem would be to interpret Isabelle type o as NuPRL quotient 
type Q = P / / ( x ,  y.x ($ y). Type Q is a factorization of type P by the equiva- 
lence relation "if and only if". From author's experience, dealing with quotient 
propositions in NuPRL is not an easy task and conversion of theorems stated 
as quotient propositions into standard NuPRL propositions is not trivial either. 
But the most importantly, using type Q does not solve our problems. Unlike 
Isabelle Meta Logic, NuPRL propositions do not belong all to the same type. 
They are split into a chain of propositional types of different levels: 

such that equality of two propositions of level n is actually an element of type 
Pn+l. It means that type Q in NuPRL is also a sequence of types Q,  = 
P,/ /(x ,  y.x # y). If we choose some Q,, to be the interpretation of Isabelle 
type o, then equality on elements of o would need to be translated as equality 
of Q,, elements which in NuPRL belong to a higher-level type Q,,+l. 

Therefore, there probably is no reasonably simple adjustment to NuPRL type 
Pi that can be used as an interpretation of Isabelle type o. 

All mentioned above problems can be avoided by interpreting Isabelle type o 
as NuPRL boolean type B. Type B has only two elements and there is a boolean 
equality = b  on type 1 such that for any elements x and y of type B, x = b  y is 
also an element of type B. 

On the other hand, type B brings problems of its own. Not every NuPRL type 
has a boolean equality relation. In fact, only decidable types can have boolean 
equality in NuPRL because boolean equality, just as any other NuPRL func- 
tion, would be assumed to be computable. We will extend NuPRL Constructive 
Type Theory by a boolean equality predicate for any type. Such an extension is 
non-constructive, or, in other words, classical. Boolean equality is a three-place 
predicate that takes any type T and two elements x and y of type T as argu- 
ments. It returns boolean true if and only if x and y are equal as elements of the 
type T. To make formulas more readable, NuPRL display mechanism normally 
hides type argument of boolean equality and shows the boolean equality just as 
2 = b  9. 

There are two properties of boolean equality that we assume. They normally 
would be stated as inference rules in NuPRL, but we state them as proof-less 
theorems in case if somebody would want to use some other primitive abstraction 
instead of boolean equality. These two theorems are 
*T bequal-wf VT:u. vx, y:T. (x = b  y) E B 
*T assert-bequal 'dT:U. Vx,y:T. T(x  =b y) x = y 



In the last formula, t stands for NuPRL "assert" operator that converts booleans 
to propositions. I t  is important to remember that both boolean equality = b  and 
propositional equality = have hidden type parameter T. 

We also need to add boolean universal quantifier to our theory. It is very 
similar to standard NuPRL propositional universal quantifier with the exception 
that it works on boolean terms. Boolean universal quantifier has two arguments: 
a type term T and a boolean term B with one bound variable x. It will be 
displayed as Vbx : T.B. Two assumptions about boolean universal quantifier are 
also stated as theorems: 
*T ball-wf VT:U. Vb:T -+ B. Vbx:T. b[xI E B 
*T assert-ball VT:U. Vb:T -b B. tVbx:T. b[xI U (Vx:T. TbCxI) 

Note that the proposed classical NuPRL extension is not minimal. Boolean 
universal quantifier can be expressed via propositional universal quantifier and 
boolean equality as Vbx : T.b[x] ((Vx : T. t b[x]) = a  true). 

Alternatively, more compact single-argument operator 4 that converts propo- 
sitions to booleans can be used as a primitive notion. Boolean equality can be 
obviously defined via this operator and propositional equality. 

Consistency of a NuPRL classical extension can be shown using D. Howe [5] 
set-theoretical semantics for NuPRL. 

4 Isabelle Type Term Syntax 

Isabelle types are elements of Isabelle classes. Each type can belong to a finite 
number of classes. The list of classes, to which any given type belongs is called a 
sort of this type. Our formalization of Isabelle syntax includes classes and sorts, 
but they will be ignored later, during interpretation definition. Informally, all 
classes will be mapped into a NuPRL universal type Ui of an arbitrary level i. 

4.1 Classes and Sorts 

Isabelle defines SML type c l a s s  as type s t r i n g ,  SML type s o r t  as type c l a s s  
l i s t ,  and SML type indexname as a Cartesian product of s t r i n g  and i n t .  We 
formalize these abstractions in NuPRL in almost identical form 
*A class Class == Atom 
*A sort Sort == Class List 
*A indexname Indexname == Atom X Z 

where Atom is NuPRL type of tokens. All three types defined above are decidable. 
Boolean equality =, on classes is inherited from type Atom. Boolean equality =s 
on sorts can be defined using boolean list equality, discussed in Section 3.1, and 
boolean equality on classes. Finally, boolean equality =ixn on type indexname 
is defined via boolean equalities on tokens and integers. 

4.2 Type Term 

Isabelle defines SML type of Isabelle type terms, called typ, as 



datatype typ  = Type of s t r i n g  * typ  l is t  
I TFree of s t r i n g  * s o r t  
I TVar of indexname * s o r t  

There are two adjustments that we make to this definition in order to sim- 
plify reasoning about this type in NuPRL. First, two different kinds of free 
variables (TFree and ~ V a r )  will be combined into one kind TypVarName Sec- 
ond, among different Isabelle type constructors, functional type constructor 
Type ( ' ' f unJ ' , [S ,TI ) plays a special role in the definition of Isabelle type "ter- 
m". It is convenient to separate this type constructor into a kind of its own. 

Therefore, our type term formalization is based on the following, slightly 
modified, version of SML typ datatype 
datatype typ  = Type of s t r i n g  * typ  l i s t  

I TFun of t yp  * t yp  
I TVar of TypVarName 

Obvious homomorphism maps original typ type into its modified version. 
Using inductive types, the above definition can be written in NuPRL as 

*A typ-var-name TypVarName == Atom X Sor t  + Indexname X Sor t  

*A tYP Typ == rec(T.Atom X T L i s t  + T X T + TypVarName) 
*A type Type(a; ts)  == i n 1  <a ,  t s >  
*A t -fun ( t  j s )  == i n r  ( in1  <t, s> ) 
*A t -var TVar(q) == i n r  i n r  q 

Many functions on type T~~~ will be defined using the case split operator. Among 
such functions are boolean equality =n on type VarName and boolean equality 
= tp  on type Typ. These definitions are straightforward and they are omitted 
here. 

5 Term Syntax 

Isabelle defines SML type term as 
datatype term = Const of s t r i n g  * typ  

I Free of s t r i n g  * typ  
I Var of indexname * t yp  
I Bound of i n t  
I Abs of s t r i n g  * t yp  * term 
I op $ of term * term 

This type includes well-formed terms as well as non-well-formed terms. There 
are two conditions which an element of type term should satisfy in order to be 
well-formed: 

- De Bruijn index i in any subterm Bound(i) should be non-negative and less 
than the number of abstractions above this subterm in the term tree. 

- For each occurrence of application operator tl$t2, the type of term t l  should 
have the form TI + T2 where TI is the type of term t2. Function "type of" 
is a recursively defined partial function. 

We start the world Typ with the capital letter when it refers to NuPRL formalization 
of SML datatype typ. 



Only well-formed terms are used in Isabelle proofs. Before any term is used in 
Isabelle, its well-formness is checked via certification process. Well-formed terms 
are naturally split into groups of terms of the same type. 

It  is possible to encode this term definition into NuPRL directly. The main 
disadvantage of this approach is its complexity. All terms will have the same 
NuPRL type, but different Isabelle types. Hence, Isabelle term types will be 
defined without using already existing NuPRL type mechanism. More attrac- 
tive seems to be the idea that a group of Isabelle terms that have the same 
Isabelle type, should constitute a separate NuPRL type. In this case already 
existing in NuPRL tactics and theorems can be used to deal with Isabelle types. 
This approach can be implemented using NuPRL parametrized recursive type 
constructor. 

The key idea is to recursively define a parametrized family of NuPRL types 
Term(tp), where parameter tp ranges over NuPRL type Typ. Type Term(tp) 
represents well-formed terms of type tp. It is defined as a disjoint union of several 
types, corresponding to different Isabelle term constructors. 

Constant Terms Constant terms of Isabelle type tp are pairs, whose first 
elements are arbitrary tokens and the second element is tp: 
*A const-term ConstTerm(tp) == Atom X Cx:Typl x = tp) 

Variable Terms Following the definition of type Typ, constructors F r e e  and 
Var will be combined into one entity 
*A var-term VarTerm(tp) == VarName X {x:Typl x = tp) 

where 
*A var-name VarName == Atom + Indexname 
Note that VarName is a decidable type. Boolean equality =v on this type can be 
defined through boolean equality on types A t o m  and Indexname. 

Bound Variable Term Since we want to define type Term(tp) recursively, any 
"partially dis-assembled" term should also be considered to be an element of type 
Term(tp). In particular, Bmnd(i) needs to be an element of type Term(tp) 
for some element tp of type Typ. At the same time, Isabelle type of subterm 
Bound(i) can be determined only from the abstraction operator that binds index 
i. In a "partially dis-assembled" terms an appropriate abstraction operator may 
not exist. Hence, we can talk about Isabelle type of subterm Bmnd(i) only with 
respect to some kind of environment, that stores types from binding abstractions. 
Such environment will be called binding. Binding is specified by its length n and 
a function bd : Nn + Typ that maps de Bruijn indices into Isabelle types. 

Formally, binding is a parameter of type Term(tp), which, therefore, should 
be written as Term(tp, n ,  bd). A bound variable term of type tp is an integer k 
such that k < n and bd(n - 1 - k) = tp3 
*A bound-term BoundTerm(tp;n;bd) == Ck:Nnl bd (n - 1 - k) = tp) 
- - 

We assume here that binding stores type information in the "reverse" order. This 
unusual assumption greatly simplifies the formalization below. 



Abstraction Term In SML any Isabelle abstraction term is composed of vari- 
able name a (used only for display purposes), type of this variable s, and a term 
t. Isabelle type of term t is not a part of the abstraction syntax, but it can be 
re-constructed using SML typ-of function. In NuPRL, it will be convenient to 
add the type of the term t to the abstraction syntax 

*A abs-term AbsTerm(tp;n;bd; tm) == 
Atom X s:Typ X q:{q:Typl tp = (s j q)) X 

tm <q, n + 1, bd[n -+ s]> 
The fourth argument of AbsTerm is a function that maps a triple (tp, n, bd) into 
the type Term(tp, n,  bd). Later this argument will be bound by the parametrized 
recursive type constructor. 

Application Term Similarly to the abstraction term case, we add one extra 
type parameter to application term syntax, namely, the Isabelle type of the 
argument 

*Aop-term OpTerm(tp;n;bd;tm) == 

s:Typ X tm <(s j tp), n, bd> X tm <s, n, bd> 

Finalizing Term Definition Any Isabelle term is either a constant, or a free 
variable, or a bound term, or an abstraction, or an application. Hence, we would 
want to define type Term(tp, n, bd) to be the minimal solution of the following 
type equation: 

Term(tp, n, bd) = CmstTerm(tp) + VarTerm(tp) + BmndTerm(tp,n, bd)+ 

+AbsTerm(tp, n, bd, Atp, An, Abd.Term(tp, n, bd))+ 

+OpTerm(tp, n, bd, Xtp, An, Abd.Term(tp, n, bd)) 

*A term 
*A const 
*A vari 
*A bound 
*A abs 
*A op 

This recursive type has three parameters: tp, n, and bd. Since our parametrized 
recursive type theory (see Section 3.2) permits only one parameter, these three 
parameters should be combined into one 

*A proto-term ProtoTerm(p) == 
~arec(tm,p. let <tp,z> = p in let <n,bd> = z 

in 
ConstTerm(tp) + VarTerm(tp1 + 

BoundTerm(tp;n; bd) + 
AbsTerm(tp;n; bd;tm) + 
OpTerm(tp;n;bd;tm) @ p) 

Term(t;n;bd) == ProtoTerm(<t, n, bd>) 
Const (a; t) == in1 <a, t> 
Vari(a;t) == inr (in1 <a, t> 1 
Bound(k) == inr inr (in1 k ) 
Xa:s. tm:q == inr inr inr (in1 <a, s, q, tm> ) 
(tml o tm2) == inr inr inr inr <s, tml, tm2> 



Intermediate notion of proto term will be extensively used later in proofs by 
induction on type Term(tp, n, bd). Since induction rule for parametrized recur- 
sive types assumes existence of only one parameter in recursive types, it is hard 
to do inductive proofs directly over type Term(@, n, bd). Instead, we normal- 
ly prove an auxiliary theorem carrying induction over type ProtoTerm(p) and 
derive from it the main result, stated in terms of type Term(tp, n,  bd). 

Among all types Term(tp, n, bd), special role play those with n = 0 since 
elements of such types correspond to actual Isabelle terms. Display form for 
type term(tp, 0, bd) is just Term(tp) . 

5.1 Operations on Terms 

Such operations and predicates on Isabelle terms as "substitution" and "occurs 
free" will be used later to state Isabelle Meta Logic inference rules. Definitions 
of these operators are based on term case split constructor. 

Binding If tm is a term with a free variable vn of type tp, then, before this 
variable can be bound by an abstraction, it should be converted into a bound 
variable. If tm E Term(tp1, n, bd), then such conversion can be done by the 
function 
*M bind-ml bind(tm;vn;tp;n;bd) ==r case tm 
of Const(a,t) -> tm 

1 Var(v,t) -> if (V =v vn) Ab (t =tp tp) then Bound(n) else tm fi 
I Bound(j) -> tm 
I Xa:s. m:q -> Xa:s. bind(m;vn;tp;n + l;bd[n -+ s]):q 
I (f o m I s) -> (bind(f;vn;tp;n;bd) o bind(m;vn;tp;n;bd)) 

This function substitutes an appropriate de Bruijn index Bound(i) for every 
occurrence of variable Var(vn, tp) in term tm. The resulting term has one extra 
element in the binding 
*T bind-uf-tm Vt:Typ. Vn:N. Vbd:M + Typ. Vtm:Term(t;n;bd) . 

Vvn:VarName. Vtp:Typ. %:N. k = n + 1 =$ 

bind(tm;vn;tp;n;bd) E Term(t;k; [tp >> bd]) 
where [tp>>bd] is the operator shzft on records that was discussed in Section 
3.1. 

Substitution The operator 
*M subs-ml tm[vn,tp+t] ==r case tm 

of Const(a,s) -> tm 
I Var(w,s) -> if (w =v vn) Ab (s =tp tp) then t else tm fi 
I Bound( j )  -> tm 
1 Xa:s. m:q -> Xa:s. m[vn,tp-+tl :q 
I (f o m I s) -> (f [vn,tp+t] o m[vn,tp+tl) 

substitutes term t for every occurrence of variable Var(vn, tp) in the term tm. In 
order to avoid de Bruijn indices collision, term t in the above definition should 
have nil binding 
*T subs-wf Vt :Typ. Vn:N. 'dbd:M -+ Typ. Vtm:Term(t;n;bd). 

Vvn:VarName. Vtp:Typ. V b : M  + Typ. Vm:Term(tp). 
tm[vn,tp+ml E Term(t;n;bd) 



Free Occurrence Some logical rules require a variable not to occur free in a 
term. We prefer to define boolean predicate "variable Var(vn, tp) does occur in 
term tm": 

*M free-ml Free(vn;tp;tm) ==r case tm 
of Const(a,tp') -> ff 

I Var(vn',tpJ) -> (vn' =v vn) Ab (tp' =tp tp) 
I Bound(j) -> ff 
I Xa:s. tmJ:q -> Free(vn;tp;tm') 
I (f o m I s) -> Free(vn;tp;f) Vb Free(vn;tp;m) 

6 Interpretation 

6.1 Type Interpretation 

In order to define Isabelle type term interpretation in NuPRL, one needs to select 
evaluation of type variables and type constructors. After that an interpretation 
can be extrapolated on all type terms. The basic evaluation of constructors and 
variables will be called type evaluation 

*A t-eval TEval == (Atom + U List + U) X (TypVarName + U) 
For any given type evaluation ev, an interpretation of a type term t is defined 
by recursion: 

*M t-interp-ml p(t) ==r case t 
of Type(a,ts) -> ev. 1 a map(Xx.p(x) ;ts) 
I (p * q) -> P(P) + p(q) 
I Var(n) -> ev.2 n 

Type interpretation p(t) has two arguments: type term t and type evaluation ev. 
The last one is not normally displayed. 

6.2 Term Evaluation 

Interpretation of an Isabelle term will be defined with respect to a type evalua- 
tion tev and term evaluation ev, where term evaluation assigns values to atomic 
terms - constants and variables. Term evaluation is called just evaluation 

*A eval Eval(tev) == (Atom -b t:Typ -b p(t)) X 
(VarName -b t:Typ + p(t)) 

Application of an evaluation ev to constants and variables is called constant 
evaluation and variable evaluation correspondingly: 

*A const-eval ConstEval(a;tle) == e.1 a t 
*A var-eval VarEval (i ; t 1 e) == e.2 i t 

Later, verifying Isabelle Meta Logic rules, we will be using operator 

*A eval-update ev[vn,tp + vall == 

<ev.l, Xw,s.if (w =V vn) Ab (s =tp tp) then val else ev.2 w s fi > 

that changes evaluation function ev at  the point Var(vn, tp). 



6.3 Binding Evaluation 

If an Isabelle term tm belongs to a NuPRL type Term(tp,n, bd) and n > 0, 
then tm can have occurrences of de Bruijn indices that are not bound by any 
abstraction. Interpretation of such dis-assembled terms can be defined only if 
we assign first some specific values to unbound indices. We call this assignment 
a binding value. Binding value of elements of type Term(tp, n, bd) has to map 
each integer index i, such that i < n, into an element of NuPRL type p(bd(i)): 

*A bind-value BindVal(n;bd) == i:Nn -b p(bd i) 

Binding values are essentially records that we have discussed in Section 3.1. 
Introduced there operators update, shift, and tail can be applied to binding values 
as well. Although it is more convenient to define duplicates of these operators 
to deal specifically with binding values. For example, 

*A bdv-update (bdv: bd) [n => v: t] == bdv [n -b v] 

Note that extra parameters bd and t do not appear on the right hand side of 
the definition. These are "dummy" parameters incorporated into bdvwpdate to  
assist NuPRL type guessing procedure. They can be ignored from the logical 
point of view. Normally we would make such parameters hidden, but in this 
particular case they are sometimes helpful for proof understanding. 

Operators bdv-shift  and bdv-tai l  also have dummy parameters for type 
guessing, but in our formalization they are hidden: 

*A  bdv-shift [v >>> bdvl == [v >> bdv] 
*A  bdv-tail (bdvlk) == (bdvlk) 

We also define bdv-apply operator as a duplicate of the standard NuPRL ap- 
plication. This definition is also needed only in order to assist type guessing 
procedure. 

*A bdv-apply [bdv] (i) == bdv i 

6.4 Finalizing Interpretation Definition 

For any binding value bdv, and an evaluation ev, we define an interpretation of 
a term t recursively as 

*M interp-ml P (t l bdv , ev) 
==r case t 

of Const(a.tp) -> ConstEval(a;tplev) 

I Var (i ,tp) -> VarEval (i ; tp l ev) 
I Bound(j) -> [bdv](n - 1 - j) 
I Xa:s. tm:q -> Xz.P(tml (bdv:bd) [n => z:sl ,ev) 
I (f o tm 1 s) -> P(f lbdv,ev) P(tmlbdv,ev) 

If term t has Isabelle type tp, then its interpretation belongs to NuPRL type 
P (~P)  
*T interp-wf Vtev: TEval . Vev :Eva1 (tev) . Vtp: Typ. Vn: N. 

Vbd:Nn -b Typ. Vt:Term(tp;n;bd). Vbdv:BindVal(n;bd). 
P(tlbdv,ev) E p(tp) 



7 Isabelle Meta Logic 

In the previous sections we have formalized Isabelle syntax and defined its inter- 
pretation in NuPRL. In this section we state Isabelle meta rules and show that 
they are translated into valid NuPRL statements. 

7.1 Meta Logic Syntax 

Propositions Isabelle Meta Logic declares a type constant o, which stands for 
Isabelle type of all propositions. In NuPRL we represent this declaration by the 
following definition: 
*A prop-typ 0 == Type ("prop" ; [I 
We restrict the class of possible type evaluations to such evaluations that map 
constant o into NuPRL boolean type 1. Technically, this restriction is put by 
adding condition 

(pr1 (tev))("propl', U) = 1 

as a hypothesis to all theorems that we are proving about type o. We call the 
above condition propositional signature 
*A prop-sign PropSign == tev. 1 "prop" [I = B 
Propositional signature has type evaluation tev and universe level i as hidden 
parameters. 

Implication Isabelle declares as a constant of type o + o + o. Accordingly, 
in NuPRL we define Isabelle implication as 
*A imp-const ==> == Const ("==>"; (0 + (0 + 0) 1) 
We will assume that Isabelle implication is interpreted as NuPRL boolean im- 
plication: 
*A imp-sign ImpSign == 

ConstEval("==>"; (0 j (0 0)) lev) = (Xx,y.x J b  y) 

Each time when constant ==+ is used in Isabelle meta rules, it is applied to a 
pair of arguments. As a result, the following notation is handy: 
*A imp (p ==> q) == ((==> o p) o q) 

Universal Quantifier Isabelle declares universal quantifier A as a constan- 
t of the type (a + o) + o. Although at the first glance it seems that the 
same constant A belongs to the type ( a  + o) + o for any type a of class ter- 
m, this is not true. Any instance of constant A in any Isabelle term has form 
Const("all", (a  + o) + o) for a particular type term a. Hence, A is actually a 
family of constants, parametrized by a. 
*A all-const n('a) == Const("allt'; (('a + 0) J 0)) 
*A all-sign AllSign == 

VPa:Typ. ConstEval("alll'; (('a j 0) + 0) lev) = 
(Xb.Vbx:p('a). b X) 

*A iall n(a:s. p) == (n(s) o Xa:s. p:O) 

We added letter i in the name "iall" in order to avoid name collision with stan- 
dard NuPRL universal quantifier. 



Equality Isabelle declares equality predicate as a constant of the type a +- 
a +- o. Just like the universal quantifier, this constant actually is a family of 
constants, parametrized by a: 
*A eq-const eq-const('a) == Const("=="; ('a a ('a + 0))) 
*A eq-sign EqSign == 

V1a:Typ. ConstEval("=="; ('a +- ('a + 0)) lev) = (Xx,y. (X = b  y)) 
*A eq (X E y) == ((eq-const(tp) o x) o y) 

Operator eq hides parameter t p  to make formulas more readable. 

7.2 Meta Logic Rules 

Isabelle Meta Logic rules stated in [13] are reproduced on Figure 1. The following 

Fig. 1. Isabelle Meta Logic rules 

theorem verify these rules in the classical extension of NuPRL. Complete formal 
proofs are available from the author's Web page. 

*T rule-1 
Vtev:TEval. Vn:N. Vbd:k -+ Typ. Vbdv:BindVal(n;bd). 
Vp,q:Term(O;n; bd) . Vev:Eval (tev) . PropSign ImpSign +- 
(TP(plbdv,ev) a TP(q1bdv.e~)) a 
TP( (p ==> q) l bdv,ev) 

*T rule-:! 
Vtev:TEval. Vn:N. Vbd:h + Typ. Vbdv:BindVal(n; bd) . 
Vp,q:Terrn(O;n;bd). Vev:Eval(tev). PropSign + ImpSign a 
Tp((p ==> q)lbdv,ev) 3 Tp(plbdv,ev) 3 TP(qlbdv,ev) 

*T rule-3 
Vtev: TEval . Vbd:NO -+ Typ. Vbdv: BindVal (0; bd) . vp :Term(O) . 
Va: Atom. Vs :Typ. Vvn:VarName. PropSign + 
(Vev:Eval(tev). AllSign + TP(plbdv,ev)) +- 
(Vev:Eval(tev) . AllSign a TP(n(a:s. bind(p;vn; s)) 1bdv.e~)) 



*T rule-4 
Vtev: TEval. Vev:Eval(tev) . vbd:M + Typ. Vbdv: BindVal(0; bd) . 
Vp:Term(O). Va:Atom. Vs:Typ. Vvn:VarName. Vm:Term(s). 
PropSign + AllSign + TP(fl(a:s. bind(p;vn;s)) lbdv,ev) 
+ TP (p Cvn , s+ml I bdv , ev) 

*T rule-5 
Vtev:TEval. Vev:Eval(tev). Vn:N. Vbd:Nn + Typ. 
Vbdv:BindVal(n;bd). Vtp:Typ. Va:Term(tp;n;bd). PropSign + 
EqSign a tP((a = a) Ibdv,ev) 

*T rule-6 
Vtev:TEval. Vev:Eval(tev) . Vn:N. Vbd:h + Typ. 
Vbdv:BindVal(n;bd). Vtp:Typ. Va,b:Term(tp;n;bd). PropSign 3 
EqSign + TP((a = b) Ibdv,ev) + W((b a)lbdv,ev) 

*T rule-7 
Vtev:TEval. Vev: Eval(tev) . Vn:N. Vbd:Nn -b Typ. 
Vbdv:BindVal(n; bd) . Vtp:Typ. va,b,c :Term(tp;n; bd) . PropSign 3 
EqSign + TP((a G b)Ibdv,ev) 
TP((b C) lbdv,ev) + TP((a c) Ibdv,ev) 

*T rule-8 
Vtev:TEval. Vev:Eval (tev) . Vn:N. Vbd:Nn -+ Typ. 
Va,b:Atom. Vs,q:Typ. Vtm:Term(q;n + 1;bdCn + s]). 
Vbdv : BindVal (n; bd) . PropSign + EqSign + 
TP((Xa:s. tm:q Xb:s. tm:q) lbdv,ev) 

*T rule-9 
Vtev : TEval . Vev :Eva1 (tev) . Vbd: NO + Typ . Vbdv :BindVal (0; bd) . 
Va: Atom. Vs ,q:Typ. Vvn:VarName. Vt :Term(s) . Vm:Term(q). 
PropSign a EqSign + 
TP(((Xa:q. bind(t;vn;q):s o m) t[vn,q-+ml)Ibdv,ev) 

*T rule-10 
Vtev:TEval. Vn:N. m d :  h + Typ. Vbdv:BindVal (n; bd) . 
Vs,q:Typ. Vf,g:Term((s q);n;bd). Vx:VarName. PropSign 
T~bFree(x; s;f ) + TlbFree(x; s;g) + 
(Vev :Eva1 (tev) . EqSign + 

TP(((f o Vari(x;s)) (g o Vari(x;s))) lbdv,ev)) 
+ (Vev:Eval(tev) . EqSign a TP( (f = g) I bdv.ev)) 

*T rule-11 
Vtev:TEval. Vbd:NO + Typ. Vbdv:BindVal(O; bd) . Vtp: Typ. 
Va:Atom. Vs :Typ. Vvn:VarName. Vp,q:Term(tp) . PropSign 
(Vev:Eval(tev) . EqSign a TP( (p = q) I bdv,ev)) 
(Vev:Eval (tev) EqSign + 
TP((Xa:s. bind(p;vn;s):tp Xa:s. bind(q;vn;s):tp)Ibdv,ev)) 

*T rule-12 
Vtev:TEval. Vev:Eval (tev) . Vtp:Typ. Vn:N. 
Vbd:h -$ Typ. Vbdv:BindVal(n;bd) . vs:Typ. 
Vf ,g:Term( (s a tp) ;n;bd) . Va,b:Term(s;n;bd) . PropSign + 
EqSign a TP((f = g)Ibdv,ev) + TP((a b)Ibdv,ev) + 
TP(((f o a) (g o b))lbdv,ev) 

*T rule-13 
Vtev:TEval. Vn:N. Vbd: Nn + Typ. Vbdv:BindVal(n; bd) . 
VpBq:Term(O;n;bd). Vev:Eval(tev) . PropSign EqSign + 



(tP(p1bdv.e~) + TP(q1bdv.e~)) + 
(TP (q l bdv, ev) + (p l bdv , ev) + TP ( (p q) l bdv , ev) 

*T rule-I4 
Vtev:TEval. Vn:N. Vbd:Nn -+ Typ. Vbdv:BindVal(n;bd). 
Vp,q:Terrn(O;n; bd) . Vev:Eval(tev) . PropSign EqSign + 
tP((p E q)Ibdv,ev) + TP(plbdv,ev) + tP(qlbdv,ev) 
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Axiomatic Semantics for Java tight 
in Isabelle/HOL 

David von Oheimb* 

Technische Universitat Miinchen 
http://wuw.in.tum.de/-oheimbl 

Abstract. We introduce a Hoare-style calculus for a nearly full subset of sequential Java, which 
we call Javatkht. In particular, we present solutions to challenging features like exception handling, 
static initialization of classes and dynamic binding of methods. 
This axiomatic semantics has been proved sound and complete w.r.t. pour operational semantics 
of Javatight, described in earlier papers. To our knowledge, our Home logic is the fist  one for an 
object-oriented language that has been proved complete. The proofs also give new insights into 
the role of type-safety. All the formalization and proofs have been done with the theorem prover 
Isabelle/HOL. 

