
Database Query Optimization, .
Proceedings of the ODBF Workshop

Goeh Graefe

Technical Report No. CS/E 89-005

May 1989

Preface

I appreciate this opportunity t o bring researchers and practitioners together for this
workshop on database query optimization. This topic has been of great importance for rela-
tional database systems, and it will be central for future computer systems.

In a narrow scope, the performance of database systems can be improved through work in
two areas, query planning and query processing. The most significant challenges in these areas,
in my opinion, are queries and operations over complex objects and effective use of parallelism.

In a broader scope, we will continue t o see a development towards non-procedural com-
puter languages. Because a non-procedural language requires less user input than a procedural
language, such languages are more attractive. However, if the user does not specify execution
steps, the computer system must include a planning component. Carrying the technology of
database query optimization into other areas of computer science and broadening the scope of
execution planning and optimization will make a real difference in future computer systems.

I would like to extend my appreciation t o all authors who submitted extended abstracts to
this workshop. I received 38 extended abstracts, including 3 from Canada and 5 from Europe.
The depth and width of the work are very exciting; I hope t h a t this depth will be reflected in
the discussions, and will be a valuable experience for all of us.

I want t o thank Stavros Christodoulakis, Yannis Ioannidis, and Guy Lohman for preparing
and moderating the discussion sessions during the workshop. Guy Lohman also read all submis-
sions and made many insightful comments. Kelly Atkinson and Kathy Hammerstrom of O G C
provided the all-important administrative support. Finally, my thanks to the Oregon Database
Forum, the Oregon Center for Advanced Technlogy Education, and ACM SIGMOD, in particu-
lar David Maier and Roger Olson, for their sponsorship.

Goetz Graefe
May 1989

Table of Contents

Graefe, G.
Research Problems in Database Query Optimization

Lohman, G. M.
Is Query Optimization a "Solved" Problem?

Selinger, P . G.
Five hard problems in query optimization

Rosenthal, A.
Discussion Issues for Query Processing

Krishnamurthy, R.
Research directions in the Optimization of a Logic Based Language

Ramakrishnan, R.
Two Problems in Recursive Query Optimization

Freytag, J. C.
Increasing the Flexibility of Query Optimization

Siegel, M. D.
Heuristic-Based Semantic Query Optimization and Automatic Rule
Derivation

van Kuijk, H. J. A. and Apers, P. M. G.
Semantic Query Optimization in Distributed Databases: A Knowledge-
Based Approach

Yoon, S. and Henschen, L. J.
Intelligent query answering in Expert Database Systems using a heuris-
tic approach

Heiler, S.
An Example of Semantic Query Optimization as a Technique for Im-
proving Query Performance in Federated Systems

Pirahesh, H.
Early experience with rule-based query rewrite optimization

Dayal, U.
Distributed Object-Oriented Query Optimization: Perspectives, Prob-
lems, and paradigms

Hasan, W., Lyngbaek, P., and Wilkinson, K.
Expression Processing in Iris

Osborn, S. L.
Query Optimization Basics for Object-Oriented Databases

Shaw, G. M. and Zdonik, S. B.
Efficient Querying in an Object-Oriented Database

Vandenberg, S.
Practical Complex Object Algebras

Moss, J. E. B.
Using Object-Oriented Subtyping in Query Optimization and Processing

Pathak, G. and Blakeley, J. A.
Query Optimization in Object-Oriented Databases

Scholl, M. H.
On the Complexity of Nested Relational Operations

Blakeley, J. A. and Deshpande, A.
Query Processing in a Nested Relational Database System

Ioannidis, Y. E. and Kang, Y.
Randomized Algorithms For Optimizing Large Join Queries

Swami, A.
Research in Optimization of Large Join Queries

Chang, P.
On The Optimization Of Large Equi-Join Queries

Yoo, H. and Lafortune, S.
Heuristic Search in Query Optimization

Chakravarthy, S.
Multiple Query Optimization: To Use or Not To Use?

Segev, A. and Gunadhi, H.
Query Optimization In Temporal Databases

Chakravarthy, S.
Optimization of Alerters/Triggers/Rules in Active DBMSs

Lien, Y. and Wei, S.
Query Processing For Databases With Procedural Values

Muralikrishna, M.
Optimization of Nested Tree Queries

Hammond, B.
BLAST Query Optimization

iii

von Biiltzingsloewen, G.
Optimizing SQL Queries for Parallel Execution

Luk, W. S. and Wang, X.
Communication Considerations for Query Optimization for
Distributed/Parallel Systems

Martin, T. P .
Site Selection in Distributed Query Processing

Whang, K. and Krishnamurthy, R.
Query Optimization in a Main-Memory-Resident Database System

Weddell, G. E.
Query Optimization for Memory-Resident Databases

Kirkpatrick, J. E. and Roth, M. A.
A Performance Study of Nested Relational DBMSs involving Query O p
timization

Tong, L. and Roussopoulos, N.
An Operational Optimization Approach for Parallel n-join with Large
Number of Processors

L. Raschid
Evaluation of Linear Recursive Predicates in Deductive Databases

L. Raschid
Query Compilation and Rule Storage in a Knowledge Base Management
System

Author Index

Apers, P. M. G. 53
Blakeley, J. A. 115, 125
von Bultzingsloewen, G. 189
Chakravarthy, S. 153, 165
Chang, P. 143
Dayal, U. 7 7
Deshpande, A. 125
Freytag, J. C. 41
Graefe, G. 1
Gunadhi, H. 159
Hammond, B. 181
Hasan, W. 85
Heiler, S. 65
Henschen, L. J. 59
Ioannidis, Y. E. 131
Kang, Y. 131
Kirkpatrick, J. E. 225
Krishnamurthy, R. 29, 209
van Kuijk, H. J. A. 53
Lafortune, S. 149
Lien, Y. 169
Lohman, G. M. 13
Luk, W. S. 197
Lyngbaek, P. 85
Martin, T. P. 203
Moss, J. E. B. 109

Muralikrishna, M.
Osborn, S. L.
Pa thak , G.
Pirahesh, H.
Ramakrishnan, R.
Raschid, L.
Rosenthal, A.
Roth, M. A.
Roussopoulos, N.
Scholl, M. H.
Segev, A.
Selinger, P. G.
Shaw, G. M.
Siege], M. D.
Swami, A.
Tong, L.
Vandenberg, S.
Wang, X.
Weddell, G. E.
Wei, S.
Whang, K.
Wilkinson, K.
Yoo, H.
Yoon, S.
Zdonik, S. B.

Research Problems

in Database Query Optimization

Goetz Graefe

Oregon Graduate Center
Beaverton, Oregon 97006-1999

graefe@cse.ogc.edu

In this overview, I briefly outline the areas in which I perceive the greatest need for query optimi-
zation research. I have structured this overview similarly to the workshop's discussion sections, starting
with rule-based optimization and continuing with search techniques, selectivity estimation and cost
models, and execution techniques. This paper is a survey of database query optimization; such a survey
was written by Jarke and Koch [I]. Rather, this overview emphasizes open research questions and pro-
vides pointers t o existing work.

1. Rule-Based Query Optimization
To prepare for future database applications, a number of research groups are working on extensi-

ble database systems [2, 3, 4, 5, 61. For extensibility in these systems' query optimizers, a number of rule
systems and languages have been designed and implemented [7, 8, 9, 10, 111. The rule-languages in these
approaches differ significantly, in particular in their level of abstraction and generality. For instance,
while Lohman's rule system focuses on select-project-join queries [8], I attempted a more general
approach tha t would work for arbitrary algebras of sets [9].

Not only do the rule languages and their underlying concepts differ, but also the modes of opera-
tion. Lohman e t al. are working on a rule interpreter [12], while I found in a preliminary study tha t a
GProlog interpreter as execution engine for a rule-based query optimizer was unacceptably slow [lo].
This debate is clearly not closed; a final answer, I suspect, cannot be given without careful examination
of the rule set, the operational environment and constraints, and the size of the search space. I contend,
however, tha t implementing a special-purpose rule compiler is not harder or more cumbersome or less
extensible than a special-purpose interpreter.

Any new query optimization system can only be realistically evaluated using experimental valida-
tion. While it is very difficult t o develop a fair methodology for experimental comparison of relational
database systems or their execution engines [13, 14, 15, 161, i t will be a t least as difficult t o compare
conventional o r extensible query optimizers or extensible database systems in general. I hope t o see
some discussion, maybe in form of a conference panel, on evaluating the performance of extensible data-
base systems.

Of course, we need not only rule languages and execution engines, we also need rules! For the
strictly relational world, we seem t o have a fairly good understanding of appropriate rules [17, 181.
Exceptions t o this statement are probably necessary for nested SQL queries which are notoriously com-
plex t o optimize [19, 20, 21, 22, 23, 241 and disjunctive queries (25, 261. Clearly, much more can be done
in these areas. For nested relational systems and non-relational database systems, e.g., object-oriented
systems, only limited work has been done so far 127, 28, 29, 30, 311. Furthermore, for optimizing recur-
sive queries, no rule sets have been published to-date [32, 331, although the Starburst group is working
on such rules. A number of research groups, e.g. [34, 35, 36, 371, are pursuing query processing in deduc-
'tive database.

We probably need multiple rule sets for the various stages of query compilation. First, we may
wish t o perform some optimization or normalization on the calculus level [I], assuming tha t queries are
entered into the system in some calculus language. Second, we need t o translate the calculus expression
into an algebra expression [38]. Third, the algebra expression must be optimized and mapped to query

processing algorithms [8, 91. Finally, the query evaluation plan must be interpreted or translated into
an iterative program, e.g., using the techniques developed by Lorie [39] or Freytag [40, 41, 42,431.

2. Search Techniques
Among the early, hard decisions to make when designing a query op$imizer are what information

t o retrieve from the catalogs and derive for all intermediate results, e.g., cardinality and sort order, and
the representation of alternative plans. One representation technique using dynamic programming was
used in System R [44] and R* [45]. Unfortunately, i t is not entirely clear t o me how to use the technique
when optimizing buahy trees, i.e., trees with composite inner relations as opposed t o stored inner rela-
tions as required in System R, R*, or GAMMA [46].

In the search engine developed with the EXODUS optimizer generator, all plans are represented as
trees with shared subtrees. While this representation is fairly compact, things can easily get out of
hand when a transformation a t a lower level in the tree requires reanalyzing multiple levels above [lo].
The representation is of great importance since it determines how fast transformations can be per-
formed and how fast duplicate derivation of the same alternative plan (using different rules or the same
rules in a different sequence) can be detected.

Similarly, the detection of common subexpressions, in particular in multi-query or global query
optimization, either on the calculus level of a query or in the algebra is facilitated by a suitable
representation of plans [47, 48, 49, 501.

The next two problems concern the actual search. I assume that even though computer hardware
gets faster, it will be impossible t o perform an exhaustive search because the queries will become more
complex and the search space larger, and database users expect lower response times from a database
system running on faster hardware, not a longer search. The first problem concerns the order in which
possible alternative plans explored, and the second one concerns pruning of alternative plans, i.e., deci-
sions on which plans not t o explore a t all.

The order of transformations and exploration of alternatives is very important because the best
plan found so far for a query or a subquery establishes an upper bound tha t can be used as a basis for
pruning. Essentially this technique was used in the dynamic programming model of Selinger et al. [44],
but it also applies t o rule-based systems in which a bound may be included in a heuristic rather than
used as an absolute bound.

Optimization heuristics are a wide-open field - i t is well-known tha t selections should be done
early and joins late. However, there are exceptions even to this simple rule when indices are involved.
To my knowledge, there are no well-known rules proven in practice for the large variety of other rela-
tional algebra operations and query processing operations tha t are used in real database systems. For
example, when should one do projections, aggregation, duplicate elimination, union, or intersection?
And t o make the problem "just a little bit" harder, are there suitable heuristics for transitive closure
and other recursion operations?

One approach t o the large search space of complex queries is t o use multiple phases in the optimi-
zation [Sl]. For large queries, i t turns out that multiple phases can find better plans faster. For exam-
ple, after modifying the EXODUS optimizer generator's search engine, some improvements in search
speed and plan quality could be achieved by using two passes with different rule sets [lo].

Now tha t I have outlined the difficulties, is there some form of relief in parallel search? Are there
suitable query plan representations and search strategies tha t allow parallel search on multi-processors?
For the time being, I would be thrilled to see effective search algorithms for shared-memory machines.

Finally, when all is done, not all is yet said. Besides a n investigation of optimizer performance
[52], I know of only one effort t o validate a query optimizer, namely Mackert and Lohman's work [53,
541. There was some very preliminary work on a relational optimizer benchmark within the GAMMA
project by DeWitt, Muralikrishna, and myself, but we never finished this sub-project. While Mackert
and Lohman carefully inspected the accuracy of R*'s cost model, they did not validate other important
characteristics of their optimizer, e.g., whether the set of algorithms in R* really represented an optimal
selection as suggested by Blasgen and Eswaran [55], or whether the search space was sufficiently large.

Ln fact, a remark by Selinger et al. (441 and my comparison of bushy vs. left-deep trees [lo] suggest tha t
the optimizer and the run-time performance could have improved by including composite inner relations.
The Starburst optimizer will have a run-time switch whether or not t o consider composite inner rela-
tions in joins [56].

3. Selectivity Estimation and Cost Functions
All realistic query optimization hinges on accurate cost estimation. Cost estimation requires esti-

mates of relation, or, more generally, set sizes. Wong and Youssefi [57, 581 assumed tha t accurate selec-
tivity estimation is so hard tha t it cannot be done before query evaluation, and developed a query pro-
cessing strategy t ha t intertwined planning and execution.

A large number of researchers have worked on selectivity estimation [45, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71). Other work focused on skewed distributions [72], on correlated attributes [73, 741,
and on block selectivities [75, 761. Despite the significant effort spent, a large number of problems
remains unsolved. Estimation techniques are only estimations; therefore, their accuracy and reliability
is open t o question. A t the current time, I am aware of three approaches t o the reliability problem.
First, one can argue tha t a limited estimation error does not make much practical difference [77].
Second, one can intertwine optimization and execution, either by deciding on one step a t a time [57] or
by executing a number of operations, e.g., five joins, and then reconsidering what steps t o perform next
[78]. Third, one can design an adaptive or dynamic scheme t o handle estimation errors [79]. Dynamic
schemes also allow effective evaluation of embedded queries with run-time variables in the query predi-
cate or varying system loads [80].

Even a very reliable estimation scheme will not suffice for very large queries with many (e.g., more
than a dozen) cascaded operations, since the errors typically multiply. Very reliable estimation schemes
or dynamic plans have t o be combined t o determine the optimal or a near-optimal plan for such queries
[81, 821. Possible relief for the problem may come from using bushy trees which are not as deep as left-
deep trees and therefore do not have as many factors in the error multiplication.

Reliable estimation of intermediate result sizes is also necessary t o determine a priori what
resources should be committed t o a n operation. Several buffer management algorithms require tha t
working set sizes be declared a priori [83, 84, 851, and knowledge of intermediate set sizes can help in
determining optimal degrees of parallelism in parallel dataflow query evaluators [86].

Hardly any work has been done in estimating the size of transitive closures and other recursive
operations. While a fair number of execution algorithms and their complexities are known [87, 881,
query optimization technology lags behind because we do not know how t o estimate the input variables
t o the complexity formulas. T o the best of my knowledge, only Naughton has worked on the subject.
My own, rather limited experiments with two-dimensional histograms did not lead t o conclusive results.

Another stone tha t has been left virtually unturned is selectivity estimation for nested relations
and sets of complex objects. Some of the join selectivity work and some of the transitive closure selec-
tivity work (when it is completed!) will assist in these areas, but they probably will not suffice for
efficient, effective, and reliable estimation schemes.

Finally, in order t o build a complete extensible database system, not only an extensible (rule-
based) optimizer but also a n extensible selectivity estimation scheme is needed. Work in this area has
been very limited so far [66], and more needs t o be done, including a practical evaluation.

4. Execution Techniques
Researchers and implementors of query optimizers must be keenly aware of query evaluation tech-

niques. After all, the objective of query optimization is t o choose from a set of available processing
methods.

Traditionally, query optimization has focused on conjunctive or select-projectjoin queries. The set
of join methods t o be considered remained basically unchallenged and restricted t o nested loops and
merge join, with or without indices, locally or on parallel machines, implemented in software or in
hardware [89, 90, 91, 92, 93, 94, 951. Only recently have hash-based methods gained popularity, mainly

within research efforts [96, 97, 981. Interestingly, hash joins are frequently associated with multiproces
sor query evaluation systems 199, 100, 1011. Of course, the basic hash join algorithm is nothing more
than a index-nested-loops join with a very efficient index. Only the variants of hash join make it
interesting to query optimizer implementors.

The main problem with hash joins is the hash table: will i t fit in main memory? There are two
methods for dealing with hash table overflow (or any other problem, for that matter), avoidance and
resolution. Both methods can be designed around partitioning, either before the actual hash table is
built [loll or while it is built 198, 1021. If the query optimizer's selectivity estimator is sufficiently accu-
rate and reliable, more efficient overflow avoidance techniques than proposed t e d a t e should be possible.

One way to avoid hash table overflow is t o partition the join input over more memory by employ-
ing multiple machines (which might also reduce response times), as was done in the GAMMA project
[46]. Designing a query optimizer tha t decides on appropriate degrees of vertical parallelism (pipelining)
and horizontal parallelism (partitioning) has not been addressed sufficiently. A thorough comparison of
sort- and hash-based join algorithms was provided by Shapiro [103].

Aggregate functions (e.g., sum of salaries by department) are equality-based; therefore, they can
be implemented using hashing. Duplicate removal is just a special-form aggregate function, and dupli-
cate removal algorithms can be modified t o perform aggregate functions and vice versa. Only limited
work hash been spent on aggregate functions, both in query optimization and execution [104, 105, 106,
20, 23, 107, 108, 1091. A single hash function is faster to evaluate than multiple (log N) comparisons,
and unless the sort operation is implemented quite cleverly, it requires more I/O than hashing. Avoiding
hash table overflow requires t ha t the aggregate output fits in main memory; aggregating in memory by
sorting requires tha t the input fit in memory, even if duplicates are aggregated while writing runs.

For all parallel algorithms, partitioning is of great importance. Query optimizers should be able
t o choose from a variety of partitioning methods and parameters t o ensure balanced load for all proces-
sors (110, 1111.

Recursive joins have been studied for some time now, both on a single processors (87, 112, 113, 114,
1151 and on multi-processors [116, 1171. We probably will have t o wait until such algorithms are
included in complete database systems before we can evaluate them realistically. Benchmarks for tran-
sitive closure algorithms are urgently needed.

There are many other algorithms on sets tha t should be included in database systems, including
semi-join, outer-join, union, intersection, difference [118], division 11191, and algorithms for nested rela-
tions. We are currently building a research vehicle to experiment with these operations both on single-
and multi-processor systems 1120, 1211.

Another concern is physical database organization, including indexing [122], clustering [123, 124,
125, 126, 127, 1281, declustering (129, 1301, and shadowing [131]. Clustering techniques for complex
objects have drawn special attention 1132, 1331.

Finally, distributed and heterogeneous database systems pose many additional open problems 145,
134, 21, 135, 136, 137, 138). I suspect t ha t for heterogeneous and federated systems, extensible rule-
based optimizers will prove very useful. The design of independent, non-interfering rule sets t ha t can be
combined as database systems are linked together is a new, very hard challenge. Maier suggested tha t
autonomous systems could use a rule language t o communicate about their query processing capabilities
11391.

Summary
There is a large number of problems tha t we have t o work on. I have tried t o give a very brief

overview of a fair number of them, and a t the same time point t o existing work - I a m sure t ha t I have
omitted a great number of researchers and short-changed some others. I must ask for their apologies,
and hope tha t they will point me in directions tha t I have failed t o explore so far.

References
1. M. Jarke and J. Koch, "Query Optimization in Database Systems," ACM Computing Surveys

16(2) pp. 111-152 (June 1984).

2. M.J. Carey, D.J. DeWitt, G. Graefe, D.M. Haight, J.E. Richardson, D.T. Schuh, E.J. Shekita, and
S. Vandenberg, "The EXODUS Extensible DBMS Project: An Overview," in Readings on Object-
Oriented Databaae Syatema, ed. D. Maier and S. Zdonik,Morgan Kaufman, San Mateo, CA. (1989).

3. P. Schwarz, W. Chang, J.C. Freytag, G. Lohman, J. McPherson, C. Mohan, and H. Pirahesh,
"Extensibility in the Starburst Database System," Proceedinga of the Int'l Workshop on Object-
Oriented Databaae Syatems, pp. 8592 (September 1986).

4. M. Stonebraker and L A . Rowe, "The Design of POSTGRES," Proceedinga of the ACM SIGMOD
Conference, pp. 340-355 (May 1986).

5. H.B. Paul, H.J. Schek, M.H. Scholl, G. Weikum, and U. Deppisch, "Architecture and Implementa-
tion of the Darmstadt Database Kernel System," Proceedings of the ACM SIGMOD Conference,
pp. 196-207 (May 1987).

6. D.S. Batory, J.R. Barnett, J.F. Garza, K.P. Smith, K. Tsukuda, B.C. Twichell, and T.E. Wise,
"GENESIS: An Extensible Database Management System," IEEE Tranaaetions on Software
Engineering SE14(11) p. 1711 (November 1988).

7. J.C. Freytag, "A Rule-Based View of Query Optimization," Proceedings of the ACM SIGMOD
Conference, pp. 172-180 (May 1987).

8. G.M. Lohman, "Grammar-Like Functional Rules for Representing Query Optimization Alterna-
tives," Proceedings of the ACM SIGMOD Conference, pp. 18-27 (June 1988).

9. G. Graefe and D.J. DeWitt, "The EXODUS Optimizer Generator," Proceedinga of the ACM SIG-
MOD Conference, pp. 160-171 (May 1987).

10. G. Graefe, "Rule-Based Query Optimization in Extensible Database Systems," Ph.D. Thesis,
University of Wisconsin, (August 1987).

11. G. Graefe, "Software Modularization with the EXODUS Optimizer Generator," IEEE Databaae
Engineering, (December 1987).

12. M. Lee, J. Freytag, and G. Lohman, "Implementing an Interpreter for Functional Rules in a Query
Optimizer," Proceedings of the Conference on Very Large Databases, pp. 218-229 (August 1988).

13. D. Bitton, D.J. DeWitt, and C. Turbyfill, "Benchmarking Database Systems: A Systematic
Approach," Proceeding of the Conference on Very Large Data Baaea, pp. 8-19 (October-November
1983).

14. H. Boral and D.J. DeWitt, "A Methodology for Database System Performance Evaluation,"
Proceedings of the ACM SIGMOD Conference, pp. 176-185 (June 1984).

15. Anon. et al., "A Measure of Transaction Processing Power," Datamation, pp. 112-118 (April 1,
1985).

16. C. Turbyfill, Comparative benchmarking of relational database systems, Ph.D. thesis, Cornell Univer-
sity (January 1988).

17. J.D. Ullman, Principles of Database Systems, Computer Science Press, Rockville, MD. (1982).

18. D. Maier, The Theory of Rehtional Databases, Computer Science Press, Rockville, MD. (1983).

19. W. Kim, "On Optimizing an SQL-like Nested Query," ACM Transactions on Database Syatems
7(3) pp. 443-469 (September 1982).

20. W. Kiessling, "On Semantic Reefs and Efficient Processing of Correlation Queries with Aggre-
gates," Proceedings of the Conference on Very Large Data Bases, pp. 241-250 (August 1985).

21. G.M. Lohman, D. Daniels, L.M. Haas, R. Kistler, and P.G. Selinger, "Optimisation of Nested
Queries in a Distributed Relational Database," Proceedings of the Conference on Very Large Data

Bases, pp. 403-415 (August 1984).

RA. Ganski and H.K.T. Wong, "Optimization of Nested SQL Queries Revisited," Proceedings of
the ACM SICMOD Conference, pp. 23-33 (May 1987).

U. Dayal, "Of Nests and Trees: A Unified Approach to Processing Queries that contain Nested
Subqueries, Aggregates, and Quantifiers," Proceeding of the conferen& on Very Large Data Bases,
pp. 197-208 (August 1987).

M.M. Krishna, "Optimizing and Dataflow Algorithms for Nested Tree Queries," Proceeding8 of the
Conference on Very Large Databases, (August 1989).

M. Muralikrishna and D. DeWitt, "Optimization of Multiple-Relation Multiple-Disjunct Queries,''
Proceedings of the 7th SIGACT-SIGMOD Sympoaion on Principles of Database Syatcms, pp. 263-
275 (March 1988).

F. Bry, "Toward an Efficient Evaluation of General Queries: Quantifers and Disjunction Process-
ing Revisited," Proceedings of the ACM SIGMOD Conference, (May-June 1989).

S.L. Osborn, "Identity, Equality, and Query Optimization," pp. 346351 in Advances in Object-
Oriented Databaae Systems, ed. K.R. Dittrich,Springer-Verlag (September 1988).

S. Zdonik, "Data Abstraction and Query Optimization," pp. 368-373 in Advances in Object-
Oriented Databaae Syatems, ed. K.R. Dittrich,Springer-Verlag (September 1988).

H.F. Korth, "Optimization of Object-Retrieval Queries," pp. 352-357 in Advances in Object-
Oriented Database Syatems, ed. K.R. Dittrich,Springer-VerIag (September 1988).

G. Graefe and D. Maier, "Query Optimization in Object-Oriented Database Systems: A Pros-
pectus," pp. 358-363 in Advances in Object-Oriented Database Systems, ed. K.R. Dittrich,Springer-
Verlag (September 1988).

L. Colby, "A Recursive Algebra and Query Optimization for Nested Relations," Proceedings of the
ACM SIGMOD Conference, (May- June 1989).

Y.E. Ioannidis, "Commutativity and its role in the processing of linear recursion," Technical
Report #804, University of Wisconsin-Madison (November 1988).

Y.E. Ioannidis and E. Wong, "Towards an algebraic theory of recursion," Technical Report #801,
University of Wisconsin-Madison (October 1988).

S. Tsur and C. Zaniolo, "LDL: A Logic-Based Data-Language," Proceeding of the Conference on
Vey Large Data Bases, pp. 33-41 (August 1986).

K. Morris, "An Algorithm for Ordering Subgoals in NAIL!," Proceedings of the 7th SIGACT-
SIGMOD Symposion on Principles of Database Systems, pp. 82-88 (March 1988).

U.S. Chakravarthy, J. Grant, and J. Minker, "Foundations of Semantic Query Optimization for
Deductive Databases," pp. 243-273 in Foundations of Deductive Databases and Logic Programming,
ed. J. Minkerworgan-Kaufman, Los Algos, CA. (1988).

F. Bancilhon and R. Ramakrishnan, "Performance Evaluation of Data Intensive Logic Programs,"
pp. 434517 in Foundations of Deductive Databases and Logic Programming, ed. J. MinkerNorgan-
Kaufman, Los Algos, CA. (1988).

S. Ceri and G. Gottlob, "Translating SQL Into Relational Algebra: Optimization, Semantics, and
Equivalence of SQL Queries," IEEE Transactions on Software Engineering S E l l (4) pp. 324-345
(April 1985).

RA. Lorie and J.F. Nilsson, "An Access Specification Language for a Relational Database
Management System," IBM Journal of Research and Development 23(3) pp. 286-298 (May 1979).

J.C. Freytag, "Translating Relational Queries into Iterative Programs," Ph.D. Thesis, Haward
University, (September 1985).

41. J.C. Freytag and N. Goodman, "Rule-Based Transformation of Relational Queries into Iterative
Programs," Proeeedinga of the ACM SIGMOD Conjerence, pp. 206-214 (May 1986).

J.C. Freytag and N. Goodman, "Translating Aggregate Queries into Iterative Programs," Proceed-
ing of the Conjerence on Very Large Data Bases, pp. 138-146 (August 1986).

J.C. Freytag and N. Goodman, "On the Translation of Relational Queries into Iterative Pr*
grams," ACM Transaction on Databaae Systems 14(1) pp. 1-27 (March 1989).

P. Griffiths Selinger, M.M. Astrahan, D.D. Chamberlin, R A . Lorie, and T.G. Price, "Access Path
Selection in a Relational Database Management System," Proceedinga of the ACM SIGMOD
Conjerence, pp. 23-34 (May-June 1979).

P . Griffiths Selinger and M. Adiba, "Access Pa th Selection in Distributed Database Management
Systems," Computer Science Research Report, (RJ2883)IBM Research Laboratory, (August 1980).

D.J. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, K.B. Kumar, and M. Muralikrishna,
"GAMMA - A High Performance Dataflow Database Machine," Proceedinga of the Conjerence on
Very Large Data Baaea, pp. 228-237 (August 1986).

M. Jarke, "Common Subexpression Isolation in Multiple Query Optimization," pp. 191-205 in
Query Proceaaing in Databaae Systems, ed. W. Kim, D.S. Reiner, and D.S. Batory,Springer, Berlin
(1985).

J . Park and A. Segev, "Using Common Subexpressions To Optimize Multiple Queries," Proceedinga
of the IEEE Conjerence on Data Engineering, pp. 311-319 (February 1988).

T.K. Sellis, 'Wultiple-Query Optimization," ACM Tranaaction on Databaae Syatema 13(1) pp. 23-52
(March 1988).

A. Rosenthal and U. Chakravarthy, "Anatomy of a Modular Multiple Query Optimizer," Proceed-
ings of the Conference on Very Large Databaaes, pp. 230-239 (August 1988).

A. Rosenthal, U. Dayal, and D. Reiner, "Fast Query Optimization Over a Large Strategy Space:
The Pilot Pass Approach," unpublished manuscript, (1986).

M.M. Astrahan, W. Kim, and M. Schkolnik, "Performance of the System R Access Pa th Selection
Mechanism," Proceedings IFIP Congress, pp. 487-491 (1980).

L.F. Mackert and G.M. Lohman, "R* Optimizer Validation and Performance Evaluation for Local
Queries," Proceedinga of the ACM SIGMOD Conference, pp. 84-95 (May 1986).

L.F. Mackert and G.M. Lohman, "R* Optimizer Validation and Performance Evaluation for Dis-
tributed Queries," Proceedings of the Conference on Very Large Data Baaea, pp. 149-159 (August
1986).

M. Blasgen and K. Eswaran, "Storage and Access in Relational Databases," IBM Systems Journal
16(4)(1977).

K. Ono and G.M. Lohman, "Extensible Enumeration of Feasible Joins for Relational Query
Optimization," IBM Research Report RJ 6625 (63936)(December 1988).

E. Wong and K. Youssefi, "Decomposition - A Strategy for Query Processing," ACM Tranaactiona
on Database Systems l (3) pp. 223-241 (September 1976).

K. Youssefi and E. Wong, "Query Processing in a Relational Database Management System,"
Proceedings of the Conference on Very Large Data Baaea, pp. 404417 (October 1979).

S. Christodoulakis, 'Zstimating Selectivities in Databases," Ph.D. Thesis, University of Toronto,
(1981).

P. Richard, "Evaluation of the Size of a Query Expressed in Relational Algebra," Proceedinga of
the ACM SIGMOD Conference, pp. 155-163 (April-May 1981).

R. Demolombe, "Estimation of the Number of Tuples Satisfying a Query Expressed in Predicate
Calculus Language," Proceedinga of the Conference on Very Large Data Basea, pp. 5563 (October

S. Christodoulakis, "Estimating Record Selectivities," Information Sptema 8(2) pp. 105-115 (1983).

N.C. Rowe, "Top-Down Statistical Estimation on a Database," Proceedings of the ACM SIGMOD
Conference, pp. 135-145 (May 1983).

G. Piatetsky-Shapiro and C. Connell, "Accurate Estimation of the Number of Tuples Satisfying a
Condition," Proceedings of the ACM SIGMOD Conjercnce, pp. 258276 (June 1984).

D. Yang, "Expections Associated with Compound Selection and Join Operations," Ph.D. Thesis,
Computer Science Technical Report, (RM-85-02)University of Virginia, (July 1985).

M.V. Mannino and A. Rivera, "An extensible model of selectivity estimation," to appear Informa-
tion Sciences, Spring 1988, Center for Business Decision Analysis, (December 1987).

M.M. Astrahan, M. Schkolnick, and K.Y. Whang, "Approximating the number of unique values of
an attribute without sorting," Information Systems 12(1) p. 11 (1987).

G. Graefe, "Selectivity Estimation Using Moments and Density Functions," Oregon Graduate
Center, Computer Science Technical Report, (87-Ol2)(November 1987).

W-C. Hou, G. Ozsoyoglu, and B. Taneja, "Statistical Estimators for Relational Algebra Expres-
sions," Proceedings of the 7th SIGACT-SIGMOD Symposion on Principles of Database Syatems, pp.
276-287 (March 1988).

M.V. Mannino, P. Chu, and T. Sager, "Statistical Profile Estimation in Database Systems," ACM
Computing Surveya 20(3)(September 1988).

R. Ahad, K.V. Bapa Rao, and D. McLead, "On Estimating the Cardinality of the Projection of a
Database Relation," ACM Tranaaction on Databaae Systems 14(1) pp. 28-40 (March 1989).

C. Lynch, "Selectivity Estimation and Query Optimization in Large Databases with Highly
Skewed Distributions of Column Values," Proceedinga of the Conference on Very Large Databases,
pp. 240-251 (August 1988).

B.T. Vander Zanden, H.M. Taylor, and D. Bitton, "Estimating Block Accesses When Attributes
Are Correlated," Proceeding of the Conference on Very Large Data Bases, pp. 119-127 (August
1986).

DA. Bell, D.H.O. Ling, and S. McClean, "Pragmatic Estimation of Join Sizes and Attribute Corre-
lations," Proceedings of the IEEE Conference on Data Engineering, p. 76 (February 1989).

S. Christodoulakis, "Estimating Block Selectivities," Information Systems 9(1) p. 69 (1984).

B.T. Vander Zanden, H.M. Taylor, and D. Bitton, "A general framework for computing block
accesses," Information Syatems 12(2) p. 177 (1987).

A. Kumar and M. Stonebraker, "The Eflect of Join Selectivities on Optimal Nesting Order," SIG-
MOD Record 16(1) pp. 28-41 (March 1987).

D.J. DeWitt, Personal Communication. March 1988.

Y.H. Lee and P.S. Yu, "Adaptive Selection of Access Pa th and Join Method," unpublished
manuscn'pt, (1988).

G. Graefe and K. Ward, "Dynamic Query Evaluation Plans," Proceedings of the ACM SIGMOD
Conference, (May-June 1989).

A. Swami and A. Gupta, "Optimizing Large Join Queries," Proceedings of the ACM SIGMOD
Conference, pp. 8-17 (June 1988).

A. Swami, "Optimization of Large Join Queries: Combining Heuristics and Combinatorial Tech-
niques," Proceedings of the ACM SIGMOD Conference, (May-June 1989).

G.M. Sacco and M. Schkolnik, "A Mechanism for Managing the Buffer Pool in a Relational Data-
base System Using the Hot Set Model," Proceeding of the Conference on Very Large Data Baaes,
pp. 257-262 (September 1982).

H.T. Chou, "Buffer Management of Database Systems," Ph.D. Thesis, University of Wisconsin,
(May 1985).

H.T. Chou and D.J. DeWitt, "An Evaluation of Buffer Management Strategies for Relational
Database Systems," Proceedinga of the Conference on Very Large Data Bases, pp. 127-141 (August
1985).

M. Stonebraker, P. Aoki, and M. Seltzer, "Parallelism in XPRS," UCBIERL Memorandum M89/16,
University of California, (February 1989).

F . Bancilhon and R. Ramakrishnan, "An Amateur's Introduction to Recursive Query Processing
Strategies," Proceedinga of the ACM SIGMOD Conference, pp. 16-52 (May 1986).

R. Agrawal, "Alpha: An Extension of Relational Algebra To Express a Class of Recursive
Queries," Proceedinga of the IEEE Conference on Data Engineering, p. 580 (February 1989).

P. Valduriez, "Semi-Join Algorithms for Multiprocessor Systems," Proceedings of the ACM SIC-
MOD Conference, pp. 225-233 (June 1982).

H. Lu and M. Carey, "Some Experimental Results on Distributed Join Algorithms in a Local Net-
work," Proceedinga of the Conference on Very Large Data Bases, pp. 292-304 (August 1985).

P. Valduriez, "Join Indices," ACM Tranaaction on Databaae Systems 12(2) pp. 218-246 (June 1987).

C.K. Baru, 0. Frieder, D. Kandlur, and M. Segal, "Join on a Cube: Analysis, Simulation, and
Implementation," Proceedinga of the 5th International Workshop on Database Machinea, (1987).

E.R. Omiecinski, "Heuristics for Join Processing Using Nonclustered Indices," IEEE Transactions
on Software Engineering S E l S (1) p. 18 (January 1989).

M. Kitsuregawa, L. Harada, and M. Takagi, "Join Strategies on KD-Tree Indexed Relations,"
Proceedings of the IEEE Conference on Data Engineering, p. 85 (February 1989).

B.C. Desai, "Performance of a Composite Attribute and Join Index," IEEE Transactions on
Software Engineering S E l S (2) p. 142 (February 1989).

K. Bratbergsengen, "Hashing Methods and Relational Algebra Operations," Proceedings of the
Conference on Very Large Data Bases, pp. 323-333 (August 1984).

M. Kitsuregawa et al., "Architecture and performance of relational algebra machine GRACE,"
Proc. Int. Conf. Parallel Processing, pp. 241-250 (1984).

D.J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood, "Implementation Tech-
niques for Main Memory Database Systems," Proceedinga of the ACM SIGMOD Conference, pp.
1-8 (June 1984).

R. Gerber, "Dataflow Query Processing using Multiprocessor Hash-Partitioned Algorithms," Ph.D.
Thesis, University of Wisconsin, (October 1986).

S. Fushimi, M. Kitsuregawa, and H. Tanaka, "An Overview of The System Software of A Parallel
Relational Database Machine GRACE," Proceeding of the Conference on Very Large Data Baaea,
pp. 209219 (August 1986).

M. Nakayama, M. Kitsuregawa, and M. Takagi, "Hash-Partitioned Join Method Using Dynamic
Destaging Strategy," Proceedinga of the Conference on Very Large Databaaea, pp. 468-478 (August
1988).

D.J. DeWitt and R.H. Gerber, "Multiprocessor Hash-Based Join Algorithms," Proceedinga of the
Conference on Very Large Data Bases, pp. 151-164 (August 1985).

L.D. Shapiro, "Join Processing in Database Systems with Large Main Memories," ACM Transac-
tions on Database Systems l l (3) pp. 234264 (September 1986).

R. Epstein, "Techniques for Processing of Aggregates in Relational Database Systems," UCB/ERL
Memorandum, (M79/8)University of California, (February 1979).

105. A. Klug, "Equivalence of Relational Algebra and Relational Calculus Query Languages Having
Aggregate Functions," Josrnal of the ACM 29(3) pp . 699717 (July 1982).

106. D. Bitton and D.J. DeWitt, "Duplicate Record Elimination in Large Data Files," ACM Transac-
tions on Database Systems 8(2) pp. 255-265 (June 1983).

107. G. von Bultzingsloewen, "Translating and Optimizing SQL Queries Having Aggregates," Proceed-
in9 of the Conjerence on Very Large Data Bases, pp. 235-244 (August 1987).

108. 3. Bradley, "A GroupSelect Operation for Relational Algebra and Implications for Database
Machine Design," IEEE Transactions on Software Engineering S E l l (1) p. 126 (January 1988).

109. J. Srivastava and V.Y. Lum, "A Tree Based Access Method (TBSAM) for Fast Processing of
Aggregate Queries," Proceedings of the IEEE Conjerence on Data Engineering, pp. 504510 (Febru-
ary 1988).

110. D. Sacca and G. Wiederhold, "Database Partitioning in a Cluster of Processors," Proceeding oj the
Conjerence on Very Large Data Bases, pp. 241-247 (October-November 1983).

111. D. Sacca and G. Wiederhold, "Database Partitioning in a Cluster of Processors," ACM Tranaac-
lions on Database Systems lO(1) pp. 2456 (March 1985).

112. R. Agrawal and H. Jagadish, "Direct Algorithms for Computing the Transitive Closure of Data-
base Relations," Proceeding oj the Conference on Very Large Data Baaea, pp. 255-266 (August
1987).

113. JA. Thom, K. Ramamohanarao, and L. Naish, "A Superjoin Algorithm for Deductive Databases,"
pp. 514543 in Foundations of Deductive Databases and Logic Programming, ed. J . MinkerrMorgan-
Kaufman, Los Algos, CA. (1988).

114. Y. Ioannidis, "On the Computation of the Transitive Closure of Relational Operators," Proceeding
of the Conference on Very Large Data Bases, pp. 403-411 (August 1986).

115. Y. Ioannidis and R. Ramakrishnan, "Efficient Transitive Closure Algorithms," Proceedinga oj the
Conference on Very Large Databases, pp. 382-394 (August 1988).

116. DA. Schneider and M.J. Skarpelos, "Design and Implementation of a Distributed Transitive Clo-
sure Algorithm," Computer Sciences 764 Course Project, University of Wisconsin, (May 1986).

117. R. Agrawal and H.V. Jagadish, "Multiprocessor Transitive Closure Algorithms," IEEE Databaae
Engineering 12(1) pp. 58-64 (March 1989).

118. T. Keller and G. Graefe, "The One-teOne Match Operator of the Volcano Query Processing Sys-
tem," Oregon Graduate Center, Computer Science Technical Report, (89-009)(June 1989).

119. G. Graefe, "Relational Division: Four Algorithms and Their Performance," Proceedinga of the
LEEE Conference on Data Engineering, pp. 94-101 (February 1989).

120. G. Graefe, "Volcano: An Extensible and Parallel Dataflow Query Processing System," Oregon Gra-
duate Center, Computer Science Technical Report, (84006)(June 1989).

121. G. Graefe, "Encapsulation of Parallelism in the Volcano Query Processing System," Oregon Gra-
duate Center, Computer Science Technical Report, (8%007)(June 1989).

122. M. Hammer and A. Chan, "Index Selection in a Self-Adaptive Data Base Management System,"
Proceedings o j d e ACM SICMOD Conference, pp. 1-8 (1976).

123. C.T. Yu, K. Lam, M.K. Siu, and M. Ozsoyoglu, "Performance Analysis of Three Related Assign-
ment Problems," Proceedings of the ACM SICMOD Conference, pp. 82-92 (May-June 1979).

124. J.M. Chang and K.S. Fu, "A Dynamic Clustering Technique for Physical Database Design,"
Proceedings of the ACM SIGMOD Conference, pp. 188-199 (May 1980).

125. C.T. Yu, C.M. Suen, K. Lam, and M.K. Siu, "Adaptive Record Clustering," ACM Transactions on
Database Spstems lO(2) pp. 180-204 (June 1985).

126. S. Fushimi, M. Kitsuregawa, M. Nakayama, H. Tanaka, and T. Moteoka, "Algorithm and Perfor-
mance Evaluation of Adaptive Multidimensional Clustering Technique," Proceedings oj the ACM
SIGMOD Conjerence, pp. 308-318 (May 1985).

127. J.P. Cheiney and G. Kiernan, "A Functional Clustering Method for Optimal Access to Complex
Domains in a Relational DBMS," Proceedings oj the IEEE Conjerence on Data Engineering, p p .
394-401 (February 1988).

128. C.T. Yu and T.M. Jiang, "Adaptive Algorithms for Balanced Multidimensional Clustering,"
Proceedings oj the IEEE Conjerence on Data Engineering, pp. 386393 (February 1988).

129. M.T. Fang, R.C.T. Lee, and C.C. Chang, "The Idea of Declustering and Its Applications," Proceed-
ing ojthe Conjerence on Very Large Data Bases, pp. 181-188 (August 1986).

130. K. Salem and H. Garcia-Molina, "Disk Striping," EECS Techical Report 332, Princeton University,
(December 1984).

131. D. Bitton and J. Gray, "Disk Shadowing," Proceedings of the Conjerence on Very Large Databases,
pp. 331-338 (August 1988).

132. J. Banerjee, W. Kim, S.J. Kim, and J.F. Garza, "Clustering a DAG for CAD Databases," IEEE
Transactions on Software Engineering SElI(11) p. 1684 (November 1988).