1 Introduction 

Since languages like Java are widely used in safety-critical applications, verification of object-oriented 
programs has grown more and more important. A first step towards verification seems to  be developing 
a suitable axiomatic semantics (a.k. a. "Hoare logic") for such languages. 

Recently several proposals for Hoare logics for object-oriented languages, e.g. [dB99,PHM99,HJOO], 
have been given. Typically they deal with some small core language and are partially proved sound on 
paper (except for [HJOO], which has been machine-checked). None of them has been proved complete. 
Our new logic, in part inspired by [PHM99], has the following special merits. 

- Apart from static overloading and dynamic binding of methods as well as references to  dynamically 
allocated objects, it also covers full exception handling, static fields and methods, and static initial- 
ization of classes. Thus our sequential sublanguage ~ a v a ~ ~ g ~ ~  is almost the same as Java Card[Sun99]. 

- Instead of modeling expressions with side-effects as assignments to intermediate variables, it han- 
dles them first-class. Thus programs to be verified do not need to undergo an artificial structural 
transformation. 

- It  is both sound - w.r.t. a mature formalization of the operational semantics of Java - and complete. 
This means that programs using even non-trivial features like mutual recursion and dynamic binding 
can be proved correct. 

- It has been both defined and verified within the interactive theorem proving system Isabelle/HOL 
[Pau94]. This guarantees a rigorous and unambiguous formalization and reliable proofs. 

2 Some basics of the ~ a v a ~ ~ g ~ ~  formalization 

Our axiomatic semantics inherits all features concerning type declarations and the program state from 
our operational semantics of Javaeight. See [ON991 for a more detailed description. 

Here we just recall that a program I' (which serves as the context for most judgments) consists of a 
list of class and interface declarations and that the execution state is defined as 

datatype st = st (globs) (locals) 
types state = xcpt option x st 

* Research funded by the DFG Project BALI, http: //isabelle . in. turn. de/Bali/ 



where globs and locals map class references to objects (including class objects) and variable names to 
values, respectively, and xcpt references an exception object. Using the projection operators on tuples, 
we define e.g. normal u - fst  u = None, which expresses that in state u there is no pending exception, and 
write snd u to refer to the state without the information on exceptions, typically denoted by S. 

A term of ~ a v a ~ ~ g ~ ~  is either an expression, a statement, a variable, or an expression list, and has a 
corresponding result. For uniformity, even a statement has a (dummy) result, called Unit. The result of 
a variable is an lval, which is a value (for read access) and a state update function (for write access). 

types terms = (expr  + s tmt)  + var + expr list 
types vals = val + lval + val list 
types lval = val x (val + state + state) 

There are many other auxiliary type and function definitions which we cannot define here for lack of 
space. The complete Isabelle sources, including an example, may be obtained from h t t p :  //isabelle. 
in.tum.de/~ali/src/Bali4/. 

3 The axiomatic semantics 

3.1 Assertions 

In our axiomatic semantics we shallow-embed assertions in the meta logic HOL, i.e. define them as 
predicates on (basically) the state, making the dependence on the state explicit and simplifying their 
handling within Isabelle. This general approach is extended in two ways. 

- We let the assertions depend also on so-called auxiliary variables (denoted by the meta variable Z 
of any type a ) ,  which are required to relate variable contents between pre- and postconditions, as 
discussed in [Sch97]. 

- We extend the state by a stack (implemented as a list and denoted by Y) of result values of type res, 
which are used to transfer results between Hoare triples. In an operational semantics, these nameless 
values can be referred to via meta variables, but in an axiomatic semantics, such a simple technique is 
impossible since all values in a triple are logically bound to that scope (by universal quantification). 

As a result, we define the type of assertions (with parameter a)  as 

types a assn = res list x state -+ a + boo1 
datatype res = Res (vals) I Xcpt (xcpt option) I Lcls (locals) I DynT ( tname)  

We write e.g. Val v as an abbreviation for Res (In1 v ) ,  injecting a value v into res. Names like Val and 
DynT are used not only as constructors, but also as (destructor) patterns. For example, XVal v : Y .  f v Y 
is a function on the result stack that expects a value v as the top element and passes it to f together 
with the rest of the stack, referred to by Y. 

In order to keep the Hoare rules short and thus more readable, we define several assertion (predicate) 
transformers. 

- Xs : P s - X(Y ,u) .  P (snd u )  ( Y p )  allows P to peek at the state directly. 
- P A. p - X(Y,u) Z. P (Y,u) Z A p u means that not only P holds but also p (applied to the program 

state only). The assertion Normal P - P A. normal is a simple application stating that P holds and 
no exception has occurred. 

- P t : f  = X(Y,u). P (Y,f a )  means that P holds for the state transformed by f. 
- P ;. f = X(Y,ul) Z. 30. P ( Y p )  Z A u'= f u means that P holds for some state u and the current state 

is then derived from u by the state transformer f. 



3.2 Hoare triples and validity 

We define triples as judgments of the form progF{a assn) terms* {a assn)with some obvious variants for 
the different sorts of terms, e.g. 
TI - {P)  e-* { Q )  = TI - {P)  Inl(lnl e)* { Q )  and { P )  .c. { Q )  = { P )  lnl(lnr c)* { Q ) .  

Here we simplify the presentation by leaving out triples as assumptions within judgments, which are 
necessary to handle recursion; we have discussed this issue in detail in [Ohegg]. The validity of triples is 
defined as 

+{P) t* { Q )  r V Y  a Z. P (Y,u) Z -+ type-ok r t a --+ 
V v  a'.  TI -a  - t t +  (v ,ul)  -+ Q (res t v Y ,u l )  Z 

where Y stands for the result stack and Z denotes the auxiliary variables. The judgment type-ok r t a 
means that the term t is well-typed (if a is a normal state) and that all values in u conform to their static 
types. This additional precondition is required to ensure soundness, as discussed in 53.6. rI-u -t*+ ( v , ~ ' )  
is the evaluation judgment from the operational semantics meaning that from the initial state u the term 
t evaluates to a value v and final state 0'. Note that we define partial correctness. 

Unless t is statement, the result value v is pushed onto the result stack via 
res t v Y = i f  is-stmt t then Y else Res v :  Y .  

3.3 Result value passing 

We define the following abbreviations for producing and consuming results: 

- P t : w  = X(Y,a) .  P ( w  :Y ,a )  means that P holds where the result w is pushed. 
- Xw:.  P w = X(w:Y,u) .  P w ( Y , u )  expects and pops a result w and asserts P w. 

A typical application of the former is the rule for literal values v: 

Lit 
rI-{Normal (Pf-:Val v ) )  Lit v-> { P )  

Analogously to the well-known assignment rule, it states that for a literal expression (i.e., constant) v 
the postcondition P can be derived if P - with the value v inserted - holds as the precondition and the 
(pre-)state is normal. 

The rule for array variables handles result values in a more advanced way: 

TI-{Normal P} el-> { Q )  r F { Q )  ez-+ {XVal i : .  ReNar (avar r a )  R) 
A Var 

TI-{Normal P )  el[ez]=* { R )  

where ReNar vf P r X(Val a :  Y,(x,s)).  let (v ,xl)  = vf a x s in (Pf-:Var v )  (Y,(xl ,s)) .  
Both subexpressions are evaluated in sequence, where Q as intermediate assertion typically involves the 
result of el. The final postcondition R is modified for the proof on ez as follows: from the result stack 
two values are expected and popped, namely i (the index) and a (an address) of ez and e l ,  respectively. 
Out of these and the intermediate state (x ,s) ,  the auxiliary function avar computes the variable v, which 
is pushed as the final result, and (possibly) an exception d .  

For terms involving a condition, we define the assertion Pf-:Bool=b = X(Y,u) Z. 3v. (Pf-:Val v )  ( Y , u )  Z A 

(normal a -+ the-Bool v = b) expressing (basically) that the result of a preceding boolean expression is b. 
Together with the meta-level conditional expression ( i f  b then el else e2) depending on b and P1t:Bool=b 
identifying b with the result of a boolean expression m ,  we can describe both branches of conditional 
terms with a single triple, like in 

TI-{Normal P )  Q-+ { P I )  Vb. rF{P1f-:Bool=b) ( i f  b then el else ez)-* { Q )  
Cond 

Z'I-{Normal P )  eo ? el : ez-> { Q )  



The value b is universally quantified, such that when applying this rule, one has to prove its second 
antecedent for any possible value, i.e., both True and False. What is a notational convenience here (to 
avoid two triples, one for each case), will be essential for the Call rule, given below. 

The rules for the standard statements appear almost as usual: 

{ P  e -  { P I }  r k { P 1 ~ : B o o l = T r u e }  .c. {P} 
Skip Loop 

T k { P }  .Skip. { P )  r k { P )  .whi le(e)  c. {P'-t:Bool=False} 

Note that in all1 rules (except Loop for obvious reasons) the postconditions of the conclusion is a 
variable. Thus in the typical "backward-proof" style of Hoare logic the rules are applied easily. 

3.4 Dynamic binding 

The great challenge of an axiomatic semantics for an object-oriented language is dynamic binding in 
method calls, for two reasons. 

First, the code selected depends on the class D dynamically computed from the target reference 
expression e. The range of values for D depends on the whole program and thus cannot be fixed locally, 
in contrast to the two possible boolean values appearing in conditional terms described above. Standard 
Hoare triples cannot express such an unbound case distinction. We handle this problem with the strong 
technique given above, using universal quantification and the precondition R t : D y n T  D A..  . with the 
special result value DynT D. An alternative solution is given in [PHM99], where D is referred to via This 
and the possible variety of D is handled in a cascadic way using two special rules. 

Second, the actual value D often can be inferred statically, but in general for invocation mode "vir- 
tual", one can only know that it is a subtype of some reference type r t  computed by static analy- 
sis during type-checking. The intuitive - but absolutely non-trivial - reason why the subtype relation 
Class DdRefT r t  holds is of course type-safety. The problem here is how to establish this relation. The 
rules given in [PHM99], for example, put the burden of verifying the relation on the user, which is 
possible, but in general not practically feasible. In contrast, our solution make the relation available to 
the user as a helpful assumption (see the sub-formula r k m o d e + D d r t  in the rule given below), which 
transfers the proof burden once and for all to the soundness proof on the meta-level. 

The remaining parts of the rule for method calls deals with the unproblematic issues of argument 
evaluation, setting up the local variables (including parameters) of the called method and restoring the 
previous local variables on return, for which we use the special result value Lcls. 

r k {Nor rna l  P )  e-+ { Q }  

r k { Q )  args=> {XVals vs:Val a : .  As : let D = target mode s a T in 
R t : D y n T  Dt:Lcls (locals s)t:init-lvars r D (mn,pTs) mode a vs} 

V D .  r t - { R t : D y n T  D A.Xa. normal a + rkrnode-+Ddr t }  

Call 
Body D (mn,pTs)-+ {XVal v:Lcls 1 : .  St:Val  veset- lvars I )  

r t - {Normal  P} { r t , r ,mode)  e. mn({pTs}args) -+ {S)  

3.5 Class initialization 

The static initialization of classes is an unpleasant feature to model as its structure depends on the class 
hierarchy and it is not syntax-driven but rather triggered on demand. Thus at  several places, e.g. field 
access and method calls, one has to consider potential initialization of some referenced class C, which we 
denote by the special statement init C. If the class in question is already initialized, there is nothing do: 

Done 
r k {Nor rna l  ( P  A. initd C))  .init C. { P )  

The rules not mentioned here may be found in the appendix. 



Otherwise, initialization allocates a new class object, treats thk superclass (if any), and finally invokes 
the static initializers of the class itself, whereby the current local variables have to be hidden and later 
restored: 

the (class r C )  = (sc,-,-, ,ini) 
sup = if C =  Object then Skip else init sc 

rt-{Normal ( ( P  A .  Not o initd C) ;. supd (new-class-obj r C))) .sup. {QT:.Xs. Lcls (locals s)) 
rt-{Q ;. set-lvars empty) .ini. {XLcls 1:. Rt:set-lvars I )  

Init 
rt-{Normal ( P  A.  Not o initd C)) .init C. {R) 

3.6 Soundness and completeness 

With the help of Isabelle/HOL, we have proved soundness and completeness: 

where wf-prog r means that the program r is well-formed. As usual, soundness is proved by rule induction 
on the derivation of triples. Surprisingly, type-safety plays a crucial role here. The important fact that 
for method calls the subtype relation Class DdReff rt holds can be derived only if the state conforms to 
the environment. This was the reason for bringing the judgment typeak into our definition of validity, 
which also gives rise to the new rule (required for the completeness proof) 

hazard 
r F { P  A. Not o type-ok I' t) t% {Q) 

indicating that if a t  any time conformance was violated, anything could happen. 
Completeness is proved (basically) by structural induction with the MGF approach discussed in 

[Ohegg]. This includes an outer auxiliary induction on the number of methods already verified, which 
requires well-typedness in order to ensure that for any program there is only a finite number of methods 
to consider. Due to class initialization, an extra induction on the number of classes already initialized is 
required. 

4 Example 

To illustrate our approach and for gaining experience how our Hoare logic behaves in practice, we use 
the following (artificial) example. 

c l a s s  Base 1 
boolean vee;  
Base foo(Base x) { 

r e t u r n  x ;  
3 

3 

c l a s s  Ext ex tends  Base{ 
i n t  vee ; 
Ext f oo(Base x) { 

( (Ext )  x ) . v e e  = I ;  
r e t u r n  n u l l ;  

3 
3 

Base e=new Ext () ; 
t r y  { e . f o o ( n u l l )  ; 3 
c a t c h  (Nul lPointerExcept ion z )  {throw z ;  3 



This program fragment consists of two simple but complete class declarations and a block of statements 
that might occur in any method that has access to these declarations. All important features of Javaeight 
are taken into account. 

We prove that if there is enough memory to successfully allocate an instance of Ext, calling f oo on 
this instance with a n u l l  argument will eventually throw a NullPointer exception. This is because, 
taking dynamic binding into account, foo  of Ext is called, which attempts to assign to the field vee 
through the n u l l  reference. The resulting exception is caught, but immediately re-thrown. 

enough-mem -+ tprgk{Normal Any) .tbR. {Any A. As. tprg,skcatch SXcpt N P )  

where Any = A( Y,a) 2. True 
tprg = ([],[(Base,BaseC1),(Ext1ExtC1)]@standard~classes) 
tblk = Expr(LVar e: =new Ext) ; 

t r y  Expr({ClassT Base,ClassT Base,lntVir) 
Acc (LVar e) . foo({[Class Base])[Lit Null])) 

catch((SXcpt ~ u l l ~ o i n t e r )  z) (throw (Acc (LVar 2))) 

The proof is done in the typical "backwardn-style and takes some 80 steps of rule application, simplifi- 
cation, and classical reasoning. About 30% of this deals with class initialization. The rule of consequence 
is applied four times, and there are four explicit instantiations of schematic assertion variables. 

5 Conclusion 

We have sketched a Hoare logic for a (rather extensive) subset of Java. This logic seems to be the first 
one for an object-oriented language that has been proved not only sound, but even complete. 

Unfortunately, many of the rules given are quite complex. This is in part due to the result value 
handling for (sub-)expressions, for which we could not find a simpler solution. But the main point is 
that Java is an inherently difficult language, taking into account e.g. mutual recursion, dynamic binding, 
exception handling, and static initialization. As experience with our small example confirms, verifying 
programs heavily dealing with exceptions and class initialization is tedious, though further machine 
support might be a relief. 

Nevertheless, using an axiomatic semantics like ours for program verifications helps concentrating 
on the interesting properties of a program (rather than fiddling with details of the state as with an 
operational semantics), and this experience carries over from procedural to object-oriented languages 
like Java. 

Both for formalizing the Hoare rules and conducting the meta-level proofs, the support of the theorem 
proving system was indispensable. With some 400 lines of theories and about 1500 lines of (already 
rather condensed) proof scripts on a highly complex subject, otherwise there would not only be plenty 
of opportunity for omissions and inaccuracies, but also the sheer amount of inferences to perform by 
hand would be overwhelming. This is particularly true since within such a non-trivial project many 
iterations are performed, leading to frequent replay of the large proofs with often subtle, but possibly 
crucial differences. 
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A The remaining rules 

V Y  u z . P ( Y  ,u) z -+ (3p1  Q'. rf-1~~) t+ {Q') A (VW 0'. 
(VY' 2'. P' (Y1,u) Z1 + Q' (res t w Y',ol) 2') -+ Q (res t w Y ,ol) 2)) 

conseq 
rt-{P) t+ {Q) 

Xcpt 
rl-{(X(Y,o). P (res t (arbitrary3 t) Y,o)) A .  Not o normal) t+  {P) 

Super 
rl-{Normal (As : Pt:Val (val-this s))} super-+ {P) 

LVar 
rl-{Normal (As : Pt:Var (Ivar vn s))) LVar vn=> {P) 

rl-{Normal P) .init C. {Q) rt-{Q) e-+ {ReNar (fvar C stat fn) R) 
F Var 

rl-{Normal P) {C,stat)e. fn=+ {R) 

rl-{Normal P) u e +  {XVar (v,fl:. Qt:Val v) 
A cc 

rl-{Normal P) Acc va-+ {Q) 

rl-{Normal P) v u ~ +  {Q) 
rt-{Q) e-+ {AVal v:Var (w,fl :. Rt:Val veassign f v) 

Ass 
rt-{Normal P) va:=e-+ {R) 

Nil 
{Normal Pt:Vals [I) [I=+ {P) 

rl-{Normal P) e-+ {Q) rt-{Q) es=+ {XVals vs:Val v:. Rf:Vals (v:vs)) 
Cons 

rt-{Normal P) e:es=+ {R) 

rl-{Normal P) .init C. {Alloc r (Clnst C )  id Q) 
NewC 

rl-{Normal P) new C-+ {Q) 

where Alloc r tag f P r X(Y,(x,s)) Z. Vo' a. r F ( f  x,s) -halloc tag+a+ ol+ (Pt:Val (Addr a)) (Y,ol)  Z 

rl-{Normal P) .initromp-ty T. {Q) 
rl-{Q) e-+ {XVal i:. Alloc I' (Arr T (the-lntg i)) (check-neg i) R) 

NewA 
rt{Normal P) new qe]-+ {R) 



rt-{Normal P} e-> {XVal v:. &?:Val ve:X(x,s). (raise-if (-r,st-v fits T)  Classcast x,s)) 
Cast 

rt-{Normal P) Cast T e-> {Q) 

Tt-{Normal P) e-> {XVal v : .  As : (Qf:Val (Bool (vfNull A r,st-v fits Reff T)))) 
Inst 

rt-{Normal P) e instanceof T-+ {Q} 

the (cmethd r C sig) = (md, -, -, blk, res) 
rt-{Normal P) .init md. {Q) TI-{&) .blk. {R} r t - {R )  res-> {q 

Body 
rt-{Normal P) Body C sig-> {S} 

rt-{Normal P) e-> {Xw:. Q) 
Expr 

rt-{Normal P) .Expr e. {Q} 

rl-{Normal P} .cl. {Q) rt-{Q} .c2. {R) 
Comp 

rt-{Normal P) .cl ; cz . {R) 

If 
rt-{Normal P) e-> {PI) Vb. rt-{P1t:Bool=b) .(if b then c l  else cz). {Q) 

r t {Normal  P} . i f (e)  c l  e lse cz. {Q) 

rt-{Normal P) e-> {XVal a:. Qt-:X(x,s). (throw a x,s)) 
Throw 

rt-{Normal P) .throw e. {Q) 

rt-{Normal P) .cl.  {Q) 
rt-{(Q A.Xu. r,uI-catch C )  ;. newxcpt-var vn) .cz. {R) 
rt-{Q A.Xu. i r ,ut -catch .Skip. {R) 

Try rt-{Normal P) . t r y  c l  catch(C vn) cz. {R) 

rt-{Normal P}.cl.{X(Y,(x,s)). (Qt:Xcpt x) (Y,(None,s))) 
rt-{Normal Q}.cz .{XXcpt d :. Rt:X(x,s). (xcpt i f  (d#None) d x,s)} 

Fin 
TI-{Normal P} .cl f i n a l l y  cz. {R) 
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Summary. Component reusability is well known concept used for using existing software components to speed 
up system design and development. Along with expediting the software development cycle, this also provides a 
useful methodology for synthesizing large component architectures by using existing components, that are already 
implemented and tested. Formal specification matching techniques for component retrieval use axiomatic style 
specifications to formally represent the semantic properties of the component. The specification matching is 
done using extensive theorem proving over the pre- and post- conditions. It is vital that a component retrieval 
methodology be both theoretically sound and practically useful. However, current techniques that emphasize 
theoretical soundness tend to be too expensive in practice, while practical techniques tend to sacrifice semantic 
rigor. The existing techniques of theorem proving to establish reusability prove to be impractical for a very large 
library of components. In this paper, we describe the implementation details of a specification-based component 
ret,rjeval system that circumvents the above problem. The system uses a feature-based component classification 
scheme to effectively limit the amount of theorem proving required at query time. It also presents the automated 
theorem proving technique employed using PVS. 

1 Introduction 

Building complex systems from simpler components is a fundamental process in software engineering. 
Components provide abstraction, that enables the design of huge complex systems by composing them 
as the integration of simpler components. However, conventional design processes often ignore existing 
components that are already implemented and tested. Those that try to reuse existing components are 
mostly incapable of finding the right components that match the problem specification. The performance 
and reliability of this bottom-up design process can be considerably improved by using a component reuse 
framework. Reusing components leads to a more reliable design and at the same time, it speeds up the 
software development cycle. Formal methods for component retrieval rely on specification matching algo- 
rithms to  establish the reuse potential of components. Specification matching is preferred over signature 
matching techniques that ignore the semantics of the component specification. However, one of the ma- 
jor problems of specification matching for component retrieval is the computationally expensive task of 
theorem proving over a large library of components. One obvious solution to  the above problem is t o  
devise a technique that reduces the number of proofs required at query time. A feature based component 
classification scheme is used to classify the components and use this classification to do a specification 
matching over a small number of components as opposed to the entire library [3]. The work presented 
here is the implementation details of the component retrieval technique [3]. 

Our goal is to create a fully automated software reuse framework which can be used over all engi- 
neering domains. The automated theorem proving ability gives the additional advantage that  the tool 
does not entail the users to have any prior knowledge of theorem provers. In this paper, we describe the 
implementation of this retrieval mechanism built and tested over a sample library of list components 
specified in Rosetta 161. The advantage of using rosetta - a system level design language, is that the reuse 
technique can be used independent of the domain of the application. 

2 Background Theory 

A software reuse framework consists of a component retrieval phase followed by a component adapta- 
tion phase. Figure 1 shows the block diagram of the entire reuse framework. This paper describes the 



implementation of the component retrieval phase. It is important to understand the need for component 
classification before using the specification matching algorithm. 

Fig. 1. A block diagram of the entire component reuse framework 

Component 
Input specification 

Classification 

The component classification phase improves the efficiency of the entire reuse framework and also 
make specification matching practical over a large library of components. This is because the specification 
matching is done over only the components retrieved by the classification mechanism, as opposed to the 
entire library. The essential elements that make up the retrieval system are as follows: 

Specification Matching 

A library of components specified in a formal specification language 
Features with which the components are classified 
An automated theorem proving methodology for component classification and specification matching 

The first requirement is satisfied by using a formal specification language like Rosetta, [6], a system 
level design language to represent components in terms of their pre- and post conditions. Component 
classification and theorem proving are explained in following subsections. 

i Component retrieval 
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1 Component classification 

. . . . . . . . . . . . . . . . . . . . . 

Classifying components is a key feature that improves the performance of the reuse system. I t  relies on 
the property that similar components can be grouped together and components within the same group 
have a much greater potential to match each other than with components from other groups. Thus, there 
is no need for the theorem prover to prove and evaluate specification matching over the entire library of 
components. Theorem proving is only restricted to similar components i.e. the ones with the same fea- 
ture set. Given a component specification in Rosetta, the objective is to assign all the possible features 
t,o it [4]. The features are predefined in a feature-base. Figure 3 shows a set of typical features that can 
be assigned to list components. Features are logical predicates that have a certain property associated 
with them. Any component that satisfies this property will be assigned that feature. Mathematically 
this is equivalent to a set of predicatelname pairs (4, f i ) ,  such that each feature name f is unique and 4 
is the condition associated with that feature. 

1 

Component Adaptation 

Definition 1. A feature set is a collection of all the features that can be assigned to  that component. 
FS(C)  = { f i  I I c  A Oc =+ 4) 



Plug-in 
(Ip + Ic) A (Oc -0p)  

( I p  - 1 c )  A ( I p  A Oc -, Op) Ic A Oc + Op 

Satisfies Weak Post 
Fig. 2. Specification matching criterion to evaluate reusability 

For any given component C and a problem specification P, 
i f  match(C, P )  then FS(C) C F S ( P )  
where match(C,P) indicates that C matches P under any of the reuse matches in figure 2. 

Although this is a logically weak assertion [4], it is not so clear as to how it may effect the precision of 
retrieval without actually building and testing the system. Since the primary objective of the classification 
scheme is to filter out unwanted components and give a set of components that have a greater potential 
for reuse, this assumption is acceptable in our case. 

Given below is an example to illustrate the above scheme: Consider a component CompSearch 
where I and 0 represent its pre- and post-conditions respectively. 

I = de f ined(reclist, elemkey) A isinput(rec1ist) 

A isinput (elemke y) A isoutput (elem) 

0 = contains(reclist, elem) A Key2Rec(elemkey) = elem 

Assume that the functions used are predefined in a domain theory. Given a possible feature definition 
of Select in figure 3,  it can be observed that 

Thus Select can be assigned to the component. 