133. E. Chang and R. Katz, "Exploiting Inheritance and Structure Semantics for Effective Clustering
and Buffering in an Object-Oriented DBMS," Proceedings of the ACM SICMOD Conjerence, (May-
June 1989).

134. C.W. Chung and K. Irani, "A Methodology for Query Optimization in Distributed Database Sys-
tems," IEEE Database Engineering 6(3)(September 1982).

135. A.L.P. Chen and V.O.K. Li, "Optimising Star Queries in a Distributed Database System,"
Proceedings of the Conjerence on Very Large Data Bases, pp. 424437 (August 1984).

136. B. Gavish and A. Segev, "Set Query Optimization in Distributed Database Systems," ACM Tran-
sactions on Database Systems l l (3) pp. 265293 (September 1986).

137. P. Bodorik and J.S. Riordon, "Distributed Query Processing Optimization Objectives," Procecdinga
oj the IEEE Conjerence on Data Engineering, pp. 320-329 (February 1988).

138. S. Pramanik and D. Vineyard, "Optimizing Join Queries in Distributed Databases," IEEE Tran-
sactions on Sojtware Engineering SE14(9) p. 1319 (September 1988).

139. D. Maier, Personal Communication. May 1989.

Is Query Optimization a "Solved" Problem?

Guy M. Lohman
IBNI Almaden Research Center

San Jose, CA 95120
lohman@ibm.com

Where is everybody?

Despite a growing reliance on query optimization technology pioneered only a decade ago [WOSG 761,
[SEL,I 791, there seems to be a dearth of innovative yet soundly validated research in query optimization.
h'ow that introductory database textbooks have an entire chapter on the subject, has query optimization
matured to the point that it is an engineering, rather than a research, topic? Or are the remaining problems
just so hard (maybe even insoluble?) that no one dares attack them? Could industry be wooing would-be
researchers away from academia and locking them up in a cloak of trade secrecy to protect any advantage
that advances in this technology might give their products?

I'm baffled by the relatively small community of researchers working in query optimization, given the
wealth of topics that I see remaining. Rather than diminishing, I see the challenge increasing, particularly
with the current emphasis of many groups on "extensibility". It seems to me that my colleagues can dream
up new and wonderful extensions much faster than I can come up with ways to deal with all the
optimization issues that those extensions always raise. This extended abstract attempts to list and classify
what I consider are some of the more interesting of these issues, in order to attract more attention to this
important area. At the risk of goring someone's favorite ox, I will also enumerate a few areas in which
I see very little future potential.

Cardinality Estimation

Estimating the cardinality of intermediate and final results of a query remains the "Achilles heel" of query
optimization. The cost of any operation is invariably proportional to how often that operation must be
performed, i.e. how many tuples it processes. Worse, errors in cardinality estimates tend to compound
for larger queries: the estimate for ((A W B) W C) W D is proportional to the estimate for (A W B)
W C, which in turn is proportional to the estimate for A W B. The probabilistic models used by
virtually every query optimizer are flawed by two major assumptions: (1) uniform distribution of values
and (2) independence. The first assumption has been attacked, at least for single-table predicates, by
keeping more detailed statistics such as histograms [PIAT 841, higher order moments [GRAE 87~1, and
the frequency of the N most common values [LYNC 881. With a few exceptions ([CHRI 831, [VAND
861, [MURA 88]), the assumption of attribute independence has rarely been relaxed. For example, the
predicates SALARY > 6100K and AGE > 40 are dependent in subtle ways determined by the semantics
of the underlying database; multiplying the individual selectivities for each predicate will underestimate the
number of number of tuples actually in the database. When compiled queries are going to be run often
enough to justify the additional optimization time, it may be worthwhile to visit the database itself, either
using auxiliary structures such as indices (as IBM's SQL/400 product does [IBM]!) or sampling [PIAT 841.

Cardinality Estimation

Few of these schemes address the harder problem of estimating the selectivity of joins. If we are willing
to endure the costs of maintenance and the resulting contention of updates,, join indices [VALD 871 could
yield (almost) exact cardinalities, in the same way described above for singIe-table indices and single-table
predicates. Selinger et al. estimated the join selectivity as the inverse of the maliimum of the two join-
column cardinalities (number of distinct values), essentially assuming that one set is a subset of the othcr,
i.e. that each key value in the smaller set has a matchmg value in the larger set [SELI 791. \-\.'hrlc this
assumption is correct for key domains having referential integrity constraints, in general the overlap of the
two sets may vary greatly depending upon the semantics of the domain.

Even if we could solve the above problems, predicates involving host variables, whose values are determined
at run-time by the application program, remain a ve.xing problem for compile-time optimization. Graefe
has proposed keeping alternative execution plans, the choice of which depends upon the value supplied
by the program [GRAE 891, but the number of different values that could be provided might require a
similarly large number of alternative plans. The host-variable dilemma is only the worst subset of the
much broader difficulty for any compile-time optimizer to know in advance the run-time milieu of its
queries, e.g. the characteristics of other queries competing with this one and the resources (e.g.. main
memory) avdable.

Beyond thcse age-old problems that have yet to see a comprehensive solution, extensions add a legion of
new woes. I-Iow do user-defined functions on user-defined domains convey selectivities to the o p t G . e r ?
Should any new domain have to include thls information. or could it be inherited from the containing
domain, subject to some rules? For example, selectivities on the "kilometers" domain should be inheritable
from the "positive reals" domain, but selectivities on the "date" domain cannot readily be inherited from
the "natural numbers" domain: special rules apply! Recursive queries add another unknown dimension:
estimating the number of iterations to process the recursion, as well as how many ne\v tuples arc Likely
to be generated at each iteration. We are investigating aII of these problems in the Starburst project. but
don't have many good solutions at this point.

Rule- based Query Optimization

Few people question the flexibility gained by using rules to specify alternative execution plans, and there
has been a lot of pioneering work within the last few years [GRAE 87aj, IFREY 871, [GRhE 87bI. Debate
continues, however, on what form those rules should take. In Starburst, two different kinds of rules are
used at two different levels of query processing:

1. At a fairly macro level (e.g., treating a simple SELECT-PROJECT-JOIS as a single operator),
context-dependent rules written in C transform the semantic representation of any query into a
semantically equivalent but "better" query [HASA 881. These transformations include merging views,
converting subqueries to joins (when possible), and some predicate pushdown1. Since methods for
performing operations are not determined by this level, no cost model is involved. When a transfor-
mation is not clearly beneficial, both the ori_&al and transformed representations are retained and
connected by a CHOOSE operator [GRAE 891, [HASA 881; the Plan Generator will evalugte. both
and choose the cheaper. The "context" on which these transformations depend are the neighboring
operations to which a given operation relates, e.g. which use its resuits or provide a correlation value.

1 Applying a join predicate via an index on an individual table depends upon which table is the outer table of that join, so this
form of "predicate pushdown" is determined by the second set of rules.

Rule-based Query Optimization 14

2. Within each macro operation, the Plan Generator interprets a grammar-like set of production rules
(called STrategy Alternative Rules, or STARs) to construct and analyze the properties of alternative
Query Execution Plans (QEPs), which are trees of executable operators (called Low-LEvel Plan
Operators, or LOLEPOPs) [LOEIM 881. The STARs are simplified, and hence can be interpreted
quickly /LEE 881, because they are independent of the context in which they are applied. 'I'he
properties of any QEP includes its estimated cost.

Having different kinds of rules for different kinds of optimization allows us to customize the rules to
exploit the structure of each kind of optimization, but raises several interface issues that we haven't resolved
yet. Will the alternatives remaining after semantic optimization prohferate unmanageably as more rules
are added? Will we need to "ping-pong" between semantic and plan optimization? How well do both
optimizations really perform? Ideally, we would like to find some unified set of rules that could be input
as data to the optimizer, yet could be interpreted efficiently by a single rule processor. Could this more
general form of rules even support knowledge base applications and a more "active" database [IIAYA 88j?
Or does "one size fits all" fit none well?

Currently, Starburst's semantic optimi7.er is completely implemented and we are working on extensions.
The rule interpreter of the Plan Generator is operational and producing executablc plans for a simplified
set of single-table rules, and we are implementing some of the mfrastructure needed for join rules to store
and retrieve the best plan fragments.

Search Strategies

There has been much hand-wringing but little empirical testing of the worst-case combinatorics of System
R's dynamic programming algorithm for optimization. Recent experiments on Starburst's Join Enumerator,
which also uses dynamic programming, proves that the complexity of optimization changes dramatically
depending upon the "shape" of the query graph. In the quite common case of a "linear" query graph, the
complexity is polynomial in the number of tables, whereas "star" query graphs are effectively equivalent
to complete graphs for purposes of optimization [O K 0 881.

Complexity is also affected by whether the inner table of a join can be composite, i.e. the result of a join,
something controlled by an application-specified parameter in Starburst. Other such parameters give
applications considerable control over the search mechanism by allowing or deferring Cartesian products,
pruning alternatives from STARs, and even controlling the order in which STARs are evaluated. Interactive
queries wiU want to minimize the size of the search space by eliminating composite inners, deferring
Cartesian products, and pruning all but the most probable alternatives, whereas compiled queries that will
be run quite often can afford the l u x u ~ of considering as many alternative plans as possible to find the best.

Even with these added "knobs" to adjust the size of the search space, better search algorithms and heuristics
are needed for the "worst case" scenario of a star query to be optimized interactively. A number of
promising heuristics have recently been compared experimentally by Swami [SWAM 89bl. The A1 folks
seem enamored of the A* algorithm, which is effectively Branch and Bound, a very robust technique that
I have tried to couple with our "bottom up" approach of optimization. It requires a tight lower bound
to prune partial plans, something that appears to be virtually impossible to accomplish with the dramatic
differences in cost functions for various join methods, although Yoo and Lafortune have succeeded for
semijoins alone [YO0 881. The need for an initial feasible solution in Branch and Bound led me to the
development of a "'eedy" heuristic that is currently used by the optimizer of the SQL DBMS in OS2/
Extended Edition [IBM 881.' Starting with the query graph, this algorithm evaluates all the ways of joining
any two tables, and picks the cheapest. The nodes of those two tables are now collapsed into a single

Search Strategies

node, and the cost of all alternative join methods for each join corresponding to an edge leading into the
collapsed node are re-evaluated. We continue to choose the cheapest join .and collapse the joined nodes
until only one node remains. Swami's "au-gmentation" method [SWAM 89bI is similar, but uses a simple
measure such as the selectivity of the join predicate to pick the next join, whereas we perform a more
thorough evaluation of the costs of each join.

Interaction with Data Placement (Database Design)

This is another topic that has been around for a long time and so appears moribund. However, the added
complexity of databases distributed over heterogeneous hardware (workstations, servers, and hosts) con-
nected by heterogeneous links (L.4Ss and WAYS), complex objects (particularly when objects can share
sub-objects, rather than properly own them), and (again!) recursion raise interesting problems about how
best to place data, and how best to exploit that placement when selecting a plan for execution. In Starburst,
we haven't yet addressed these problems, largely because we intend to support objects as a generalization
of views on tables, for which traditional optimization stdl applies.

Optimizer Learning

Here's a wide open topic with real sex appeal. yet whose surface has hardly been scratched! Current SQL
compilers statically bind a plan in an "access module" to each query, until the plan is invalidated by the
disappearance of some object on which it depends (e.g. a table referenced in the query). The SQL'400
product also re-optimizes whenever a new index is added that might benefit the query. And Graefe and
DeWitt have suggested weighting the choice of the next transformational rule to apply during optimization
based upon how often its transformation has improved the estimated cost over all appIications since the
optimizer was created [GRAE 87aj. However, as far as I can determine, no one has investigated how to
make the optimization process learn from previous execuriom of the same (or related!) queries. It sounds
so easy and obvious, but m h g it really work is much more di-ficult, largely because ~vriting any
performance data to the access module precludes concurrent users from doing likewise. We are investigating
various designs for getting around this problem.

Things We Aren't Investigating

It's tempting but impractical in a wish list such as this to list a wide variety of topics "under investigation".
Bruce Lindsay has often observed that listing what is excluded can be more informative than listing what
is included. Hence, here is a partial (and intentionally controversial) list of topics in which I hate little or
no interest, along with assorted biases:

Studies to frnd "the best join method" for all situations, particularly a YAHOO (Yet h o t h e r Hash-join
OptimizatiOn) that assumes that both tables fit into memory. For any such uruformly optimal join
method, I claim that I can always construct a database and a query for which another join method runs
better, and our customers continue to insist upon building databases that don't quite fit into those
massive and cheap main memories. .However, we have implemented a variety of the Grace join' [KITS
831 in Starburst. And we are investigating what execution strategies we need for larger main memories

2 The Grace join was implemented primarily to test some theories about bener communication between the buffer manager and
the optimizer [CHOU 851. Hence it was chosen primarily because it was easier to implement and less sensitive to errors in
the optimizer's estimates of the number of buckets vs. the number of buffers, even rhough DeWitt et al. have shown the
Hybrld Hash Join to be uniformly superlor in performance [DEWI 841.

Things \Ye Aren't Investigating 16

(e.g., sequential pre-fetch, as is done in IBM's DB2 product) and the impact these have on the hit ratios
and cost equations. Relatively little has been done on "industrial grade" DBMSs when the entire
database fits in main memory [LEHM 861, [BITT 871, [SWAM 89a], and we hope that their cost
equations may be simplified enough to develop better dominance relationships.

Cost equations. How often have you stolen the cost equations for your optimizer from someone else's
paper? The scarce resources, important parameters, and level of detail are unlikely to be the same on
any two machines, so why bother?

The best ordering of semijoins (as in [YO0 881). Although the Starburst Plan Generator can produce
plans with semijoins, given the appropriate STARS, previous experiments [MACK 861 make me skeptical
that they will generally be efficient except when the query requests a very wide column that is too
"hea~y" to lug around while doing joins.

Parallel join algorithms that look great for 2-table joins because they just happen to be horizontally
partitioned (uniformly, of course!) on the join column. but result in shipping every tuple of the result
to another site in order to partition on the join column of the next join. Any paper describing a pardel
join algorithm that isn't illustrated with a 3-table join (on different join columns!) is not ~vorth reading.

"SQL as a datatype" (with apologies to Mike Stonebraker [STON 841). It's a very elegant idea, but I
remain skeptical of its practicality due to the potential for a single update near the root to cause a
cascade of re-optimizations and re-cacheing of results.

Bibliography

[BITT 871

[CHRI 831
[DAYA 881

[DEWI 841

[FREY 871

[GRAE 87a]

[GRAE 87b]

[GRAE 87c]

[GRAE 891

D. Bitton, M.B. I-Ianrahan, and C . Turbyfdl, Performance of Complex Queries in blain
Memory Database Systems, Procs. of 3rd Inti. Conf on Data Engr. (Los Angeles, 1987)
pp. 72-81.
H.-T. Chou and D.J. DeWitt, An Evaluation of Buffer Management Strategies for Relational
Database Systems, Procs. of 11th Intl. Conf on V e y Large Data Bases (VLDB) (Stockholm,
August 1985) pp. 127-141.
S. Christodoulakis,, Estimating Record Selectivities, Info. Systems 8,2 (1983) pp. 105--115.
U. Dayal, Active Database Management Systems, Procs. of 3rd Intl. Conf on Data and
Knowledge Bases (Jerusalem, June 1988) pp. 150- 169.
D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M.R. Stonebraker, and D. Wood, Im-
plementation Techniques for Main Memory Database Systems, Procs. of ACM-SIGI\!OD
(1984) pp. 1-8.
J.C. Freytag, A Rule-Based View of Query Optimization, Procs. of ACM-SIGMOD (San
Francisco, May 1987) pp. 173--180. Also available as IBM Research Report RJ5349, San
Jose, CA, October 1986.
G. Graefe and D.J. DeWitt, The EXODUS Optimizer Generator, Procs. ofACM-SIGMOD
(San Francisco, May 1987) pp. 160-172.
G. Graefe, Rule-Based Query Optimization in Extensible Database Systems, Ph.D. Thesis
(University of Wisconsin, Madison, WI, August 1987).
G . Graefe, Selectivity Estimation Using Moments and Density Functions, Tech. Repgrr
#CS/ E 87-012 (Oregon Graduate Center, Beaverton, OR, November 1987).
G. Graefe, The Stability of Query Evaluation Plans and Dynamic Query Evaluation Plans,
Procs. of ACM-SIGMOD (Portland, OR, May 1989 (to appear)).

Bibliography

[HASA 881 W. Hasan and H. Pirahesh, Query Rewrite Optimization in Starburst, IBIM Research Report
RJ6367 (San Jose, CA, August 1988).

[IBM] IBA1 Corp., Index Key Range Estimator, Lr.S. Patent y4774657.
[IBM 881 IBhf Corp., Heuristic Method for Joining Relational Data Base Tables, IB.V Technical

Disclosure Bulletin 30,9 (February 1988) pp. 8- 10.
[KITS 831 M. Kitsuregawa, H. Tanaka, T. Moto-oka, Application of Hash to Data Base SIachme and

Its Architecture, New Generation Cornpuling 1 (1983) pp. 63--74.
[LEE 881 hi. Lee, J.C. Freytag, and G.51. Lohman, Implementing an Interpreter for Functional Rules

in a Query Optimizer, Procs. of /4th fnd. Conf: on Very Large Data Bases (VLDB) (Long
Beach, August 1988) pp. 218-229. Also available as IBM Research Report RJ6125, San
Jose, CA, March 1988.

[LEHSI 861 T. Lehrnan and 51. Carey, Query Processing in Main Xlcmory Database Systems. Procs.
of AC,\I-SIGIMOD (Washington, D.C., 1986) pp. 239-250.

[LOIIhl 881 G.SI. Lohman, Grammar-Like Functional Rules for Representing Query Optimization
Alternatives, Procs. of A CIM-SIG,CIOD (Chicago. >lay 1988) pp. 18-27. Also avdable as
IBhI Research Report RJ5992, San Jose, CA, December 1987.

[LYSC 881 C.4. Lynch, Selectivity Estimation and Query Optimization in Large Databases with I I i f l y
Skewed Distributions of Column Values, Procs. of /4th In[/. Con[on C'eq~ Lurgr Data
Bases (Long Beach, September 1988) pp. 240-251.

[>11\CK86] Mackert, L. and G. Lohman, R * O p t h e r VAJstion and Performance Evaluation for
Distributed Queries, Procs. o//2rh In[/. Conf: on Very Large Databases (Kboto, August 1986)

[>ILRX 881 >I. hluralikrishna and D.J. DeWitt, Equi-Depth Histograms for Estimating Sclect~i.it) Fac-
tors for Multi-Dimensional Queries, Procs. of AC,\6-SfC.\fOD (Chicago, ,May 1988) pp.
28-36.

(0x0 881 K. Ono and G.51. Lohman, Extensible Enumeration of Feasible Joins for Relational Query
Optimization, IBAM Research Report RJ6625 (San Jose, CA, Dec. 1989).

(PIAT 84) G. Piatetsky-Shapiro, C. Connell, Accurate Estimation of the Sumber of Tuples Sat~sfbing
a Condition, Procs. of AC.M-SlG,\/OD (1984) pp. 256276.

[SELI 791 P.G. Selinger, Sl.hl. Astrahan, D.D. Charnberlin, R.A. Lorie, and T.G. Price, Access Path
Selection in a Relational Database Management System, Procs. of AC.\f-SIG.\IOD (1979)
pp. 23--34.

[STOS 84) 31. Stonebraker, E. Anderson, E. Hanson, and B. Rubenstein, QUEL as a Datatype, Procs.
of AC,\I-SIGibIOD (1984) pp. 208--214.

[SWAM 89a] A. Swami, A Validated Cost Xlodel for Main Memory Databases, Procs. of AC.CI-
SIG,WETRICS Conf on ,Measurement and ,Modeling of Comp. Sys. (May 1989 (to appear)).

[SWAM 89bj A. Swami, Optimization of Large Join Queries: Combining Heuristics with Combinatorial
Techniques, Procs. of '4 CAM-SIG,\,IOD (Portland, OR, May 1989 (to appear)).

[VALD 871 P. Valduriez, Join Indices, AC'V Tram. on Database Sys tem l t , Z (June 1987) pp. 218-246.
[VASD 861 B.T. Vander Zanden, H.hI. Taylor, and D. Bitton, Estimating Block Accesses \<.hen At-

tributes are Correlated, Procr. of /2(h fntl. Conf: on Very Large Data Bacer (Kyoto, Srp-
tember 1986) pp. 1 19-1 27.

[WONG 761 E. Wong and K. Youssefi,, Decomposition -- a Strategy for Query Processing, AC.\I Trans-
actions on Databare Sys tem 1,3 (September 1976) pp. 223--241.

[YO0 881 H. Yoo and S. Lafortune, An Intelligent Search Method for Query Optimization by
Semijoins, Tech. Report #CRL-TR-10-88 (Comp. Res. Lab., L'niv. of Michigan, Ann .kbor,
MI, September 1988).

Five hard problems in query optimization

Patricia G . Selinger
IBM Almaden Research Center

650 Harry Rd.
San Jose, CA 95120
(Pat at IBM.COM)

Database technology is at least one generation behind the field of programming languages. This is especially
true of query optimization, and is thc result of starting two decades later and being a more difficult area.
I have listed here what in my opinion arc the five hardest problems in query optimization. The reader is
warncd that thesc are basically prohlcrn descriptions, accompanied in some cases with sorne possible
solution approaches. They are not solutions; my intent is to inspire more research in these areas.

Problem 1:

Adjustable cost ohjectivcs. Most of the basic research in optimization establishes as its cost objective the
minimization of the total query cost. 'I'lie early query optimizers used either total number of expected
I/Ofs or a parameterized cornbination of Cl'lJ and I/O's. Later on, for distributcd systems, the cost
objective was to minimize the total number of messages or a parameterized combination of total CPIJ,
I / O , and messages. A few papers suggested using minimum response time rather than total cost, but that
was not generally adopted.

If you ask a user what cost objective to use, the answer will be "nonc of the above". The answer will
likely be in terms of a case statement: "For application A , I want a fast answer; for application D, I don't
care how you do it so long as I get the answer by tomorrow morning; for application C, I don't want
you to do it unless you guarantee that you can get it done over the weekend." If you ask a system
administrator, the answer will likely be couched in terms of system load and expected response time for
some applications: "give the interactive users of application A a 2 sec. response time" and for other
applications the answcr will be "don't exceed x% of the budget and never use more than y % of the system."

What does this really mean for optimizer research? It means that we need to take a broader view of the
optimization problem than we have in the past. Generally, we need to optimize a set of simultaneous
equations including response time, and total cost (in differing units such as time or money), in the presence
of constraints on completion time and simultaneous system load. <:learly this involves both optimization
time work as well as execution time work. That in turn, in~plies a special relationship between the query
optimizer and the execution time parts of the system such as the scheduler and dispatcher.

Clearly this is a nearly impossible (and not well-defined) problem, and is not going to be solved by
optimizers next week. What are some reasonable solution approximations? What input parameters can
such optimizers expect (or demand) from thc database statistics, operating system, etc.? How might users
and system administrators specify what constraints and cost objectives they want each application to have?

Problem 2:

Time-tfarying rcsourccs. 'I'his problcm is closely related to the issues raised tn problem 1 above, but takes
the complexity one step further. It can also hc treated scparatcly from the flcxihility and generality needed
to solve problem 1. l 'he situation can be described most easily with an example. Suppose a decision
support query examines a lot of data, and thc uscr necds the answer by 9AM tomorrow morning. If the
query starts at 4PM, the system administrator might choose thc following resource utilization and plans:

The first two hours of execution should bc a single proccss at low priority (to avoid delays for interactive
users). From 6PM to IOPM, up to 30J'h of the CllU can be utilized for this qucry with no more than
10 processes. After IOPM un~i l the query is cornpleted, there are no resource constraints -- unli~nited
parallel execution is permittcd.

?'his is a resource allocation and scheduling problem that can occur in many domains. It may or may
not have a feasiblc solution. l'hcse resourec constraints effectivcly limit thc query optimizer's solution
search space (repcrtoirc of feasihlc plans). While finding the optimal plan is NP-complete, there may be
non-trivial cases where efficient search can identify sevcral "pretty good" plans.

I'd like to issuc an open invitation to operations research folks to work with the database community in
attacking both prohlern 1 and problem 2.

Problem 3:

Heterogeneous distributed optimization. In the first wave of heterogeneous distributed systems, wc research-
ers punted on the issue of global opti~nizalion. Most systcms relied on global (manually established)
catalogs containing global to local schema mappings. I'hesc were used to identify which system should
receive translated requcsts and how to translate them. Individual participating databases would receive
requests in their "native" interface. possibly with the assistance of a layer of global function sitting on top
of the local DBMS.

On thc other hand, homogeneous distributed systems aimcd at the ultimate global optimization, using
intimate knowledge of the acccss paths and costs of thc local Dl3MSs and relying on the fact that the
participating databases wcrc (nearly) idelltical in function.

Clcarly there is a middle ground betweerl these two models and sets of technology. What could be done
in heterogeneous distributed optimization when the database language and functions are (nearly) identical,
but the systems are hetcrogencous? By hetcrogcncous systcms, one can visualize different optimizcrs,
different access paths, different costs, different join repertoires, and so on. Ixt's caU these systems "semi-
heterogeneous". Can we invent semi-heterogeneous optimization techniques that produce the pcrformancc
achievable with homogencous distributed systems'? One approach is a "super-optimizer" that knows the
union of all the techniques of each local DBMS optimizer. Another approach is a cooperative decision
among peer optimizers. Ilow can we havc our cake and cat it too -- that is, when a DBMS instancc
finds itself in a homogeneous situation, distributed requcsts should achicve (near) optimal performance,
and when in a semi-heterogeneous situation, optimization should produce "as good as it can" plans?

Problem 4:

Optimizing for parnllcl systems. Because parallelism adds so many additional degrees of freedom, the
exhaustive search technology that sonic systems today use successfully will no longer work. A numbcr
of proposals havc bccn made to usc rules, sitnulatcd annealing, branch and bound, I have included
this issue because in my opinion more work is needccl to evaluate and compare these competing technologies
and also to invent new ones. 'T'hc problem is not yet "solved".

Problem 5:

Rowowing fiom programming language optimizations. nccause we want to have optimizers that search
efficiently (but not exhaustivel~.) and are extensible, the trend today is to separate the optimizer search
engine from the costs and the target repertoire of plans. If we look at programming languages as a more
mature technology, we find that they have approached this issue differently. After making an initial cut
at compilation, optimizing compilers dig into a repertoire of peephole optimizations to improve its recults,
making multiple passes through the output. They use loop unrolling, code migration, common subexpression
elimination, procedurc integration, and so on to modify and improve their initial output. Many of these
techniques also apply to database plans in a relatively straightforward way.

I:urthermore, we understand many database specific modifications and improvements (predicate pushdown,
subquery to join transformations). 7'oday, some systems apply these separately from the search engine
enumeration of feasible plans, often as a preprocessing step before access path selection.

'l'lie problem that needs to be examined by the database optimizer community is twofold. First, identify
peephole postprocessing optimizations that can be stolen from programming language compilers, and
invent more. Second, examine whether we can do better job of integrating query rewriting, search space
enumeration, cost estimation, and peephole post processing. Are there better ways of combining these
steps more intimately without abandoning the extensibility and modularity benefits from isolating the
search engine from the search strategies?

Bibliography

ICHOIJ 851 11.-7'. Chou and 1 l .J . IkWitt, An J'valuation of Buffer Management Strategies for Relational
Database Systems, Procr. of l l th Intl. ConJ on Very 1,arg~ Data Rases (I /I ,Dn) (Stockholm,
August 1985) pp. 127-141.

[CIIRI 831 S. Christodoulakis,, Estimating Record Selcctivitics, Info. Sy.rt~rn.r 8,2 (1 983) pp. 105--115.
I1;REY 871 J.C. Freytag, A Rule-Rased View of Query Optimization, Procs. of ACM-SICh4OD (San

Francisco, May 1987) pp. 173-180. Also available as IRM Research Report RJ5349, San
Jose, CA, October 1986.

[GRAE 87a] G . Graefe and D.J. IleWitt, The EXODI JS Optimizer Generator, Procs. of ACM-SIGAIOI)
(San Francisco, May 1987) pp. 160-172.

[GRAE 87bj G. Ciraefe, Rule-Rased Qucry Optimization in Extensible Database Systems, Ph.D. 7'he.ri.r
(University of Wisconsin, Madison, WI, August 1987).

ICJRAE 87cl G. Ciracfe, Sclcctivity Estimation Using Moments and Density Functions, Tech. Report
#CS/E 87-0/2 (Orcgon (iraduatc Ccntcr, ncaverton, OR, November 1987).

IGRAE 891 G. (iracfe, l 'hc Stahility of Qucry Evaluation Plans and Ilyngmic Query Evaluation I'lans,
Procs. r{ACi\I-.SlG1\f01) (I'ortlnnd, OR, May 1989 (to appear)).

IIIASA 881 W. Ilasan and 11. J'irnhcsh, Query Rcwritc Optimization in Starburst, IBM Research R~port
RJ6367 (San Jose, CA, August 1988).

[IBMl Il3M Gorp., lndcx Kcy Range Estimator, iJ.S. Patent ff47746.57.
/IDI\.I 8%) 113XI Corp., IIeuristic Method for Joining Relational Data Rasc Tables, IBM Technical

L~i.rcloszcr-e Bulletin 30,9 (I'cbruary 1 988) pp. 8- 1 0.
IKI7.S 831 M. Kitsuregawa, 11. 'l'anaka, 1'. Moto-oka, Application of Ilash to Data Basc Machinc and

Its Architccturc, h'nv Gen~rafion Computing 1 (1983) pp. 63-74.
[I,EF, 881 M. I xe, J.C. Frc!.tag, and 6.31. I ,oh~na~l , Implementing an Interpreter for Functional Rules

in a Query Optirnizcr, Pmc.7. of 14th Intl. Conf on Very Large Ilala Base.r (VI,Dfl) (I s n g
neach, August 1988) pp. 218-229. Also available as InM Research Report RJ612.5, San
Josc, CA, March 1988.

II.OIlill 881 G.M. I ~ h m n n , Granlmar-1,ikc Functional Rules for Representing Qucry Optimization
Ntcmatives, Pr-ocs. of ACM-SIGA.lO/? (Chicago, May 1988) pp. 18-27. Also available as
IRiLl Rescarch Repot? R.15992, San .lose, CA, December 1987.

[I,YNC 881 (:.A. I,ynch, Selectivity Estimation and Query Optimization in large Tlatabases with Ilighly
Skewcd Distributions of Column Values, Pi-ocr. of /4rh lnrl. Conf on Verv I,argc Data
ila.re.r (Long neath, September 1988) pp. 240-25 1.

IMA(..K86] blackert, I,. and G. I ohman, R + Optimizer Validation and Performance Evaluation for
Ilistributcd Qucries, Proc.r. of /2th lntl. Con/: on Very Large Databases (Kyoto, August 1986).

[OW0 881 K. O n o and G .N . I.ohlnnn, Extensihlc Enumeration of Feasiblc Joins for Relational Qucry
Optimization, IRM Rescar-ch Report R.1662.5 (San Jose, CA, Dec. 1989).

[PIXI' 841 G. Piatetsky-Silapiro, C. Connell, Accurate Estimation of the Number of I'upIes Satisfying
a Condition, Procs. of ACiM-SIGMOD (1984) pp. 256-276.

/S131,1 791 P.G. Selinger, 1M.M. Astrahan, D.11. Chamberlin. R.A. I,orie, and T.G. Price, Access Path
Selection in a Relational Database Management System, Proc.~. of ACM-SIGMOII (1979)
pp. 23-34.

lSWAiC1 89h] A. Swami, Optimizatior~ of Large Join Qucries: Combining Ilcuristics with Cornbinatorial
Techniques, Procs. of ACM-SICMOD (Portland. OR, May 1989 (to appear)).

[VALD 871 P. Valduriez, Join indices, A(;;\! 7.ran.r. on L)ataha.re Sy.rlemr l 2 , t (June 1987) pp. 21 8-246.
IVAND 861 B.T. Vander Zandcn, 11.31. Taylor, and D. Ritton, Estimating nlock Accesses when At-

tributes arc Correlated, Procs. of /2rh Intl. Con/. on V e y I,arge Data Ra.res (Kyoto, Sep-
tember 1986) pp. I 19-127.

(WONG 761 E. Wong and K. Yousscfi,, Dccornpositic?n -- a Stratcgy for Qucry Processing, ACA! 7i-an.c-
actions on Databa.rc? Systerns 1,3 (September 1976) pp. 223-24 1.

[YO0 R X] 11. Yoo and S. Iafortunc, An Intelligent Search Method for Qucry Optimization by
Semijoins, 7i.c/t. Report #CR/,-7'R-10-88 (Comp. Res. I ab., 1Tniv. of Michigan, Ann Arbor,
MI, September 1988).

Discussion Issues for Query Processing

Arnon Rosenthal

This document contains three short position statements about issues in query processing: query
optimization for a federated, object-oriented system; outerjoins; representations and rigor.

1. Query Processing for a Federated, Ob ject-Oriented System

There has been substantial interest in support for "interoperability", to enable separately-
developed tools to communicate. Many researchers believe that a federated, object-oriented system
can best provide the global environment. Such a system should also provide some traditional data-
base services: definitions of virtual objects (views), and queries to large collections.

We have been considering an architecture that is built around an object management system
(OMS) that supplies an object-oriented data mdoel and invocation of arbitrary functions (including
data retrievals). All data resides in data servers developed separately from the OMS; each site will
have its own array of DBMSs, file managers, and application-managed repositories. User-defined
datatypes must be supported. Finally, the system includes a simple language for writing expres-
sions (e.g., selection followed by join).

Current systems split such a world into three separately-optimized domains:

A. Programming language ezpressions: User-defined functions belong in this world. Typical
optimizations include constant propagation, replacing a procedure call by in-line code (per-
mitting further optimization), and removal of redundant operations.

B. Query language ezpressions: The query language consists of operators on collections of
objects. It is subject to optimizations such as permuting selections, projections, and joins.

C. Access to data in servers: It is rarely necessary to retrieve an entire collection of objects
from a server. Instead, an incoming expression may be transformed to push much of it into
the server. A strong server (e.g., a SQL DBMS) may be able to execute a large subexpres-
sion internally (using indexes, joins, etc.). Also, rcapeated requests to a single server can
often be sent as a batch.

It is undesirable to build three separate optimizers, or to have all optimization confined within the
individual domains. A rule-based optimizer seems like a natural approach to building a unified,
extensible optimizer, but the task of controlling such a wide variety of rules is daunting.

Extensibility: The effort of attaching each new data server must be minimized. We have a solu-
tion such that:

o x v i i f r t T l i o y 4 l i 1 i t . i MA I ? anii~~Qxait.xc~rox.c.on~
((517)-499-4462

e It is easy to make da ta in a server available for object-at-a-time navigation. (In engineering,
navigation is the main access mode and queries are rare.). Set-oriented queries will also be
supported, but inefficiently, by retrieving entire collections from the server and then using
OMS query operators.

a Optimizing transformations can be provided incrementally, to replace a query subexpression
by a call to the server that holds the data (if the server has the necessary capability). The
installation or the vendor of a data server can also invest incrementally in data administration
tools to keep the global metadata consistent with the metadata within the server.

In this environment, SQL is awkward as the interface language. It is hard to extend (and then
becomes nonstandard), and awkward to manipulate. Instead, we plan to manipulate operator-
graphs, and to provide small translators to and from SQL.

2. Simple Outerjoins

Outerjoins present substantial problems in query specification and optimization: because asso-
ciativity, commutativity: etc. are lacking. However, we conjecture that there is a useful class of
queries for which outerjoins are "well-behaved" (i.e., reassociate freely). For this class, language
design and query optimization will be much simpler than for general queries involving outerjoins.

Query Specification: In an algebraic language, an outerjoin operator causes no confusion -- the
semantics are simply to evaluate each operator as shown in the tree. But it is difficult to add
outerjoins to a calculus language or to SQL, because the user does not explicitly parenthesize
operators in a multiway join.

There appear to be patterns of outerjoins such that the result will be the same for all legal
parenthesizations of the operators. To see which queries are well behaved, we extend the relation-
adjacency graph of System R to hold outerjoin information. The graph consists of one node for
each relation, undirected edges for regular joins, and directed edges for outerjoins. Each edge is
labelled with a join predicate. Selections on one relation will be considered later. For simplicity,
we'll assume that the graph is connected.

A parenthesization is a binary tree whose leaves are the relations in the query; each internal
node corresponds to a set of graph edges that connect nodes in the left and right subtrees, i.e., to a
set of join predicates. The operator tree immediate ly derived from an association is defined as fol-
lows: If a tree node corresponds to a set of undirected edges, perform an ordinary join (using the
conjunction of their predicates). If it corresponds to a single directed edge! perform an outerjoin.
Otherwise the operation is undefined. Operator trees are also called ezpressions. It is critical that
a good parenthesization be chosen, since the cost of two parenthesizations can differ enormously.

In the examples below, --> denotes left-outerjoin, and --- denotes regular join. Suppose that the
join predicates link the pairs (R l , R2) and (R2, R3). Each of Examples 1.1-1.3 shows a graph and
two expressions immediately derived from different associations. In 1.1 and 1.2 the expressions
compute the same result (which may be considered the result of the graph). In 1.3 the graph's
result is not well defined, since the two expressions compute different results -- the query language
must state which association is desired.

Ezample 1.1
Graph : Rl - - > R2 - -> R3
Expressions: R1 - -> (R2 - - > R3) = (R1 - -> R2) - - > R3

Ezample 1.2
Graph : Rl - - - R2 - - > R3
Expressions: R1---(R2 - -> R3) = (R1 ---R2) - -> R3

Ezample 1.3
Graph : R1 - - > R2 --- R3
Expressions: R1 -->(R2 ---R3) is not equal to (R1 --> R2) ---R3

Conjecture: A graph is called simple if the directed edges form an outward-directed forest, and no
edge of this forest is directed toward an undirected edge. We conjecture that for every
join/outerjoin/project query whose graph is simple, the result is well-defined. That is, all
immediately-derived operator trees compute the same result. Furthermore, for any nonsimple
graph, there appears to be a query that cannot be reassociated.

Examples 1.1 and 1.2 have simple graphs. Example 1.3 is not simple.

Consequences of the conjecture:

Language: a language that expresses only queries with simple graphs need not be concerned
with parenthesization 1

Optimization: An ordinary relational optimizer can be extended relatively easily to handle
outerjoins with simple graphs. 2

adding Selections t o the stew: When a query graph has selections or 3-way joins, we consider that
all selections on a relation must be performed before any outerjoins. If a query comes in as an
operator tree, selections need to be moved down before the query can be expressed as a simple
operator graph. We consider only selection predicates that fail whenever a referenced attribute is
null. Then we push the selection [attribute+null] downward to each relation referenced in the
offending selection; as a result, the outerjoin on that relation is converted to an ordinary join.

Example: Select(Rl.A+R2.B+R3.C <lo) C (R ~ - -> R2) - - > R3] =

Select(Rl.A+R2.B+R3.C <lo) [Rl - - - R2 - -> R3]

Applications: In addition to 1-sided outerjoins, there are many other important operators that

We have spell at Ivfit o11e prolwsal for a SQL c.xtr~l~sit,~l all of wlltwr. o~it~rioilis liad silllple k~aphs. Relatioll-lists nsc3ti

'comma" to meall join and "arrow" to mean ont?rjoi~~. xricl tllr use of wrow was restricted to nested taljlw.

2 ~ o see tl~is. note tllat c.urrent optimizrrs genrratr k,irrrntllt.sizatio~~s for cl~~eric,s witli oniinasy joins: wit11 ?riU1j)1ln
outcrjoil~s. t1ic.y d~termille wliethcr w.rli join ntrle sl~olllri 1)e a rekq~lar joiu. onti.rjoin. or clisdlowed. (For no~~-? r iu~p l~~
~ ~ a p h s . they will ~icwl adllitional Iodr to add operatiolls to c.l~silrc t l i ~ rorrt.ctl1f.a~ of tlir reslllt [Rose~~tl ial&R(~i~~(~r.
VLDB84: Dayal. VLDI3871. Solilt- other cxtensio~~s arr also 11cedc.d. Tllc. cost ~io~1(-1 and the join inl l) lueli t ; r t i~)~t~
(f3.c.. nestel loop allti 111~rk41ig) U ~ I I S ~ I)(- ~x tn~c l~c l . S~I?ctio~ls are lla~lcflr~d 1,y I ~ I I P I ~ tl.ii~lsforlllatio~~s.

combine information from two relations. For example, two-sided outerjoins are important in
defining a view that merges information from two databases describing overlapping sets of real-
world entities. Other classes include semijoins, universal joins, and nested subqueries -- all combine
information from multiple sources. It is important to have intermediate-level concepts and lem-
mas, if we are to avoid subtle errors in proposed transformations.

3. Representations and Rigor in Query Optimization

There is a strong case for using an an operator graph (or "strategies graph" for multiple stra-
tegies) a s the basis for all query optimization (including view substitution, query modification, and
strategy generation). The advantages of such approaches are: a graph's output is well defined (as
long as its operators are defined); the graph's "language" is extensible (by adding new operators); it
shows the order of operations (so a transformation is actually affecting execution). For even
greater generality, instead of hard-wiring the operator to the node we might let operator nodes be
LISP-like S-expressions. This provides greater visibility for expressions (e.g., predicate expressions)
within the operators.

Note that operators may be large -- at one phase of optimization, operators in Starburst

correspond to Select/From/Where queries. Three refinements are needed before operator graphs

become suitable for all optimization:

A. Represen ta t ions for SETS of strategies: The strategies generated by an optimizer have much
in common, and this needs to be exploited. In many current optimizers, this exploitation is in the
implementation for Select/Project/Join queries, but is unavailable for other purposes.

A strategies graph [Rosenthal&Reiner, Database Engineering 1982: shows a set of alternative
strategies, while representing common subexpressions only once. (This representation has also been

called a strategy space or And/or graph). The strategies graph is typically much smaller than

maintaining a set of strategies. At high levels of abstraction, the cost of producing it explicitly
seems small, since there are many fewer nodes that at the physical implementation level. One can
then freely elaborate parts of it to greater levels of detail.

B. A single f o r m a l i s m at all levels: Operator trees may contain low-level, executable operators
(e.g., scan via index, merge-join), and large operators (e.g., nodes of Starburst's QGM can include
SelectjFrom/Where expressions), and high-(eve1 operators (e.g. a recursion operator).

It seems undesirable to give a completely separate conceptual treatment to high-level operators
versus operators having direct implementation. First, different systems might differ in what opera-
tors are directly implemented. Second, i t might be reasonable to use similar techniques a t both
levels (e.g., transformations, verification, tools to identify referenced attributes). Instead, we might
want to build an optimizer as a collection of cooperating experts, each with expertise in some phase

3~tark>~~rst pwws uorc3 t11;1.11 in5t ;LII ~jvr;~.t ,w t r ~ v ;uuou% optixuizvr ~ C I U ~ ~ ~ I I ~ - I I ~ S -- it i i ~ ~ ~ l ~ ~ t l v s ~ I (~ ~ i v ~ v l i~ifonii;~tit 8 1 1 -1tt .11

as d j w e ~ l c y LT~+~)IIS. costs. -tc. T l k a j ~ ~ ~ a n a gowl softwar(% ii~tf~~+~.cc=. lti~t u a y 110t I I I W ~ to he vis ibl~ fur t l~* , t~r~*t i (x l
pnrposw.

of optimization. [However, I don't know whether we can effectively control the interaction of all
these experts in an extensible system.]

C. Ezpressing all operations algebraically: Currently, optimization of nested subqueries is done in
a world that is rather separate from the rest of the optimizer, and where there are few lemmas as
building blocks. Perhaps as a consequence, incorrect algorithms have been published (and no
doubt implemented). An "iteration" annotation on a query graph may be a useful formalism (as in
Starburst), but one needs to define its semantics very carefully with respect to the rest of the
query.