2.2 Specification matching 

The process of specification matching is greatly improved with the use of the feature based component 
classification scheme described above. Using the classification scheme, the conventional requirement of 
theorem proving over all the components in the library to establish their reuse potential is clearly obvi- 
ated. Instead the specification matching is restricted to only the components that have the same feature 
as the problem specification. This follows from the fact that only the components with similar features 
have the potential to match the needed functionality with any of the specification matching criteria. 
The other components which have no common feature are automatically skipped by the classification 
mechanism. With the reduced theorem proving requirements, the specification matching process can be 
fully automated thereby providing fast and reliable results. 



features [TI, T2 : TYPE+] : THEORY 
BEGIN 

Import ingdomain-theory [Ti ,T2] 
Import ingcornp_search[T1 ,T21 

Select : Theorem 
(Exists (x: T3,y:T2) : 
isinput (x) andisoutput (y) andcontains(x,y)) 

Nonmember:Theorem 
(Exists (x:T3, y:T2) : 
isinput (x) and isoutput (y) andnot contains(x, y)) 

Build: Theorem 
(Exists (x:T2, y:Tl): 
isoutput (x) andisinput (y) andx=Key2Rec(y)) 

Filter: Theorem 
(Exists (x,y:T3) : 
isinput (x) and isoutput (y) and 
(forall(z:T2): contains(y,z) => contains(x,z))) 

End features 

Fig. 3. Example PVS theory for some list features 

3 System Overview 

The entire component retrieval system is shown within the dotted lines in figure 4. Components are 
specified in terms of pre- and post- conditions using Rosetta . After this file is successfully parsed, the 
parser generates an interface file that has all the information needed by the retrieval process. This file 
is the input to  the retrieval system. The interface information is used to create a PVS theory with PRE 
and POST axioms. This PVS specification can be referred to as the problem specification. The next task 
is to classify this problem specification using the feature based classification scheme described earlier. 
The component classification mechanism is implemented using the PVS theorem prover, the feature def- 
initions in PVS and the feature specific and/or generic prover strategies. After the problem specification 
is classified, its featmure set is used to  query the component library and retrieve the components that have 
the same features. The retrieved components are evaluated for the user specified specification matching 
criterion using the theorem prover. The output of the retrieval system are the components that match 
the problem specification with the matched criteria. The criteria can be relaxed in cases when the match 
results in few or no results. The entire process is automated using automated theorem proving in PVS. 

4 Theorem proving for feature assignment 

The t,heorem prover is a key component in the feature based classification process explained above. 
Classifying a component translates to  creating its feature set. The feature sets of all the components 
classified so far are stored in a feature-base. The feature-base acts like a database and can be queried to  
get a list of components for a given feature. Thus, once a component is classified, its feature set elements 
become queries to the feature-base to retrieve potential reuse components that will be inputs t o  the 
specification matching process. Theorem proving to classify components needs a problem specification 
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Fig. 4. Feature based component classification 

in PVS with its PRE and POST axioms. A sample specification for the Search component is given in 
figure 6. Feature set definitions are also expressed as theorems in a separate feature theory. The theorem 
prover attempts to prove all the feature theorems using the component theory axioms. If the proof is 
successful, it implies that the corresponding feature can be assigned to that component. 

Given below is a example to describe the process mentioned above: Consider a List domain and a 
sample component listsearch. The rosetta specification is shown in figure 5 .  The definitions for types 
and functions are assumed to be provided in the list domain. The Rosetta specification is converted into 
an equivalent PVS theory as shown in figure 6 

use listdomain; 
facet comp-search (reclist:: in listRec ; 

elem:: out Item ; 
elemkey : : in Key) is 

begin logic 
pre: def ined(rec1ist ,elemkey) ; 
post: contains(reclist,elem) and Key2Rec(elemkey) = elem ; 
end ; 

Fig. 5. Rosetta specification for Search Component 

The two axioms represent the pre- and post- condition for search component. The next step is to 
classify the component by assigning features from the feature set using PVS for theorem proving. The 
following subsection describes the modifications made to PVS to automates this theorem proving process. 

4.1 PVS as the theorem prover 

PVS provides a classical, typed high order logic specification language along with a powerful automated 
deduction mechanism. It has a set of pre-defined inference procedures that can be combined to generate 



Comp-searchCKey:TYPE+,Item:TYPE+] :THEORY 
BEGIN 
Importingdomain-theory [Key ,Item] 
reclist : list [Key] 
elem: Item 
elemkey : Key 

requires-SEARCH : Axiom 
defined(reclist,elemkey) and isinput(rec1ist) 
and isinput (elemkey) 
and isoutput (elem) 

ensures-SEARCH : Axiom 
contains(reclist, elem) and Key2Rec(elemkey) = elem 
END Comp-search 

Fig. 6. PVS theory for Search Component 

high-level proof strategies. The need in our case, is to  automate the theorem proofs. To automate this 
process, the potential prover strategies are identified. PVS stores the proofs for a given theory in a p r f  
file. Thus the proofs for each theorems are stored and can be rerun without the need to reprove the 
t,heorems. In our system instead of PVS generating the p r f  file after a manual theorem proving process, 
we generate this file before theorem proving with the adequate theorem proving strategies. The strategy 
can be generic or can be written specific to  a feature. PVS always reads this file whenever it  attempts 
to  prove the entire theory. It then retries all the proofs again using the strategies specified in the p r f  
file. The prover is invoked in a lisp code by using the command prove-pvs-file. Lisp is chosen as the 
language to  enable smooth integration with lisp environment provided by PVS. The lisp code can be 
automatically loaded while starting PVS. 

4.2 Issues involved w i th  a u t o m a t e d  t heo rem proving 

One of the main problems faced with automated proofs is the instantiations of quantified variables during 
the proofs. In cases where more than one instance of the variable of the same type are available it is 
imperative that both instances be substituted in the proofs. Relying on the theorem provers primitive 
rewrite procedures may lead to erroneous instantiations and the proof may fail. The above problem is to  
be tackled by having dynamic strategies. The strategies are created at run-time wherein all the possible 
variable instantiations are explicitly specified. Using the t r y  construct it is possible for the theorem 
prover to attempt more than one strategy to prove the theorem. 

The results obtained after the theorem prover is done, are stored in the status buffer. The buffer is 
scanned for proved theorems (possible features) by checking the status of a proof. The status is displayed 
as "proved-complete" only if the theorem and all the TCC's are successfully proved. 

In our list component example, the feature set theory used for the sample list  components is shown 
in figure 3. The lemma, instantiate and grind strategies of PVS are combined and written in the pvs- 
s t ra teg ies  file. The corresponding p r f  file that is recognized by PVS prover is updated with the new 
strategy. For the CompSearch  component it can be seen that the Select and Bu i ld  will be assigned 
to it. 

4.3 P r o o f  s t ra teg ies  

The component classification scheme assumes that the prover strategy is powerful and sufficient t o  prove 
all the features. Inadequate proof strategy may fail to  take into account certain features and this adversely 
affects the recall of component retrieval. The precision of retrieval will depend upon the specification 



(defstep TOP (&optional otheraxiom 
(try  
( try  (STGY1) ( f a i l )  ( sk ip) )  
(SKIP) 
(STGY2) ) ) )  

Fig. 7. PVS proof strategy 

matching technique used. An example of the prover strategy used is shown in figure 7. The t r y  construct 
provided by PVS is very useful in combining existing strategies to get a powerful generic strategy. TOP  
is a generic strategy which combines two other strategies STGYl and STGY2. TOP applies STGYl 
to the theorem and if this doesn't prove the theorem, it tries again with strategy STGY2. The PVS 
GRIND strategy is particularly useful for most of the proofs. 

5 Related work 

[7] provided a foundation for studying the more general activity of specification matching. Our work 
uses the specification matching criteria described in this work. The NORAM/HAMMR [I] deductive 
retrieval tool built by Fischer and Schumann uses a model checker to filter our components to  identify 
potential reusable components. The model checker filter mechanism is replaced by the theorem prover 
based component classification scheme in our system. 

The Inquire retrieval mechanism [ 5 ] ,  within the Inscape environment supports retrieval based on 
component specifications. The specification language used in their case is restricted to a set of precondi- 
tions and post conditions. The technique presented here is more flexible with the use of first-order logic 
to represent features. The features are not the complete representation of the components but represent 
certain properties that can be satisfied by the component specification. 

Deductive program synthesis also use a formal technique to automate the software reuse process. The 
AMPHION system [2] successfully used deductive synthesis to synthesize software from a subroutine 
library for solar system geometry. The system specifies components as mathematical functions and their 
behavior is captured via a set of axioms. A program is synthesized by proving that,  for any valid input, 
there exists an output that satisfies the specification. 

6 Conclusion 

Software reuse and formal specification are two methodologies that can have a significant impact on the 
software productivity and reliability. We presented a software retrieval system that matches semantics 
associated with component specifications to classify them and then use specification matching to establish 
their reuse potential. This reduces the computationally intensive and practically impossible need of 
theorem proving over all the library components. Features are assigned to the components based on 
specific necessary conditions satisfied by the component specification. The entire process is automated 
by encoding the functionality in a lisp code which directly interacts with the PVS theorem prover. 
The results of empirical evaluation of this technique [4], shows that this technique can provide retrieval 
performance comparable to the existing methods. The benefits of this technique are the efficiency and 
the speed of the retrieval process provided at a high level of automation. 

Our future work will consist of using this feature based classification mechanism to do a specification 
match of the retrieved components and establish their reuse potential. Much of the automated theorem 
proving techniques required for specification matching can be adopted from the implemented classifica- 
tion scheme. Also a software reuse system essentially consists of a retrieval and adaptation phase. A long 
term goal can be to integrate a component adaptation system with the retrieval mechanism to build a 
fully integrated and automated tool for software reuse. 
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Abstract. This paper presents some experiments about the notion of 
generalization in type theory based proof assistants. We propose a mech- 
anism which, starting from a proved theorem, makes it possible to get a 
less specific result that can be instantiated and reused in other contexts. 

1 Introduction 

Like the mathematician, the user of a proof assistant sometimes wants, even 
needs, to generalize previously obtained results to allow their reutilization in 
other developments. To do so, it should be shown that the theorems which have 
been proved remain true in a weaker context. For example, the basic results 
about addition on N can be generalized to any set provided with a structure 
whose internal laws satisfy the axioms of abelian group. 

Thus, it is relevant to find which parts of a proof can be generalized for a 
later reuse, to understand the analogies between proofs, and, to study how those 
similarity can be used to help to develop new theories. 

Generalization and reasoning by analogy have been intensively studied in Ar- 
tificial Intelligence and in automatic systems, in which they are used to generate 
intermediate lemma in order to avoid diverging proof search. But little work has 
been done in the framework of interactive proof systems based on type theory 
such as Coq[INR96],Nuprl[CAB+86] or Lego[LEG]. 

The idea of generalization has been introduced by Plotkin[Plo69] via the 
notion of anti-unification. The problem is, given two terms t l  and t2  to find 
the tuple (g,B,o) where g is a term and 8 and [T two substitutions such as 
8(g) = t l  and o(g) = t 2 .  Finding the most specific generalization of two first 
order terms is now a well understood problem. But generalizing of the higher 
order terms is more difficult. In [Pfeglb] Pfenning studies anti-unification for a 
subset of the terms of the Calculus of Constructions and shows some examples of 
experiments made in LF[Pfe9la]. Hasker and Reddy [HR92] have been interested 
in generalizing higher order terms with a categorical approach, and show that 
in the case of the second order, the complete set of most specific generalizations 
can be computed. 

Less ambitious, Kolbe[KW94] proposes to abstract the functional terms. We 
followed the same way. Thus, we do not propose to find the least general gen- 
eralization of two terms but simply to help the user to define generalizations of 



theorems and proofs already written without assuming future instanciations of 
these theorems. This is to say that given a tuple (s, t, 1) where s is a type, t is 
a term of type s ,  and 1 is a set of free identifiers occurring in s we want to find 
the smallest set 1' of identifiers containing I such as if s' and t' are respectively 
the results abstracting the elements of 1' in s and t, t' being of type s'. (The 
practical meaning of 1' s' and t' will be highlighted in the first example). 

This paper introduces the practical experiments done in this field. We do not 
present a complete achievement but we have tried to show what can be made 
and to trace the broad outline of an implementation of interesting tools. These 
experiments have been done using Coq but the idea is generic and could be 
adapted for any system based on type theory that represent theorems as types 
and proofs of these theorems as terms having the appropriate type. 

2 A quick overview 

2.1 Abstraction 

As an example, we will work on the following lemma about multiplication on 
natural integers : 

Lemma rnult-permute : 
(n,m,p:nat) ((mult n (WI m p))=(mult m (mult n PI)). 

Proof. 
1ntros;Revrite -> (mult-assoc-1 m n p) ;Rewrite -> (mult-sym m n);Auto. 
Qed. 

We wish to generalize the statement of the theorem mult-permute to get a 
new statement in which the operator will not any more be mult but an unspec- 
ified operator. For that we will abstract the identificator mult in the statement 
of mult-permute. The generalized statement1 we obtain is : 
(f : n a t - h a t - > n a t ) ( n ,  m ,  p :na t ) ( ( f  n (F m p ) )= ( f  m (more n p ) ) ) .  

But this statement is not true any more in the general case. 
The problem is to find the properties which the operator f must check in order 

to assure that the new statement is still a theorem. Here, intuitively the state- 
ment will remain true for any associative and commutative function on integers: 
Although these two properties do not appear in the statement of permute-mult 
they appear in the proof script. But in the general case, to find which prop- 
erties must be checked by the operator which is abstracted, it is necessary to 
examine the proof term of the initial theorem. We will also use this term to 
build a proof of the generalized statement. Thus let us observe the proof term 
of permute-mult : 

in which we denote f the abstracted operator to avoid the confusion with mult 



PROOF TERM OF PERMUTE-MULT: 

[n.m,p:natl 
( eq-ind - r nat (mult (mult m n) p) 
[nO:nat] (mult n (mult m p) )=no 
(eq-ind-r nat (mult n m) 
[nO:nat] (mult n (mult m p))=(mult no p) 
( mult-assoc-1 n m p) (mult m n) ( mult-sym m n)) 

(mult m (mult n p)) ( mult assoc 1 m n p) ) 

In addition to mult, nat, and =, which already appeared in the initial state- 
ment, the free identifiers which appear in the proof are eq ind r, mult assoc-1 
and mult sym. Among the latter, it is necessary to determine those w?;ich are 
related t o t h e  identifier mult which has been abstracted in the statement. 

Thus, we seek their statements (2.e. their type) in the current environment. 
We find respectively: 

- (A:Set ; x:A; P: (A->Prop)) (P x) ->(y :A) y=x-> (P y) 
- (n,m:nat) (mult n m)=(mult m n) 

- (n,m,p:nat) (mult n (mult p))=(mult (mult n m) p) 

It  appears that only the last two statements refer to the identifier mult. Thus, 
we deduce, that the only properties of the multiplication which are used in the 
proof are symmetry and left associativity which correspond to mult-sym and 
mult-assoc-1 2.  

Thus, it is also necessary to abstract these two identifiers in the generalized 
statement in order to express the constraints on the operator f .  We get the 
following statement: 

Lemma generalized-permute : 

(f :nat->nat->nat) 

(f-assoc-1 : (n,m,p:nat) (f n (f m p))=(f (f n m) p)) 

(f-sym :(n,m:nat)(f n m)=(f m n)) 

(n,m,p:nat) 

((f n (f m p))=(f m (f n p))). 

2 

The proof of this theorem is obtained by abstracting mult, mult-sym and 
mult-assoc-1 in the initial proof term. This leads to the following term : 

On our example these two identifiers also appear in the script, this is not always the 
case. 



PROOF TERM OF GENERALIZED-PERMUTE: 
Proof [f :nat-hat->natl 

[f -assoc-1: (nO,mO,pO:nat) (f no (f mO pO))=(f (f no mO) PO)] 
[f-sym: (n0,mO:nat) (f no mO)=(f mO no)] 
[n,m,p:natl 
(eq-ind-r nat (f (f m n) p) [nO:nat] (f n (f m p) )=no 
(eq-ind-r nat (f n m) [nO:nat] (f n (f m p))=(f no p) 
(f -assoc-1 n m p) (f m n) (f -sym m n)) (f m (f n p) 

(f-assoc-1 m n p)) 

We now check that we can instantiate generalized-permute, with addition and 
the proof of its associativity and the commutativity, to  obtain a more specific 
instance of the theorem. We get: 

Lemma plus-permute : 

(n,m,p:nat) ((plus n (plus m p) )=(plus m (plus n p))) . 
Proof (generalized-permute plus plus-assoc-1 plus-sym). 

In the following section we describe the broad outline of an interactive tool 
helping the user to carry out such generalizations. 

3 A tool to assist the generalization 

3.1 Basic principle 

Given a statement S and a term P which is a proof of S, the user provides 
the name of the function that he wishes to abstract in S (to simplify the fol- 
lowing explanation we suppose that he selects only one function identifier de- 
noted by f ) .  In a graphical environment such as CtCoq[BBCanFM96] or Proof- 
General[AGKS99], that can be done by a single mouse click. Next the following 
operations should be made automatically: 

1. Find the type t associated with the identifier f 
2. Recover the list of all the free identifiers which appear in the proof term P 

and do not already appear in the statement S. 
3. Find the types associated with these identifiers. 
4. Among these identifiers, select all those whose type refers to the identifier 

f that has been abstracted. We will denote fp i  selected identifiers and tpi 
their types (which express the properties o f f  which have been used). 

5. Build the statement of the theorem generalized by abstracting f and the 
fPi in S. We obtain a generalized statement of the form: 



6. Build the proof term associated to this statement by abstracting on P. We 
get a term of the form : 

3.2 Choosing the names of the abstracted identifiers 

As one can see regarding the statement of the lemma generalized-permute 
assigned in the preceding section, the names given to the abstract identifiers are 
not randomly selected. We propose a small algorithm to name the properties of 
the abstracted terms. 

It  is usual to express a property of an operator by the name of this operator 
followed by the name of the property (often separated by a character underscore). 
To express that it corresponds to an unspecified function, we will use f (then fi 
if we abstract more than one operator) to denote the abstract operator. Thus, it 
is also necessary to substitute f to all the occurrences of the abstracted operator 
in the statement. 

Once we have recovered the list of identifiers resulting from step 4 in our 
algorithm, we use their name to build new names by substituting f to the name 
of the operator in the old name of the property; thus mult-assoc becomes 
f -assoc which remains significant. Then we substitute f to  all the occurrences 
of the abstracted operator in the types of the identifiers recovered at  step 3. 
Finally we substitute f and the names of properties formed on f in the proof 
term. 

4 More abstraction 

So far, we have limited the abstraction to function identifiers. Let us consider 
again the example of the section 2.1. The permutation property remains true 
for any function f :E->E associative and commutative, whatever the set E. 

Let us try to continue our generalization by abstracting the type of the function 
arguments. A new statement is obtained : 

Lemma more-generalized-permute : 

(E:Set) 

(f :E->E->El 

(f-assoc-1 : (n,m,p:E) (f n (f m p))=(f (f n m) p ) )  

(f-sym :(n.m:E)(f n m)=(f m n)) 

(n,m,p:E) 

((f n (f m p))=(f m (f n p))). 

which is proved by abstracting on the proof term to get: 



PROOF TERM OF MORE-GENERALIZED-PERMUTE: 

Proof [E:Set] 
[f :E->E->El 
[f-assoc-l:(nO,mO,pO:E)(f no (f mO pO))=(f (f no mO) p0)I 
[f-sym: (n0,mO:E) (f no mO)=(f mO no)] 
Cn,m,p:El 
(eq-ind-r E (f (f m n) p) [nO:El (f n (f m p))=nO 
(eq-ind-r E (f n m) [nO:E] (f n (f m p))=(f no p) 
(f-assoc-1 n m p) (f m n) (f-sym m n)) (f m (f n p)) 

(f-assoc-1 m n p)) 

4.1 Instantiations : 

Now, let us check that we can still instantiate this generalization with integer 
multiplication: 

Lemma mult-permute : 

(n,m,p:nat) ((mult n (mult m p))=(mult m (mult n p))). 

Exact (more-generalized-permute nat mult mult-assoc-1 mult-sym 1. 
Subtree proved! 

But we can also instantiate the theorem with other functions such as the 
addition on multi-variables monomial as defined by Pottier3. We get: 

Lemma mon-permute : 

(k:nat) (n,m,p: (mon k)) 

((mult-mon k n (mult-mon k m p))=(mult-mon k m (mult-mon k n p))). 

Exact [k:nat] (more-generalized-permute (mon k) 

([i:(mon k)] [j:(mon k)] (mult-mon k i j 1) 
( [i: (mon k)] [j : (mon k)] [l: (mon k)] (mult-mon-assoc k i j 1)) 

( [i : (mon k) 1 [ j : (mon k)] (mult-mon-com k i j) ) 1. 
Subtree proved! 

5 Limitations 

We could be tempted to push the abstraction further. Indeed, why limit the 
statement to the equality relation eq The only property of this relation which 
ig, used is the principle of rewriting: 
eq-ind-r : (A: Set) (x: A) (P :A->Prop) (P x) -> (y :A) y=x-> (P y). 
The statement thus remains true for any relation R checking this principle. Thus 
it is possible to get the following generalization: 

(http://uww-sop.inria.fr/croap/CFC/buch/Monomials.html) 



Lemma more-more-generalized-permute : 

(E:Set) 

(f:E->E->El 

(R:(A:Set)A->A->Prop) 

(R-ind-r: (A:Set) (x:A) (P:A->Prop) (P XI->(y:A) (R A y x)->(P y)) 

(f-assoc-1 : ((n,m,p:E) (R E (f n (f m p)) (f (f n m) p)))) 

(f -sym : (n,m:E) (R E (f n m) (f m n))) 

(n,m,p:E) 

(R E(f n (f m p)) (f m (f n p))). 

which can be proved by the term below: 

PROOF TERM OF MORE-MORE-GENERALIZED-PERMUTE: 
Proof [E: Set] 

[f :E->E->El 
[R: (A: Set) A->A->Prop] 
[R-ind-r: (A:Set) (x:A) (P:A->Prop) (P x) ->(y:A) (R A y x) ->(P y)] 
[f-assoc-l:(nO,mO,pO:E) 

(R E (f no (f mO PO)) (f (f no mO) p0))I 
[f -sym: (n0,mO:E) (R E (f no mO) (f mO no) 11 
Cn,m,p:EI 
(R-ind-r E (f (f m n) p) [nO:E] (R E (f n (f m p)) no) 
(R-ind-r E (f n m) [nO:El (R E (f n (f m p)) (f no p)) 
(f-assoc-1 n m p) (f m n) (f-sym m n) (f m (f n p ) )  

(f-assoc-1 m n p)) . 

5.1 Instantiations: 

We still check this generalized theorem by instantiating it with the multiplication 
on the integers: 

Lemma mult-permute : 

(n,m,p:nat) ((mult n (mult m p))=(mult m (mult n p))). 

Intros. 

Exact (more2-generalized-permute 

nat n m p mult eq eq-ind-r mult~assoc~l mult-sym). 

Subtree proved! 

But eq-ind-r characterizes the equality of Leibnitz, and we will not be 
able to re-use this lemma with other definite equalities. 

Let us consider for example the polynomials such as they were defined by 
Pottier and Thkry [Thk98]. They are represented by the table of their coefficients. 
The addition of two polynomials is obtained by summing their coefficients of 



same degree. An equality relation eqP is defined to identify for example 0 and 
0 + (0 * x) which are different for the equality eq . 

Thus, we tried to prove permutes for the addition of these polynomials, 
that is to say the following lemma: 

Lemma plusP-permute : 

(n.m,~:~) (eqP (plusP n (plusP m p)) (plusP m (plusP n p) 1). 

But it is not possible to reuse our proof term. We can nevertheless complete 
the proof. We can try to establish a generalization of eq-ind-r such as for 
example in the case of the polynomials with integer coefficients. 

Lemma eq-ind-r-int: 
( x: (P nat) ; PI: ((P natl->Prop)) 

(PI x)->(y:(P nat))(eqP nat(eq nat) [x:nat]x=O y x)->(PI y) 

But this result is not true, otherwise taking [z: (P nat)] x=z) as PI we could 
prove that eqP imply eq, which is not true. 

We can nevertheless complete the proof of plusP-permute by the following 
script: 

Intros. 

(Apply eqP-trans with (plusP (plusP m n) p) ; Auto). 

(Apply eqP-trans with (plusP (plusP n m) p); Auto). 

Its proof term, given below, has nothing to do with the one we previously had: 

Proof: [n,m,p:Pl 

(eqP-trans (plusP n (plusP m p)) (plusP (plusP m n) p) 
(plusP m (plusP n p)) 
(eqP-trans (plusP n (plusP m p)) (plusP (plusP n m) p) 

(plusP (plusP m n) p) (plusP~associative n m p) 
(eqP-sym (plusP (plusP m n) p) (plusP (plusP n m) p) 

(eqP-sym (plusP (plusP n m) p) (plusP (plusP m n) p) 

(eqP-sym (plusP (plusP m n) p) (plusP (plusP n rn) p) 
(plusP-cornpl (plusP m n) (plusP n m) p 

(plusP-commutative m n)))))) 

(eqP-sym (plusP m (plusP n p))   plus^ (plusP m n) p) 
(plusP-associative m n p) ) ) 

Thus, this example shows that it is not always desirable to generalize as much 
as possible (i.e. to abstract all the free identifiers appearing in a statement). 



6 Robustness and problems 

In practice, to  guarantee that our generalization of a theorem T will work it is 
necessary that its proof refers only to the types of the generalized identifiers 
but does not use their internal structures (i.e. if the dependence with respect to 
these terms is opaque). For inductive types, this expresses that we do not reason 
by case or induction. Moreover, if it is always possible to abstract a recursor, 
although the preceding example shows that it is not very useful, nothing can be 
done when a Fix or a Case appears in the proof term. 

This restriction is also true for functional terms, our first examples works 
only because the proof terms do not directly refer to the structure of mult; the 
properties of mult were proved separately and thus, can be abstracted. If these 
basic properties were used directly in the proof, abstracting would be impossible. 

Indeed to prove the majority of the basic properties of functions, we need to 
access their basic structure. Thus, to prove the commutativity of the addition, 
we should seek the internal definition of addition to find the rewriting rules 
which make it possible for example to reduce (O+x) to  x. The reduction of 
a functional term defined by such rules is called the L-reduction. That led to 
very different proof for commutativity of the addition and commutativity of the 
multiplication on the integer, and to even more different proof for commutativity 
of the monomial multiplication . 

Kolbe and Walter[KW94] studied the reuse of such proofs , but they seem to 
limit themselves to small examples and in spite of that the result still remains 
very dependent on the definite structure. Thus, some proofs made on the addition 
could be reused for the multiplication if one defines it by the rules: O*m - 0 and 

(S p)*m 2.t m + (p * m) but not if one defines it by the system O*m 2.t 0 
and ( (S p) *m ?-t (m * p) + m), which is however equivalent. 

7 Restriction in the use of the abstraction. 

To circumvent these problems, we will make it possible to abstract a function 
identifier only if it is opaque4 or, if we can check that it is not L-reduced it in 
the proof (a less restrictive constraint). In the same way, we will authorize to 
abstract an inductive type only if it corresponds to a "silent typen,i.e., if the 
proof does not contain a reasoning by case or induction on the structure of this 
type. To check that one does not reduce a term, we can track in the script the 
tactics which can perform reductions like Simpl, Change . . . . In the same way 
one will look the tactics destructing an inductive type like Induction , Split, 
Case . . . . It will also be checked that the constructors of the type appear neither 
in the script nor in the proof term. But this method is not really reliable simply 
because the user can define his own tactics. 

An identifier is opaque if we can access to its type but not to its proof. 



8 Conclusion and perspective 

The main idea of this tool is t o  avoid restarting from scratch when we will develop 
abstract theories such as for example the groups or rings theories. Indeed in an 
existing developments many proofs use only some properties of the "objects" on 
which they work. 

We propose t o  provide a "debug mode" in which each property used in proof 
will be generalized and stored. When thereafter we have to  define a new struc- 
ture, we will give its abstract properties and by comparing with our storage and, 
modulo the restrictions of the 8 7, we will be able t o  recover for free all the 
theorems in the existing developments which are still valid for our structure. 

The certification of mathematical algorithms intended for computer algebra 
must be based on a certified implementation of the basic mathematical struc- 
tures (groups, rings, algebra etc). In the long run, generalization should make it 
possible t o  recover, by generalizing them, the proofs which have been done for 
an instance of these theories such as integer or polynomials in the case of groups. 
In relation to  the introduction of the concept of module modules in proof assis- 
tant,  this could make it possible to  develop parameterized theories starting from 
specific instances. This is more or less similar to  Siff and Reps's works[SR96] 
in the field of programming languages, when they try to  generate generic C++ 
code starting from C code. 
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Abstract. Complex security protocols require a formal approach to ensure their correctness. The 
protocols are frequently composed of several smaller, simpler components. We would like to take 
advantage of the compositional nature of such protocols to split the large verification task into 
separate and more manageable pieces. 
Various formalisms have been used successfully for reasoning about large protocol compositions by 
hand. However, hand proofs are prone to error. Automated proof systems can help make the proofs 
more rigorous. The goal of our work is to develop an automated proof environment for compositional 
reasoning about systems. This environment would combine the power of compositional reasoning 
with the rigor of mechanically-checked proofs. The hope is that the resulting system would be 
useful in verification of security protocols of real-life size and complexity. 
Toward this goal, we present results of a case study in compositional verification of a private 
communication protocol with the aid of automated proof tool Isabelle/IOA. 

1 Introduction 

Today's security protocols require a formal approach to  ensure that  they satisfy important 
correctness properties. Traditional ways of verifying correctness by hand are prone t o  error and 
require a large investment of human effort and patience. Furthermore, these problems tend t o  
grow worse as the size and complexity of the system being verified both increase. Automated 
proof tools can help make the proofs more rigorous. Such tools also need a lot of human guidance, 
and the automation they do provide typically does not scale well with the size of the problem. 

The protocols we are interested in are frequently composed of several smaller, simpler pro- 
tocols. We would like t o  take advantage of the compositional nature of such protocols t o  split 
the large verification task into separate, more manageable pieces. Existing proof systems do not 
provide a structured environment for compositional reasoning about systems. The goal of our 
work is t o  develop such an environment. This environment would combine the power of com- 
positional reasoning with the rigor of mechanically-checked proofs. We would like the resulting 
system t o  be useful in verification of security protocols of real-life size and complexity. Toward 
that  goal we have conducted a case study in compositional verification of a private commu- 
nication protocol with the aid of the automated proof tool Isabelle. This paper describes our 
experiences with the case study. 

1 / 0  automata [Lyn96,LT89] have been successfully employed in hand verification of large 
reactive systems. I/O automata express reactive distributed systems concisely as compositions 
of several smaller subsystems. Meta-theorems about compositional properties of 1 / 0  automata 
help prove correctness theorems about the systems they describe. 

Lynch has applied the 1 / 0  automata formalism to  verifying a private communication pro- 
tocol [Lyn99]. In this paper we take a version of the same protocol and verify its properties 
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using the theorem prover Isabelle and I/O automata meta-theory developed by Miiller [Mii198]. 
The protocol is decomposed into two components whose properties are proven separately. The 
top-level proofs then combine correctness theorems about the components and obtain a cor- 
rectness proof about the composite protocol. The resulting formal description could be further 
combined with other security protocol components, and such compositions can be verified in 
Isabelle using the same compositional reasoning techniques. 

The paper is organized as follows. Section 2 gives an introduction t o  1 / 0  automata and 
the meta-theorems used in the Isabelle proofs. Section 3 describes two recent efforts t o  incor- 
porate I/O automata into mechanical theorem provers, PVS [ORSvH95] and Isabelle [Pau94]. 
Sections 4 and 5 discuss our experiences with verifying a private communication protocol of 
1 / 0  using the Isabelle theorem prover. In Section 6 we discuss our results. 

2 An Introduction to I/O Automata 

The Input/Output Automaton (110 Automaton) model [Lyn96,LT89] is a general model used 
for formal descriptions of distributed reactive systems. An I/O Automaton A is a state machine 
in which the state transitions are associated with named actions. The actions are classified as 
either input, output, or internal. The input and output actions are called external actions. We 
let ext(A) designate the set of external actions of automaton A. External actions are used for 
communication with the automaton's environment, while the internal actions are visible only 
t o  the automaton itself. 

The composition operator 1 )  allows an automaton representing a complex system t o  be con- 
structed by composing automata representing individual system components. The composition 
identifies actions with the same name in different component automata. When any component 
automaton performs a step involving an action T,  so do all component automata that  include 
x. The state of the composition is the product of the states of its components. 

A triple (s, T,  s') is a step of an I/O automaton A if A has a transition from state s t o  
state s' via action x. An execution fragment of A is a finite or infinite sequence s o ~ o s l ~ l  . . . of 
alternating states and actions of A, where each subseqence s;~;si+l is a step of A. An execution 
of A is an execution fragment whose first state is a start  state of A. The trace of an execution 
a is the subsequence y of a consisting of external actions of A. The set of all traces of A is 
designated traces(A) . 

Let y be a finite (possibly empty) sequence of external actions of automaton A, and let s 

and t be states of A. The triple (s, y ,  t) is a move of A (written s &A t) if there exists a finite 
execution fragment a of A starting in s and ending in t such that  trace(cr) = y. Thus, a move 
s aA t is a series of state transitions with the externally-visible behavior y. 

For reasoning about correctness properties of I/O automata, we use the notion of imple- 
mentation relation, also called trace inclusion. 

Definition 21 Given two 1/0 automata A and C with sets of identical external actions, we 
say that C implements A (denoted C 5 A) iff traces(C) C traces(A). 

Implementation relations are used to  show that  a concrete system C safely implements an 
abstract system A. Typically, A is a specification of safety properties we would like the concrete 



system to  exhibit. Proving the relation C 5 A guarantees that  C exhibits only the external 
behaviors allowed by the specification A.  

Implementation relations can be established by exhibiting simulation relations between the 
concrete and abstract automata. 

Definition 22 Let C and A be I /O automata with identical external actions. A forward sim- 
ulation from C to A is a relation R over states(C) x states(A) that satisfies the following 
conditions: 

- If s is a start state of C ,  then there is a start state s' of A such that ( s ,  s') E R. 
- If state s is reachable i n  C ,  state s' E R[s]  is reachable in  A, a E e x t ( C ) ,  and ( s ,  a ,  t )  is a 

step of C ,  then there is a move sf %A t1 in  A ,  where t' E R[ t ] .  

Intuitively, every externally visible step ( s , a , t )  of automaton C is simulated by a move 
s f  t' of automaton A. The move must include exactly one external action a ,  but may 
include any finite number of internal actions. 

We write C A when there is a forward simulation from C t o  A.  The utility of forward 
simulations is established by the following theorem. 

Theorem 1. Let C and A be I /O automata with identical external actions. If C I F  A, then 
C 5 A. 

The following theorem defines compositional properties of I/O automata and enables us to  
reason about individual components of complex systems. 

Theorem 2. Let C = C1 I I . . . I IC, and A = A1 I I . . . I [ A ,  be parallel compositions of I /O au- 
tomata, where e x t ( A ; )  = ex t (Ci )  and Ci 5 A; for every i. Then e x t ( A )  = e x t ( C )  and C 5 A .  

Hence, if we can decompose complex systems C and A into simpler components, we can prove 
trace inclusion between C and A by proving trace inclusion between individual components and 
then applying Theorem 2. 

3 1 / 0  Automata and Mechanical Theorem Proving 

When a trace inclusion proof is attempted using a typical generic theorem prover, many issues 
crop up. The first question is how 110 automata should be represented in the specification 
language of the theorem prover. The language may la.ck expressive power or convenient features 
because the language is tailored for the theorem prover, rather than the user's needs. 

Once the representation has been designed, it is necessary t o  verify that  the representation 
satisfies the meta-theorems about I/O automata, in particular Theorems 1 and 2. These essential 
theorems may be difficult to  prove for the chosen representation of I/O automata. One possible 
solution is to  supply these and other theorems t o  the theorem prover in the form of axioms. 
This approach defeats some of the value of mechanical verification, since we could not be sure 
that  our representation of I/O automata is sound. 



If we are verifying a complex composition of multiple smaller automata, each individual 
automaton has t o  be hand-translated t o  the input language of the theorem prover-a laborious 
process that  is prone to  error. In our experience, subsequent attempts t o  prove properties of 
the system reveal many more errors resulting from faulty translations than errors inherent in 
the original I/O automata specification. 

The process of proving theorems about automata in a theorem prover can be tedious. Prover 
commands are typically very different from the reasoning steps that  humans usually make. Even 
if the user knows how the high-level proof should go, translating this knowledge into a complete 
proof in a mechanical prover can be a frustrating experience. 

Recent work has addressed these complications and attempted to  make automated verifi- 
cation of 110 automata systems more closely resemble hand verification. Archer et al. recently 
developed TAME [AHS98], a high-level interface to  the higher-order logic theorem prover PVS 
for specifying and proving invariant properties of I/O automata models. The TAME interface 
provides a template for translating I/O automata specifications into the PVS input language. 
A set of high-level commands lets the user prove invariant properties with the same type of 
steps that  are commonly taken in hand proofs. However, TAME has significant shortcomings as 
well. There is no natural way t o  define an I/O automaton type and formalize 110 meta-theory, 
including the composition operator and theorems about simulations and compositional reason- 
ing. This is due t o  restrictions in the polymorphic features of the PVS specification language. 
Hence, TAME is suitable primarily for verifying invariant properties of relatively small systems. 

Muller formalized a large part of the basic I/O automata meta-theory using the theorem 
prover Isabelle [Mii198]. Isabelle's specification language has rich polymorphic mechanisms, 
making it suitable for concise specifications of I/O automata and associated operators. Miller's 
meta-theory includes a definition of the composition operator and proofs of Theorems 1 and 2. 
We used Muller's Isabelle/IOA system for our case study. 

4 Trace Inclusion Proofs in Isabelle/IOA 

The first step in the verification process is converting I/O automata specification and imple- 
mentation (written in the traditional precondition-effect style) into the Isabelle input language. 
This task is reasonably easy because Isabelle/IOA contains the composition operator, an oper- 
ator for hiding external actions (which helps make automata compatible for composition), and 
other standard operators from 110 automata theory. It is therefore not necessary t o  compose 
automata by hand, or otherwise modify them before doing the translation. 

A template for formalizing automata in Isabelle's language is shown in Figure 1. The tem- 
plate assumes that  the actions of the automaton have been defined as a datatype action in a 
separate theory named Action. To create a specific automaton out of the template, the user 
must fill in items 1 through 11 (marked in bold numbers in the figure), as follows. 

The definition auto-trans-def specifies the transition relation on the state of the automaton 
using set comprehension notation. The relation is a set of triples t r  = (s, a, t )  satisfying the 
boolean case expression on the action name a. The user fills out items 6 through 8 to  set up 
the transition relation for a specific instantiation of the template. Items 6 and 7 pair an action 
name with a boolean expression constraining the set of transitions labeled by the action name. 
All other actions of the automaton follow in item 8, using the same syntax. 



auto = IOA + Action + ..I.. + 
types 

autostate = ..2.. 
consts 

autoasig :: action signature 
auto-trans :: (action, auto-state) transition set 
autoioa :: (action, autostate) ioa 

defs 
autoasig-def "auto-asig == ({..3..}, {..4..}, {..5..))" 
auto-trans-def "auto-trans == 

{ tr. let s = fst(tr); 
t = snd(snd(tr)); 
a = fst(snd(tr)) 

in 
case CY of 

..6.. 3 ..7.. 1 

1" 
autoioa-def "auto-ioa == (autoasig, {..9..), auto-trans, {..lo..), {..11..))" 

end 

Fig. 1. Template for specifying I f 0  automata in Isabelle 

Finally, the definition auto-ioa-def defines the entire I/O automaton as a 5-tuple consisting 
of the action signature, the set of initial states (item 9) ,  the transition relation, and two types 
of fairness conditions (items 10 and 11). In this paper we will consider only safety properties, so 
the fairness conditions will always be empty sets. Section 5.1 contains an example translation 
of an I/O automaton into Isabelle using the template. 

Once the I/O automata have been encoded in Isabelle, the next step is stating and proving 
invariant properties that  will be used later in the implementation proof. A typical hand invariant 
proof proceeds by induction. For the base case, we show that  the invariant holds in all initial 
states. For the inductive step, we check that  each action preserves the invariant property. A 
similar strategy works in our Isabelle proofs of invariant properties. We have developed an 
Isabelle tactic (called simplify-inv-goal-tac) that  takes the invariant goal, applies induction 
(thereby breaking the goal into subgoals for the base case and for each action) and automatically 
proves the "trivial" cases. In particular, the cases that  do not modify the parts of the state 
involved in the invariant are proven automatically. After this tactic is applied, the user is left 
with the task of proving the remaining cases. In each case, the necessary reasoning is localized 
t o  the effects of one action, eliminating the need t o  reason about the entire automaton. 

The final step in the implementation proof is exhibiting a simulation relation or a refinement 
mapping from the states of the implementation to  the states of the specification. The proof that  
a function is a refinement mapping is structurally similar t o  the proofs of invariant properties. 
Once again, we apply induction on the length of the execution to  the goal and automatically 
discharge the "trivial7' cases among the resulting subgoals. The rest of the subgoals are proven 
in the manner similar to  the hand proof. Each subgoal corresponds t o  one step of the implemen- 
tation automaton; the user must exhibit a corresponding move of the specification automaton 



and prove tha t  the end states of the implementation step and the specification move are related 
by the refinement mapping. 

When we want t o  generate a trace inclusion proof between two compositions of automata 
C = CIII . .  .IIC, and A = A I J I . .  .IIAn, we can take advantage of Theorem 2. Once we have 
obtained separate trace inclusion proofs for each pair of component automata C; and A; sep- 
arately, we can apply the compositionality theorem to  get trace inclusion between C and A. 
This step is easy, and requires only a side proof that  the automata being composed are com- 
patible with each other. We are developing Isabelle tactics that  discharge most of this proof 
automatically. 

5 Case Study: Verification of a Private Communication Protocol 

We have taken a modified version of a private communication service protocol specified as 
I/O automata in [Lyn99] and used Miiller7s Isabelle/IOA t o  verify secrecy properties of the 
service. The main point of this exercise is to  investigate the feasibility of using the theoretical 
machinery provided by I/O automata t o  perform compositional analysis of complex systems in 
an automated proof environment. A full description of the system appears in the Appendices. In 
the rest of the paper we give a high-level description of the system and discuss our experiences 
with Isabelle/IOA. 

The private communication service is specified as an I/O automaton PC. The service lets 
clients exchange messages with each other using an insecure transmission channel. The speci- 
fication guarantees that  messages are delivered a t  most once, and their content remains secret 
from the adversary. 

The service is implemented using a shared-key cryptosystem and contains a number of au- 
tomata. Before going out on the insecure communication channel, each message passes through 
an encoder automaton and gets encrypted with a key that  the encoder shares with a corre- 
sponding decoder automaton on the receiving side. The decoder decrypts the messages and 
passes them on to  the client. The implementation model also includes a passive eavesdropper 
automaton. The eavesdropper can intercept messages appearing in the insecure channel and 
also compute new messages (via encryption and decryption functions) from the available in- 
formation. Using a technique similar to  assume-guarantee proofs, the environment automaton 
records our assumptions about the environment in which the service can operate correctly. In 
particular, the environment must not give away secrets to  the eavesdropper. 

The shared keys are generated by a key distribution service. The full implementation employs 
a version of the Diffie-Hellman protocol to  generate and distribute shared keys. Since the analysis 
of key distribution is fairly involved, we decompose the implementation into two parts that  
can be verified independently. Figure 2 shows the structure of an 110 automata composition 
PCImpll = ICll Eve1 1 KD 1 1  Encll Decll Env implementing specification PC. 

In PCImpll, KD is a high-level specification, leaving out the details of key distribution and 
thus simplifying the structure of PCImpll. The Diffie-Hellman key distribution protocol can 
now be verified independently of the rest of the private communication protocol. The protocol 
consists of Diffie-Hellman nodes (one per client) and an insecure channel. Diffie-Hellman nodes 
exchange several messages over the channel in order t o  establish a shared key for a pair of clients. 
Just as in the private communication implementation, there is a passive eavesdropper and and 
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an environment. Figure 3 shows the structure of an 1 / 0  automata composition KDImpl = 
DHl I I DH2 I I ICI I Eve1 I Env implementing specification KD. 

For simplicity, we assume (unrealistically) that  the key distribution protocol and the private 
communication protocol have separate insecure channels and eavesdroppers, and the eavesdrop- 
pers do not communicate with each other. See [Lyn99] for a more realistic treatment combining 
the insecure channels and the eavesdroppers. 
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Fig. 4. Composition PCImplP implements specification PC 

Breaking up the implementation in this manner lets us take advantage of the composition- 
ality theorem about 1 / 0  automata (Theorem 2). We prove trace inclusion for compositions 
shown in Figures 2 and 3 in Isabelle. Theorem 2 then lets us substitute the Diffie-Hellman im- 
plementation KDImpl in place of the specification KD while preserving trace inclusion between 
PCImpE1 and PC. The resulting implementation PCImp12 is shown in Figure 4. 

Below we give a more detailed description of the PC and KD service specifications. 

5.1 The Services 

In this section, we describe the two services that  are implemented by the protocols and verified 
in this paper. The use of input and output actions provides convenient ways of composing these 
automata with others, and of describing what is preserved by implementation relationships. 
These specifications describe only safety properties, although the same methods can be used t o  
handle liveness properties, formulated as live I10 Automata [GSSL93]. 



Private Communication This section contains a specification of the problem of achieving 
private communication among the members of a finite collection P of clients. The specification 
expresses three properties: (1) only messages that  are sent are delivered, (2) messages are 
delivered a t  most once, and (3) none of the messages are revealed by an "adversary." We 
describe the problem using a high-level I/O automaton specification PC(U, P, M ,  A), where U 
is a universal set of data  values, P is an arbitrary finite set of client ports, M U is a set of 
messages, and A is an arbitrary finite set of adversary ports. This specification makes no mention 
of distribution or keys; these aspects will appear in implementations of this specification, but 
not in the specification itself. The specification simply describes the desired properties, as an 
abstract machine. As usual for automaton specifications, the properties, listed separately above, 
are intermingled in one description. 

PC(U, P, M ,  A): 
Signature: 

Input: Output: 
PC-send(m),,,, PC-receive(u),,,, u E U ,  p, q E P ,  p # q 

m E M 1 p , q E P , p # q  reveal(u),, u E U ,  a E A 

States: 

for every pair p, q E P ,  p # q: 
buffer(p, q ) ,  a multiset of M 

Transitions: 

PC-send(m),,, 
Effect: 

add m to buffer(p, q)  

PC-receive(u),,, 
Precondition: 

U E buffer(p,  9 )  
Effect: 

remove one copy of u from buffer(p, q)  

reveal(u), 
Precondition: 

u 4 M 
Effect: 

none 

he first two properties listed above, which amount to  at-most-once delivery of messages that  
were a.ctually sent, are ensured by the transition definitions for PC-send and PC-receive. The 
third property, privacy, is expressed by the constraint for reveal. 

The following figure demonstrates the private communication specification translated into 
Isabelle/IOA. The translation fills in specific information about the specification into the tem- 
plate shown in Section 4. 

PC = IOA + Action + InfMultiset + 
types 

PCstate  = "P x P j U tmultiset" 



consts 
PCasig :: action signature 
PC-trans :: (action, PCstate) transition set 
PCioa :: (action, PCstate) ioa 

defs 
PCasig-def "PCasig == 

((UN m P q. {PCsend m P q)), 
(UN u msg p q. {PCreceive u msg p q)) U (UN u a. {reveal u a)), 

{}In 
PC-trans-def "PC-trans == 

{ tr. let s = fst(tr); 
t = snd(snd(tr)); 
CY = fst(snd(tr)) 

in 
case a of 

reveal u a j u $i Mset I 
PCsend m p q + 

(m E Mset) & 
(t  = (A (P', q'). 

if (p = p') & (q = q') then 
s (P', q') + {m) 

else 
s ( ~ ' 9  q'))) I 

PCseceive u msg p q + 
(U E s (PI 4 )  & 
(t = (A (P', q'). 

if (p = p') & (q = q') then 
s (P', q') - {u) 

else 

J 
PCioa-def "PCioa == (PCasig, {A (p, q). 81, PC-trans, {), {))" 

end 

The state of PC is represented as a function from a pair of clients of type P t o  a multiset 
of messages of type U .  The definition of the transition relation gives a boolean expression for 
every triple (s, a,  t ) ,  where s and t are states and a is an action of PC. The boolean expression 
includes the precondition of a and relates t t o  s via the effects of a. Thus, the expression is 
true if and only if (s, a, t) is a step of PC. 

Key Distribution We use a drastically simplified key distribution service, which distributes 
a single key t o  several participants. We do not model requests for the keys, but assume that  the 
service generates the key spontaneously. The simplified key distribution problem is specified 
by the automaton KD(U, P, I<, A), where U is a universal set of da ta  values, P is an arbitrary 
finite set of client ports, K C U is a set of keys, and A is a finite set of adversary ports. 

6 Discussion 

The benefits of decomposing large systems into smaller parts for verification are twofold. From 
the software engineering perspective, formalizing and reasoning about large monolithic systems 
quickly becomes unmanageable. The number of potential interactions between state components 



typically increases exponentially with the size of the state and the size of the transition relation. 
When the system has more than a few state components, just formulating the necessary invari- 
ants can prove to  be a daunting task. Compositional reasoning lets us take a modular approach 
t o  verification. We can focus on proving properties of self-contained systems of reasonable size 
and build up a component library for constructing larger systems. Compositionality results let 
us combine proven properties of components and obtain new results about the larger system 
without going through the verification process from scratch. One can imagine that  somewhat 
more realistic versions of the PC and KD services and their implementations could be a part 
of a library of formalized security and cryptography components. 

Decomposition also helps avoid the state explosion problems common to  all automated ver- 
ification tools. Isabelle's simplifier was valuable in reducing the human effort in our verification 
exercise, but in our experience its running time greatly depends on the size of automata being 
verified. The table below shows the running time on a set of theorems proven automatically 
by an identical invocation of the simplifier. Each theorem describes how a transition of an n- 
automata composition is projected onto the individual components. The table gives the timings 
for n E {3,4,5,6).  

We did not prove the theorems for higher values of n because for n > 7 the simplifier requires 
more than the 256MB of RAM available on the test machine. But the data  in the table suggest 
that  even without the space restriction, the automatic proof tools in Isabelle would not be able 
t o  handle larger systems in a reasonable amount of time, and without them the verification 
effort is prohibitively expensive. In the small example verified in this paper, we split the task of 
verifying trace inclusion for a nine-component system PCImp12 into two separate tasks, one of 
which deals with a six-component system PCImpll and the other with a five-component system 
KDImpl. Notably, we could not prove the projection theorems for the nine-component case, but 
could do so for the smaller component cases. This modest division resulted in substantial savings 
primarily because complexity, running time, and space requirements appear t o  be exponentially 
related t o  problem size. In the context of real-world systems that  can have dozens of such 
components, abstraction and decomposition become essential. 

n 
time 

6.1 Observations on Benefits of Formal Verification 

Refinement proofs turned out t o  be a more effective way of fleshing out specification problems 
than invariant proofs. Invariant proofs may touch only specific parts of the protocol state and 
leave untouched more abstract questions about what the protocol is doing. The refinement proof 
makes explicit all the assumptions about why the implementation does what the specification 
intended. 

In particular, during the refinement proof for the implementation PCImpll we were forced 
to  go back and prove several auxiliary invariants whose utility were not obvious a priori. This 
in turn led us t o  typos and errors in our formalization of the cryptosystems and component 
automata. Although the bugs caught during the process of proving invariant lemmas and trace 

3 
5.5 sec 

4 
27.9 sec 

5 
3.8 min 

6 
40.1 min 



inclusion were mostly errors in our formalization, we caught one error in the original description 
of PCImpll protocol (some uninitialized variables led to  failed proofs of the base case) and a 
typo in a,n invariant statement in [Lyn99]. 

6.2 Efficiency Issues 

The human effort spent on the project included (1) twelve weeks for formalizing and verifying 
PCImplI 5 PC, ( 2 )  three weeks for verifying KDImpl 5 KD, and (3) three days for verifying 
PCImpla 5 PC. A substantial fraction of the time in stage 1 was spent learning Isabelle/IOA 
and setting up the procedure for formalizing I/O automata, stating and proving invariants, and 
proving trace inclusion. This accounts for most of the difference in effort between stages 1 and 
2. Stage 3 was much shorter due to  our use of the compositionality theorem. 

We believe that  additional automation can reduce the human effort substantially in all 
phases of the verification process. At the level of the prover, additional tactics can automate 
tasks that  commonly show up in reasoning about I/O automata. These tactics fall into two 
categories. One set of tactics would simulate the high-level proof steps used in human-style 
I/O a,utomata proofs. These would be similar to  the proof strategies offered by Archer's TAME 
environment for PVS. Another set of tactics would help the user deal with proof obligations 
specific t o  Isabelle and the Isabelle formalization of I/O automata meta-theory. For example, 
applying the compositionality theorem requires proofs for side conditions that  the Isabelle 
type checker does not guarantee. It must be shown that  the I/O automata definitions are well 
formed-the sets of input, output, and internal actions are disjoint, and the transition relation 
is defined only for the actions in the automaton signature definition. Furthermore, the user 
must show that  the automata being composed are compatible with each other. These proofs 
have common structure and can therefore be effectively encapsulated in a higher-level Isabelle 
tactic. The tactic would be used with every application of the compositionality theorem. 

There are also ways t o  improve efficiency a t  the user interface level. A compiler can take 
care of translating I/O automata (expressed in a suitable way) into an Isabelle formalization. 
It is also possible t o  generate a general framework for invariant definitions and trace inclusion 
proofs automatically, letting the user fill in definitions and proof script details specific t o  the 
problem. 

One of the biggest obstacles t o  formal reasoning with theorem provers remains their cum- 
bersome nature and the level of attention to  low-level details required of the user. Isabelle 
is not an exception. Interacting with the bare-bones prover throughout the verification cycle 
can be a frustrating experience, which is why we emphasize the need to  automate as much of 
the process as possible. With the enchancements discussed above, the task of formalizing the 
specification and setting up proof goals and induction can be substantially automated. Most 
user interaction with the prover would take place when reasoning about individual automata 
actions. The actions typically have a small and localized effect on the automaton state, which 
makes the proofs more manageable. 

6.3 Technical Issues 

In Miiller's formalization of I/O automata meta-theory the binary automata composition op- 
erator has the following type, given in Isabelle's ML-like notation: 



1 1  :: ( a ,  a )  ioa + (a, T) ioa + (a, a x T) ioa 

where a is the action type, a and T are state types of the automata being composed, and a x T 

is the state type of the composition. The composition operator requires that  both automata 
be defined over the same action space a. If we apply the operator multiple times t o  compose 
several automata, every action of every component must be a member of the same action space. 
Mechanized induction on the action datatype generates a subcase for each action in the action 
space, including those that  do not belong to  the component being verified. This means that  
inductive proofs do not scale well for large compositions of automata. This is a serious problem, 
as it undermines the primary benefit of compositional reasoning: scalability. It takes over an 
hour for Isabelle (ver. 99) to  execute in interactive mode the invariant and refinement proof 
scripts developed in this project. The simplifier spends the majority of that  time reducing 
inductive subcases for actions, considering many more cases than necessary. 

Fixing the problem without completely revising the meta-theory requires a richer type sys- 
tem than supported by Isabelle/HOL. For example, in a polymorphic language with subtyping 
and union types [Piegl], the composition operator could be given the following type: 

I I :: (a, a) ioa + (P, T) ioa + ( a  V O, a x T) ioa 

The action type of the composition a V P is the union type derived from the action types a 
and ,/3 of the components. Assuming that  the usual binary operators on sets (union, intersection, 
difference) have the type cr set + /3 set -+ (avp) set, the existing definition of the composition 
operator would still make sense in this setting. 