Two other ways of handling iteration deserve mention. A good one, now becoming popular, is
the use of Stream objects, and operators that produce them. An alternative formalization that is
more general is the "Apply-Append'' operator [Manola&Dayal, 00DMS871. Apply-append allows
iteration to be expressed as an ordinary operator that can be placed in an operator graph. It coex-
ists nicely with a relational algebra approach to optimization. I t provides a useful intermediate
level in defining the semantics of nested subqueries. Formally, let f() be any function defined on
tuples of relation R1. Then apply-append(R1, f) is defined to produce a relation whose tuples are
of the form [t l , f(tl)], for each tuple of t l .

Verification: It seems reasonable to try to verify an optimizer's algorithms (at least, informally),
and to specify what invariants must be preserved by each module of the optimizer. One way to
think about such issues is to regard the optimizer as applying productions that add or remove
alternatives to a strategies graph. These productions seem to be of several types:

A. Equivalence: For some subgraph, add an equivalent structure as an alternative. This kind
of transformation can be justified by algebraic identities

B. Self-describing subgraphs: For some subgraph, add a non-equivalent structure. For exam-
ple, add a subgraph that "implements" the input subgraph, but imposes additional proper-
ties (e.g., sort order, cost estimates). Or add a subgraph that produces a result that we
suspect will be useful later (e.g., a relation, clustered in an interesting way). This kind of
production is justified by examining the operator semantics (expressed by pre- and post-
conditions), and comparing these conditions with the properties attached to the operator's
input and output nodes.

C. Search: Transformations that delete subgraphs that appear suboptimal. These are justified
by dynamic programming, branch and bound, bounds on the possible error, or crossed
fingers.

Research directions in the
Optimization of a Logic Based Language

R. Krishnamurthy
MCC, 3500 Balcones Center Dr., Austin, TX, 78759

The Logic Data Language, LDL, combines the expressive power of a high-level
logic-based language (e.g., Prolog) with the non-navigational style of relational
query languages, where the user need only supply a query (stated logically), and
the system (i.e., the compiler) is expected to devise an efficient execution strategy
for it. Consequently, the query optimizer is delegated the responsibility of choosing
an optimal execution -- a function similar to that of an optimizer in a relational
database system. The optimizer uses the knowledge of storage structures, informa-
tion about database statistics, estimation of cost, etc. to predict the cost of various
execution schemes chosen from a pre-defined search space, and selects a mini-
mum cost execution.

As compared to relational queries, LDL queries pose a new set of problems which
stem from the following observations. First, the model of data is enhanced to in-
clude complex objects (e.g., hierarchies, heterogeneous data allowed for an attrib-
ute [Z 851). Secondly, new operators are needed not only to operate on complex
data, but also to handle new operations such as recursion, negation, etc. Thus, the
complexity of data as well as the set of operations emphasize the need for new
database statistics and new estimations of cost. Finally, the use of evaluable func-
tions (i.e., external procedures), and function symbol [TZ 861 in conjunction with
recursion, provides the ability to state queries that are unsafe (i.e., do not termi-
nate). As unsafe executions are a limiting case of poor executions, the optimizer
guarantees the choice of a safe execution.

The knowledge base consists of a rule base and a database. A rule may be
recursive, in the sense that the definition in the body may depend on the predicate
in the head, either directly by reference or transitively through a predicate refer-
enced in the body. A set of predicates that are mutually recursive is said to be a
recursive clique.

In a departure from previous approaches to compilation of logic [KT 81, U 85, N
861, we make our optimization query-specific. A predicate Pl (c,y), (in which c and
y denote a bound and unbound argument respectively), computes all tuples in PI

that satisfies the constant, c. A binding for a predicate is the boundlunbound pat-
tern of its arguments, for which the predicate is computed. A predicate with a
binding is called a query form (e.g., Pl(c,y)?). We say that the optimization is
query-specific because the algorithm is repeated for each such query form. For
instance, P l (x.y)? will be compiled and optimized separately from P l (c,y)?. Indeed
the execution strategy chosen for P l (c,y)? may be inefficient (or even unsafe) for
P l (x,y)?.

We formally define the optimization problem as follows: "Given a query Q, an
execution space E and a cost model defined over E, find an execution in E that is
of minimum cost." We discuss the research directions in the context of this formu-
lation of the problem.

Model of Execution
An execution models the relevant properties of the actual query processing by the

underlying engine. The relevant properties should include all parameters that are to
be chosen by the optimizer (e.g., create index, join method) as well as the infor-
mation that is needed to evaluate the cost of the execution (e.g., projected attrib-
utes, duplicate elimination). The model of an execution consists of two types of
information: 1) structure, and 2) annotation (to the structure). The optimal choice
of structure for a given query, typically, requires the exhaustive search of an expo-
nential space of executions, whereas the annotation represents those information
that can be greedily chosen for a given structure.

The structure of an execution is represented by an AND/OR graph. This represen-
tation is similar to the predicate connection graph [KT 811, or rule graph [U 851,
except that we give specific semantics to the internal nodes as described below. In
keeping with our relational algebra based execution model, we map each AND
node into a join and each OR node into a union. Recursion is implied by an edge to
an ancestor. A contraction of a clique is the extrapolation of the traditional notion
of an edge contraction in a graph. An edge is said to be contracted if it is deleted
and its ends (i.e., nodes) are identified (i.e., merged). A clique is said to be con-
tracted if all the edges of the clique are contracted. Intuitively, the contraction of a
clique consists of replacing the set of nodes in the clique by a single node and
associating all the edges inlout of any node in the clique with this new node.

The annotation provides all other information that are needed to model the execu-
tion. Intuitively, a parameter or property is modeled as an annotation if, for a given
structure, the optimal choice of that information can be.greedily chosen. For exam-
ple, given the ordering of the joins for a conjunctive query, the choice of access
methods, creation of indices, and pushing of selection are examples of choices that
can be greedily decided. On the other hand, the pushing of selection into a recur-
sive clique is not a property that can be greedily chosen.

The space of executions over which the optimization problem is defined, is char-
acterized by the of valid structures for a given query and database, and the associ-
ated optimal annotations. This is the space over which the search for optimal
execution is conducted.

Much of the research in the context of recursive query processing has been fo-
cused in defining the valid executions that enable the selections to be pushed into
recursive cliques. Some important results can be found in [BMSU 85, BeRa, HeNa,
KiLo, SaZ1, SaZ4, Vie]. This set of references is in no means complete as this
topic deserves a treatise in its own right. Much less research has been conducted
in the topic of pushing of projections and the possible set of resulting execu-
tions[RBK88,KiLo]. Even less, if any, research has been done in defining the exe-
cution space in the context of programs with set unification [ShTZ], updates[NK88],
declarative cut[KN88], and other such constructs in logic programming.

Search Strategy

The traditional approach in commercial DBMS has been to use exhaustive search
over the execution space. Unfortunately, this becomes unfeasible for most queries
of interest in LDL. Therefore, a renewed interest in devising a better search strat-
egy is in progress [KBZ86, SmGe, IW87, SG88, S891. The search strategies can be
classified into three catagories: exhaustive, stochastic, polynomial. These are de-
scribed below.

The traditional DBMS approach to using exhaustive search is to use the dynamic
programming algorithm proposed in [Sell 791. It is well known that even this is
rendered useless if there is a join of 15 relations. In [KrZa] we propose an exhaus-
tive search for optimizing LDL programs.

Another approach to searching the large search space is to use a stochastic
algorithm. Intuitively, the minimum cost execution can be found by picking, ran-
domly, a "large" number of executions from the execution space and choosing the
minimum cost execution. Obviously, the number of executions that need to be cho-
sen approaches the size of the search space for a reasonable assurance of obtain-
ing the minimum. This number is claimed to be much smaller by using a technique
called Simulated Annealing [IW 871. There have been other variations on this ap-
proach [SG88].

Another approach to tackling the large search space is to observe some property
of the cost function that results in an efficient search. In [KBZ 861, we presented a
quadratic time algorithm that computes the optimal ordering of conjunctive queries
when the query is acyclic and the cost function satisfies a linearity property called
the Adjacent Sequence Interchange (ASI) property. Further, this algorithm was ex-

tended to include cyclic queries and other cost models. This approach has been
extended for nonrecursive queries. But no such attempt has been made to include
recursive queries.

In short. we have summarized three generic strategies: exhaustive, quadratic and
stochastic. The main trade-offs amongst these strategies is between efficiency
(i.e., time complexity) and flexibility. Note that the quadratic strategy is the most
efficient, whereas it is least flexible in terms of the possible modifications to cost
functions, structure, etc. The design of the LDL optimizer is capable of using
multiple strategies interchangeably. The main reason for requiring flexibility in the
system is that the system was initially intended as an experimental vehicle since
there was no prior experience in the design of an optimizer for a logic language.
Thus new ideas may be forthcoming that should be incorporated into the system.

Cost Model

The cost model assigns a cost to each execution, thereby ordering them. Intui-
tively, the cost of an execution is the sum of the cost of individual operations. In the
case of nonrecursive queries, this amounts to summing up the cost for each opera-
tion. Therefore, the cost function must be capable of computing the cost of each
operation based on the descriptors of the operands. Three major problems are
faced in devising such cost functions: 1) computation of the descriptors, 2) estimat-
ing the cost of external predicates, 3) safety of recursive queries.

In the presence of nested views, especially with recursion and complex objects,
estimating the descriptor for a relation corresponding to a predicate is a very diffi-
cult problem. This is further complicated by the fact that logic based languages
allow the union of non-homogenous sets of objects. The net effect is that the esti-
mation of the descriptor for any predicate is, in effect, computing the query in an
algebraic fashion. That is, the program is executed in the abstract domain instead
of the concrete domain. For instance, the age attribute may takaon values such as
16 in the concrete domain whereas, in the abstract domain, it takes on values such
as integer between 16 to 65. Obviously, computation in this domain is very difficult
and approximations to such computation must be devised that are not only efficient
but are also effective. Some work in the context of Prolog has been attempted
[DW87, WHD881 and this needs to be extended to the context of LDL.

In LDL, external procedures are treated in an interchangeable manner with any
predicate. Intuitively, the external procedure is viewed as an infinite relation satisfy-
ing some constraints. Therefore, a concise descriptor of such an infinite relation
must be declared in the schema and the cost functions for the operations on these
infinite relations must be devised. The abstraction of the approach taken in LDL has
been presented in [CGK89]. To our knowledge, this is the only treatise on an op-

timizer dealing with such an integration and this is limited to a subset of LDL. Much
more work is needed to include other operations such as updates and the validation
of this approach is still lacking.

The cost model must associate an infinite cost for an execution that computes an
infinite answer or that never completes. Such unsafe queries are to be detected so
that the optimizer can avoid choosing them. Obviously, checking for such termina-
tion properties is in general undecidable. Sufficient conditions have been proposed
(UV85, 286, KRS881. In particular, LDL uses the algorithm proposed in [KRS88],
which is an enumerative algorithm that exhausts an exponential number of cases.
Therefore, it is of interest to devise more efficient algorithms and more comprehen-
sive tests to check for safety.

In summary, we have presented some of the important problems that we have
observed in the context of optimizing LDL programs, some of which are currently
being pursued.

References:
[ApBW] Apt, K., H. Blair, A. Walker, Towards a Theory of Declarative Knowledge, in

Foundations of Deductive Databases and Logic Programming, (Minker, J . ed.),
Morgan Kaufman, Los Altos, 1987.

[AU 791 Aho, A. and J. Ullman, Universality of Data Retrieval Languages, Proc. POPL
Conf., San Antonio, TX, 1979.

[BaBu] Bancilhon, F. and P. Buneman (eds.), Workshop on Database Programming Lan-
guages, Roscoff, Finistere, France, Sept. 87.

[BMSU85] Bancilhon, F., D, Maier, Y. Sagiv and Ullman, Magic Sets and other Strange Ways to
Implement Logic Programs, Proc. 5-th ACM SIGMOD-SIGACT Symposium on Prin-
ciples of Database Systems, pp. 1-16, 1986.

[Ban] Bancilhon, F., Naive Evaluation of Recursively defined Relations, On Knowledge
Base Management Systems, (M. Brodie and J. Mylopoulos, eds.), Springer--
Verlag, 1985.

[BaRl Balbin, I., K . Ramamohanarao, A Differential Approach to Query Optimiza-
tion in Recursive Deductive Databases, Journal of Logic Programming, Vol. 4 , No.
2, pp. 259--262, Sept 1987.

[BeRa] Beeri, C. and R. Ramakrishnan, On the Power of Magic, Proc. 6th ACM
SIGMOD-SIGACT Symp. on Principles of Database Systems, 1987.

[Betl] Beeri, et al., Sets and Negation in a Logic Data Language (LDLl), Proc. 6th ACM
SIGMOD--SICACT Symp. on Principles of Database Systems, pp. 269--283,
1987.

[Bet21 Beeri, et al., Bound on the Propagation of Selection in Logic Programs, Proc.
6th ACM SICMOD-- SIGACT Symp. on Principles of Database Systems, 1987.

[BKBR] Beeri, C., P. Kanellakis, F. Bancilhon, R. Ramakrishnan, Bound on the
Propagation of Selection into Logic Programs, Proc. 6th ACM SIGMOD--SICACT
Symp. on Principles of Database Systems, 1987.

[BR 861 Bancilhon, F., and R. Ramakrishan, An Amateur's Introduction to Recursive Query
Processing Strategies, Proc. 1986 ACM-SIGMOD Intl. Conf. on Mgt. of Data, pp.
16-52, 1986.

[Bocl Bocca, J., On the Evaluation Strategy of Educe, Proc. 1986 ACM-LSIGMOD
Conference on Management of Data, pp. 368--378, 1986.

[CeGW]

[Ceta]

[Coil

[GMNI

[GM 821

war1

[HeNa]

[ImNa I

[IW 871

[JaCV]

[KeOT]

[KiLo]

[KoPa]

[KBZ 861

[KRS 871

[KrN 11

[KrN2]

[KrRS]

Ceri. S., G. Gottlob and G. Wiederhold. Interfacing Relational Databases and Prolog
Efficiently. Expert Database Systems, L. Kerschberg (ed.), Benjamin/Cummings.
1987.
Chimenti D. et a]., An Overview of the LDL System, Database Engineering Bulle-
tin, Vol. 10, No. 4 , pp. 52--62, 1987.
Colmerauer, Equations and Inequations in Finite and Infinite Trees. Proc. Int.
Conf. on Fifth Generation Computer Systems, pp. 85--99, ICOT, Tokyo. Japan.
1984.
deMandreville C. and E. Simon, Modelling Queries and Updates in Deductive
Databases Proc. 1988 VLDB Conference, Los Angeles, California, August 1988.
Debray, S. K., and D. S. Warren, "Automatic Mode inference for Prolog Programsn,
in Proc. of 1986 Intl. Symp. on Logic Programming, 1986, SaIt Lake City, Utah.
Gardarin, G. and C. deMandreville, Evaluation of Database Recursive Logic
Programs as Recursive Function Series, Proc. ACM SIGMOD Int. Conference on
Management of Data, Washington, D.C., May 1986.
Gallaire, H..J. Minker and J.M. Nicolas, Logic and Databases: a Deductive Ap-
proach. Computer Surveys, Vol. 16, No. 2, 1984.
Grant, J. and Minker J., On Optimizing the Evaluation of a Set of Expressions, Int.
Journal of Computer and Information Science, 11, 3 (1 982), 179-1 89.
Harel, D., First-Order Dynamic Logic, Lecture Notesin Computer Science, (G.
Goos and J. Hartmanis, eds.), Springer Verlag, 1979.
Henschen, L.J., Naqvi, S. A.. On compiling queries in recursive first-order data-
bases, JACM 31, 1, 1984, pp. 47--85.
Imielinski, T. and S. Naqvi, Explicit Control of Logic Programs Through Rule
Algebra. Proc. 7th ACM SIGMOD--SICACT Symp. on Principles of Database Sys-
tems, pp. 103--116, 1988.
Ioannidis, Y. E. Wong, E. Query Optimization by Simulated Annealing, SIGMOD 87,
San Francisco.
Jarke, M., J. Clifford and Y. Vassiliou, An Optimizing Prolog Front End to a
Relational Query System, Proc. 1984 ACM--SIGMOD Conference on Manage-
ment of Data. pp. 296--306. 1986.
Kellog, C., A. O'Hare and L. Travis, Optimizing the Rule Data Interface in a
KMS, Proc. 12th VLDB Conference, Tokyo, Japan, 1986.
Kifer, M. and Lozinskii, E.L., Filtering Data Flow in Deductive Databases,
ICDT'86. Rome, Sept. 8--10, 1986.
Kolaitis G. P. and C.H. Papadimitriou, Why Not Negation by Fixpoint?, Proc.
7th ACM SIGMOD--SIGACT Symp. on Principles of Database Systems, pp.
31--239,1988.
Krishnamurthy. R.. Boral, H., Zaniolo, C., Optimization of Nonrecursive Queries,
Proc. of 12th VLDB, Kyoto, Japan, 1986.
Krishnamurthy, R, Ramakrishnan. R. Shmueli. 0 . . Testing for Safety and Effective
Computability, Manuscript in Preparation.
Krishnamurthy and S. Naqvi, Non-Deterministic Choice in Datalog, Proc. 3rd
Int. Conf. on Data and Knowledge Bases, June 27--30, Jerusalem, Israel.
Krishnamurthy and S. Naqvi, Towards a Real Horn Clause Language. Proc. 1988
VLDB Conference. Los Angeles, California, August 1988.
Krishnamurthy, R. R. Ramakrishnan and 0. Shmueli, A Framework for Testing
Safety and Effective Computability. Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 154--163, 1988.
Krishnamurthy. R. and C. Zaniolo, Optimization in a Logic Based Language for
Knowledge and Data Intensive Applications, in Advances in Database Technol-
ogy, EDBT188, (Schmidt, Ceri and Misssikoff, Eds), pp. 16--33. Springer-Verlag
1988.

[KT 811

[KuYo]

[Llo 841

[M 841

[Metal

[Nai J

[NaKr]

[Na 861

[NaTs]

[Okee]

[RaBK]

[Reta]

[RLKI

P891

[SaZ 11

[Sel 791

[ShTZ]

Kellog, C., and Travis, L. Reasoning with data in a deductively augmented database
system, in Advances in Database Theory: Vol 1, H.Gallaire, J. Minker, and J.
Nicholas eds., Plenum Press, New York, 1981, pp 261-298.
Kunifji S., H. Yokota, Prolog and Relational Databases for 5th Generation Com-
puter Systems, in Advances in Logic and Databases, Vol. 2 (Gallaire, Minker and
Nicolas eds.), Plenum, New York, 1984.
Li, D. A Prolog Database System, Research Institute Press, Letchwonh,
Hertfordshire, U.K., 1984
Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, 1984.
Maier, D., The Theory of Relational Databases, (pp. 542-553), Comp. Science
Press, 1984.
Morris, K. et al. YAWN1 (Yet Another Window on Nail!), Data Engineering,
Vol.10, No. 4, pp. 28--44, Dec. 1987.
Naish, L.. Negation and Control in Prolog, Lecture Notes in Computer Science 238,
Springer Verlag 19 8 6.
Naqvi, S, and R. Krishnamunhy, Semantics of Updates in Logic Program-
ming, Proc. 7th ACM SIGMOD--SICACT Symp. on Principles of Database
Systems, pp. 251--261, 1988.
Naqvi, S. A Logic for Negation in Database Systems, in Foundations of
Deductive Databases and Logic Programming, (Minker, J . ed.), Morgan Kaufman,
Los Altos, 1987.
Naish, L., Negation and Control in Prolog, Journal of Logic Programming, to ap-
pear.
Naqvi, S. and S. Tsur, A Logic Language for Data and Knowledge Bases, MCC
Technical Report, 19 8 8.
O'keefe, R.A., On the Treatment of Cuts in Prolog Source Level Tools, Proc.
Symposium on Logic Programming, pp. 68--73, 1985.
Ramakrishnan, R., C. Beeri and Krishnamurthy, Optimizing Existential Datalog
Queries, Proc. 7th ACM SIGMOD--SIGACT Symp. on Principles of Database
Systems, pp. 89--102, 1988.
Ramamohanarao, K. et al., The NU-Prolog Deductive Database System, Database
Engineering Bulletin, Vol. 10, No. 4, pp. 10--19, 1987.
Rohmer, J., R. Lescouer and J.M. Kerisit, The Alexander Method ---A
technique for the Processing of Recursive Axioms in Deductive Databases, New
Generation Computing, Vol. 4, No. 3 , pp. 273--287,1986.
Swami, A., "Optiomization of Large Join Queries: Combining Heuristics and Combi-
natorial Techniques" in Proc. of SIGMOD, Portland OR, 1989.
Sacc\'{a) D., Zaniolo, C., On the implementation of a simple class of logic queries
for databases, Proc. 5th ACM SIGMOD-SIGACT Symp. on Principles of Database
Systems, 1986.
Sacc\'{a) D., Zaniolo, C., Implementation of Recursive Queries for a Data Lan-
guage based on Pure Horn Logic, Proc. Fourth Int. Conference on Logic
Programming, Melbourne, Australia, 1987.
Sacc\'{a) D., Zaniolo, C.. Magic Counting Methods, Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1987.
Sacc\'{a) D., Zaniolo. C., Differential Fixpoint Methods and Stratification of
Logic Programs, Proc. 3rd Int. Conf. on Data and Knowledge Bases, June 2730,
Jerusalem, Israel.
Sellinger, P.G. et. a]., Access Path Selection in a Relational Database Management
System., Proc. I979 ACM-SIGMOD Intl. Conf. on Mgt. of Data, pp. 23-34, 1979.
Shmueli, O., S. Tsur and C. Zaniolo, Rewriting of Rules Containing Set Terms in a
Logic Data Language (LDL), Proc. 7th ACM SIGMOD-SIGACT Symp. on
Principles of Database Systems, pp. 15--28, 1988.

[SmGe]

[SG88]

[SZ 861

[TZ 861

[U 851

[UV 851

[UlIl

[V 861

[vEKo]

[Vie]

w a r 1

[Z 851

[Zan 1]

Smith, D.E. and M.R. Genesereth. Ordering Conjunctive Queries, Artificial
Intelligence, 26, pp. 171--185, 1985.
Swami, A., A. Gupta, "Optimization of Large Join Queries", in Proc. of SIGMOD
conference. 1988, Chicago, pp8-17.
Sacca', D. and C. Zaniolo, The Generalized Counting Method for Recursive Logic
Queries, Proc. /CDT '86 - 4 1 1 1 . Conf. on Database Theory, Rome, Italy, 1986.
Tsur, S. and C. Zaniolo, LDL: A Logic-Based Data Language,Proc. of 12th VLDB,
Kyoto, Japan, 1986.
Ullman, J. D., Implementation of logical query languages for databases, TODS, 10, 3,
(1985), 289-321.
UlIman, J.D. and A. Van Gelder, Testing Applicability of Top-Down Capture Rules,
Stanford Univ. Report STAN-CS-85-146, 1985.
Ullman, J.D., Database and Knowledge-Based Systems, Computer Science Press,
Rockville, Md.. 1988.