7 Conclusions 

Existing compositional proof methods, including implementation relations between I/O Au- 
tomata, are adequate for handling large classes of verification problems. Numerous case studies 
have used these techniques by hand to  prove global properties of non-trivial systems. Un- 
til recently, automated verification tools have not included compositional techniques in their 
repertoire. Yet, the strengths of compositional reasoning and automated reasoning have the 
potential t o  complement each other. 

Automation demands that  compositional proofs be made strictly rigorous. It does not toler- 
ate typos or imprecise wording, which can lead t o  subtle errors in hand proofs. Forced t o  develop 
proofs according to  these exacting standards, the user gains deeper understanding of the sub- 
tleties of the system and more confidence in the final product. Although time consuming t o  use, 
automated proof tools make proof re-checking much easier, which can result in substantial time 
savings in the iterative development/verification cycle. Conversely, compositional techniques 
offer the best hope of dealing with state explosion and complexity problems associated with 
automated verification of non-trivial systems. 

Our experience with the Isabelle/IOA verification environment leads us t o  conclude that  
there is a lot of work yet to  be done before the potential benefits of automated compositional 
reasoning are fully realized. Using Isabelle/IOA is a labor-intensive undertaking, and the envi- 
ronment does not appear t o  be sufficiently scalable. These issues can be resolved with additional 
effort, and we believe that  the benefits of the compositional approach make the effort worth- 
while. 
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Abstract. We describe an integration of the SVC decision procedure with the HOL theorem 
prover. This integration was achieved using the PROSPER toolkit. The SVC decision procedure 
operates on rational numbers, an axiomatic theory for which was provided in HOL. The decision 
procedure also returns counterexamples and a framework has been devised for handling counterex- 
amples in a HOL setting. 

1 Introduction 

The PROSPER project1 is researching and developing a toolkit [4] that allows an expert to easily and 
flexibly assemble proof engines from existing tools to provide embedded formal reasoning support inside 
applications. The ultimate goal is to make the reasoning and proof support invisible to the end-user-or 
at  least, more realistically, to incorporate it securely within the interface and style of interaction to which 
they are already accustomed. One of the main facets of the project is the use of plugin technology in 
order to prevent the continual re-implementation of existing techniques. 

This paper describes the construction of a PROSPER plugin based upon the Stanford Validity Checker 
(SVC)[14]. This work has included providing an axiomatic theory for rationals in HOL and a framework 
for handling counter-examples. 

In $2 and $3 we give overviews of the PROSPER toolkit and SVC respectively. In $4 we discuss our 
integration of the two systems including an overview of the theory of rational numbers and the framework 
for counterexamples. In $5 we describe the results of experimental evaluation of the system. In $6 we 
look at  related work and in $7 we discuss further work needed on the plugin. 

2 The Prosper Toolkit 

A central part of PROSPER'S vision is the idea of a proof engine-a custom built verification engine 
which can be operated by another program through an Application Programming Interface (API). A 
proof engine can be built by a system developer using the toolkit provided by the project. A proof engine 
is based upon the functionality of a theorem prover with additional capabilities provided by 'plugins' 
formed from existing, off-the-shelf, tools. The toolkit includes a set of libraries based on a language- 
independent specification for communication between components of a final system. The theorem prover's 
command language is treated as a kind of scripting or glue language for managing plugin components 
and orchestrating the proofs. 

The central component is based on a theorem prover because this comes with ready made concepts 
of term, theorem, and goal, which are important for managing verifications. A side benefit is that all 
the functionality in the theorem prover (libraries of procedures, tactics, logical theories, etc.) becomes 
available to a developer for inclusion in their custom proof engine. This does not prevent theorem proving 
being very lightweight if desired. 

* The authors would like to thank Tom Melham for his help with the research reported here. 
** Corresponding Author 
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A toolkit has been implemented based around HOL98, a modern descendent of the HOL theorem 
prover 151. The toolkit provides several plugin components based on external tools which offer APIs to 
a proof engine. It  also provides support to enable developers of other verification tools to offer them as 
PROSPER plugins. 

The application, proof engine and plugins act as separate components in the final system (Figure 
1). In the first prototype they are also separate processes. Communication between them is treated in a 

1 API SMv Plugin - rn 

Fig. 1. A system built with the PROSPER toolkit 

uniform manner specified by the PROSPER Integration Interface. 

2.1 The Prosper Integration Interface 

A major part of the PROSPER methodology is the PROSPER Integration Interface (PII), a language- 
independent specification of communication for verification. This specification is currently implemented 
in several languages (C, C++, ML, Java, Ada, XProlog and Python) allowing components written in 
these languages to be used together. 

The PI1 consists of several parts. The first is a datatype, called interface data, for all data transferred 
between an application and a proof engine and between a proof engine and its plugins. A major part of 
the datatype is the language of higher order logic used by HOL and so any formula expressible in higher 
order logic can be passed between components. Many plugins operate with logical data that is either 
already a subset of higher order logic (e.g. predicate calculus and propositional logic) or embeddable 
in it (e.g. CTL). The second part consists of a datatype for the results of remote function calls and 
support for installing and calling procedures in an API. There are also parts for managing low level 
communication, which are largely invisible to an application developer. 

The developer of a verification tool can adapt it so that it can be used as a PROSPER plugin. A plugin 
developer programs both in ML and in the plugin's own implementation language. The developer will 
place chosen entrypoints to the plugin into an API database. In the plug-in's implementation language 
they will translate any arguments needed by these functions into interface data. In the theorem prover's 
command language they will need to unpackage these entrypoints again so they present themselves as 
language-specific bindings in that language (ML). In particular any additional theories required (i.e. an 
embedding of the logic used by the plugin into higher order logic) should be provided by the plugin 
developer. 

3 SVC 

SVC stands for the Stanford Validity Checker. This tool has been in development a t  Stanford for several 
years, and is used both in research, and as a formal hardware verification tool, as seen in such papers as 
[8,1]. SVC allows users to check formulae based on a subset of first order logic and boasts of its efficient 
and automatic decision procedures. 



The logic for these decision procedures includes booleans, uninterpreted functions and linear arith- 
metic. There are also interpreted functions such as array operations, bit vectors and parts of linear 
arithmetic. 

SVC provides a variety of commands to the user, from a traditional command-line user interface. 
At its simplest level, proof is carried out through use of the check-valid command, which is given an 
expression in SVC logic, and will return an answer based on the validity of that expression, and possibly 
a counter-example, if the expression is found to be invalid. 

SVC also provides numerous other commands which aid in proof. These can relate to various com- 
mand flags, which affect the way SVC works, or manipulate SVC's context which stores proven results. 

4 Integrating SVC and HOL 

We attempted to integrate SVC and HOL following, as closely as possible, the methodology set down by 
[4]. This methodology outlined the following set of tasks: 

1. Provide an implementation of the PI1 in the implementation language of SVC. 
2. Identify entry points into SVC to make accessible to HOL. 
3. Provide a translation between interface data and the formula syntax of SVC. 
4. Provide ML language bindings in HOL to make the operation of SVC appear as natural as possible 

to a HOL user. 

We have provided a link up based on this methodology 

4.1 Implementing the PI1 

SVC is written in C++. An implementation of the PI1 already existed in C and it was a relatively trivial 
exercise to adapt this to C++, in fact much of the relevant code was simply imported directly into C++ 
without any change or alteration at  all. All the work required was standard reworking of C code to allow 
it to  be called from C++. 

4.2 Entry Points into SVC 

SVC has a number of access points through its command line interface. Ideally we would have liked to 
have provided most of these to HOL users. However, given time constraints, we chose to provide only 
check-valid and r e s e t .  check-valid is SVC's primary command for proof, to  which the user supplies 
an expression, and the system will return a result based on the validity of that expression. This can be 
either VALID, INVALID or INVALID with a counter-example. check-valid will do this by setting up a 
context for the current proof, in which the actual validation takes place, and the results will be stored, 
which can then be used in further proofs. 

r e s e t  is the command used to clear the current context, when it is felt that previous results will no 
longer be needed, allowing the user to start with a "clean" SVC session. 

These entry points were placed in a PROSPER API for SVC. 

4.3 Translation between interface data and SVC's formula syntax 

SVC has a large formula syntax for formulas expressed in arithmetic, records and bit-vectors. We chose for 
a first implementation only to cater for a subset of this language which corresponded to the arithmetical 
expressions. 

http: //WWW .dcs . gla. ac .uk/"stevenat/svc-plugin. tar .gz 



The translation from interface data into formula syntax thus depended upon the representation 
of rational numbers in interface data. To determine this we needed to know how the rationals were 
represented in HOL since that would determine their presentation in interface data (the translation 
between HOL terms and interface data is already decided and implemented and acts as the gold standard 
for other translations). Our theory of rational numbers is described below. 

The translation on the C++ side of the interface is performed simply, by taking a PI1 term, and 
identifying the kind of term we have (equality, variable, application etc). The PI1 provides similar 
methods to HOL for the decomposition of terms, and using these functions we extract the necessary 
information from the term (which can be identified further by checking constituent parts for known 
function names, such as those defined in the rational number theory) such as function arguments, variable 
names and numerical constants. With this information, the appropriate SVC expression is then built up, 
using constructors provided by SVC. For example, specific objects are provided for numerical expressions, 
function expressions and addition expressions. These all stem from a generic expression object within 
svc. 

The Theory of Rationals SVC assumes that all numbers appearing in arithmetical expressions are 
rational numbers. There is no full theory of rationals in HOL although John Harrison provided a theory 
of half-rationals to support his construction of a theory of real numbers [15]. It is preferable to provide 
definitional theories for HOL (i.e. constructing a new theory from an old one by definitions and then 
proving the axioms of the new theory). However it is possible and in many cases simpler to provide an 
axiomatic theory which we chose to do in this case. Our theory of rationals is based upon the description 
in Axiomatic Set Theory [16]. 

The theory provides a new HOL type, rat, with which to represent rational numbers. It provides the 
usual constants representing addition, multiplication and inequalities, and also defines the axioms for 
the rational numbers. The main problems came with the representation of numbers with this rational 
theory. This is solved by providing three functions: 

1. r a t  - takes in something of type nun (a  HOL type for natural numbers) and returns a r a t .  This 
allows us to parse numerical constants as rational numbers. 

2. rneg - takes in something of type r a t  and returns its negation. This function allowed us to define 
negative rational numbers from within HOL. 

3. r d i v  - Taking in two numbers of type rat this constant is defined to allow us to represent division 
of rational numbers. This is especially important as it allows us to define fractions. 

By defining the axioms and functions in this way, it is hoped that this will allow for possible expansion 
of the theory, by implementing the functions, and by properly proving the axioms. 

With this in place we were able to handle a reasonable subset of SVC's input language. We have 
a representation within HOL with which users can specify boolean and rational number predicates, 
including most of the usual logical operators (AND, OR, NOT) as well as rational functions (negation, 
addition, multiplication and inequalities) and fractional numbers. These statements allow us to represent 
a large part of SVC syntax, although at  current standing, bit-vectors and records cannot be represented 
within HOL, due to the lack of a suitable HOL theory, although there is nothing to suggest that this 
could not change in future years, allowing the expansion of our theory to encompass more, if not all, of 
the SVC syntax. 

4.4 ML language bindings for the SVC API 

Recall that we had placed two SVC functions in its PROSPER API. We now needed to present these 
in some way to HOL users. We implemented two HOL entry points based upon check-valid. The first 
(also called check-valid) is of type Term -> Term. The user supplies a term which represents a boolean 
statement. This statement can be composed of boolean and rational expressions as shown above. This 



term will then be sent to the plugin using the PI1 where an SVC context is created, and validity checks 
performed. The user will then get another term as a result (assuming an error has not ocurred) which 
will be one of True, Fa lse  or a term representing the counter-example calculated by SVC (This counter- 
example is naturally presented in the same syntax as the initial term provided by the user). 

Check valid provides an SVC centric entrypoint which is not of a great deal of use for proof in HOL 
unless the formula sent to SVC is a subgoal of a proof in its own right. A more HOL centric entrypoint 
is svcprove which will return a HOL theorem which can then be saved and recalled when the result is 
needed a t  a later date. This function is essentially a wrapper for check-valid which parses the returned 
result, and constructs the HOL theorem based on whether the result was True or False. If the result is 
a counter-example, then the original Term is equated to False, and the counter-example is provided as 
an assumption to the theorem. 

A major part of HOL is the exploitation of conversions. "A conversion is a rule that maps a term to 
a theorem expressing the equality of that term to some other term" [5]. They are particularly useful for 
providing rewrite rules to rewriting tactics. SVCprove is a conversion which means it can be naturally 
and easily used in the course of HOL proof, in particular it can be exploited by rewriting techniques. 

Counter Examples SVC can return counter examples for non-theorems. Counter examples are not of 
direct use in HOL proofs however they can be very useful in "debugging" non theorems and in guiding 
proof. Hence counterexamples can provide useful information to a HOL user or potentially to the user 
of a design tool which incorporates PROSPER style verification capabilities. We needed to provide a 
framework in which counterexamples could be returned to a HOL user and possibly to a design tool 
beyond. 

SVC provides counter-examples in the form of formulae representing a set of circumstanes under which 
the original expression will fail. These counter-examples are stored within the context and are accessed 
through the context's S p l i t t e r  functions. These functions allow you to access the most recent splitters 
(counter-examples) and will provide them as SVC expressions. These expressions are then translated 
into PI1 terms in a similar way to which PI1 terms become SVC expressions (in that the specific type 
of expression is identified, and then the methods SVC provides for decomposing these expressions are 
employed to retrieve the appropriate information, which is then supplied as arguments to PI1 methods 
for constructing terms). 

Counter-examples are returned as assumptions to a HOL theorem equating the goal expression to 
false. This was felt to  be a natural way of viewing the available information, as well as supplying it to  
the user in a way which allows it to be stored for later use (as opposed to simply storing the truth of 
the original term, and having the counter-example separate). 

This is a generic approach. As well as the advantages stated above (the ability to store counter- 
example and theorem as one statement for future reference, as well as human readability - i f  counter- 
example then  Term equals  False) HOL provides simple functions for the decomposition of these expres- 
sions, making it easy to extract the counter-example or leave it in as necessary. If the counter-example 
and theorem were separate there could be difficulties combining them later on (e.g. if the counter-example 
is kept in a type that cannot be easily stored for future use). 

5 Evaluation 

Ideally we would have liked to have tested the efficiency of the SVC plugin against an internal HOL 
decision procedure. However, no appropriate decision procedures exist for rational numbers. As a result 
we can only note that it is now possible to work with rationals in HOL which it wasn't previously, and 
that with relatively little work we were able to give access to a powerful decision procedure in that 
domain without having to implement it from scratch. In this way we have provided a new theory in HOL 
with sophisticated theorem proving support with relatively little effort. 

Below are a variety of test examples, which show the usage of the rationals theory, as well as the 
SVC commands we have provided. 



5.1 A Simple Example 

This is a simple example showing a trivial use of check-valid. 

- check-valid (Term ' (x = r a t  6) '1 ; 
> v a l  it = ' (x = r a t  6) = T' : Term-term 

5.2 Addition and Multiplication 

This next example uses svcprove to decide an equality expression involing addition and multiplication. 

- svcprove (Term ' ( ( r a t  3) r t imes  m) r p l u s  ( ( r a t  4) r t imes  n)  = n r p l u s  n r p l u s  n 
r p l u s  n r p l u s  (m r t imes  ( r a t  3) ) ' ) ; 
> v a l  it = 
[I 
I -  ( r a t  3 r t imes  m r p l u s  r a t  4 r t imes  n = n r p l u s  n r p l u s  n r p l u s  n r p l u s  m r t imes  
r a t  3) = T 
: Thm.thm 

5.3 Inequalities and negation 

This example shows a proof involving inequalities, as well as the rneg function: 

- svcprove(Term ' rneg ( r a t  4) r l e s s  r a t  3 ' )  ; 
> v a l  it = [I I -  rneg ( r a t  4) r l e s s  r a t  3 = T : Thm.thm 

5.4 Division by Zero 

This final example shows the result of trying to divide by zero: 

- check-valid(Term ' r d i v  ( r a t  I )  ( r a t  0) = x ' ) ;  
! Uncaught exception: 
! F a i l  "Term is not  an SVC term" 

6 Related Work 

Several decision procedures have been converted into PROSPER plugins, most notably the SMV model 
checker [9], the first order logic reasoner Gandalf [13,7], the ACL2[2] theorem prover and Prover tech- 
nology's proof tool based on Stalmarck's decision procedure [ll, lo]. The Prover plugin also deals with 
the return of counter examples. It presents a countermodel, a list of pairs of expressions and their truth 
values, as a third result of the decision procedure (along with true and false). This presentation is rather 
ad hoc and doesn't present the counter model together with the original goal as we do, nor does it allow 
the results of the decision procedure to be used in conversions. It  wouldn't be difficult t o  wrap up the 
Prover plugin's output to match our representation. The approach we have adopted here integrates the 
plugin more seamlessly within HOL and is general enough to cover the Prover plugin's output. 

SVC has been integrated into Isabelle as part of Isabelle/DC, a proof assistant for the real-time logic 
Duration Calculus[G]. However, as a result of using PROSPER methodologies to construct the SVC plugin, 
it now shares a consistent programming interface with other PROSPER plugins, which will lead to easier 
future development. 



7 Future Work 

To properly assess and evaluate the SVC plugin our axiomatic theory of rationals needs to be converted 
into a definitional one. One route to pursue here might be to treat the rational numbers as a restriction 
of the reals. 

We would also like to expose more of SVC's entrypoints to HOL. We do not a t  present, have any 
plans to extend the formula syntax handled since HOL has no appropriate theories for records or bit 
vectors. However should these become available then it would be interesting to evaluate the use of the 
decision procedure in conjunction with them. 

8 Conclusion 

We have integrated SVC into HOL using the technology of the PROSPER toolkit. This integration has 
succeeded with encouraging results and serves as an example of how decision procedures can be integrated 
into HOL using the PROSPER approach without the necessity of re-implementation. 

One of the problems we encountered was a mismatch between the objects handled by SVC (rationals, 
records and bit vectors) and the theories in HOL. While we have provided an axiomatic theory for rational 
numbers in HOL it seems likely that if the PROSPER project wishes to encourage more integration of 
this kind then a wider set of theories will need to be implemented since it would be unrealistic to expect 
tool vendors to implement their own theories for standard types such as rational numbers. 

We have developed a framework within which counterexamples should be presented to HOL. We 
intend that this framework should be general and provide a standard format for accessing counterex- 
amples. In this way design tools wishing to exploit counter-examples (to provide debugging information 
to a user, for instance) need only know that a plugin can return counter-examples and need not worry 
about the manner in which the counter-example is presented. 
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Abstract. We study de Bruijn's 'loss factor' between the size of an ordinary mathematical expo- 
sition and its full formal translation inside a computer. This factor is determined by a combination 
of the amount of detail present in the original text and the expressivity of the system used to do 
the formalization. For three specific examples this factor turns out to be approximately equal to 
four. 

1 Loss Factor 

In 'A survey of the project Automath' de Bruijn wrote (p. 160 in section A.5 of [9] which is a reprint 
from [I]): 

A very important thing that can be concluded from all writing experiments is the constancy of the 
loss factor. The loss factor expresses what we loose in  shortness when translating very meticulous 
'ordinary' mathematics into Automath. This factor may be quite big, something like 10 or 20, 
but i t  is constant: it does not increase if we go further in  the book. It would not be too hard to 
push the constant factor down by eficient abbreviations. 

Here* we briefly study this loss factor, which we call the de Bruijn factor. 
When writing a 'formal proof7 (a proof that is entered in a computer in full detail in such a way that 

the computer can check the correctness) there are basically two approaches: 

- One takes an existing, non-formal, mathematical text and translates it - more or less faithfully - 
into a computer representation. 

- One 'programs7 the proof directly into the formal system, without first creating a 'natural language7 
counterpart. 

The first method has the advantage that the formalization automatically will be well documented, and 
also it generally seems to be easier to translate a pre-existing text than to think about the proof and 
about the mechanics of the formalization at  the same time. The de Bruijn factor of course only can be 
objectively measured for a formalization of the first kind. 

The de Bruijn factor of a formalization depends on two aspects. On the one hand there is the level of 
detail in the original, which depends on the 'character7 of the text that is being translated. There exist 
a wide range of mathematical styles, which each have their own level of precision at  which the proofs 
are elaborated. For instance there are: 

- Books that give a detailed development of a subject for foundational purposes, like Whitehead and 
Russell's Princzpia Mathernatica [lo]. 

The full Automath, Mizar and files that are discussed here can be found on the World Wide Web at the 
address <http: //uwv. cs . kun.nl/"f reek/f actor/>. 



- Ancient mathematics, like Euclid's Elements [4]. 
- Textbooks for education. 
- Handbooks about specific mathematical subjects. 
- Papers in computer science that have a strong mathematical flavor. 
- Mathematical research papers. 

The three cases studied in this note are respectively of the first, fifth and fourth kinds. 
On the other hand there is the system that is being used. Some systems have more automation and 

more (as de Bruijn called it) 'efficient abbreviations' than others. So the de Bruijn factor measures how 
efficient a system is. One might imagine a 'benchmark' for proof assistants consisting of a number of 
mathematical texts in various styles to be represented. However, the technology currently seems not to 
be well-developed enough to already put together such a benchmark. 

2 Apparent and Intrinsic De Bruijn Factors 

The size in bytes of the files of a formalization is not a very meaningful measure. It depends on such 
matters as the choice of variable names and the use of whitespace: these factors don't seem to mean 
much for the contents of the files. For instance if indentation is done with tab characters that part of 
the file will be eight times as small as when it's done with space characters: but the file will look the 
same in both cases. As another example, the TEX macro name '\Leftrightarrow' for the '*' symbol 
uses 1 5  characters, while an encoding like '<=>' uses only 3. 

To compensate for these effects it seems natural to 'squeeze out' trivial redundancy by compressing 
the files before calculating the ratios of their sizes. In fact, use of the tab character can be seen as a 
crude way of compressing long runs of spaces. 

We will call the ratio of the uncompressed file sizes the apparent de Bruijn factor, and that of the 
compressed file sizes the intrinsic de Bruijn factor. 

If one uses the intrinsic de Bruijn factor, it isn't useful any more to remove the white space from the 
computer representation of a proof to get a better ratio, because this kind of optimization only has a 
minor effect on the size of the compressed file. 

Surprisingly it turns out that generally both the 'natural language' and the 'computer' versions of a 
proof compress similarly well. This means that the apparent and intrinsic de Bruijn factors turn out to 
be approximately the same. 

3 Arithmetic in Automath 

The first example for which we will calculate the de Bruijn factor is Jutting's classic Automath translation 
(see section D.2 of [9], a reprint from [6]) of Landau's Grundlagen der Analysis 171, a cute little book 
about the basic laws of arithmetic up to the complex numbers. 

To give an impression of the text and its translation, here is a small fragment of a proof (of 'Satz 27' 
on p. 37 of [7]) in the Grundlagen: 

1 gehort zu !Dl nach Satz 24. Nicht jedes x gehort zu !TI; denn fur jedes y aus 9 gehort y  + 1 
nicht zu !TI, wegen 

y + l > y .  

together with its rendering in the AUT-QE dialect of the Automath language: 

99 [n : natl 
tl: =[x: <n>p] satz24a(n) :lbprop(l ,n) 
s@t2:=[x:nat]tI(x) :lb(l) 
[l : [x: nat] lb(x) 1 [y : natl [yp: <y>p] 



t3:=satzl8(y,l) :more(pl(y,l) ,y) 
t4:=satzlOg(pl(y,l) ,y,t3) :not(lessis(pl(y,l) ,Y)) 
t5:=th4Itl. impN(<y>p,lessis(pl(y, 1) ,y) ,yp,t4) :not(lbprop(pl(y, 1) ,Y)) 
t6:=thl"l.all"(nat,[x:nat]lbprop(pl(y,l),x),y,t5):not(lb(pl(y,~))) 
t7:=mp(lb(pl(y,l)) ,con,<pl(y,l)>l,t6) :con 
1 ~ t 8  : =someapp(nat ,p ,  s, con, [x:natl [y : <x>pIt7 (x ,y)) : con 

Note the reference to 'Satz 24' a t  the start of both versions of the fragment. 
The sizes of both the and Automath versions of this book, both uncompressed and compressed 

(using the Unix gzip utility), and the corresponding de Bruijn factors are given in the following table: 

informal formal de Bruijn factor 

uncompressed 189 K 736 K apparent 3.9 
compressed 42K 155K intrinsic 3.7 

Apparently the de Bruijn factor of Automath for this kind of text is slightly less than four. 

4 Computer Science in Mizar 

The second example that we will calculate the de Bruijn factor for, is a section from a paper about 
'finite topology' (pp. 12-17 of [8]), really a mathematical development of the theory of digital filtering 
of one-bit images. The translation [5] is in Mizar, which is a more accessible and more high level system 
than Automath. 

As an example, here's a fragment of the proof of 'Theorem 2.1' (p. 16 of [8]): 

Let B and C be non-void subsets of A such that B n C = Q) and Bb n C = 0. Then, there 
exists an element x e'n B, and we can construct a set P n  as a procedure described previously and 
Pn+1 = Pn. 

with as Mizar translation: 

given B, C being Subset of the carrier of FT such that 
A26:A = B U C and 
A27:B <> 0 and 
A28:C <> 0 and 
~ 2 9 : ~  n c = 0 and 
A3O:B-b fl C = 0; 

A31: B c= B-b by Th18 ; 
A32: B-b n A = B^b n B U 0 by A26,A30, BOOLE:70 

.= B-b fl B by BOOLE:60 

. = B by BOOLE:42, A31 ; 
consider x being Element of B ; 
x E A by A26, BO0LE:def 2,A27 ; 
then consider S being Finsequence of boo1 the carrier of FT such that 
A33:len S > 0 and 
A34:~(S,1) = {x) and 
A35:for i being Nat st i > 0 & i < len S holds a(S,i+l) = r(S,i)-b n A and 
A36:A c= ~(S,len S) by A25 ; 

Note the close syntactical similarity of the requirements on B and C in both versions of the text. 



Here are the statistics of this example: 

informal formal de Bruijn factor 

uncompressed 7.7 K 35.3 K apparent 4.6 
compressed 2.6 K 8.0 K intrinsic 3.1 

So the de Bruijn factor of this text is not much better than that of the previous one. An explanation 
might be that the paper that is translated contains much less detail than the Grundlagen book, so the 
extra power of Mizar is compensated for by the more loose style of the informal article. For instance, a 
number of statements at the end are not proved, but instead it is just stated that: 

The following facts are easily derived. 

5 Mathematics in Mizar 

The final example for which we calculate the de Bruijn factor, is part of an ongoing effort at the Mizar 
project to translate a complete mathematical book [3] into the Mizar language. For the book a handbook 
from mathematical logic was chosen, which presents the theory of 'continuous lattices.' The translation 
of this book (which currently is halfway finished) consists of a large number of Mizar articles with names 
starting with 'YELLOW' and 'WAYBEL'. 

The article that we analyze here [2] is the translation of four pages of the book. Again we give an 
example of the style of both the original and the translation. The statement of 'Corollary 1.13' (on p. 106 
of [3]) is: 

If L is a continuous lattice, then (L, u(L)) is a quasicompact and locally quasicompact sober 
space. I n  particular, ( L ,  a(L) )  is a Baire space. 

which gets translated into Mizar as: 

L is continuous implies L is compact locally-compact sober Baire 

Then the proof of this 'Corollary' starts with the following reasoning: 

W e  have to show that a point x E L has a basis of quasicompact neighborhoods. By 1.10 the sets 
Ty with y  << x form a basis for the neighborhoods of the point. But as we know, if x E U E u(L), 
then actually we have a y  E U with y <( x; hence, t y  5 U ,  and so the sets t y  can be used as 
neighborhoods. 

to which corresponds the following fragment of the Mizar proof: 

thus A5: L is locally-compact 
proof let x be Point of L, X be Subset of L such that 
A6: x E X and 
A7: X is open; 

reconsider x' = x as Element of L by STRUCT-0:def 2; 
set bas = { wayabove q where q is Element of L: q << x' 3; 

A 8 :  bas is basis of x by Al, WAYBEL11:44; 
consider y being Element of L such that 

A9: y << x' & y E X by Al, A6, A7, WAYBELl1:43; 
X is upper by A7, WAYBELl1:def 4; then 

A10: uparrow y c= X by A9, WAYBELl1:42; 
set Y = uparrow y; 

take Y; 



wayabove y E bas by A9; then 
All: wayabove y is open & x E wayabove y by A8, YELLOW-8:21; 

wayabove y c= Y by WAYBEL-3:ll; then 
wayabove y c= Int Y by All, TOPS-1:56; 

hence x E Int Y by All; 
thus Y c= X by A10; 

Because this book is 'more mathematical' and hence reasons a t  a higher level than the previous two 
examples, the  de  Bruijn factor is a bit higher: 

informal formal de Brmijn factor 

uncompressed 11.7 K 78.4 K apparent 6.7 
compressed 4.0 K 16.3 K intrinsic 4.1 

6 The De Bruijn Threshold 

It seems plausible that  there is a certain value for the de Bruijn factor such that ,  when proof checkers 
become sufficiently powerful that their factor drops below it, people will start  using them for serious 
work (like verifying the correctness of their mathematics and communicating the precise details of their 
work t o  others). We suggest to  call this value the de Bruijn threshold. Like the de Bruijn factor of a 
system, i t  probably depends on the kind of mathematics. 

As i t  probably is not possible to  get a formalization to  be as short as its informal version, it is t o  be 
hoped tha t  the  de Bruijn threshold of something interesting won't be less than one. 
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Abstract. One major motivation for theorem provers is the development of verified programs. In 
particular, synthesis or transformational development techniques aim at a formalised conversion 
of the original specification to a final formula meeting some notion of executability. We present a 
framework to describe such notions, a method to formally investigate them and instantiate it for 
three executable languages, based on three different forms of recursion (two denotational and one 
based on well-founded recursion) and develop their theory in Isabelle/HOL. These theories serve 
as a semantic interface for a generic code-generator which is set up for each program notion with 
an individual code-scheme for SML. 

1 Introduction 

This paper is concerned with the combination of specification notations and program notions, or more 
precisely, data-view oriented specification formalisms and functional programming languages. While 
many specification formalisms (such as B, KIV/VSE, but also COQ [3,5,2]) come with a built-in notion 
of program or executability, formalisms like CASL, Z or HOL[l, 22,161 do not. For them, there is a need 
to fill the gap to programs and their verification - in fact, our original motivation for this work has 
its roots in our interest in generic formal transformational development and its implementation in the 
TAS-system [14]. 

Still, the question arises, why not simply use a specification formalism with a built-in program notion? 
We see three major reasons for this: First, there are several choices in setting up a program notion - 
why should a general purpose language like HOL impose just one? Second, with a flexible technique 
of integrating arbitrary program notions, one can choose one very close to a particular programming 
language paving the way for the verification of language-specific optimisations. Third, we are concerned 
with the correctness of the compilation; in the past, many code-generators of tools with built-in program 
notions turned out error-prone, indicating that the task has been underestimated. 

Thus, we are interested in a method to establish and formally investigate concrete program notions, 
together with their compilation to code. Our program notions will have the property that the question 
"is it a program?" - often deliberately left to a non-formalised meta-level - is decidable. Since code- 
generators in formal development environments serve as a bridge between a theorem prover and the 
outside world, it is not completely possible to verify a code-generator inside a logic; the proof must be 
extended by meta-logical arguments, which are preferably as minimal and simple as possible. Finally, 
we are interested in a technical framework supporting the method, providing a prototypical evaluator 
inside the logic and a code-generator for external code that is intended to produce the same result as 
the evaluator. The technique should support datatype and higher-order function declarations. 

We provide a formal and (in its crucial parts) formally provable method for defining and investigating 
program notions and such a technical framework for correct code-generation inside HOL. The choice for 
HOL - being largely equivalent to Z (see [20] for details) - is motivated by its greater flexibility to 
embed other formal methods, such that there is a greater potential for reuse of this work for these 
embedding. In this paper, we will exemplify this framework for three different program notions and its 



code-generation for languages (and compilation schemes) with increasing semantic complexity. The first 
language is the language of well-founded recursion Wf without exceptions; this language is particularly 
interesting since many library definitions in various HOL-systems can thus be converted into code yielding 
implementations for end systems or animations of specifications. The second language Fix is a call-by- 
name functional programming language with (one) exception - here, the subtle issues between lazy and 
eager evaluation have to be covered during the code-generation. Third, we use the relational language 
Lfp; this language is designed as an executable fragment of the specification language Z (see [22], [12]). 

On the technical side, our framework is supported by a generic implementation in form of an SML 
functor that allows the reuse of common functionality in code-generators. As target language, we chose 
SML. The motivation for this choice is both conceptual and pragmatic. Conceptually, SML has the 
advantage of a formally defined semantics [15] that can be used (although in a massaged form) as a basis 
for correctness proofs. Pragmatically it is most compelling to have an SML code-generator since most 
HOL implementations are based on SML. In particular, we picked Isabelle/HOL as our implementation 
basis. 

2 The Conceptual Framework for Correct Code-Generation 

2.1 Fundamentals 

The following diagram may illustrate the basic concepts of our work in more detail. Here, with logic 
we denote the set of terms of our programming or specification language - in our case, this will be 
higher-order logic (HOL) including some conservative extensions such as library theories or specification 
language encodings. A subset of these terms will be abstract programs which again will be a superset of 
the abstract values. 

The logic is mirrored by the corresponding sets of (concrete) programming language terms and its 
subset of (concrete) values. Both worlds are connected by the code-generation function convert that is 
required to be total on the domain of abstract programs and has the term set code as range. 

The two relations -+A and +c represent the operational seman- 
tics of the two languages; we require that they represent partial func- 
tions from programs to values. We define a program notion as a con- 
figuration consisting of a concrete set of abstract program terms and 
abstract value terms, a set of target programs and concrete value 
terms, the two fixed evaluation relations - + A  and +c and the func- 
tion convert. If all components of one program notion include all 
components of another, we will say that the former has a greater 
coverage than the latter (we owe this terminology to [6]). We will 
call the code-generation for a program notion correct if the above 
diagram commutes, i.e. iff convert((+~)t) = (-+c)(convert t). Note 
that both -+A and -+c should be undefined for the same t.  Provided Fig. 1. Basic Concepts 
we have a correct program notion, we can thus convert an abstract 
program into code and compute the value of program terms outside 
of our theorem prover, which can be significantly more efficient and should be just the final product of 
a formal program development we are interested in. 

2.2 Correct Code-Generation: A Critique 

There are some fundamental problems with the provability of correctness in the sense of the previous 
section. Since code-generators serve as a bridge between a theorem prover and the outside world, it is 
not completely possible to verify a code-generator inside a logic; the proof must be based on meta-logical 
arguments. However, we will show how the first principle of LCF-style theorem prover design, namely the 
enclosure of extra-logical machinery in a minimal kernel, can be adopted to the construction of external 



code in order to increase the trustworthiness of such a code-generation. We propose two technical design 
principles to increase trustworthiness of code-generation: 

- convert should be implemented as a primitive, one-to-one converter 

- from the definition of + A ,  a number of theorems should be derived that mirror the rules of +c (as 
given in the definition of our language) syntactically. 

Of course, this syntactic correspondence of the rules of +A and +c does not formally guarantee that 
they are identical because its symbols are interpreted in different contexts. Moreover, correspondence 
between -+A and +c does not guarantee the correct implementation of +c (i.e. compiler correctness 
with respect to +c - its specification - is assumed throughout this paper). Still, both design principles 
together force a shift of many compilation oriented activities in the overall translation into tactic theorem 
proving based on derived rules and thus into the safe core of an LCF-style theorem prover. 

3 Preliminaries: SML, A bstractSML and Isabelle 

Clearly, the direct use of the formal operational semantics of SML described in [15] would be most 
convincing for our goal of bridging the gap between a logic and a programming language. Unfortunately, 
since SML is a very rich language, a presentation of the formal semantics is still too complex even if 
restricted to the relevant language fragment; this is mostly due to the fact that SML contains imperative 
constructs which are out of the scope of this paper. Instead, we use the more "vanilla" operational 
semantics of an eager language following closely [24]. We consider the task of bridging the gap between 
"Real-SML" in the sense of [15] and our language - which we call AbstractSML - as routine. 

3.1 Expressions of AbstractSML 

The key ingredient of this operational semantics is an inductively defined subset of all terms, the so 
called set of canonical forms. The judgment t E CT states that t is a canonical form of type T: 

Ground type: Cint = {. . . , -2, -1,0,1,2,.  . .) and 
b E Cbool = {true, false) 

Product type: pairs of canonical forms are canonical, i.e. (tl, t2) E CT1*T2 
if tl E CT1 and t2 E CT2 

Function type: closed abstractions are canonical forms, i.e. 
(fn x + t) E CT,+, if (fn x + t )  : 7-1 + 72 and t closed 

We can now give the rules for the evaluation relation of the form 

where t is a typable term and c is a canonical form, meaning t evaluates to c. In the following, c, cl, cz 
and c3 range over canonical forms. 



tl +c tme t2 +C c2 
IF tl T H E N  42 ELSE t3 -+c ~2 

tl jc false t3 +C c2 
IF tl T H E N  tz ELSE t3 +c ~2 

REC y. (fn XI + . . . xn + t)  -+c 
fn  xl +- . . . xnt [y := R E C  y. (fn xl + . . . xn c , ~  t)] 

(identity) 

(operations) 

(ite-true) 

(ite-false) 

(product) 

(fst) 

(function) 

(let) 

With these rules, we also implicitly introduce the syntax of our target language. 

3.2 Declarat ions i n  AbstractSML 

In order to scale up to larger units, a programming language comprises mechanisms to extend the set 
of initially defined operator symbols, also called the basic environment, by user defined ones. We will 
make this more precise and formally define an environment r as a set of type judgments X::T assigning 
to an identifier x a type T. For AbstractSML, the base environment To comprises judgments such as 
-2 :: int, true :: boo1 or + :: int * int + int. A term t conforms to r ,  if all free identifiers in t are 
declared in r and if t is typable. The effect of a declaration: 

V A L x = t  (ValDec) 

is to extend the implicit environment r (on which we make the assumption that t must conform to r 
and therefore have some type T) to the environment r' = r \ {x  :: -) U {x :: 7). Moreover, the evaluation 
relation +c is extended by the rule: 

(Unfold) 

For datatypes, we proceed analogously. The declaration 

DATATYPE s = conl :: TI 1 . . . I conl,, :: T, (TypeDecl) 

produces the new environment r' = (r \{conj  :: -1) U {conj :: T ~ ) .  For a legal datatype declaration, 
we assume s to  be a fresh type and the ri to have either the type s or r: + s. Moreover, r' will be 



extended by an additional constant symbol CASE, (case distinction) for which the evaluation relation 
is extended by rules of the following scheme: 

fi -+c c 
CASE, con, fl . . . fn +c c 

t + c s  f i t + c c z  
CASE, (con, t) fl . . . fn + c cz 

(CaseMatchCon) 

Note that we also introduce a new set of canonical forms C,. 
This concludes the definition of the "dynamic" part of our target language AbstractSML. From here, 

we can already foresee the major technical requirements for our code-generator: It  must be 

- able to deduce the underlying datatypes from a sequence of input theorems 
- find a sequence of the input theorems that corresponds to a series of declarations 
- able to convert each of the input theorems to declarations, i.e. check that the expressions on the 

right hand side of the declaration are indeed an AbstractSML expression. 

Below, we turn to the logical environment (implemented in SML) in which our programming lan- 
guages will be represented and in which the non-trivial conversion into code will be performed. 

3.3 Isabelle 

Isabelle [lo] is a generic theorem prover that supports a number of logics, among them first-order logic 
(FOL), Zermelo-F'rankel set theory (ZF), constructive type theory (CTT), the Logic of Computable 
Functions (LCF), and others. We only use its set-up for higher order logic (HOL). Isabelle supports nat- 
ural deduction style. Its principal inference techniques are resolution (based on higher-order unification) 
and term-rewriting. Isabelle provides syntax for hierarchical theories (containing signatures and axioms). 

Isabelle belongs to the family of LCF-style theorem provers. This essentially means that the abstract 
data type "thml' (protected by the SML type discipline) contains all the formulas accepted by Isabelle 
as theorems. thm-objects can only be constructed via operations of the logical kernel of Isabelle. This 
architecture allows for user-programmed extensions of Isabelle without corrupting the logical kernel. 

In the sequel, all Isabelle input and output will be denoted in this font throughout this paper. For 
the mathematical symbols V ,  3, A and V we use the Isabelle notations ! , ?, & and I. 

3.4 Higher  O r d e r  Logic (HOL) 

In this section, we will give a short overview of the concepts and the syntax. Our logical language HOL 
goes back to [7]; a more recent presentation is [4]. HOL is a classical logic with equality formed over 
the usual logical connectives 7, A, V, + and = for negation, conjunction, disjunction, implication and 
equality. It is based on total functions denoted by Xabstractions like X X . X .  Function application is 
denoted by f a. Every term in the logic must be typed, in order to avoid Russels paradox. Isabelle's type 
discipline incorporates polymorphism with type-classes (as in Haskell). HOL extends predicate calculus 
in that universal and existential quantification V x . P  x rsp. 3 x.P x can range over functions. 

Most HOL-systems are used in a particular methodology: Since adding arbitrary axioms to a basic 
logical system like HOL is extremely untrustworthy, these systems support particular schemes of axioms 
- so called conservative extensions - that ensure consistency when building up larger libraries (see [16]). 
Following common usage, we will use the term HOL-theory also for all its conservative extensions. 

4 The Generic Framework 

In this section, we will explain the overall structure of our generic coding scheme in more detail. The 
technical aspects of our generic coder are discussed later in section 5 .  As a starting point,we will refine 
the diagram of Fig. 1 and develop a separation of our coding scheme into different phases. 



In accordance to Fig. 1, we subdivide abstract programs into optimise 

two languages (X)Lang and (XjAbstractSML - here, X stands 
as a placeholder for concrete program notions (such as Wf, Fix, 
Lfp to be discussed later). (X)Lang is the language that is the 
source of the coding process. Since we instantiate our target lan- 
guage with SML throughout this paper, we use (X)AbstractSML, optimises 

which is the semantic interface to our target language SML. The 
abstract operational semantics -+c must only be established for 
(X) AbstractSML. In such a setting, the coding process can now 
be described as a sequence of six compilation phases. Except for 
the last one, the phase convert already discussed in the introduc- 
tion, they consist of tactics based on derived rules. In more detail, ~ i ~ .  2. ~h~ redefined coding scheme 
the five phases are: 

- objectifg attempts to convert an arbitrary term of our logic 
in a term of our programming language. This phase is the key-ingredient for increasing the coverage 
of the coder. 

- optimiseLang is used for language-dependent compiler optimisations, e.g. data type dependent rules 
like the associativity of concatenation of lists, which improves the efficiency of the evaluation since 
(a (D b) (D c is usually more expensive than a (D (b @ c) .  

- ss-translate is a source-to-source translation preparing the next phase called translate. We allow 
ss-translate to produce terms that contain language constructs belonging to the (X)AbstractSML- 
language. 

- translate maps (impure) (X)Lang-terms to (X)AbstractSML. 
- optimiseSML can be used as code-optimisation on the AbstractSML-level. 

In the next section, we will describe three instantiations of our generic scheme mapping X to Wf, Fix 
and Lfp, representing a program notion for total functions, functional programming and logic programs. 

5 The Instances WF, FIX and LFP 

We are now ready for our main task, the representation of three different programming languages in 
HOL, their proof of correctness in our sense, and the development of derived rules and tactics that 
perform the major part of the coding. 

We will demonstrate our technique in most detail for the first language, which is also the simplest 
one. In the theory WFLang, besides the syntax, we define the semantics of the operators and language 
constructs of our language in terms of HOL. Subsequently, in the theory WFSML, the semantics of language 
constructs of SML in terms of WFLang. Due to the deliberate simplicity of WF (that is designed to form 
a reasonable subset of HOL-formulas that should be converted into SML-code), these two language 
mappings are mostly trivial, resulting in a correctness proof (i.e. a derivation of +c that is extremely 
simple). 

The language mappings in the subsequent instances will contain more and more complexity demon- 
strating the flexibility of our concepts. FIX will introduce exception and recursion partiality into the 
language, while LFP extends it by some controlled form of backtracking. Intuitively speaking, the "dis- 
tance" expressed in the mapping between (X)Lang and (X)SML grows during the sequence of these 
instantiations. 

5.1 The instance WF 

The theory WFLang is based on HOL-theories providing basic semantics for boolean and numerical 
operators: 



WFLang = WF + . . .  + 
cons ts  
(* l i b r a r y  of bas i c  operat ions *) 
TRUE :: bool 
. . .  
ZERO : : na t  

Analogously, we declare the operator symbols FALSE, NOT, AND, OR, ONE, TWO, SUC, LEQ, etc. These 
constant symbols represent the sets of canonical forms Cbool and Gnat. Note that the constant E x.  True 
(also called a r b i t r a r y )  cannot be included in the set of canonical forms since the Hilbert-Operator is 
interpreted by definition differently in any model of an HOL-formula; correct code, however, will have 
to produce values that exist in all models. On top of the denotations for canonical forms, we will now 
define the operators of our language such as: 

LESS : : [nat ,na t ]  -> bool 
LESS a b = a < b 

As a consequence of the fact that a r b i t r a r y  is not a canoriical form, we must rule out partial operators 
like d iv  or hd (on lists) from the language WF. A special case for the operators is the equality, which is 
declared polymorphically for all canonical terms, but has to be constrained to a class EQ of base types and 
cartesian products over them, ruling out the function types, for which +c cannot be used to compute 
Eq and is therefore also ruled out in SML: 

Eq : :  [ 'a:Eq, 'a] -> bool 

The definition of these constructs one-to-one corresponds to the HOL operations, as a consequence of 
the design of WF: 

TRUE-def "TRUE = True" 
. . . 
ZERO-def "ZERO = 0" 

Next, we define the basic datatypes u n i t  and pa i r :  the operators UNIT, PAIR, FST, and SND that were 
trivially represented by their HOL-counterparts (), (-,-I, f st and snd respectively. 

We may now turn to the core of WFLang, i.e. the main language constructs. Again, the constant 
definitions are straight-forward mappings to standard operations: 

- !  : :  ( ' a  => 'b) => 'a => 'b  
f ^ ! x  = = f x  

Lam . . . ( ' a  => 'b) => ( ' a  => 'b) 
Lam f == f 

IF : :  [bool, ' a ,  'a] => ' a  
(IF a THEN b l  ELSE b2) == ( i f  a then b l  e l s e  b2) 

LET . . . - [ ' a ,  ' a  => 'b] => ' b 
LETS f = = f  ^ !  s 

REC : :  ( ' a  * 'a)set => (Oa=>'b)  => ( ' a=> 'b) )  => 'a => 'b  
REC(m) ( f )  == wf r e c  m f 

The characterising feature of each program notion is the notion of recursion, i.e. some instance of the 
general scheme: 

Y F  = F (  YF)  , where F must fulfill some requirement A 



The "workhorse" for most definitions of total functions in the library of HOL is the well-founded re- 
cursion. Even the definitions of primitive recursive functions such as concatenation on lists is internally 
mapped to well-founded recursion. Thus, it is suggestive to define REC, (parameterized by a well- 
founded ordering m) in WFLang by 

wfrec : :  ( ' a  * ' a ) s e t  => ( ( ' a=> 'b )  => ( ) a=> 'b ) )  => 'a => ' b  

developed in the theory WF in the library in Isabelle/HOL. The main result of the theory of well-founded 
recursion is: 

wf ( r )  = wfrec r H a  = H (cut  (wfrec r h) r a)  a  [wf rec]  

where the predicate wf : ( ' a  * ) a ) s e t  -> bool states the well-foundedness of a relation and where 
cu t  f  r x constructs a function that is identical to f  for all smaller values than x w.r.t. the ordering r 
and undefined (i.e. EX.  True) for all larger values. 

wf r e c  is already close to our desired recursion scheme. The missing link is the concept of coherence: 

! a .  H (cu t  (wfrec r H) r a )  a  = H (wfrec r H) a  

which essentially states that the body H uses the function wf r e c  r H (hence the recursive "call") always 
with smaller arguments. Well-foundedness and coherence together establish the desired fixpoint property 
for wf r e c  along [wf r e c l  . The problem with our representation of REC, is that we need well-foundedness 
and coherence, i.e. additional semantic information for each occurance of REC, in an abstract program 
assuring that the fixpoint property holds - this problem will reappear in different form in our other 
program notions. This leads to the definition of a kind of SML-like statement that contains the code 
plus the semantic information necessary to establish the fixpoint property of the recursor: 

WFProg : :  [ ( ' a  * ) a ) s e t ,  ' c ,  ( ( ' a  => 'b) => ( ' a  => ' b ) ) ,  
( ' a  => 'b)  => 'c] => bool 

WFProg m f  F E == (f = ( l e t  x  = (wfrec m f )  i n  (E x) 
& (wf m) 
& ( !a .  cut(wfrec m F) m a  = (wfrec m F ) ) ) )  

The following syntactic sugar paraphrases this complex definition as an SML-like statement annotated 
with semantic information: 

v a l  f = l e t  fun F i n  E measure m 

This completes the definition of WFLang. We turn now to our semantic interface to SML, called WFSML, 
which is defined as a theory extension of WFLang. 

WFSML = WFLang + 

and provides definitions of operators TRUE), FALSE), NOT), . . . , ZERO ' , ONE', . . . , LESS ' , . . . , UNIT2, 
PAIR', . . . , all defined identical to their unprimed counterparts from WFLang. Here, we only show the 
definitions for the core language constructs: 

- ! )  . . . . ( ' a  => 'b) => ' a  => ' b  
f - ! '  x == f - !  x 

Lam' . . . . ( ) a  => 'b) => ( ' a  => 'b) 
Lam' f  == f  

IF'  : :  [bool, 'a, 'a] => ' a  
( IF )  a  THEN) b l  ELSE' b2) == ( IF  a  THEN b l  ELSE b2) 

LET ' . . . . [ ' a ,  ' a  => 'b] => ' b 
LET2 s f  == LET s f  

REC ' : :  ( ' a  + ' a ) s e t  => ( ( ' a=> 'b )  => ( ) a = > ' b ) )  => ' a  => ' b  

REC' == REC 



As a next step, we show the correctness of our language representation for SML, i.e. that we can 
derive the operational semantics of AbstractSML rules (in the sense of chapter 3). First, we define the 
evaluation relation -+A by the semantical equality: 

WFSML-CT = WFSML + 
constdef s eval : : ['a, 'a] => boo1 

eval s t == (s = t) 
syntax -A-> : : ['a, 'a] => boo1 
translations s -A-> t == eval s t 
end 

The predicate cf c (c is a canonical form) is simply set to true in WF since we leave this check to the 
meta-level. Now we derive the operational semantics: 

[I cf cl; cf c2; tl -A-> cl; t2 -A-> c2 I] ==> 
(LESS' tl t2) -A-> (cl < c2) 

[I cf c2; tl -A-> TRUE'; t2 -A-> c2 I] ==> 
(IF' tl THEN' t2 ELSE' t3) -A-> c2 

[ I  cf c2; tl -A-> FALSE' ; t3 -A-> c2 I] ==> 
(IF' tl THEN' t2 ELSE' t3) -A-> c2 

[I cf cl; cf c2; tl -A-> cl; t2 -A-> c2 I] ==> 
PAIR' tl t2 -A-> (cl,c2) 

[I cf cl; cf c2; tl -A-> cl; t2 -A-> c2 I] ==> 
FST'(PA1R' tl t2) -A-> cl 

[I cf cl; cf c2; tl -A-> cl; t2 -A-> c2 I] ==> 
SND'(PA1R' tl t2) -A-> c2 

[I cf c; cf c2; tl -A-> (LAM' x. t x); t2 -A-> c2; 
(t (c2)) -A-> c 11 ==> 
(tl ^ ! '  t2) -A-> c 

[I cf c; cf cl; tl -A-> cl ; (t2(cl)) -A-> c 11 ==> 
LET' tl (%x. t2 x) -A-> c 

[I ! a. cut (wfrec m f) m a = (wfrec m f); wf m 11 ==> 
REC m (% X. (LAM' xl. f X xi)) -A-> 
(LAM' xl. f (REC m (%X. (LAM' xl. f X xl))) xl) 

and we are home and dry! By syntactical correspondence, we check that our derived formal rules for 
-+ c correspond to the rules -+c in chapter 3.1. 

The remaining steps are merely technical: First, the code-generator has to be set up to generate the 
definitions for the implicit CASE2-rules (cf. section 3.2) and to generate code for datatypes including 
the involved recursors. Second, we have to describe the compilation phases in the sense of chapter 4. 
For WF, these phases are fairly trivial - for ss-translate and opt imiseSML we use just the identity 
and for optimiseLang just a simplification tactic for some set of equations like associativity on lists. 
For translate we use a simplification tactic that folds all definitions of WFSML from right to left. In 
this setting, the preparational objectify is the most complex phase. We use it to convert equations 
from primitive recursive definitions like the following for the concatenation of lists (drawn from the 
Isabelle/HOL-library): 

primrec "op Q" list 
El Q ys = ys 
(x#xs)Qys = x # (xs Q ys) 

into the term of the abstract programming language: 



v a l  (op Q) = l e t  fun  f x ys = CASE x OF 
[I => ys  

I (x # xs)  => x # (f - !  xs - !  ys)  
i n  f measure length  

Constructing this representation also requires reasoning over the internal representations of datatypes 
and subterm orderings used in Isabelle/HOL's datatype package. 

5.2 The instance FIX 

The language WF, constrained to total functions, had to rule out values like hd [I or 3 d i v  0. When 
admitting partial functions, there is the well-known choice for the semantics of function application re- 
flecting call-by-value evaluation or call-by-name evaluation (cf. 1241) . An appropriate semantical frame- 
work for tackling these issues is denotational semantics, which we use as basis for our second program 
notion FIX. 

There are many known formalisations of denotational semantics in HOL-systems. For Isabelle/HOL, 
there is most notably HOLCF 1191. Instead, we will use the generic theory of Scott-cpo's F ix . thy  
described in [23]. Both theories have much in common and could be exchanged in this context with 
minor effort; we preferred our own version mostly due to its lightweightness. 