Villarreal, E., Evaluation of an O(N"2) Method for Query Optimization, M S Thesis,
Dept. of Computer Science, Univ. of Texas at Austin, Austin, TX.
van Emden, M.H.. Kowalski, R., The semantics of Predicate Logic as a Program-
ming Language, JACM 23, 4, 1976, pp. 733--742.
Vieille, L. Recursive Axioms in Deductive Databases: the Query-Subquery
Approach, Proc. First Int. Conference on Expert Database Systems, Charleston,
S.C., 1986.
Warren, R., M. Hermenegildo, S. K. Debray, "On the Practicality of Global Flow
Analysis of Logic Programs", Proc. of the 1988 IntI. Conf. and Symp. on Logic Pro-
gramming. 19 8 8.
Warren. D.H.D., An Abstract Prolog Instruction Set. Tech. Note 309, A1

Center, Computer Science and Technology Div., SRI, 1983.
Zaniolo, C., The representation and deductive retrieval of complex objects. Proc. of
11th VLDB, pp. 458-469, 1985.
Zaniolo, C., Prolog: a database query language for all seasons, in Expert Database
Systems, Proc. of the First Int. Workshop, L. Kerschberg (ed.), BenjaminICum-
mings, 1986.

Zaniolo, C., Safety and Compilation of Non-Recursive Horn Clauses. Proc. First Int.
Conf. on Expert Database Systems, Charleston. S.C.. 1986.

Two Problems in Recursive Query Optimization

R. Ramakrishnan

University of Wisconsin-Madison

May 1, 1989

Abstract

We identify two fundamental problems in processing recursive queries that have received
little or no attention.

1 Query Processing: Nothing Ever Really Changes

Processing recursive queries is not so different from processing non-recursive queries: we must

identify the space of logically equivalent queries, identify the space of access plans for each of

these queries, and at tempt to identify the (query, access-plan) pair that has the least associated

run-time cost. Then, of course, we evaluate this query according to the chosen access plan.

This thesis is made explicit in (KRS881. While the paper addressed the issue of detect-

ing finiteness of answers (and intermediate results), it also provided a framework for query

processing, consisting of the following steps:

1. Choose a sip - informally, the order in which body goals are to be solved - for each

rule, for each (reachable) adornment.

2. Rewrite the program according to the set of chosen sips.

3. Evaluate the fixpoint of the rewritten program.

The important point, for our purposes here, is that this framework is essentially the same as

that for non-recursive queries - we find a logically equivalent query (the rewritten program) and

evaluate it. Thus, we omit special purpose evaluation algorithms, e.g. Prolog-style evaluation,

from consideration. I think that this is a reasonable decision for database applications. (Note

that we can still "mimic" those algorithms to the extent of not computing any facts that they

do not compute, through rewriting according to the Magic Sets algorithm [BMSU86, BeR87,

Ram881.)

2 Two Open Problems

There is a rich literature on program transformations that produce logically equivalent queries,

e.g., [BMSU86, BeR87, NRSU89, RBK88, Sag87, SZ86]. [BaRS6] provides a survey and further

references. In contrast:

1. There is no literature on how to estimate the cost of a (query, access-plan) pair.

2. There is no literature on how to structure the space of such pairs in searching for a

least-cost pair.

3 Discussion and Comments

I confess that I exaggerated a tad. For example, Lipton and Naughton have recently worked

on estimating the size of the transitive closure of a relation [LN89]. A paper by Kathy Morris

[Mor88] on re-ordering goals in rule bodies can be viewed as a step towards Problem (2).
However, it is the case that these problems have not been addressed seriously, and no good

solutions are in sight.

Problem (2) would be solved if someone wrote the equivalent of the Selinger et al. paper

on access paths in System R [SACLP79] for recursive queries.

To address Problem (I), we must answer one central question:

How do we estimate the stage function of a recursive query?

Informally, the stage is the number of iterations before the evaluation reaches a fixpoint,

that is, the depth of the recursion.

Given the depth of a recursive query, I think conventional cost estimation techniques can

be extended in a straightforward way to provide reasonable cost estimates for recursive queries

that are evaluated using a fixed access plan in each iteration. But maybe I'm too optimistic.

One solution to estimating the depth is to maintain statistics from past queries. Does

anyone have other ideas? (Note that a good parametrization of data is essential here. The

model proposed in [BaR86] provides a rather limited first step.)

References

[BMSU86] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic

sets and other strange ways to implement logic programs. In Proceedings ofthe ACM
Symposium on Principles of Database Systems, pages 1-15, Boston, Massachusetts,

March 1986.

[BaR86] Francois Bancilhon and Raghu Ramakrishnan. An amateur's introduction to recur-

sive query processing strategies. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 16-53, Washington, D.C., 1986. Revised

and reprinted in Readings in A I and Databases, Eds. M. Brodie and J . Mylopoulos,

pages 376-430, 1988.

[BeR87] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. In Proceedings of

the ACM Symposium on Principles of Database Systems, pages 269-283, San Diego,

California, March 1987.

[KRS88] Ravi Krishnamurthy, Raghu Ramakrishnan and Oded Shmueli. A framework for

testing safety and effective computability in extended datalog. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pages 154-164,

Chicago, Illinois, 1988.

[Mor88] Katherine Morris. Ordering conjuncts in datalog. In Proceedings of the ACM Sym-

posium on Principles of Database Systems, Austin, Texas, 1988.

[LN89] Richard Lipton and Jeffrey Naughton. Estimating the size of generalized transitive

closures. To appear in Proceedings of the International Conference on Very Large

Databases, 1989.

[NSRU89] Jeffrey F. Naughton, Yehoshua Sagiv, Raghu Ramakrishnan, and Jeffrey D. Ullman.

Factoring can reduce arguments. To appear in Proceedings of the International

Conference on Very Large Databases, 1989.

[Ram871 Raghu Ramakrishnan. Magic Templates: A spellbinding approach to logic programs.

In Proceedings of the International Conference on Logic Programming, pages 140-
159, Seattle, Washington, August 1988.

[RBK88] Raghu Ramakrishnan, Catriel Beeri, and Ravi Krishnamurthy. Optimizing exis-

tential datalog queries. In Proceedings of the ACM Symposium on Principles of

Database Systems, pages 89-102, Austin, Texas, March 1988.

[Sag871 Yehoshua Sagiv. Optimizing datalog programs. In Proceedings of the ACM Sympo-

sium on Principles of Database Systems, pages 349-362, Austin, TX, March 1987.

[SZ86] Domenico Sacca and Carlo Zaniolo. The generalized counting methods for recursive

logic queries. In Proceedings of the First International Conference on Database

Theory, 1986.

[SACLP79] Patricia Selinger, Mort Astrahan, Don Chamberlin, Raymond Lorie, and Ted Price.

Access path selection in a relational database management system. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, pages 23-34,

Boston, Massacussetts, 1979.

Increasing the Flexibility of Query Optimization

Johann Christoph Freytag

European Computer-Industry Research Centre
Arabellastr. 17

D-8000 Miinchen 81, West Germany

jcf%ecrcvax.uucp@unido.EDU, . . . !mcvax!unido!ecrcvax! jcf

Abstract

With extending current database technology to new application environments such
as knowledge base management systems, the task of providing the right level of query
processing and optimization for submitted user requests becomes more complex and
time consuming than in a conventional database environment. Facing this increased
complexity more flexibility in organizing query processing is necessary for adjusting
this task to different needs. We therefore propose to organize query processing by
strategy rules. Those should enable us to adjust the level of processing, including
optimization, to different requirements resulting from internal (i.e. system) and and
external (i.e. user) demands that both might vary over time.

1 Why more Flexibility?

With today's trend to extend currently existing (relational) database technology in various
ways many of the existing concepts, techniques, and methods used need to be redefined and
reexamined in the new context. In particular, the scope of query processing, in particular
query optimization, must be broadened to guarantee an efficient evaluation of user requests
that are expected to be more complex than requests in today's database management
svstems (DBMSs'l. The need to evaluate more demandine reauests in extended database

to improve the evaluation of queries for a particular execution model. For example, in re-
lational DBMSs physical optimization assumes an execution model whose basic operations
such as selection, join and other algebraic operations, reflects the need for efficiently pr*
cessing data stored on secondary storage. On the other hand, a deduction-based execution
model (such as in Prolog), for example, requires other (physical) optimization techniques
t o speed up the evaluation of queries.

In contrast, we see methods of logical optimization as execution model independent.
They shodd rewrite or transform a query without taking into account specific knowledge
about "low level* operations for later evaluation. To give a more precise understanding of
of the term logical optimization section 2 briefly mentions some of the existing techniques
which are in general helpful for improving the evaluation of queries. Although much work
has been done in this area only a few of those the logical optimization techniques have
been implemented in current DBMSs only in very limited ways for various reasons.

When providing sophisticated optimization techniques the problem of how and when
to apply those techniques becomes apparent. It is unfeasible and impractical to organize
query processing and optimization statically, i.e. by a fixed sequence of techniques that are
applied all the time. On the contrary, what is needed is an adaptable and flexible query
processing scheme that can be adjusted to different queries depending on requirements
specified by the user or derived from the request submitted.

We therefore suggest the use of s t r a t egy rules to express knowledge of how to organize
the process depending on different parameters. In [LT1185] Ullman introduces strategy rules
for the processing of recursive queries capturing the various alternatives that exist for
alternative forms of the query. We apply the same idea in the general context of query
processing to describe the organization of query processing in a flexible and adaptable
manner. We discuss some initial ideas of strategy rules in section 3. Finally, we outline
some general steps on how we intend to further develop the idea of a flexibly processing
user requests in an extended database environment.

2 Techniques for Logical Optimization

In the past the development of query optimizer has mainly focused on implementing com-
ponents for physical optimization. That is, most optimizers concentrate on immediately
generating the "best" query evaluation plan from a given user query without considering
other improvements, such as semantic query optimization [Kin81], first. We believe that
the latter kind of optimization becomes more important, for example, in knowledge base
systems where one expects more complex queries due to presence of rules and (possibly) a
deduction component. For this reason we use the term logical opt imizat ion to empha-
size the scope of optimization that is broader than semantic query optimization. Logical

optimization includes techniques such as2

the integration of integrity constraints (e.g. semantic query optimization [SO871 and
many others),

the improvement of ranges in logic queries [Bry89],

the standardization of queries achieving a canonical form (e.g. prenex normal form
or miniscope form [Bry89]),

the processing common subexpression (e.g. [Fin821 and others),

the optimizing of multiple queries [Se188],

the rewriting of recursive queries (e.g. [BR86] and others),

This list is by no means complete. On the contrary, we expect this list of methods
t o grow in the future when current requirements will demand additional optimization
techniques on the logical level.

3 Strategy Rules

To organize the techniques mentioned in the previous section we suggest the use of strategy
rules. This concept of strategy rules - by no means new in the context of DBMSs - seems
to proof advantageous whenever flexibility during the processing is required. Already
Ullinan organizes the translation of recursive queries around this concept [Ull85]. The
motivation for the "event-condition-action" rules of the HiPAC project are a modular,
execution independent specification of actions that are triggered if certain event happen
and conditions are satisfied inside the DBMS [D+88].

We envisage "condition-action" rules as a way to specify the various processing steps in
an flexible manner. The condition "tests" a given set of parameters and determines if this
rule "applies". If so, the action part specifies how to process the given query completely
or partially. In the latter case further rules are matched against the resulting query -
possibly iteratively several times - until some "final form" is produced that is ready for
execution.

The are various parameter that could determine the testing part of strategy rules such
as:

syntact ical propert ies of t h e query: How many relations/object types are accessed?
Does the query contain views? Is it a recursive query? What is the syntactical

'The reader should note that the list of citations is not intended to be complete for each of the techniques
mentioned. Rather the citations should be understood as "example references".

"complexity" (for example, for SQL queries the levels of nesting)? Does the query
contain common subexpressions?

semantic81 properties of the query: Do there exist integrity constraints related to
this query? If so is it likely that they help to improve the later evaluation? Should
the query be rewritten into some canonical form that is ben,eficial for other methods
of logical optimization?

statistical properties of the query: Are there small relations with only one or two
tuples that justify partial evaluation before performing further evaluation? Does the
query access relations with a large or only a few number of tuples? In the former
case, a significant saving in evaluation time could amortize and justify an extensive
optimization more easily than in the latter case.

dynamic properties: Is it advantageous to combine the evaluation of the query a t hand
with that of others (multiple query optimization)? Are there resource requirements
or resource limits known in advance that should be considered? For example, should
the query be optimized based on buffer space available at evaluation time?

user parameters: The user might request a cursory or extensive optimization depending
on whether the query runs only once or several times, or whether it is part of a
prototype or a production system. Based on the same kind of information the system
could determine the extend of compilation of queries using techniques as outlined
in [FG89] (i.e. to produce iterative programs), and could decide whether or not to
keep the query evaluation plan resulting from the optimization process.

Of course, the success of strategy rules heavily depends on the efficient testing of
those conditions and the accuracy that these tests provide. Both problems need further
investigation. It also needs to be proved that we can formulate those strategy rules in an
adequate manner such that they decide for the right kinds of optimization for the right
queries a t the right time. More practical experience is necessary to determine if the idea
to organize logical optimization by strategy rules is feasible in practice.

4 Conclusion

In this position paper we briefly outlined how to organize logical optimization by strategy
rules to provide the flexibility necessary for an extended processing of queries. We see a
need for this kind of flexibility when extending current database technology to new envi-
ronments such as knowledge base management systems. By emphasizing the structuring
of the query optimization process we believe that we provide a framework that can be
adapted to new methods and techniques developed in the future.

References

[BR86] F. Bancilhon and R. Ramakrishnan. An Amateur's Introduction to Recursive
Query Processing. In Proceedings A CM SIGMOD 1986, Washington, D. C., pages
16-52, May 1986.

[Bry89] F. Bry. Towards an Efficient Evaluation of General Queries: Quantifier and
Disjunction Processing Revisited. In Proceedings A CM SIGMOD 1989, Portland,
OR, May 1989.

[D+88] U. Dayal et al. Rules are Objects Too: A Knowledge Model for an Active Object-
Oriented Database System. In Proceedings of the Second International Workshop
on Object-Oriented Database Systems, Bad Ebernburg, September 1988.

[FG89] J.C. Freytag and N. Goodman. On the Translation of Relational Queries into
Itarative Programs. ACM Tmnsactions on Database Systems, 14(1), March 1989.

[Fin821 S. Finkelstein. Common Expression Analysis in Database Applications. In Pro-
ceedings ACM SIGMOD 1982, Orlando, FL, June 1982.

[Kin811 J. King. QU1ST:A System for Semantic Query Optimization in Relational
Databases. In Proceedings VLDB 1981, pages 510-517, August 1981.

[Sel88] T.K. Sellis. Multiple Query Optimization. Ilf.ansactions on Database Systems,
13(1):23-52, May 1988.

[SO871 S.T. Shenoy and M. Ozsoyoglu. A System For Semantic Query Optimization. In
Proceedings ACM SIGMOD 1987, San Fmncisw, CA, pages 181-195, May 1987.

[U1185] J. D. Ullmann. Implementation of logical Query Languages for Databases. ACAi
Tmns. on Database Systems, 10(3):289-321, Sept. 1985.

Heuristic-Based Semantic Query Optimization
and

Automatic Rule Derivation

Michael D. Siegel
Computer Science Department

Boston University
mds @ bu-cs. bu-edu

1 Introduction

Semantic query optimization has been shown to be a useful method for reducing query
processing costs (H ~ 8 0 , KI8la, KI81b, XU83, JA84, CH84, CH85, SH87, SI88a, SI88bI.
Savings result from the use of rules, or integrity constraints, supplied by experts. Unfor-
tunately, there has been little research targeted at the development of practical semantic
query optimizers. In addition, a methodology for experts to establish a set of useful rules
has not been developed. Thus semantic query optimization has not been used in numerous
applications where it can contribute to more efficient database operation. In response, we
have developed both a practical method for implementing semantic query optimizers and
an automatic method for deriving rules for use in the optimization process.

2 Heuristic-Based Semantic Query Optimization

A key problem in developing a practical semantic query optimizer is deciding when and how
to use a given integrity constraint. A constraint may not always be useful for optimization.
Some constraints are effective only if indices are present, or when certain types of queries
are asked. The standard method for identifying the most promising transformations is to
use transformation heuristics.

The set of transformation heuristics determines the behavior of the optimizer. It is im-
practical for this set to be hard-coded into the optimizer; instead, the system administrator
should be able to experiment with new heuristics, and to fine-tune old ones. Consequently,
what is needed is a semantic query optimizer generator. That is, given a set of transfor-
mation heuristics, we should be able to produce an executable semantic query optimizer.
Our optimizer generator is based on the conventional query optimizer generator [GR87a,
GR87bI used in the EXODUS extensible database system [C ~ 8 6] . It requires as input a

This work was funded by National Science Foundation grants DCRS407688, IST8408551 and
IST8710137.

set of semantic transformations heuristics. The language used for specifying these trarisf'or-
mations is derived from the EXODUS specification language f?r algebraic transformations.
Unlike algebraic transformations, each semantic transformation must also specify routir1e.s
for matching members of the rule set against proposed transformations (SI88bI.

Because we designed our semantic query optimizer similarly to a conventional optimizer,
we are able to compare them; we can examine how they duplicate certain functions, arrd see
how they need to interact. We consider the advantages of a combined semantic/conven tiorial
optimizer over the traditional loosely-coupled approach. Such combined optimizers are gen-
erated by providing a rule-based specification that includes both conventional and semantic
transformations.

An ostensible advantage of semantic query optimization is that the optimizer can answer
some queries without accessing the database. For example, suppose an integrity constraint
asserts that every employee is over 18. Then given the query asking for all employees of age
10, the optimizer can immediately detect that the answer must be empty. Although such
behavior is correct here, this optimization has been erroneously extended to other types of
queries. In our work we provide methods for the use of both tautologies and contradictions
in finding solutions to queries without accessing the database.

Our research has examined the performance of generated semantic query optimizers.
Using a sample database, performance statistics are obtained by submitting optimized
and unoptimized queries to an implementation of the Wisconsin Storage System (WiSS)
(CH0851.

3 Automatic Rule Derivation

The success of semantic query optimization depends on the existence of a set of useful rules.
However, these rules are not necessarily those that would or could be specified by an expert.
We have developed an automatic method for deriving a useful rule set. This method uses
intermediate results from the optimization process to direct the search for learning new
rules. Unlike user-specified rules, a system with an automatic capability can derive rules
that may be true only in the current state of the database. An example of such a derived
rule is "No employee makes more than $65,000." Although such rules may not always be
true, it is useful for the system to take advantage of them as long as they are true. In
addition, as the database is modified some derived rules may become invalid, while others
become true. Some derived rules may lose their usefulness. A system that maintains a set
of derived rules is flexible in a time-varying world.

The process of automatic rule derivation is known in the field of ~r t i f ic ia l Intelligence as
inductive or heuristic learning [BLU82, DA82, LE83a, LE83b, LISO, MI83, WA~O]. Given a
domain such as medical diagnosis [BLU82), a learning system derives appropriate rules and
constraints by examining data or sequences of operations on the data. Usually, heuristics
are used to limit the search for effective rules. They also determine the effectiveness of the
aystem. In a similar manner we can use heuristics to identify the characteristics of the rules
to be derived and to search the database for these rules. It seems promising and natural to
apply the techniques of inductive learning to rule derivation for database systems.

The derivation of rules from the database, a difficult search problem, is accomplished

using information obtained from the database usage pattern, a set of query transformatior~
heuristics, and query cost formulas. The use of a query history for database optimizatiori
has been examined in other self-adaptive database optimization techniques such as index
selection [CHA76], view materialization or the use of temporaries lFI82, JA85, SE861, arid
physical database restructuring [AH84, NA841. In automatic rule derivation, the q u e r y
history assessment is important in determining the characteristics of rules that are useful
in semantic query optimization.

Once rules have been derived from the database, their value in semantic query opti-
mization must be monitored. In particular, the size and quality of the rule set must be
controlled. In addition, the rule set must remain valid in the presence of updates. Unlike
integrity constraints, not all derived rules remain valid in all database states. Thus violated
rules must be deleted or modified to reflect the new database state.

Along with developing methods for implementing semantic query optimization, our re-
search has defined methods for identifying, deriving and maintaining rules for use in seman-
tic query optimization. The automatic rule derivation process works in parallel with the
semantic query optimizer, sharing some knowledge sources and using some intermediate re-
sults from the optimizer. These methods can be used to derive rules for query optimization
in conjunction with or in lieu of a human expert. The savings that result from this method
will accrue when rules that are derived can be used repeatedly in the optimization process.
The success of semantic query optimization may depend on the ability of this automated
process to maintain a set of useful rules in a changing database environment.

4 Conclusions and F'uture Research

In summary, we have developed, based on the conventional optimizer generator described
in [GR87a], a data-model independent semantic query optimizer generator. This gener-
ator makes it possible for a database implementor to provide a specification of semantic
transformations and to generate from these specifications an executable optimizer. Using
an optimizer based on the relational model and a sample database, we have been able to
show that the savings expected from this type of optimization are real. Finally, we have
described a method for automatically deriving rules for use in optimization. This process
of rule derivation reduces the dependency on human experts and provides a means for the
optimization process to follow changes in the database usage pattern, making semantic
query optimization possible and effective in applications that have limited access to expert
knowledge.

Our research describes advances in both database and artificial intelligence research in
a time when these two fields are becoming increasingly interdependent, but there exists a
number of areas for further research.

First, we would like to consider the extension of semantic query optimization and au-
tomatic rule derivation to semantic data models. All of the research to date has focused
on the relational model. However, the added structure of semantic models appears to be
better suited to semantic transformations, and useful integrity constraints seem to be much
more prevalent. Some preliminary work in this area is discussed in [SIBBa, S188bl.