In the following, we briefly review Fix .  thy  and its pivotal definitions. cpo's are introduced by a 
sequence of axiomatic  class definitions, i.e. an extension of the Haskell class system with semantic 
constraints in Isabelle. For instance, the class of partial order types order  is defined by the statement: 

axc l a s s  order  < ord 
l e - r e f 1  x <= x 
l e - t r a n s  [ I  x <= y;  y <= 2 11 => X <= 2 

le-antisym [ I  x  <= y;  y <= X 11 => X = y 

After the usual definitions for bottom I, directed sets, upperbounds, least upperbounds etc., the 
class order  is extended to the class cpo. In this class, the predicate for continuity cont : : ( ' a :  : cpo -> 
)b : : cpo) -> bool and the fixpoint operator f i x :  : ('a: : cpo -> ' a )  -> ) a  (defined as least upper- 
bound of the directed set of function iterations) were defined and provide as main result: 

cont f => f i x  f == f ( f i x  f )  [knas te r - ta rsk i ]  

which will give semantics to our recursor REC in our program notion FIX defined in FixLang. thy: 

FixProg f F == f = f i x  F & cont F 

Having settled the fundamental questions, we turn now to the basic datatype representations bool and 
na t .  In order to embed them into cpo's, we employ the well-known lifting technique into flat domains 
by defining the type constructor: 

da ta type  ) a  up = l i f t  ) a  I down 

After identifying down with I and providing the usual ordering, the fact that each instance of type- 
constructor up is of class cpo is made explicit to Isabelle's type-system: 

i n s t ance  up : : (term) cpo 

Analogously, pairs and function spaces are shown to be instances of cpo provided that both arguments 
resp. the last argument of the type-constructors are instances of cpo. The basic types Bool, N a t  and 
Unit in FixLang were defined by lifting the underlying corresponding types of the HOL-library via 
up. The definitions of the basic operations are straight-forward as strict extensions of the underlying 
HOL-operations. In contrast to WF, however, we can define partial functions analogously to DIV:  



constdef DIF : :  [Nat, Nat] -> Nat 
D I V  == s t r i c t i f y ( % x : : n a t .  s t r i c t i f y ( % y .  

i f  y=O then UU 
e l s e  l i f t ( x  d i v  y ) ) )  

The definition of the language constructs of our functional language FixLang is also straight-forward in 
denotational terms of our cpo-theory Fix. As example, we only show the application, that is directly 
mapped to the HOL-application since we already have proven that the standard function space has 
cpo-structure: 

constdef ^ !  : :  ( ' a  -> )b::cpo) -> ' a  -> ) b  
F - !  x == F x "  

At this point, we conclude our presentation of FixLang and turn to the semantical interface FixSML 
of our call-by-value target language. Here, a crucial point is an adequate denotational representation 
of abstractions that were treated as closures in the operational semantics. In order to  distinguish LAM 
x . 1:: ' b, that is equal to the least element in the function space I:: ) a+ ) b, from LAM ) x . 1, that is the 
closure of the computation yielding I (as in SML) and hence a canonical form or a value, LAM) must 
lift any function (see also [24], pp.188). Thus, it is suggestive to introduce an own type constructor for 
the lifted function space -+! and define: 

FixSML = FixLang + 
types  ( ' a ,  'b) " = > ! I 1  = " ( ' a  => 'b) UP" 
. . .  
constdef s 

- !  9 : :  [ ' a=>)b:  :cpo,)a]  => 'b 
F - !  x = = i f  x = W t h e n U U  

e l s e  i f  F = W then UU 
e l s e  (drop F) x 

Lam' : :  ( ) a : : cpo  =>'b::cpo) => ('a =>! 'b) 
Lam) f == l i f t  f 

where drop is just the inverse to  l i f t .  The definitions for IF ' ,  LET1, REC' etc. are straight-forward and 
omitted together with the mappings of the FixLang-operators to the FixSML-operators, which are just 
appropriate liftings w.r.t. +!. 

The key question for the code-generation in FIX is the translation of the call-by-name versions of 
Lam and ^ ! to  their call-by-value counterparts Lam' and ^ ! ' respectively (for pairing and projection, the 
situation is similar). The key for a solution is the definition of the suspension resp. the forcing functions 
(see also [9]): 

delay : :  ' a : :cpo => )a d e l  
de lay  f == (LAM! x.  f )  
f o r c e  :: ( ' a : :cpo)de l  => ' a  
f o r c e  f == (f - !  UNIT) 

where ) a  d e l  is a type synonym for Unit ->! 'a. Note that delay and fo rce  are already "pure SML" 
and can thus be converted easily. These definition leads to the following derived theorem, that allows 
the exchange of all lazy applications by eager ones: 

(f - !  a )  = ((fortify f )  - ! '  (delay a ) )  Clazy2eagerl 

where f o r c i f  y is defined by LAM! x .  f ( force x)). The translation is possible by using this rule in 
all applications in FixLang; however, this technique leads to  quite inefficient code. A remedy to  this 
problem - well known from compiler-construction [9] - is a strictness-analysis that we mimic in our 
approach by the following derived rules: 



is-strict f ==> (f ^?  a) = ((lift f) - !  a) 
is-strict (LAM! x. x) 
is-strict (%x. UU) 
is-strict (strictif y f) 
is-strict (NOT) 
is-strict (SUC) 
[ I  !a. is-strict f I ]  ==> is-strict (%x. f ^ !  x ^ !  a) 
[ I  !a. is-strict (f ^ !  a) I ]  ==> is-strict ((lift f) - ! '  a) 
is-strict f ==> is-strict (%x. (IF (f x) THEN (g x) ELSE (h x))) 
. . . 

where is-strict f is defined by f I=I. The first rule of the list above represents our optimised 
translation, that requires strictness, while the other rules try to establish this property (note that the 
list is incomplete). For all applications, where this did not succeed, the rule lazy2eager is applied. 

We now briefly describe the overall technical organization of the coding in phases: objectify maps 
applications, abstractions, and constructs like if-then-else from HOL to FzxLang-terms. optimzseLang 
and optimiseSML are again set to identity. The translation from - !  to ! ' (as described above) is a 
classical source-to-source-translation and goes to ss-translate. Finally, translate is used to map basic 
operators from FixLang to FzxSML. A little example may illustrate the steps in more detail: 

( (% x y . y) (DIV ONE ZERO) TWO) 

{objectify) 

(LAM!x y. y ^ !  (DIV ^ !  ONE - !  ZERO) ^ !  TWO) 

U {ss-translate) 

(LAM!'x. lift (LAM!y. y) - ! '  
delay (lift (lift DIV ^ ! ' ONE) ^ ! ' ZERO1 ) ! ' TWO) 

I) {translate) 

(LAM!'x y. y - ! '  delay (DIV' ^ ! '  ONE' - ! '  ZERO') - ! '  TWO') 

The function %x y. y is strict in its second, but not in its first argument. Hence, the evaluation of 
the first argument must be delayed - which happens t,o he undefined in this example. For the second 
argument, no suspension is needed and can be avoided for efficiency reasons. 

Finally, we turn to the question of correctness of this coding scheme. We define the relation + A  

in FIXSML-CT analogously to WFSML-CT (see previous section) except that we define canonical forms 
cf as "not being I". Thus, we consider cases like D I V  ONE ZERO as an exception. In FIXSML-CT, we 
derive all operational rules of section 5.1. (although they are based for a completely different semantic 
interpretation). Additionally, we also have operational rules that cover exceptional behaviour: 

[ I  -cf cl; tl -A-> cl; t2 -A-> X I] ==> (tl ^ !  ' t2) -A-> UU 
[ I  -cf c2; tl -A-> X; t2 -A-> c2 I] ==> (tl ^ ! '  t2) -A-> UU 

Although these rules do not appear in [24], they can be justified by the exception convention (cf. [15], 
pp. 40) in the SML-standard. With this proof of correctness, which is still fairly simple in Isabelle/HOL 
but no longer trivial as in Wf, we conclude the presentation of the coding scheme for Fix. 



5.3 The instance LFP 

The language LFP is inspired by the semantic embedding of Z in HOL (see [12]) and previous work on 
animation tools for Z-specifications (see [6]), [8]). Z is based on a typed set-theory - as available in HOL 
- and represents all functions by their graph, i.e. a set of pairs: 

LfpLang = Set + Lfp + EqnSyntax + Arith + 
types ( ' a ,  'b) " < = > ' I  = ( 'a*'b) s e t  
. . .  
LAM : :  [ ' a  => 'b l  => ( ' a  <=> ' b )  

% - : :  [ 'a<=>'b , 'a I  => ' b 

This results in a formulation of partial functions that is similar to Fix with respect to the necessary 
conversion between call-by-name-semantics in LfpLang to call-by-value semantics in LfpSML. In the 
setting of LFP, the recursor REC is based on the usual least fix-point l f p :  : C J  a s e t  -> ' a  se t ]  -> ' a  
s e t  enjoying the property: 

which is already established in the Isabelle theory LFP in the library. This is exactly what we want for 
our program statements which we define as follows: 

LfpProg f F == f = l f p  F & mono F 

Although the semantic foundation - as outlined above - is totally different, the coding machinery 
is similar to the one described in FIX. Hence, we will refrain from a further formal presentation of this 
program notion and concentrate on the new aspects here. In this case, there is a new additional basic 
datatype ' a  s e t ,  that is represented by a lazy list ' a  seq in AbstractSML and SML (in both languages, 
' a  seq can be defined on top of the already introduced language constructs; see [18]). 

When implementing a set by a sequence, we require that the sequences must be duplicate free 
in order to establish in a simple way evaluation fairness, i.e. any element of a set will be constructed 
eventually by the evaluation, provided there are "enough tail selections" into the lazy list. These semantic 
side conditions have to be encapsulated similarly to the side-conditions for the recursor in program- 
statements. When these side-conditions are fulfilled, it is easy not only to provide a MAP and FILTER 
on sequences, but also a U N I O N  as an interleave of two sequences. The definitions of MAP, FILTER and 
UNION can be expressed in terms of a program statement on top of the LfpLang; they do not add extra 
semantical complexity. Thus, the set of natural numbers N characterized by If p(%X. UNION{ZERO) (MAP 
SUC X)) is a program. Moreover, since ZF-expressions like {x : N I even x) can be seen as an equivalent 
to a FILTER on N and is consequently also a program. This turns many definitions in the Z-library, 
the Mathematical Toolkit into programs, among them the definition for cartesian products and finite 
function spaces. 

In order to reveal the power of this program notion, we show the example EightQueens stemming 
from [ll]. In the EightQueens-problem, eight queens must be placed on a chess board with eight files 
and eight ranks such that no queen attacks any other, i.e. sits in the same file, rank or diagonal. We use 
Z-Notation here in order to keep the presentation compact: 

Vf : FILE, r  : RANK 
zlp(f1 r )  = r - f  
down(f, r )  = r + f 



EightQueens 
squares : FILE + RANK 

{squares a up, squares a down) C SQUARE I+ DIAG 

where FILE and RANK are sets from 1 to 8 and SQUARE is the set of pairs of FILE- and RANK-positions 
a queen may sit in. The function definitions for up and down map to any queen position its up resp. 
down diagonal number. The set of EightQueen-solutions is described in the schema EightQuenns: Since 
SQUARE can be viewed as a relation, it is possible to require that each concrete solution squares must 
be a bijective function +). Moreover, if the functions up and down where constrained to the positions 
of a solution squares, they must yield injective functions. 

And here is the point: This example of a fairly declarative specification for a small tricky problem 
represents a program in LFP. All involved sets (including the set of bijective functions from FILE to RANK) 
are representable as combinations of MAP, FILTER, and UNION, such that the specification above (based 
on a small library of LfpLang-programs defining + and d etc.) can be translated into SML-code, that 
eventually enumerates the set Queens (patience required!). 

6 The Generic Code-Generator 

In this chapter we will shortly describe the SML-based implementation of the generic code-generator. 
The general idea is to implement the coder as an SML functor. This functor will be instantiated with 
three structures that implement our three programming languages WF, FIX and LFP described in chapter 
5. The following SML signature shows the language dependent interface to the functor: 

s igna tu re  LANGUAGE = 
s i g  

v a l  t a r g e t  : theory;  (* semantic i n t e r f ace  t o  SML *) 
v a l  lang  : theory;  (* syntax and semantics of a b s t r a c t  

programming language *) 
v a l  o b j e c t i f y  : t h m  -> t h m  
v a l  optimizeLang : t h m  -> t h m  
v a l  s s - t r a n s l a t e  : t h m  -> thrn 
v a l  t r a n s l a t e  : t h m  -> t h m  
v a l  optimizeSML : t h m  -> t h m  
v a l  convert : t h m  -> Absy.absy 
. . 

end ; 

Here, t a r g e t  of the Isabelle type theory represents the semantic interface to SML, i.e. the theory 
that describes the abstract programming language. The theory lang represents the source language of 
the coding process. 

The six coding phases described in chapter 4 are implemented by the corresponding functions 
ob jec t i fy ,  optimiselang, ss - t rans la te ,  t r a n s l a t e ,  optimiseSML and convert. All these functions 
get a theorem of the Isabelle datatype t h m  that represents a program as argument. Except convert,  all 
functions return again a theorem. The function convert returns the term of a program in the abstract 
syntax of SML, where term is the basic Isabelle data structure for terms and absy the type for the 
abstract syntax of SML of New Jersey. 

The signature also provides functions that get information on datatype declarations based on an 
arbitrary datatype package. The signature of the functor looks as follows: 



signature CODER = 
s ig 

exception NoCode of string 
val coder : string * (thm list) -> (1 

end ; 

This signature provides the main coding function coder. It gets a string representing the name of 
the SML structure to be generated and a list of theorems that represent the programs to be compiled. 
There is an exception NoCode that will be raised if the process of code-generation fails. First, the function 
coder has to generate a graph representing the call dependencies of the various programs. Based on this 
graph, coder will sort the programs topologically. If any call cycles are detected the exception NoCode is 
raised. Then, coder retrieves the datatype informations and generates the corresponding SML datatypes 
and recursors. Now the six coding functions can be called. If the function objectify rejects a program 
not to be compilable, again the exception NoCode is raised. Finally, coder generates the abstract syntax 
tree of the final program and writes the pretty printed string to a file. 

7 Conclusion 

First, we have presented a method to formally investigate the correctness of code-generation schemes. 
Second, we have demonstrated its feasibility by instantiating it for three program notions, ranging from 
executablility suited for HOL, functional programming and Z. Third, we provide a technical framework 
for implementing trustworthy code-generators (i.e. in its crucial parts formally proven correct) based on 
the set of abstract programs, i.e. the executable sublanguage of HOL, and AbstmctSML, i.e. a semantic 
interface to the target language. Our technique is based on a so called shallow embeddings, i.e. no explicit 
syntax is used to represent AbstractSML; rather, the semantics is represented via semantic operators 
directly embedded in HOL. 

We argued that the formal proof of correctness of a code-generation in an absolute sense is impossible 
- at  the very end, extra-logical arguments have to be used anyway. 

By shifting the formalisation of canonical forms partially to the meta-level (including appropriate 
checks on the SML-level in the implementation), it is possible to stick to shallow embeddings and to 
make the proofs of correctness substantially easier. But there is a price to pay: In our approach, the proof 
of "canonicity" or normal-formedness is left to extra-logical reasoning. Still, we believe our approach 
represents a good compromise in the attempt to minimise the set of extra-logical assumptions and to 
base the phases of a code-generation on derived rules controlled by tactics. 

From our experience with the nitty-gritty details of our code-generation schemes, it is not fully 
understandable why code-generation is traditionally treated as a side-issue; bugs in a code-generator 
are as damaging for the overall correctness than bugs in the logical engine of a prover. We hope that 
our technique can contribute to turn the formal investigation of code schemes used in compilers into a 
routine task. 

7.1 Related Work 

In the literature, there is a large body of papers in compiler verification. Typically, two explicit abstract 
syntaxes for the input and output language of the compiler were defined as data types, then a compiler 
function connects them. The proof of correctness is then based on two semantical interpretation functions 
and their commutability via the compiling function. In contrast to work along this style of representation 
- so called deep embeddings - our work is based on shallow embeddings for reasons discussed above. 
Moreover, our work is intended to be a component of a formal development environment. On the basis of 
shallow abstract-language encoding, far more activities can be founded than just compilation - interactive 
verification and transformation, for example. 



Beyond this classical compiler verification projects, there are attempts to integrate programming- 
and specification languages. The work of Slind [21] presents a pure syntactical approach to the repre- 
sentation of programs on the level of the input of a theorem prover (Isabelle and HOL). The user can 
define functions in a very rich and compact functional notation employing powerful pattern-matching, 
that is parsed away into an WFREC-style semantic representation when the input-file is loaded. As a 
consequence, it is not possible to derive programs during theorem proving, which was one of our major 
goals. 

In [6 ] ,  a bridge from code-generation to specification animation is built. Here, the idea is to represent 
sets in Z-specifications (corresponding exactly to sets in HOL) by enumeration functions that produce 
the elements of a set ( a n i m a t e  it) one by one. In this view, set comprehensions are constructed by 
powerdomains, such that the operational view of the animation is deliberately different to the Z standard 
semantics. 

7.2 Future Work 

We will attempt to improve the portability of the code-generator to other SML-Compilers (such as POLY 
or Harlekin) and, to a lesser extent, to other SML-based theorem prover environments like LAMBDA or 
HOL/HOL. Moreover, our actual ad-hoc treatment of datatypes should be replaced by a more general 
mechanism, possibly better integrated in a future version of Isabelle. 

It is worth investigating the increase of genericity with respect to the target language: It should not 
be too difficult to develop other converters (or other, more general intermediate abstract syntaxes) to 
languages like C++,  Java or Haskell; for the latter, a code-scheme could be conceived supporting some 
type classes of Isabelle. 
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A New Proof Format for Linking Theorem Provers 

Wai Wong and La'szlo' Nkmeth 
Hong Kong Baptist University 

Abstract. This paper describes a proof file format for linking theorem provers. The format is 
an extension from previous work by Wong and Curzon. The new format is an application of the 
Extensible Markup Language (XML), i.e., proof files in this format will be valid XML documents. 
A proof recorder and a checker for this format have be implemented in HOL98. 

1 Introduction 

Mechanized and automated verification tools, such as HOL[GM93], Coq[CoqOO], PVS[SORSC99], 
to name but a few, have been used in many formal verification projects. Each of these systems 
is based on a formal logic, and each has its own strength on certain application areas. 

In large formal verification project, it is often necessary to involve more than one team 
of researchers. Each team may use a different verification system. Information exchange takes 
place between these teams of researchers. In addition to textual documents, theories, theorems 
and proofs in machine-readable form need to be passed around. 

The objective of the work described in this paper is to develop a format that is suitable for 
exchanging formal proofs, theorems and theories between theorem provers. This work is based 
on the previous works by Wong and Curzon[WC97] in which a proof format for recording and 
checking HOL proofs had been developed. 

In order to achieve this goal, the proof format has to be flexible, simple and reasonably 
compact. To be flexible means that the proof format is able to accommodate proofs generated 
by different versions of provers based on the same logic as well as provers based on different 
logics. To be simple means that it should be easy to add support to provers to generate and 
to receive proofs in such a format. To be compact means that the size of the proof in such a 
format should be small. 

In fact, formal proofs can be considered as a well structured documents. Based on the 
previous proof format, we model a format proof as a sequence of inference steps, i.e., Hilbert 
style. This is a fairly general and simple model. Thus, a proof can be structured into a list 
of inference steps. Using the Extensible Markup Language (XML), that is rapidly becoming 
very popular for structured documents, to encode the proofs, we can take advantages of many 
general tools for processing XML documents. Furthermore, the extensibility of XML provides 
flexibility so that proofs in many different logics can be accommodated. 

2 An Introduction to XML 

Extensible Markup Language (XML) [W3C98] is a relatively new language to describe struc- 
tured documents. The specification of XML became the official recommendation of W3C in 
February 1998. Two of its properties make it attractive as a language to describe proofs: its 



simplicity and the wide availability of third-party tools to process, transform, display XML doc- 
uments. Its verbosity however is a definite drawback, but it has some facility that can relieve 
this problem (to be described later). 

XML documents consist of two main parts: the prolog and the body. The prolog includes a 
grammar, known as the Document Type Definition or DTD. The DTD may be stored in a sep- 
arate document with a hyperlink pointing to it. The DTD is essentially BNF, and it constrains 
the body of the document and amongst others it includes language identification instructions. 
XML tools are expected to handle a wide range of character encodings including Unicode. This 
makes XML particularly suitable to describe proofs as fancy mathematical symbols are easily 
available. 

An XML document is well-formed if (1) it matches the root element specified in the DTD, 
(2) satisfies all the well-formedness constraints of the specification and (3) each of the referenced 
entities (either directly or indirectly) is well-formed. Validity of XML documents is a stronger 
criterion, which ensures that the document is syntactically correct according to the DTD. We 
use the well-formedness and validity of XML documents to ensure syntactic consistency of 
encoded proofs. However, XML is not quite rich enough to ensure correctness of the proofs. 

Within the DTD the declaration of a non-terminal begins with the !ELEMENT keyword, 
and the declaration is surrounded by c and >. Just like in BNF, XML uses the I symbol to 
express alteration, comma to express sequential composition, and parenthesis are used to denote 
grouping. The * symbol is used to denote zero or more occurrence and the + symbol to denote 
one or more occurrence of the preceeding non-terminal. 

Another very useful feature of XML is the entity declarations. These are like macro expan- 
sion, except that they cannot have arguments. We use these entity declarations to abbreviate 
constants that appeared in a proof frequently, therefore drastically reducing the proof size. 

3 The Proof Format 

The grammar, i.e., the DTD, describing the new proof format is given in Fig. 1. It is not much 
different from proof formats previously proposed by Wong [WC97], but instead of complicating 
the proof format with size reducing techniques, it uses the entity declaration feature of XML 
to achieve the same goal. It employs some of the techniques proposed by Wong to reduce the 
proof's size, for example constant tables to avoid repeating frequently occurring constants and 
their types. From the programmer's point of view these tables are handled transparently. It also 
uses some tricks specific to XML to achieve further reduction. For example the entity names 
we generate are in base 52 and mapped onto letters only, so every name is a valid XML name. 
This gives us extremely short references and cuts down the proof size approximately by 10%. 

Since the proof format grew out of earlier work on HOL proof recorders it is biased towards 
a forwards style proof: the proof is a sequence of basic inference steps. Nevertheless, the recorder 
is still capable of recording proofs performed in backwards style. The meaning of the inference 
steps is not formalised within the format. More refined proof formats, for example where the 
names of inference steps are enumerated, are possible, but in most cases it results in larger 
files as the added structure needs more tags. This also would require changing the proof format 
whenever a new inference rule is added to HOL. 

The most significant advantage of using XML in the proof format is that the proof format 
becomes extensible. This means, a DTD describing a new logic can be embedded in the proof 



<!ELEMENT P r o o f F i l e  (Name. P r o o f + )  > 
< !ELEMENT P r o o f  (Name, Hyp*, S t e p * )  > 
< !ELEMENT Hyp (Term+) > 
< ! ELEMENT Term ( C o n s t  IVar 1 (Term, Term) I (Bvar, Term) ) > 
<!ELEMENT B v a r  (Term) > 
< !ELEMENT C o n s t  (Name, Type)  > 
< !ELEMENT Var (Name, Type)  > 
< !ELEMENT Type  (TyVar 1 TyConst  1 (TyOp, Type+) ) > 
<!ELEMENT S t e p  ( R u l e ,  E+ ,  Hyp) > 
<!ELEMENT E (Hyp I Term I Type I (E,  E) > 
< ! ELEMENT R u l e  (#PCDATA) > 
< ! ELEMENT TyVar (#PCDATA) > 
< !ELEMENT TyConst  (#PCDATA) > 
<!ELEMENT TyOp (#PCDATA) > 
<!ELEMENT Name (#PCDATA) > 

Fig. 1. The n e w ,  XML b a s e d ,  proof format 

file together with the proof(s). The receiving prover will be able to examine the DTD and 
determine how to handle the proofs. On the other hand, the proof generating prover is able to 
dynamically generate proofs in different versions or different logics. 

4 The Implementation 

4.1 The Recorder 

Having designed the proof format, a proof recorder in HOL98 was implemented. The imple- 
mentation of the recorder is straightforward and follows earlier work. Each basic inference rule 
in HOL is augmented with a call to a function which records the given inference rule. It saves 
the name of the inference rule, all the arguments and the resuIting theorem into a list. Once the 
proof of the theorem being proved is finished the list is traversed, constants (with their types) 
occurring more than once are collected into a constant table and written into a file. This table 
is implemented as a sequence of XML ENTITY declaration. Then the proof itself is written into 
a separate file which uses references to the constant table. The saving facilitated by the lookup 
table is significant: it generally reduces the size of the proof to one fourth of its original size. 

This arrangement allows more than one proof to be stored in one proof file, which is very 
beneficial if the proofs are related: constants will then be shared. It is the responsibility of the 
user to structure her proofs into meaningful chunks. It wouldn't be hard to relieve the user 
from this responsibility and transparently structure proofs in a way which allows smallest proof 
files, but the implementation language of HOL98, which is Moscow ML is an interpreter and it 
is already having a hard time to cope with the massive memory requirements of the recorder. 
Keeping all the inference steps in memory would lay undue burden on the underlying bytecode 
interpreter. 

In order to estimate the overhead of proof recording we used the same benchmark [Gor83] 
as in Wong's original paper. Direct comparison with earlier work is quite impossible since that 
was based on HOL88 and HOL90, furthermore those machines are not available to us, but 
Wong [WC97] reports the following given in Fig. 2. 



Fig. 2. Summary of previous results 

HOL88 
HOL9O (compact) 
HOL9O (format 2.2) 

Fig. 3. The overhead of proof recording 
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Comparison of the run-times in Fig. 2 with Fig. 3 shows an overall increase, which is most 
probably due to Moscow ML being an interpreter while HOL90 used SML/NJ which is well- 
known for it's heavy-weight optimisations. The overhead of running the proof with the recorder 
is a factor of 25, 12, 11 for Wong's earlier results and 30 for ours. The size of the resulting file 
also increased, which isn't surprising as XML is a fully parenthesised language: end-tags need to 
match start-tags. However, given the nature of the XML syntax, it is very simple to use general 
compression tools, such as gzip and so on, to reduce the size of the proof file before sending 
to the receiving prover. The compression ratio of 50 to 1 can easily be achieved as shown in 
previous work. 

4.2 The Reader and Checker 

with recording (s) 
761 
373 
349 

75 ~ 0 ~ 9 8 1  12 

We added an independent, in the sense that it is capable of reading any proof format and in 
more general any XML document, XML reader to Moscow ML. On the top of the XML reader 
we implemented a proof checker, which uses the built-in HOL rules. Of course, when the checker 
is used to check a proof generated by HOL98 itself the result is dubious, but checking proofs 
generated by other versions of HOL will increase the confidence in the implementation of the 
prover. Checking proofs from other provers is more interesting: it would be relatively simple to 
check Isabelle proofs, for the same logic, if proof recording were added to Isabelle. 

The implementation of the reader builds on the publicly available validating XML parser, 
RXP [Tob99], written in C, which seems to be one of the fastest implementations around. The 
great advantage of using RXP is that one gets validation for free, as it happens transparently 
for the user. 

A very simple interface between RXP and Moscow ML has been implemented. It  allows one 
to call up RXP within Moscow ML and to return an abstract syntax tree representing the XML 
document. 

The performance of the checker is quite similar to that of the reader. Surprisingly, most of 
the time is spent on validation and reading the big proof files, as opposed to actually checking 
well-formedness of the proofs. 

File size (MB) 
59.6 
39.8 
12.1 

450 

5 Discussion and Future Work 

Recent work by Necula and Lee [NL98] may point to a better representation of proofs. Unfortu- 
nately, their idea of stripping unnecessary parts of a proof is not in the spirit of proof checking 



and linking of theorem provers. However, the reduction they achieve in proof size is such that 
it could result in an order of magnitude speedup both for recording and checking. 

A converter between HOL proof and COQ has been developed. It takes proofs generated 
by HOL98 in the format described above, and converted them to a form that can be input 
into COQ. This is described in a separate paper[DenOO]. This demonstrates that the extensible 
proof format in XML is useful in linking up theorem provers. 

In summary, the work described in this paper shows that a framework for linking theorem 
provers can be built using an extensible proof format based on XML. At this stage, we can link 
up theorem provers that are based on similar logics. To link up provers based on different logics 
require much more work. 

On the other hand, since we can store a proof in a structured document conforming to an 
open standard, we can take advantage of many useful tools to analyse and process the proof 
so that to extract useful information. For example, we may be able to analyse the proof and 
derive a human readable description of the proof. 
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Abstract. We investigate the verification of a translation phase of the Multiway Decision Graphs 
(MDG) verification system using the Higher Order Logic (HOL) theorem prover. In this paper, we 
deeply embed the semantics of a subset of the MDG-HDL language and its Table subset into HOL. 
We define a set of functions which translate this subset MDG-HDL language to its Table subset. 
A correctness theorem for this translator, which quantifies over its syntactic structure, has been 
proved. This theorem states that the semantics of the MDG-HDL program is equivalent to the 
semantics of its Table subset. 

1 Introduction 

The application of BDD (Binary Decision Diagram) [3] based tools in digital circuit synthesis and verifi- 
cation has been a breakthrough for the use of formal verification by industry. However, many questions 
remain about whether they work effectively or not. Ideally verification systems should themselves be 
formally verified using a verification system with a different architecture. Based on this consideration, 
we investigate the verification of aspects of the Multiway Decision Graphs (MDG) verification system [6] 
using the Higher Order Logic (HOL) theorem prover [9]. 

A variety of technologies have been used to ensure the correctness of verification systems. In a sense, 
which method is appropriate depends on the architecture of the verification system. The Edinburgh LCF 
(Logic of Computable Functions) [8] family of theorem provers (including HOL) uses an abstract data 
type (Thm) to represent theorems. The type checker ensures the theorems can be constructed only by 
applying a small number of primitive inference rules. There is no method to construct a theorem except 
by carrying out a proof based on the primitive inference rules and axioms. It  effectively increases the 
reliability of the system. In this way if we guarantee the primitive inference rules correct then invalid 
theorems can be avoided. Moreover, the LCF approach permits proofs to be recorded. Proofs can be 
stored in files and be represented by lists of inferences. It  allows us to make use of the availability of the 
sequence of inferences and to check the consistency of each inference automatically. 

The architecture of a symbolic state enumeration based verification system is different. In this kind 
of system, higher level languages such as hardware description languages are used to describe the speci- 
fications and implementations. The specifications and implementations are then translated into decision 
diagrams. A series of algorithms in the system is used to efficiently and automatically deal with the 
decision diagrams and obtain the correctness results. The following two aspects of the system need to 
be verified: 

1. the correctness of translation from the higher level languages into decision diagrams, and 
2. the correctness of algorithms that are used to manipulate the decision diagrams. 

In this paper, we prove the correctness of the translation phase of the MDG system. We need to verify 
that the semantics of a program is preserved in the semantics of its translated form. In this sense, it is a 
similar problem to that of compiler verification [4]. The contribution of this paper is to demonstrate how 



compiler correctness work can be applied to a hardware verification system. In doing such a verification, 
we do more than just prove the correctness of the system, but also build a solid foundation to combine 
the HOL and MDG systems in a trusted way. Because we use a deep embedding semantics, the compiler 
correctness theorem can be combined with theorems converting MDG results into a form that can be 
easily reasoned about in HOL [16]. We thus obtain theorems that convert low level results actually 
proved in the core of the hardware verification systems (e.g., about decision graphs) to results about 
circuits in high level languages in a form that can be reasoned about in a theorem prover. We are thus 
able to import the MDG results into HOL based on a trusted MDG system. 

The structure of this paper is as follows. In Section 2, we review related work. In Section 3, we 
overview the MDG verification system. In Section 4, we give the formal syntax and semantics of the 
subset of the MDG-HDL language we use. Here a set of functions for translating this subset language 
to their Table equivalent is given. Furthermore, the correctness theorem we have proved about the 
translation, which quantifies over its syntactic structure, is described. Finally, our conclusions and ideas 
for further work are presented in Section 5. 

2 Related Work 

There have been several previous projects concerned with the validation of results from verification 
systems. 

Wong [15] developed a proof checker to examine the correctness of proof files-lists of inferences 
generated by the HOL system. The proof checker first took a proof file as an argument and then checked 
whether the proofs were correct or not. A log file was then produced that contained the hypotheses, 
lemmas used by the proof and the resulting theorem of the proof. Von Wright [13] formalised the 
specification of a proof checker in HOL. He also demonstrated how the HOL system could be used to 
formally verify the specification of a proof checker for higher-order logic proofs [14]. Another method of 
using refinement to verify the proof checker had been suggested by von Wright [12]. The proof checker 
also provided an independent means of ensuring the validity and consistency of proofs. Some other 
theorem provers such as Nqthm, Nuprl and Coq already store proof trees upon which a proof checker 
could work in the system. Boyer and Dowek [2] specified and implemented a proof checker in Nqthm 
logic. 

Homeier and Martin [lo] used the HOL system to verify a verification system called a verification 
condition generator (VCG) for a simple programming language. The proof of correctness of the VCG can 
be considered as an example of a compiler correctness problem, since the VCG translated the annotated 
programs to the lists of verification conditions. The semantics of the annotated programs and verification 
conditions were formalised in HOL. The correctness theorems showed that the truth of the verification 
conditions implied the truth of the annotated programs. 

Chou and Peled [5] used the HOL system to verify a non-trivial algorithm-implementing a Partial- 
Order reduction technique, used in the protocol verification tool SPIN, which cuts down the state-space 
exploration performed by model checkers. They built up the groundwork of a formal infrastructure that 
included the mathematical support for proving various automatic verification algorithms. Their results 
not only gave more confidence in the algorithm but also demonstrated formal verification is a practical 
and useful tool. 

In this paper, we verify the translation phase of the MDG system by using HOL. We need to verify 
that the compiler preserves the semantics of a program through the translation between languages 
as suggested for Homeier and Martin's work [lo]. They used compiler verification methods to verify 
a software verification system. We use a similar method to verify a hardware verification system-the 
MDG system using HOL. In our study, we deeply embed a subset of the MDG-HDL language and its 
Table subset in HOL and verify the correctness of the translation between these two languages. Curzon 
et al. [7] did some basic work which verified the MDG components library in HOL. In their work, the 
semantics of the TABLE was first formalised in HOL. The TABLE construct is one of the basic hardware 
components used to define both behavioral specifications and structural specifications. Other components 



such as logic gates can be defined in terms of it. They verified the Table implementations of each of the 
hardware components that were implemented in terms of tables in the MDG system. They used a shallow 
embedding semantics [l]-only the semantics is represented in the HOL logic not the syntax. Whilst this 
can be used to prove that each individual component implementation meets its specification, it cannot 
be used to give a general correctness theorem about the whole MDG-HDL language. We verify that the 
translation process is correct based on a deep embedding semantics [l] (i.e., we represent the abstract 
syntax of HDL programs by terms then define within the logic semantic functions that assign meanings 
to the programs). This allows us to prove a theorem that quantifies over the syntactic structure of the 
MDG-HDL language. That is we can prove "for all MDG-HDL programs, the semantics of a program is 
preserved in the semantics of its translated form". 

3 The MDG System 

MDG-HDL [17] is a Prolog-style hardware description language, which allows the use of abstract variables 
for representing data signals. In MDG, a circuit description file declares signals and their sort assign- 
ment, components network, outputs, initial values for sequential verification and the mapping between 
state variables and next state variables. In the components network, there is a large set of predefined 
components such as logic gates, flip-flops, registers, constants, etc. Among the predefined components 
there is a special component called a table which is used to describe a functional block in the implemen- 
tation and specification. The table constructor is similar to a truth table but allows first-order terms in 
rows. It also allows the description of high-level constructs as ITE (If-Then-Else) formulas and CASE 
formulas. 

Most of the components have their own tabular code and are compiled into their tabular code first. 
Tabular code can then be compiled into an internal MDG decision graph. Some components such as 
registers are implemented directly in terms of MDGs. However, in theory these components also could 
be implemented as tables. In this paper, we defined corresponding Tables for these components (register, 
fork, etc.). Since we are considering only a boolean subset of the language here, the Table representation 
of these components can be defined in terms of the corresponding input values (true or false). These 
definitions can be implemented in the MDG package. Non-boolean sorts could be handled by introducing 
an additional variable into the table. We assume the MDG-HDL program is firstly translated into a Table 
program and then the Table program is translated into MDG. In this situation, the MDG system could 
be specified as indicated in Figure 1: 

MDH-HDL - TABLE ------, MDGs 

Fig. 1. Overview of the MDG Translation Phases 

Adopting this approach makes the translation phase more amenable to verification. We are not ver- 
ifying the actual MDG implementation. Rather our formalisation of the translator is a specification of 
it. Once combined with a translator from Tables to MDGs, it would be specifying the output required 
from the implementation. This would be used as the basis for verifying such an implementation. Ef- 
fectively we split the problem of verifying the translator into the two problems of verifying that the 
implementation meets a functional specification, and that the functional specification then meets the 
requirement of preserving semantics. We are concerned with the latter step here. This split between 
implementation correctness and specification correctness was advocated by Chirica and Martin [4] with 
respect to compiler correctness. 



4 MDG Translator Verification 

The intention of our research is to explore a way of combining the MDG system and the HOL system 
in a trusted way as shown in Figure 2. This work can be divided into two steps. We first must verify 
the correctness of the MDG system using the HOL system (1) based on the semantics of the MDG 
input language. This part of the work consists of two phases-(la) verification of the translator and (lb) 
verification of the algorithms. (2) We then must verify the HOL theorem generator which formalises 
the MDG verification results of different MDG applications and then converts them into the traditional 
HOL hardware verification theorems. All of these are based on the deep embedding of the semantics. By 
combining the separate correctness theorems from these two steps, we obtain a result that justifies the 
use of "theorems" imported from MDG [17]. 

MDG-HDL i-i <->- Translator - - - 

MDG decision graphs + 
MDG verif. algorithms - - - 

Results (YerJNo) + 
theorem generator 

- - - - Q 

'"'I 
Verify the translator 

Verify the algorithms n 
,TI Verify the generator 

Traditional HOL theorems * 
Fig. 2. Combining MDG and HOL in a Trusted Way 

During this study, we considered a subset of the MDG-HDL language that did not contain two MDG 
predefined components (Multiplexer and Drivers) and nor do we consider the 'Ikansform construct used 
to apply functions. These components were omitted from our initial subset as they have non-boolean 
inputs or outputs. We also assume that the inputs and outputs of each component had Boolean sorts. We 
keep the subset simple here since we want to explore the feasibility of this method. However, we could 
extend our formalisation to accommodate different types as explained in [7]. As a result, the syntax of 
this language will be more complex. To distinguish between our subset of the MDG-HDL language and 
the Table subset, in the rest of this paper we will refer to the Table subset as the Table language. 

In this paper, we concentrate on the verification of the translation phase of the MDG system (step 
(la) from Figure 2) based on the semantics of the MDG input language using the HOL theorem prover. 
Step 2 is described elsewhere [16]. We first define the syntax and the semantics of the subset MDG-HDL 
and Table language. We then define a set of functions, which translate the program from the MDG-HDL 
language to the Table languages. For each component in MDG-HDL, a compilation operator is defined as 
a function, which returns its Table code. A translation function TransGT is applied to each MDG-HDL 
program p so that the corresponding Table code is established. In other words, 



MDG-HDL TABLE 
Syntax - Syntax 

(P)  TransGT (TransGT p) 

MDG-HDL 
Semantics I Table 

Semantics I 
MDG-HDL TABLE - - 
Semantics (p )  Semantics (TransGT p) 

Fig. 3. Compilation Correctness 

I- V p. TransGT p = CorrespondingTablecode 

The standard approach to proving a translator between two languages, is in terms of the semantics 
of the languages, as shown in Figure 3. Essentially the translation should preserve the semantics of 
the source language, which has the traditional form of compiler specification correctness used in the 
verification of a compiler [4]. The analogous method can be used to specify and verify the MDG system. 
For the translation to Table the correctness theorem has the form 

I- V p. Semantics (p) = Semantics (TransGT p) 

4.1 MDG-HDL Syntax 

In an MDG-HDL program, there is much information that is used in the MDG algorithm. When we 
write the syntax and semantics of programs, we can ignore this part of the information. Following the 
approach taken in other compiler correctness work, we abstract the useful information from the MDG- 
HDL program and work with an abstract syntax rather than the concrete syntax of the language. It  
would be straightforward to write a parser that translates the MDG-HDL into the form that we want. 

For example, the MDG-HDL file of three NOT gates connected in series is given below. 

... 
signal(ip,bool). 
signal(op,bool). 
signal ( u E  , bool) . 
signal ( v E  , bool) . 
component (u-compB ,not (input (ip) ,output (u-B) 1) . 
component (v-compE ,not (input (uE) ,output (v-B) ) ) . 
component (op-compE ,not (input (v-B) ,output (op) ) ) . 
outputs ( Cop1 . 

The abstract syntax of this file is 

INTERNAL v E  (INTERNAL u B  (SEQ (NOT ip v E  
(SEQ (NOT v E  u B )  (NOT u E  op) ) ) ) ) 

where INTERNAL, SEQ and NOT are syntactic constructors of the subset of the MDG-HDL language. 
More details will be given later. 

The full abstract syntax of the subset of the MDG-HDL language is given in Figure 4. The MDG- 
HDL commands consist of predefined MDG-HDL components, an operation to set the initial value 



of a variable, a next state variable command, a composition operation and a localisation operation. 
The syntax of this language introduces a specially-defined recursive data type mdg-hdl to provide an 
explicit representation in logic of the MDG-HDL commands. We define a recursive type mdg-hdl with 35 
constructors. The first 28 constructors are gates, flip-flops and registers. For example, the circuit term 
'NOT zp op' represents a NOT gate with one input labelled zp and one output labelled op. 

The constructor CONSTl declares a constant in a circuit. The constructor FORK represents the e- 
quality checker. The constructor INIT represents the initial value of a state variable. 'INIT(v, T)'decTares 
that the initial value of the variable u is true. The SNXT constructor maps between a state variable 
and a next state variable. 'SNXT v nv' states that nv is the next state variable of the state variable v. 
The SEQ constructor represents the composition operation. If cl  and c2 are two values of type mdg hdl, 
then the term 'SEQ c l  c.2' represents the composition of the two terms represented by c l  and c2. The 
INTERNAL constructor represents the localisation operation. If c is a term representing a circuit and 
x is a string (internal wire), then the circuit 'INTERNAL x c' represents the circuit obtained by hiding 
the wire labelled x in the circuit represented by c. 

- 

The constructor TABLESYN represents the syntax of the MDG table component which has five 
arguments. The first argument is a list of inputs. The second argument is the single output. Its output 
could be either a current state variable or a next state variable. We define a new HOL type out type to 
represent these options: 

out-type = NOWV of string! 
NEXTV of string 

The third argument to a table is a list of table rows. Each row is a list itself, giving one allocation of 
values to the inputs. The entries in the list can be either actual values or a special don't care marker. 
This is realised by defining a new type (as given in [7]). 

Table-Val = TABLE-VAL of a! I DON'T-CARE 

TableVal-to-Val (TABLE-VAL (v: a ) )  = v 

The fourth argument is a list of output values thaf correspond to the values in input rows. The final 
argument is the default value, taken by the output if the input values do not match any row. The default 
value could be an arbitrary value, a current state variable or a next state variable. Again we define a 
new HOL type default-type in terms of the type out type. 

def ault-type = DENORMAL of num->boo1 I 
DEOUT of out-type_l 

For example, the syntax of a NOT gate table is given below: 

TABLESYN Lip] (NOWV op) [[TABLE VAL F] ; 
[TABLE VAL TI 1 

[TSIG; FSIGI (DENORMAL ARB) 

where "ARB" is the predefined HOL term representing an arbitrary value of a given type. The syntax 
of the MDG-HDL program can be any mdg-hdl term. 

program = PROG of mdg-hdl 

4.2 Table Syntax 

The MDG Table language is a subset of the MDG-HDL language. It only consists of five of the con- 
structors that we mention above- INIT, SNXT, TABLESYN, SEQ and INTERNAL. We do not define 
a new type for the MDG Table language. However, when we translate the MDG-HDL program into the 
MDG Table program, the Table program only consists of those five constructors. For example, the Table 
code of the three NOT gates is 



out-type = NOWV of string I 
NEXTV of string 

default-type = DENORMAL of nun->boo1 I 
DEOUT of out-type I 
DECONST of string 

Table-Val = TABLE-VAL of a I DON'T CARE 

mdghdl = NOT of string =>string I 
AND of string=>string=>string I 
OR of string=>string=>string I 
NAND of string=>string=>string I 
XOR of string=>string=>string I 
NOR of string=>string=>string I 
AND3 of string=>string=>string=>string I 
OR3 of string=>string=>string=>string I 
NAND3 of string=>string=>string=>string I 
NOR3 of string=>string=>string=>string I 
AND4 of string=>string=>string=>string=>string I 
OR4 of string=>string=>string=>string=>string I 
NAND4 of string=>string=>string=>string=>string I 
NOR4 of string=>string=>string=>string=>string I 
AND5 of string=>string=>string=>string=>string=>strng I 
OR5 of string=>string=>string=>string=>string=>strng I 
NAND5 of string=>string=>string=>string=>string=>strng I 
NOR5 of string=>string=>string=>string=>string=>strng I 
AND6 of string=>string=>string=>string=>string=>string=strng I 
OR6 of string=>string=>string=>string=>string=>string=strig I 
NAND6 of string=>string=>string=>string=>string=>string=>string 1 
NOR6 of string=>string=>string=>string=>string=>string=>string I 
JKFF of string=>string=>string I 
RSFF of string=>string=>string I 
JKFFE of string=>string=>string=>string I 
A0 of string=>string=>string=>string=>string I 
REGCON of string=>string=>string I 
REG of string=>string I 
FORK of string=>string I 
CONSTl of bool=>string I 
INIT of (string#bool) I 
SNXT of string=>string I - 
TABLESYN of (string list)=>out-type=>((bool Table-Val list) list) 

=> ( (num->bool) list)=>def ault-type I 
SEQ of mdg_hdl=>mdghdl I 
INTERNAL of string => mdg hdl 

program = PROG of mdg hdl 

Fig. 4. The Syntax of the MDG-HDL Program 



INTERNAL v E  (INTERNAL u_B 
SEQ (TABLESYN [ipl  (NOWV uE)  [[TABLE-VAL F]; 

[TABLE-VAL TI 1 
[TSIG; FSIGI (DENORMAL ARB) 

SEQ (TABLESYN CUE] (NOWV v E )  [TABLE-VAL F] ; 
[TABLE VAL TI 1 

[TSIG; FSIGI (DENORMAL ARB) 
TABLESYN [vE] (NOWV op) [ [TABLE-VAL F] ; 

[TABLE VAL TI I 
CTSIG ; FSIGI (DENORMAL ARB) ) ) 

4.3 The Semantics of the MDG-HDL Program 

We have defined the syntax of the MDG-HDL language. In this section, we will show how to define the 
semantics of an MDG-HDL program. First of all, the semantics of the MDG-HDL program is in terms of 
environment [ll]. An environment is a function that has type :string 4. This function maps a variable 
name (modeled by strings) to the value of that variable. In our language, the environment s is for state 
variables and signals. Its value is a history function and has a type :num+bool that represents functions 
from time (natural number) to the value at  that time. 

We define a semantic function SemMdghdl for MDG-HDL programs. The first 28 components are 
mainly logic gates and flip-flops. Traditional hardware semantics can be given. The semantics of a 
component is then a relation between the input values and the output values. For example, the NOT 
gate can be expressed by 

SemMdghdl (NOT i p  op) s = SEM NOT i p  op s 

The semantics of CONST1 represents a constant in a circuit which takes a constant const as its value. 
The output value does not change a t  any time. 

SEM-CONST const op (s:string->nun->boo11 = 
(V t .  s op t = const) 

The semantics of FORK represents the equality of two state variables. On each cycle, the output's value 
's op' and input's value 's ip7 are identical at  that time. 

The constructor INIT has two arguments. They are represented as a pair whose first component is a 
state variable and whose second component is a Boolean value. The semantics of INIT assigns an initial 
value (at time zero) to the value of the variable. 

SEM-INIT (y:string#bool) (s:string->nun->boo11 = 
(S  (FST y ) )  0 = SND y 

The semantics of SNXT represents a relation between a state variable y and a next state variable ny. It 
declares that the next state variable of y is ny. In other words, the value of the variable y at  the time t 
is equal to the value of the variable ny at the following time. 

Sequencing is defined inductively in terms of the component commands. The semantics of SEQ is the 
conjunction of the corresponding semantics of each sub-command. 

SemMdghdl (SEQ c l  c2) s = 
((SemMdghdl cl s )  A (SemMdghdl c2 s ) )  



The semantics of INTERNAL uses existential quantification to hide the local variable from the environ- 
ment. It adds another entry to environment s. s is still the environment for the external wires. However, 
the extra entry for the new internal wire is first checked. This effectively hides the internal wires in 
circuit term c. 

SemMdghdl (INTERNAL x c ) s 
3 z .  SemMdghdl c (Xy.( i f  (y = x) then z e l s e  s y) )  

The semantics of TABLESYNfollows the semantics of the table that was given by Curzon et a1 [?I. They 
firstly defined a predicate Table-match to check if the input values match the table values. 

Tablematch inputs  [I t = T A 
Tablematch inputs  (CONS v vs) t = 

(((HD ( inputs )  t )  = TableVal-to-Val (v: cu Table Val)) V 
(V = DON'T-CARE)) A 

(Tablematch (TL inputs)  vs t )  ) 

The function table checks if there is a match on each row. If there is then the output has the corresponding 
value. Otherwise, the output equals the default value. 

( t ab l e  i p  (op:num ->PI ( [ I :  cu Table-Val l i s t )  l i s t )  V-out de fau l t  t = 
(op t = de fau l t  t ) )  A 

( t ab l e  i p  op (CONS v vs) V-out de fau l t  t = 
((Tablematch i p  v t )  => 

(op t = (HD V-out) t )  I 
( t a b l e  i p  op vs (TL V-out) de fau l t  t ) ) )  

The semantics of the table is 

TABLE i p  (op:num ->Dl (V-outs:(a Table-Val l i s t )  l i s t )  V-out de fau l t  = 
V t .  t a b l e  i p  op V-outs V out defaul t  t 

The semantics of TABLESYN is defined in terms of the function TABLE 

SemMdghdl (TABLESYN i p  (op:out-type) y3 y4 y5)) s = 
TABLE (MAP s i p )  (SEM-OUTVAR op s )  y3 y4 (SEMDEFAULTVAR y5 s )  

For example, the semantics of the Table code of the NOT gate is 

SemMdghdl (TABLESYN Lip] (NOWV op) [ [TABLE-VAL Fl ; [TABLE-VAL TI 1 
[TSIG;FSIG] (DENORMAL ARB)) s = 

TABLE (MAP s [ip]) GEM-OUTVAR (NOWV op) s )  
[ [TABLE-VAL F] ; [TABLE-VAL TI 1 
[TSIG ; FSIGI (SEMDEFAULTVAR (DENORMAL ARB) s )  

Finally, the semantics of a whole MDG-HDL program is expressed as a function SemMdghdl inside the 
logic: 

(SemMdghdl (NOT i p  op) s = SEMJOT i p  op s )  A 
...... 
(SemMdghdl (FORK i p  op) s = SEM-FORK i p  op s )  A 
(SemMdghdl (TABLESYN i p  op y3 y4 y5) s = 

TABLE (MAP s ip )  (SEM-OUTVAR op s )  y3 y4 
(SEMDEFAULTVAR y5 s ) )  A 

(SemMdghdl (SEQ code1 codel) s = 
((SemMdghdl code1 s )  A (SemMdghdl code2 s ) ) )  A 

(SemMdghdl (INTERNAL x code) s = 
3 z .  SemMdghdl code (Xy. ( i f  (y = x) then z e l s e  s y ) ) )  



4.4 Compiling MDG-HDL into the Table Language 

The first step in specifying a compiler for MDG-HDL is to define a set of functions for compiling the 
MDG-HDL program into the Table language.-For each component in MDG-HDL, a compilation operator 
is defined as a set of functions that return its table code. For example, a NOT gate is compiled into 

TRANSJOT ( i p : s t r i n g )  o p  = 
TABLESYN [ ip]  (NOWV op)  [[TABLE VAL F] ; 

[TABLE-VAL TI I 
[TSIG;FSIG] (DENORMAL ARB) 

For the MDG-HDL program, we define a function 23-ansGT inductively over the syntactic structure 
and this function translates the MDG-HDL program into the equivalent Table language. 

(TransGT (NOT i p  op) = TRANSJOT i p  op)  A 
...... 
(TransGT (SEQ ( code1 :mdghd l )  code21 = 

SEQ (TransGT c o d e l )  (TransGT code2 ) )  A 
(TransGT (INTERNAL x code )  = INTERNAL x (TransGT code ) )  

For example, the following theorem obtained by rewriting with the definitions illustrates the trans- 
lation of the MDG-HDL program of three NOT gates discussed above 

k- TransGT (INTERNAL v B  (INTERNAL u B  
(SEQ (NOT i p  v B  (SEQ (NOT v B  u B )  (NOT u B op)  1)) = 

INTERNAL v B  (INTERNAL u B  
SEQ (TABLESYN Cipl (NOWV UB) [[TABLE-VAL ~1; 

[TABLE-VAL TI 1 
[TSIG ;FSIGI (JENOFLMAL ARB) 

SEQ (TABLESYN CUB] (NOWV v B )  [ [TABLJ VAL F1;  
[TABLE VAL TI] 

[TSIG;FSIGI (DENOFLMAL ARB) 
TABLESYN [ v B I  (NOWV op)  [[TABLE VAL F] ; 

[TABLE VAL TI 1 
[TSIG; FSIGI (DENORMAL ARB) ) ) 

4.5 Compiler Correctness Theorem 

To verify the correctness of a translator as we suggested in the beginning of this section, we have to 
obtain a theorem that quantifies over its syntactic structure stating that the semantics of the MDG- 
HDL program is equivalent to the semantics of the Table program used in MDG implementation. For 
our subset language, we have proved a theorem by using HOL: 

I- t/ p .  SemMdghdl p s = SemMdghdl (TransGT p )  s 

where p represents any MDG-HDL program and PansGT is the function defined earlier which trans- 
lates the MDG-HDL program to its Table code. s is the environment disscussed earlier for variables, 
respectively. The correctness theorem is proved by structural induction on the syntax domain of the 
MDG-HDL program. 

5 Conclusions and Further work 

In this paper, we prove the correctness of the translation phase of a decision diagram system (the MDG 
system) using a theorem proving system (the HOL system). We have defined the syntax of a subset of 
the MDG-HDL language and the Table language in higher-order logic. The semantic function is defined 



by structural induction over their syntactic structure. A set of functions that translate the syntax of an 
MDG-HDL program to the syntax of the Table language has been defined. The correctness theorem, 
which quantifies over its syntactic structure, has been verified. This theorem states that the semantics of 
the original MDG-HDL program is equivalent t o  the semantics of the Table program used in the MDG 
implementation. 

Our motivation for deep embedding the MDG-HDL and Table languages into HOL is not only t o  verify 
aspects of correctness of the MDG system, but also to  make use of the semantics t o  formally import 
the MDG results into HOL based on a trusted MDG system (Figure 2). We have formally imported 
the correctness results produced by four different hardware verification applications into HOL [16]. We 
have in each case proved a theorem that translates them into a form usable in a traditional HOL 
hardware verification, i.e., that the structural specification implements the behavioral specification. The 
applications considered include combinational verification, sequential verification and invariant checking. 
Therefore, we can obtain theorems that justify the conversion of low level results proved in the MDG 
system to  results about circuits in high level languages in a form that can be reasoned about in the HOL 
system. 

The work presented in this paper is part of a larger project to  verify a combined HOL-MDG system. 
We need t o  prove that the translation from the tabular code t o  MDG decision graphs is correct. We also 
need t o  prove that the MDG algorithms are correct. We need to extend the subset considered t o  deal 
with, for example, sort declaration for the verified system to  be applicable t o  real designs. 
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