Next, we would like to consider more general integrity constraints. Although simple rules

are common, there are other useful classes of constraints, such as functional dependerrcies
and inclusion dependencies [J ~ 8 4] . We need to examine how eqi ly our optimizer generator
can be adapted to handle these constraints. It is also possible to consider the derivtitiorr
of these more complex rules but this may prove difficult without some assistance frurr~ a

domain expert.
We would like t o examine more closely the various methods for improving the perfor-

mance of both the semantic query optimizer and the rule derivation process. These include
methods for limiting the application of heuristics. The use of phases fGR87bj and heuristic
performance statistics [HA~O] provide some added control. Additional system-derived or
user-specified da ta may be useful in fine tuning the optimization process (SI88bl. But the
effect of the interaction of these techniques on the optimization process is not well under-
stood. In addition, further experimentation is needed to study the interaction between
algebraic and semantic transformations.

Heuristic-based semantic query optimization is dependent on the ability of the database
implementor to supply a set of useful semantic transformation heuristics. But the database
implementor has little or no guidance in determining if he or she has written a complete and
consistent set of heuristics. Methods are needed to assist the implementor in developing
heuristics that fit these requirements.

Additionally, there are numerous questions that remain about the derivation process.
First we need to determine the savings that can be realized from semantic query optimiza-
tion using automatic rule derivation. In particular, when is i t likely tha t we will generate
meaningful rules? What types of rules are most likely to be derivable? What types of data
models are appropriate for semantic query optimization using automatic rule derivation?
What types of applications are appropriate for these methods? We hope to address these
questions and others using the present implementation.

Once rules have been derived from the database, they must be maintained in the presence
of updates. Several methods for maintaining a valid set of derived rules were described in
(ST88bI. These methods include explicit reference to exceptional instances and rewriting of
rules to account for violations. It is a matter of future research t o implement these and
other methods in order to discover which are cost effective in a given application. Managing
derived rules in the presence of updates poses many problems for both artificial intelligence
and database research. For example, the ability of a system to learn from exceptions and
the explicit use of exceptions in rule maintenance and other database operations.

In summary, this paper describes a new approach to query optimization by first es-
tablishing methods for heuristic-based semantic query optimization, and then by defining
automatic rule derivation as a learning process that can be used to supply the optimizer
with a set of useful rules. The success of semantic query optimization in reducing query
processing costs will depend on learning methods like this to provide the database w i ~ h a
useful set of rules in a changing database environment.

5 References

(AH841 AHAD, RAFIUL (1984), User- Assisted Design and Evolution of Physical Databases, P11.D.
Thesis, University of Southern California.

[BLU82] BLUM, ROBERT (1982), Discovery, Confirmation, and Incorporation of Causal Ke-
lationships from a Large Time-Oriented Clinical Data Base: The RX Project, Computers artdl

Biomedical Research, Volume 15, pp. 164-187.
[CA8(jJ CAREY, MlCHAEL, et. al. (1980), The Architecture of the EXODUS Extensible DHhlS

A Preliminary Report, Proceedings of the International U'orkshop on Object-Oriented Datutuac
Systenis, pp. 52-05.

ICHal] CHAKRAVARTHY, U., D. FISHMAN, AND J. MINKER (1984), Semantic Query Op-
timization in Expert Systems and Database Systems, Proceedings of the First Internotiotral
Conference on Ezpert Database Systems, South Carolina, pp. 326-340.

[CH85] CHAKRAVARTHY, UPEN (1985), Semantic Query Optimization in Deductive Databases:
Ph.D. Thesis, University of Maryland.

ICHA761 CHAN, ARVOLA (1970), Index Selection in a Self-Adaptive Relational Data Base M a n -
agement System, Masters Thesis, Massachusetts Inst. of Technology, TR-166.

(CH085j CHOU, H-T., DAVID DEWITT, RANDY KATZ, and ANTHONY KLUG (1985), Design
and Implementation of the Wisconsin Storage System, Software Practice and Experience, Vol.
15(10), pp 943-962.

IDA821 DAVIS, RANDALL AND LENAT, DOUGLAS (1982), Knowledge-Based Systems in Ar-
tificial Intelligence, McGraw-Hill Advanced Computer Science Series.

. - IF1821 FINKELSTEIN S. (1982), Common Expression Analysis in Database Applications, Pro-
ceeding of the 1982 ACM-SIGMOD Conference on Management of Data, Orlando, Fla., pp.
235-245.

IGR87aI GRAEFE, GOETZ and DAVID DEWITT (1987), The EXODUS Optimizer Generator,
Proceeding of the 1987 ACM-SIGMOD Conference on Management of Data, San Francisco, (2.4;
pp. 160-171.

[GR87b] GRAEFE, GOETZ (1987), Rule-Based Query Optimization in Extensible Database Sys-
tems, Ph.D. Thesis, University of Wisconsin.

[HA781 HAMMER, MICHAEL and SUNIL SARIN (1978), Efficient Monitoring of Database As-
sertions, ACM-SIGMOD International Conference on Management of Data, Austin, Texas., pp.
38-49.

[HA801 HAMMER, MICHAEL and STANLEY B. ZDONDIK (1980), Knowledge-Based Query
Processing, Proeeedingr 6th VLDB Conference, Montreal, pp. 137-146.

[JA84] JARKE, M. (1984), Semantic Query Optimization in Expert Systems and Database Sys-
tems, Proceeding8 of the Firat International Conference on Ezpert Database Systemc, South
Carolina, pp. 467-482.

(JAB51 JARKE, M. (1985), Common Subexpressions Isolation in Multiple Query Optimization, In
1KIM851, pp. 191-205.

(KI8laj KING, JONATHAN J . (1981), QUIST: A System for Semantic Query Optimization in
Relational Databases, Proeeedingr 7th VLDB Conference, Cannes, pp. 510-517.

(K18lbl KING, JONATHAN J. (1981), Query Optimization Through Semantic Reasoning, Ph.D.
Thesis, Stanford University.

(LE8Sa) LENAT, DOUGLAS (1983), Theory Formulation by Heuristic Search. The Nature of
Heuristics 11: Background and Examples, Artificial Intelligence, Volume 21, Number 1 and 2 ,
pp. 31-80.

(LE83bl LENAT, DOUGLAS (1983), EURISKO: A Program that Learns New Heuristics and Do-
main Concepts. The Nature of Heuristics 111: Program Design and Results, Artificial Intelligence,
Volume 21 , Numbers 1 and 2, pp. 61-98.

[LIBO] LINDSAY, R., B. BUCHANAN, E. FEIGENBAUM, and J . LEDERBERG (1980), Appli-
eationr of Artificial Intelligence for Organic Chemirtrv: The DENDRAL Project, McGraw-Hill.

[MI831 MICHALSKI, R., J. CARBONELL and T . MITCHELL (1983), Machine Learning, Tiogn
Publishing.

[NA84] NAVATHE, SHAM, et. al. (1984), Vertical Partitioning Algorithms for Database Design,
ACM Tranractionr on Database Systemr, December, pp. 680-716.

[SE86] SELLIS, TIMOS (1986), Global Query Optimization, Proceedingr of the 1986 AC'M-
SIGMOD International Conference on the Management of Data, Washington D.C. , pp. 191-205.

[SI88a] SIEGEL, MICHAEL (1988), Automatic Rule Derivation for Semantic Query Optimiza-
tion, Proceedings from the Second international Conference on Ezpert Databare Systems, Tysons
Corners, Virgina, pp. 371-385.

[SI88b] SIEGEL, MICHAEL (1988), Automatic Rule Derivation for Semantic Query Optimization,
Ph.D. Thesis, Boston University.

ISH871 SHENOY, SREEKUMAR and MERAL OZSOYOGLU (1987), A System for Semantic
Query Optimization, Proceedings of the 1987 ACM-SIGMOD International Conference on the
Management of Data, pp. 181-195.

[Wri70] WATERMAN, D. (1970), Generalization Learning Techniques for Automating the Learn-
ing of Heuristics, Artificial Intelligence, Volume 1, pp. 27-120.

[XU83] XU, DING (1983), Search Control in Semantic Query Optimization, University of Mas-
sachusetts, Department of Computer Science, Tech Report TR8S-09.

Semantic Query Optimization in Distributed Databases
A Knowledge-Based Approach

H. J . A . van Kuijk P.M. G. Apcrs

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

1 Introduction

Conventional query optimisation is based principally on syntactic considerations. To facilitate the
optimization process, certain characteristics inherent to the application being modeled could be used
[Hammer 80,King 811. To be applicable, thin knowledge should be expressed in a formalism suitable to
the query optimiser.

Our approach described in this extended abstract provides a framework to solve a number of existing
and new problems encountered during (semantic) query optimisation in a (distributed) database system:
representation and application of semantic knowledge, deriving more efficient Aedules for selection
and join operations, defining and using horisontal fragmentation knowledge, estimating more accurately
the profiles of intermediate results. Our framework is baaed on a hierarchy of constraints to explicitly
represent application knowledge to be applied to arrive at more efficient query evaluation plans.

The rest of this short paper is organised as follows. In nection 2, a hierarchy of static constraints
is introduced in the context of representing application knowledge to be used by a query optimixer. In
section 3, our framework in demonstrated to unify the aolution to a namber of probkma to be solved
during query optimisation. In section 4, our knowledge-based approach is introduced. Finally, in section

5 some conclusions are given.

2 Constraints

The relational data model has its limitations concerning capturing useful propertien of data ruch as

additional restrictions on data values and specifications of how the data may be related. In our research,
a database is defined by a database scheme (DBS). The DBS consists of a finite set of relation schemes
{RS), and a finite set of constraints {C).

DBS =< {RS), {C) > .
Constraints provide a means of explicitly representing certain characterbti- inherent to the rpplica-

tion being modeled. They should be expremed as well-formed formulas of a formalism ruch rn predicate
calculus that b amenable to exact sptcMcation and verification. The set of conrtrainta {C) should be
sattfiable.

'E-mail: utrcul!~uykOmcvu.uucp

In general, two ditrerent c h - of constraints are dmtingubhed: dynamic constraints and static
constraints. Dynamic constraints are operation-oriented conditions a database transition must satisfy.

Static constraints are conditions a database state must sat*.
Static constraints can be used to represent expiicitly conventional dependencia (referential con-

straints, key and functional dependencies, multi-valued and join dependenlien) and nematic constraints

(value constraints, implication constraints, subset constraints). The following comtrabt hierarchy is ap-

propriate: domain constraintr, attribute constraintr, tuple constraints, relation constraints, and database

constraints. In this short paper, only the f i s t three constraints are considered.

m i t i o n 2.1 A domain DA underlying an attribute A is defined as a subset of an underlying biae
domain (BD) by a oncplace predicate formula DC(v) representing a domain c o ~ t r a i n t :

D A = { ~ I v e B D h D C (v)) .

A domain constraint DC can be uaed to explicitly define a domain DA of an attribute A M a subset of

aome underlying base domain (BD).

on 2.2 An attribute con~traint on an attribute A b a onc-place predicate formula defining a

subset of values V of the domain DA underlying attribute A: V = (V I v e DA A AC(v)).

An attribute constraint AC can be nsed to explicitly represent certain characteristics inherent to an
attribute. For the set of constraints {C) to be consistent, an attribute coastra.int AC(a) must always

imply the domain constraint DC(a), denoted AC(a) -, DC(o).

Peflnition 2.8 A tuple constraint on n attributes is an *place predicate formula defining a subset S
of the cartesian product of the n domains underlying the attributes referenc'ed by the predicate

formula: S = {t I t r Dl x Dz x . . . x D, A TC(t)).

A tuple constraint TC in an inter-attribute constraint explicitly representing certain useful characteristics

concerning combinations of attribute values. In section 3, the constraints defined in thin section are applied

to solve a number of optimisation problems.

3 Query Optimization

In thia aection, the hierarchy of constraints introduced in the previous section k demonatrated to be a
uniform framework to solve a number of problems encountered during query optimisation.

3.1 Semantic Query Optimization

Becauae query optimisation h known to be NP-hard, a hearistic approach seema juati6ed. Weak search

methods, such as the A'-algorithm, cannot be applied because of the lack of a weMe6ned god state'.
Our approach is to divide the w e r d probkm into several smaller stages. Sometimes aome local, but

not global, tests of optimality are pcwrible for the individual stages. A consequence d thm approach is a
rolution that might not be optimal but is considered ratirfyinq. The following stages u e distinguished.

Quny preprocessing : the query is transformed into a canonical internal e x p d o n .

Query expandon : knowledge of the application h u ~ d to expand selection and join predicates.

Query reduction : all semantically redundant selection and join predicate formula are nmwed.

Query pmtprocesein~ : the resulting query expression is transformed further into a schedule.

'In -nerd, it is impauible to detut whether 8 solution b epthd.

Selection : TC,,(R) = TCR A F. 'l

Projection : TC,,(R) = TCR[A].
Union : T C R ~ S = TCR v TCs.
Intersection : T C R ~ S = TCRATCs.
Diffvence : T C R - ~ = TCR.
Carteeian Product : TCRxs = TCR A TCs.
Join : TCR, ,~ = TCR A T C ~ A F. -

Table 1: Tuple constraints resulting from relational operations.

Our framework of constraints provides a mechanism for representing semantic knowledge to be used
during the expansion and reduction stages. Consider the following if-then rules defining relationships
between interval8 I referencing the attributes o and b:

rulel : i f I a l then Ib l Rl(a,b) = (a) = (-Ia1vIbl).
rule2 : i f Ia , then It,, Rz(4,b) = (1 1) = (7 I . ,VIb) .

The tuple constraint resulting from both the if-then rules is constructed by having the conjunction of

Rl(a, b), R2(4, b), and the available attribute constraints AC(4) and AC(b):

TC(a, b) = Rl(a, b) A &(a, b) A AC(o) A AC(b).
= (-Ial V lal) A (-.Ia, V It,,) A AC(4) A AC(b).

In our approach, it is possible to apply knowledge in the form of constraints (tuple constraints, attribute
constraints, and domain constraints) during the process of (semantic) query optimisation. A more detailed
description of the techniques discuesed here is given in [Kuijk 881.

3.2 Selection and Join Operations

In our approach to query optimisation, selection and join predicates play a central role. Knowledge
about the domain of application represented as constraints can be applied to augment selection and join
predicates resulting in more efficient query evaluation plans.

In case of a selection operation cF(R), all the tuples of operand relation R are defined to satisfy the
tuple constraint TCR on R. Without influencing the semantics of the operation, the selection predicate
can be expanded to FATCR. Given this expanded selection predicate, the following interesting situations
are distinguished.

1. If FA TCR is unsatisfiable, then none of the tuples of R can ever satisfy the ~ l e c t i o n predicate F.
The entire operation should be dlcarded.

2. If TCR F, then all the tuples of R must satisfy the relection predicate F. The quay expre~ion
rhould be adjusted accordingly since uF(R) = R.

In our approach, the optimirer can detect the above situations. Unnecessary operations can therefore
be avoided. A similar approach in applied to detect m d discard unnecwary join operationr. Comtraints
can thus be applied to generate more efficient d e d u k s . In general, the operand relatiom of ukction and
join operations can result from previoua operatiom. Table 1 shows how to obtain the tupk constraints
on the relations rerulting from relational operatiom [Kuijk 881'.

'Thu remmblen the notion of grdiFI relatiom d.rcribad in [Cd 841.

3.3 Horizontal Fragmentation

Our framework of constraints prwides an elegant means to define the partitioning of global relations into

horisontal fragments. In our approach, a horisontd eagmentation is defined by an attribute constraint

(single fragmentation attribute) or, in general, a tuple constraint (more thmone fragmentation attribute).

A horisontal fragmentation should ratiufy the reconstruction, completenear, and d b j o i n t n e ~ condi-

tiom [Ceri 841. In our framework of constraints, it is porsible to ched whether tbese conditions are

utkfied (for example during fragmentation design).
Being expressed explicitly aa conntraints, it irr possible for the query optimirer to apply this fragmen-

tation knowledge during the process of generating more efficient schedules. Consider the following query:

Extension of the selection predicates enables the query opthiser to apply the techniques d i scuad before
to avoid unnecessary operations during query evaluation.

3.4 Estimating Intermediate Results

The selection among alternative schedules i guided by their expected performance according to some

cost model. The optimiser needs a provision to estimate the profiles of relations resulting from relational

operations [Ceri 841.

Estimating the cardinality of intermediate results can be translated to calculgting the rise of the

n-dimensional bodies defined by the n-place constraint predicate formula on the rcslllt relations. In
[Kuijk 881, a constraint normal form (CsNF) is defined. Informally, a constraint predicate formula is
in CsNF if it in a predicate formula in conjunctive normal form with mutually dijoint conjuncts. The
property of mutually disjoint conjuncts is the key to more accurate estimations. For example, in case of a

union, the number of tuples in the intersection can be determined more accurately and are counted only
once3. Depending on the problems, in [Kuijk 881 our approach i demonstrated to remlt in considerably

more efficient estimates (in casc of selection operations, improvements of 50 % are achievable).

4 A Knowledge-Based Approach

A knowledge ryrtem i a computer program with a clear =paration beheen domain-speci6c knowledge

and domain-independent inference knowledge. Knowledge to be med during query optimiration should
be made explicit. An explicit representation enables the optimiration knowledge to be managed (added,

deleted, modified). In our approach, the following knowledge murces an distinguished:

Strategy Knowledge : this knowledge reflecta the strategies to attack the problem of query optimiza-
tion (knowledge about available opthisation strategies and heuriatia to select among them).

Domain Knowledge : the system ne& knowledge about the various subprocevtr of query optimisa-
tion (including syntactic and semantic transformation techniques, estimating intermediate results,

determining efficient join sequences, etc.).

Application SCnowledgc : the system n d knowledge about the contentr of the d a a b u c (database
schemes, relation aehemea, definitiom of domairu and attributes, statistics, constraints, etc.).

*eard(R U S) = card(R) + card(S) - card(R n S) .

Q UER SCHEDULE Y-

Figure 1: Architecture of the knowledge-baaed query optimiser.

L

QUERY
OPTIMIZER

MECHANISM
I

KB *-• KB

Implementation Knowledge : the system needs knowledge representing the characteristics of system-
dependent parts such as available algorithms for the (relational) operators, storage structures and
access mechanisms, hardware characterbtia (CPU, disks, network).

The architecture of our knowledge-based query optimiser L given in figure 1. Distinguishing dzerent
stages during the process of query optimiration allows the knowledge base of the system to partitioned into
well-defined smaller modules. Instead of searching a potentially large and growing knowledge base, the
inference mechanism can focus on one of the smaller modules during the various stages of the optimiration
process. The power of a knowledge-baaed approach is its flexibility. It facilitates an easy extension to new
optimization knowledge and other environments (extensible databases, complex objects, new operators,
new storage structures and access mechanisms).

5 Conclusions

In our approach to (semantic) query opthication in a distributed database, the explicit representation
of potential query opthiration knowledge inherent to the application being modeled is a central issue.
A hierarchy of static constraints is demonstrated to be the foundation of a framework unifying a number
of problems encountered during query optimisation: the representation and application of semantic
knowledge, the manipulation of selection and join predicates, the definition of a horisontd partitioning
of global relations, the ertimation of profiles of intermediate results.

Our query optimiser i implemented an a knowledge system. Since we decompose the werall opti-
misation process into a number of smaller independent stages, the potentially large knowledge base of
the optimizer is partitioned into a number of well-defined modules. A number of optimiration knowl-
edge sources are distinguished: strategy knowledge, domain-dependent knowledge, application-dependent
knowledge, implementation knowledge. The power of our system is its flexibility. It allo.rr an easy exten-
sion to new environments (extensible databas-, complex objects, new operatola, new acceu and storage
mechanisms, etc.).

References

[Apers 831 P.M.G. Apem, A.R. Hevner, and S.B. Yao, Optimiration Algorithm for Distributed Queries,
IEEE Zbansactions on Software Engineering, Volume SE9, Number 1, pp. 57-68, January,
(1983).

[Brock 801 E.O. de Brock, Tables, Table Vaniables, and Static Integrity Conutrainta, Memorandum 8 a
12, Eidhaven University of Technology, (1980).

[Ceri 831 S. Ceri and G. Pelagatti, C o r n c t n e ~ of Query Execution Strakegiu in Distributed
Databases, ACM Transactions on Database Systems, Volume 8, No. 4, pp. 577-607, De-

cember, (1983).

[Ceri 841 S. Ceri and G. Pelagatti, h t r i b u t e d Databuses: Principles and Systems, McGraw-Hill, New

York, (1984).

[Chang 731 C.L. Churg and R.C.T. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic

Rw, Orlando, Florida, (1973).

[Date 831 C.J. Date, An Introduction to Database System, Volume 11, Addison-Wesley, Reading, Mas-
sachusetts, (1983).

[Date 861 C.J. Date, Database Systems, Volume I, Fourth Edition, Addison-Wesley, Reading, Mas-
sachusetts, (1986).

[Genea 871 M.R. Genesereth and N.J. N h n , Logic Foundations of Artificial Intelligence, Morgan
Kaufmann Publishers, L a Altos, Caliiomia, (1987).

[Hammer 801 M. Hammer and S.B. Zdonik, KnowledgoBiwd Query Proce~ing , Proceedings of the 6'h

Conference on Very Large Databases, (1980).

[Jack 861 P. Jackson, Introduction to Ezpcrt Systems, Addison-Wesley, Reading, Massachusetts,

(1986).

[Jarke 841 M. Jarke and J. Koch, Query Optimisation in Databae Systems, ACM Computing Surveys,

Volume 16, No. 2, June, (1984).

[Jarke 851 M. Jarke, J. Koch, and J.W. Schmidt, Introduction to Query P roce~ ing , Query Processing

in Database Sgstenu, Eds. W. Kim, D.S. Reiner, and D.S. Batory, Springer, New York, pp.

3-28, (1985).

[King 811 J.J.King, QUIST: A System for Semantic Query Optimisation in Relational Databases,

Proceedings of the V h Confennce on Very Large Databases, (1981).

[Korth 861 H.F. Korth and A. Silbenchatr, Databaae System Concepts, McGraw-Hill, New York, (1986).

[Kuijk 881 H.J.A. van Kuijk, The Application of Conatrainta in Query Optimization, University of
Twente, Computer Science Department, Report INF-88-55, December 1988.

[Kuijk 891 H.J.A. van Kuijk, The Application of Dependencies in Querp Optimization, Univenity of
Twente, Computer Science Department, Report INF 84xx, (in preparation).

[Maier 831 D. Muer, The Theorg of Relational Databases, Computer Science Prm, Roehrille, Mary-
land, (1983).

[Seling 791 P.G. Selinger, M.M. h t r a h u r , D.D. Chamberlin, R.A. Lorie, m d T.G. Price, Acceu Path
Selection in a Relational D a t a b w System, Proceedings of the ACM Siqmod International
Conference on the Management of Data, pp. 2534, (1979).

[Simm 841 M.K. Simmons, ArtScial Intelligence for Engineering Design, Computer-Aded Enpineering
Journal, April, (1984).

[Ullman 821 J.D. Ullman, Principles of Databaae Systems, Computer Science Fnm, Rochille, Maryland,

(1982).

? Q

Intelligent query answering in Expert Database Systems
using a heuristic approach

Suk-chung Yoon and Lawrence J. Henschen
Dept. of Electrical Engineering and Computer Science

Technological Institute
Northwestern University

Evanston, IL 60208

EXTENDED ABSTRACT

In recent years, there has been an increasing awareness that such seemingly disparate

fields such as databse and artificial intelligence are related in many ways. Expert sys-

tems in artificial intelligence and database management systems are two technologies

that having evoloved along different lines, but are now beginning to merge together

toward the common goal of knowledge management systems. The merging of these

two technologies results in the emergence of a new technology, namely expert database

systems. The resulting expert databse system will benifit from the deductive problem

solving capability of an expert system as well as the sophisticated and efficient man-

agement of a large database of facts and the enforcement of data reliability, integrity

and security in a database management system. Other important advantages of the

merging these technologies include enhanced query languages, semantic query process-

ing and optimization, intelligent interfaces, etc.

Database systems have been designed to effectively find all of the feasible solutions

which satisfy such a query rather than a few good solutions. But expert systems tradi-

tionally have been used to find only one or few good solutions for a query rather than

all feasible solutions. A good example is the air-line reservation system where a passen-

ger is not interested in looking at all of the feasible routes between two cities: instead

he/she is interested in the optimal route or a set of "goodn routes. A system may not

want to confuse the user with all possible flights but rather choose a few good looking

ones. Our objective is to purpose a general strategy for the design and implementa-

tion of an intelligent general-purpose expert database system that includes findfew and

findall queries. Our study uses the semantic knowIedge(integrity constraint) to Iimit

the search space and also heuristics(domain-specific knowledge, ;xpert knowledge, ap-

proximate knowledge etc.) as search constraints to order the search space to explore

and improve the quality of answers in the case of a findfew query. This paper also

addresses the efficient query evaluation and optimization based on the heuristic meth-

ods. In this paper, we use the first order logic for expressing the rules, organizing the

knowledge and for reasoning; it gives much greater expressive power, conciseness and

flexibility. Our expert database system is composed of four parts: (i) an extensional

database(EDB), which consists of facts, represented by clauses with only one positive

literal containing no variable, (ii) an intensional database(IDB), which consists of de-

ductive rules, represented by non-recursive and function-free horn clauses, (iii) a set of

integrity constraints(IC), which specify semantic relationships expressed only over the

EDB relations, (iv) a set of heuristics.

We divide the process of intelligent query answering into two phases, the pre-

processing phase and the query processing phase. In the pre-processing phase, there

are four parts as follows: pre-processing of the IDB, pre-processing of the ICs, pre-

processing of the heuristics and finding relevent integrity constraints and heuristics for

each predicates. There are two parts for the pre-processing of the IDB. One is the rule

factorization and the other is rule compilation. In the rule factorization, if two of IDB

rules that have same head literal share a common initial segment, we merge these rules

and factorize the initial segment. There are some advantages for rule factorization.

We will avoid repeating the same operation at run time and also reduces storage be-

cause we don't need separate storage for the common initial parts of rules. In the rule

compiler, a graph model is developed to facilitate the search through the rule set of an

expert database system. That is, the rules in the IDB are transformed into a graph

structure to process efficiently.

Definition: Suppose we are given IDB rules. Following is the definition of rule-graph

G=(V,E).

(i) V={ set of node). There are two kinds of nodes in the graph. C-node is a node

for the consequent part in a IDB rule. A-node is a node for the antecedent part in

a IDB rule.

(ii) E={(x, y) I x, y are in V }. There are two kinds of edges in the graph. For each

IDB rule, there is an edge from C-node to A-node. This edge is called J-edge(it means

that we derive the consequent part by the join of literals in the antecedent art). For

each A-node, if A-node includes IDB literal which is unifiable, then there is an edge

from the IDB literal in the A-node to C-node of the IDB literal. This edge is called

U-edge(1t means unifiable edge).

We attach unifiers on U-edges in the rule compile-time for reducing the run time. The

rule-graph is very useful in the situation in which the rule update is occured frequently

because we just modify the corresponding node in the rule graph. Precompiling rules

into the graph facilitates the maintenance and management of the IDB and improve

the performance. To complete the pre-processing of integrity constraints, we need two

parts. First, derive all possible new integrity constraints derivable from the original

once by resolution. Second, convert all integrity constraints to the variable substituted

form: this will allow more effective use of the ICs. We use implicity constraints that are

useful in searching the answer. Implicity constraint are not explicitly supplied but are

generated during searching the solution of a specific set of goals. In pre-precessing the

heuristics, domain specific knowledge, expert knowledge and approximate knowledge

can be coded into rules using first order predicate logic to assist in problem solving. Af-

ter finishing pre-processing of the IDB, IC and heuristics, we need to relate the relevent

integrity constraints and heuristics to the IDB rules. That is, integrity constraints and

heuristics are combined into the graph. We propose an algorithm using the modified

partial subsumption technique. Restriction implied by relevent integrity constraints

and heuristics are collected and used in optimizing the queries.

In the query processing phase, upon receiving a query, first the system will extract

the relevant portion from the graph. Second the system will transform the given query

with the integrity constraints and heuristics into a form that can be evaluated more

efficiently than the original query. For example, we may eliminate the unnecessary

and redundant restrictions, find the transitive constraint, introduce a constraint for

efficient searching and move a constraint across the join boundary, etc. In this step,

we suggest some heuristics that choose the profitible ones among the integrity con-

straints and heuristics in the query context. After the transformation process, we have

a semantically equivalent query. Third, the system receives the transformed query

and generates the optimized processing tree. The hierarchical organization of the tree

represents the order in which the nodes in the tree are to be evaluated. We propose

a heuristic method which decides the order of the predicate evaluation using a cor-

responding attribute matching graph. The basis for the ordering of subgoals in the

body of a clause is sharing of variables. For example, we assume that Pl(x,y), P2(x,w)

PS(y,t,z) and P4(y,z) are the extracted EDB relations. If the value of x is known, the

coresponding attribute matching graph is

In this case, we convert a cycle into a tree by finding the minimum spanning tree using

join selectivity. The above three processes are combined into a part of the system

called the extractor. Fourth, the evaluator receives the optimized processing tree from

the extractor and converts the optimized tree into an algebraic equation. We propose

an algorithm to convert optimized tree to algebraic equation. If there is more than

one path in the tree for a findfew query, we send the preferred path first. If the pref-

erence of the rule is known, we can evaluate first the rule that has higher preference

in the generated processing tree. The preference is defined so that using the first rule

generates more useful answers than subsequent ones. If there is no preferred path in

the tree for a findfew query, we suggest heuristic functions to decide the order of paths

in the tree. For example, the cost function of each path, the expected intermediate

results, etc. In the evaluator step, we can elimiate the need to reevaluate the lead-

ing common subexpression in the optimized tree and thus, eliminate a large amount

of redundant processing. Fifth, the search controller receives the algebraic equation

from the evaluator and executes the relational algebra equation. In this step, if a given

query is findfew, then selective search can also be performed on the portion of the EDB

relations based on different criteria, such as the importance of the data, user preference

and closeness and easiness in accessing data.

In conclusion, our approach develops efficient strategies and algorithms for sup-

porting not only findall queries but also findfew queries where only a few intelligent

solutions are needed by using the integrity constraints, domain knowledge and some

heuristic methods in some steps to improve the query processing time.

An Example of Semantic Query Optimization as a Technique for
Improving Query Performance in Federated Systems

Sandra Heiler

Xerox Advanced Information Technology
4 Cambridge Center

Cambridge, MA 02 139
heile@xait.xerox.com

Abstract
In federated systems, optimizations that are based on characteristics of the
components of the federation are extremely difficult. We focus on optimizations
that are based on object structure that can be captured by a global schema for the
federation. This report briefly describes an example of such semantic query
optimization using simple structures called "inclusion graphs". They capture set
inclusion relationships that can be exploited in processing certain kinds of queries.
Inclusion graphs can be used in federated systems regardless of the characteristics
of components that provide the implementations of storage and manipulations of
objects.

1. Introduction

Federated systems may provide the only safe and practical approach to configuring large,
complex computing environments that must incorporate a legacy of existing systems. In a
federation, autonomous components are loosely coupled to allow them to interchange
information and provide services to one another, without requiring changes to the underlying
software or data. Federation also provides a natural path for extending existing environments
with new technologies. Systems can be added to the federation one-at-a-time without risking
the safety of the existing operation.

An object-oriented approach is a natural way both to model and to implement these systems.
An object model provides a uniform interface to data and operations, which are implemented by
the underlying heterogeneous components of the federation. An Object Management System
(OMS) provides services to map requests given in terms of the interface into invocations of the
operations and data of the underlying software tools, DBMSs, file systems and databases.

We are concerned with providing techniques for improving query performance in federated
systems constructed from heterogeneous underlying data servers. Optimizations that are based
on characteristics of the implementations are extremely difficult in such systems. Few
formalisms are available for describing the behavior of the underlying systems to allow the
optimizer to generate requests that avoid their particular weaknesses or exploit their particular
strengths.

The focus of our work is on strategies for optimization in federated systems that are (nearly)
independent of the particular characteristics of the underlying implementations. We are
especially interested in techniques for optimization based on object structure. Below, we give
an example of how ancillary structures that capture set inclusion semantics can be used to
improve query performance in a federated system that is implemented over heterogeneous
components, regardless of the characteristics of the underlying systems.

Two streams of prior work are applicable to optimization for federated systems: global
optimizations in systems that integrate heterogeneous databases (or "multi-database" systems),
as described in [LaRo82], [LiAb86] and [Nava86], and semantic query optimization, as
described in [HaZd80] and [Chak88]. Our interest is in extending some of these concepts to
exploit structural information and other metadata that can be captured in an object model to
improve query performance.

2. Context

Our work is part of the Engineering Information System (EIS) project, which is developing an
object-oriented framework for integrating VLSI design and engineering tools and databases.
The framework comprises an object model, FUGUE [HeZd88], (and a schema based on it)
and an Object Management System. The framework provides a uniform interface to
heterogeneous components (clients and servers) and serves as intermediary between clients that
request data and services and servers that provide them.

The framework provides an object-oriented query language based on [Zdon88]. The
underlying components of the federation provide storage and the implementations of query
functions of the language. Note that implementations can span multiple servers; for example
members of a particular set of objects might be stored and manipulated by different DBMSs.
Also, servers are not limited to conventional DBMSs; some are embedded in engineering or
administrative tools or suplied by file systems.

In FUGUE, sets are denotable objects. We model a multi-valued function as a single-valued
function whose value is a set object. For example, if Employees is a function from
departments to employees who work there, we say that the relationship between the toy
department and the workers in that department Jack, Mary, and Pete is a single-valued function
between the object Toy-Dept and the set object {Jack, Mary, Pete). The result is that all
relationships are one-to-one; an m-to-n relationship is modeled as a relationship between two
set objects.

The identity of a set object is independent of its members. Sets are referenced by unique,
immutable object identifiers (OIDs). All members of a set must be from the same domain.
Sets with different element domains constitute different set types. For example, a set of objects
of type X is of type Set-of-X. Sets have both set- and member-type-specific functions.
Duplicate removal is provided by set-type-specific functions that test for member equality.

The separation of the identity of the set object from its composition allows us to express
constraints about the sets themselves, e.g., that X is a subset of Y, rather than only about the
particular content of X and Y. Moreover, objects X and Y ratain their identity even though
their membership might change.

We provide multiple equality functions for set objects. Set identity (i.e., object identity) is
based on OID identity. Other kinds of equality are based on the contents of the sets , i-e.,
"shallow-" and "deep-equality" as described in [KhCo86].

3. Inclusion graphs

Below, we describe an example of structures based on metadata about set objects that support
one form of semantic query optimization. It is applicable in federated systems where the
implementations of sets, i.e., both storage and manipulation functions, is provided by
heterogeneous underlying servers whose performance characteristics are unknown by the
global query processor.

We propose for certain sets to compute ancillary structures called "inclusion graphs" to capture
set inclusion relationships. Use of the graph allows us to handle set comparison queries
directly (to avoid accessing the set members individually). In addition, we can sometimes
reduce the number of sets whose members must be examined individually, either because a
particular set must necessarily satisfy the query or because it cannot possibly satisfy the query,
based on inferences from the inclusion relationship.

For example, suppose we have a function that maps employees to courses they have taken.
We can process the query "Find all employees who have taken at least all of the courses taken
by employee x" by finding employees whose sets of courses-taken are supersets of the set of
courses-taken by x. We can do this using the inclusion graph, without ever testing individual
members of the sets of courses.

As another example, suppose we have a function that maps administrative units to the
employees who work in them. To process the query "Find all administrative units in which at
least one employee has taken CPR training," we can infer that when we have found such a
unit, all units with a superset of its employees satisfy the query. Again, we can do it using the
inclusion graph without testing any of the larger units.

We can define an inclusion graph for any set of objects S of type T that has a multi-valued
function f defined on the members of S. We will view the values of the function f as objects
that are instances of the type Set-of-T. The inclusion graph for a set S has a node
corresponding to each distinct element in range@. It has an edge (nl, n2) between each pair of
nodes such that nl is a superset of n2.

We can represent the sets over which we compute the inclusion graph by a bit vector which
contains one bit for each member of the domain of elements of the set (in some predefined
order). Membership of an element in a particular set is indicated by a one in the corresponding
bit in the bit vector representation of the set. This provides a convenient structure for
computing set inclusion as well as intersections and unions. Other representations may be
more efficient for particular domains, e.g., where sets containing all (or nearly all) possible
combinations of domain elements appear in the database.

Note that the inclusion relationship holds for sets in the domain S regardless of the function f.
We can generalize the concept to build a single inclusion graph for a domain S even though
multiple functions yield sets in S. This widens the class of queries that can be optimized based
on the graph to include queries over values of each of the specified functions that yield sets in
S. We can also use the graph to support queries that compare values of different functions that
yield sets in S.

Maintenance of inclusion graphs must rely on mggers associated with the functions that create
sets that are part of the inclusion graph or modify their contents. If multiple functions
manipulate these sets, they require consistent triggers for maintaining the inclusion graph. It is
likely impossible to retrofit such triggers once some functions that maintain the graph have
been specified. For this reason, we might want to restrict the graph to references from a single
function.

4. Future Work

It appears that the techniques described in [Agra89] provide an efficient mechanism for
computing and maintaining inclusion graphs. We expect to apply these techniques and test
them in our framework in the future.

'. - We are also interested in the development of other structures that can support optimizations that
are independent (or nearly independent) of the implementations provided by the components of
a federated system. We expect to extend concepts of global optimization for systems that
integrate heterogeneous databases and semantic query optimizations. We will base these
extensions on other structural and behavioral information capturable by the object model.

In addition, we expect to develop a planner for our OMS that does base decisions on the
chmcteristics of underlying processors and properties of the operations they perform.

Acknowledgements

The work on inclusion graphs that was described here has been a joint effort with Stan Zdonik.

References

[Agra891
R. Agrawal, A. Borgida, H. Jagadish, "Efficient Management of Transitive Relationships
in Large Data and Knowledge Bases," report submitted for publication, 1989.

[Chak88]
U. Chakravarthy, J. Grant, and J. Minker, "Foundations of Semantic Query Optimization
for Deductive Databases,", Morgan Kaufmann Publications, 1988.

[HaZd80]
M. Hammer and S. Zdonik, "Knowledge-Based Query Optimization," Roceedings of the
Conference on Very Large Databases, Montreal, Canada, 1980.

[HeZd88]
S. Heiler and S. Zdonik, "FUGUE, a Model for Engineering Information Systems and
other Baroque Applications," b e e d i n g s of the Third International Conference on Data
and Knowledge Bases, Jerusalem, 1988.

[LaRo82]
T. Landers and R. Rosenberg, "An Overview of MULTIBASE," Distributed Databases
(H.J. Schnieder, ed.), North Holland Publishing Co., Amsterdam, 1982.

[LiAb86]
W. Litwin and A. Abdellatif, "Multidatabase Interoperability," IEEE Computer, December,
1986.

[Nava86]
S. Navathe, R. Elmasri, J. Larson, "Integrating User Views in Database Design," IEEE
Computer, January, 1986.

[Zdon8 81
S. B. Zdonik, "Query Optimization in Object-Oriented Databases," Proceedings of the
International Workshop on Object-Oriented Database Systems, Bad Munster, West
Germany, Springer-Verlag, 1988.

Early experience with rule-based query rewrite
optimization

Hamid Pirahesh
IBM Almaden Research Center

San Jose, CA 951 20

The functionality of relational database systems (DBMSs) must evolve to respond to the requirements
imposed by new applications and changes in computing technology. In this paper, we describe the Starburst
query rewrite optimizer, which transforms queries (and other SQI, statements) roughly at the query
language level. 'l'he Starburst plan optimizer may find plans for these revised queries that are more efficient
than the plans i t finds for the original query. Based on our early experience, rewrite optimization, which
is becoming a significant part of query optimization, has many dificult open problems. We will deqcribe
the rule-based approach that we take in Starburst (using production rules, not grammar rules of [I ohm88]),
which appears to be a promising approach to rewrite optimization, and we will describe some of the
problems which we view as open.

The problem that optimization must handle is changing because the nature of the queries that IIBMSs
must handle is changing. The amount of data kept in large relational databases is expected to be in the
terabyte rangc in the coming decade. l 'he processing power of affordable parallel computers is expected
to be over 1000 MJI'S. That combination of data plus processing power creates the opportunity for much
more complex queries. Flence we expect that future IIDMSs will have to deal with applications which arc
increasingly data-intensive and logic-intensive. Common relational query languages such as SQI, are not
powerful enough to satisfy these requirements. For example, these languages have weaknesses in statistical
analysis and structural (complex objccts, record structures, etc.) exprcssibility, which are crucial for data
summation and engineering databases, respectively. We expect that the functionality providcd by query
languages will grow considerahly. More of the application logic will be moved inside the IIBMS, both
for bettcr performance (bringing function to data) and for better sharing of data among applications (better
protection of data by encapsulation). 1)J)MSs will deal with a much larger set of data types and operations.
From the application perforniance viewpoint, this is valuable since it allows more type specific operations
to be specified in search predicates, so that (possibly massive) amount of irrelevant data does not pass
through the DBMS to the applications. This is particularly significant since the data rate of thr output
of DBMSs is typically much less than the data rate of storage devices that they get data from. Operations
such as outer join, recursion, and sampling should be handled by DBMSs for the same reason. A closely
related area is support for objcct-oriented concepts, which should be included in the DBMSs for the same
reasons (performance and encapsulation) cited above for data types. 'T'he functionality that queries express
will grow significantly, so optimizing them will also become increasingly challenging.

Ad hoc interaction with IIl3l\.ISs is cotnmonly through high level user interfaces, d o w i n g complex queries
to be specified by users easily (where the users may not cvcn be aware of the complexity of their requcsts).
Often, a high level interface qucry rcsults into many complex DBMS qu&es, which must have a short
response time. This increases both tlic complcxity and thc traflic rate of DRMS queries. 'The same
phenomenori occurs in intcrfnccs bctwccn high levcl programming Ianguagcs, such as I'rolog, and IIl3hISs.
These programming environments allow programmers to write applications resulting in many complex
DRMS qucrics.

There are several other key areas, such as active databascs, distributedlhetcrogeneous databases, and
parallelism that require major support within IIRblSs. l'echnological advances, such as large, inexpensive
main memory and secondary storage, and high MII'S rate for <:PlJs affect the way 1)BMSs function.
Tliese advanccs affect what sort of requests optimization must handle and the trnde-offs it must consider.

T o recapitulate, we believe that the functionality of IIl3lLlSs, tlic amount of data they manage, and the
trafic rate of queries they must handle are incrcasing rapidly. These put a major hurden on query
optimj7.ers7 which play a key rolc in the succcss of relational systems. (k~nsequently we are facing a major
problem in qucry optimization. Often, optimizers have blind p in t s : they may not optimize sorne qucrics
(or parts of queries) very well. 'This shortcoming is much more visible for very large databases because a
small rnistakc in optimization may lcad to orrlcrs of magnitude diffcrence in response time and consumption
of resources (e.g., 110, CI'l.7, mcmory, and communication), making query plans unacceptable dcspitc the
itlcrcasc in LIII'S and IiO bandwidth. l:urthcnnore, increasing the number of operators (e.g., joins) and
introducing complex new operators (e.g., recursion) increases the chance of dramatic optimization errors.
Sote that tlle space of altcmatives grows exy.onentially with the number of operators (e.g. joins) in a
query. We do not expect that exhaustive search will be acceptable, so heuristic-based optimization will
be inevitable. Obviously, this increases the possibility that the optimizer will have blind points. Raising
the level of functionality of quew languages, as explained above, exacerbates the complexity of the
optimizatioti problem. Accurate selectivity estimates are crucial in optirni7.ation. It is not clear how we
estimate the selectivities of predicates involving operators on abstract data types, o r methods on objects.
ITence optimizers must be extcnsihlc both for new functionality and so that they can be taught to avoid
blind points.

IlBhIS parallelism makes the problem of query optimization even more complcx. For parallelism, we
usually partition the data (e.g., into 100 partitions) based on the predicates in the query, and run onc task
for each partition IIIeWi86, Lori891. In parallel hash join, a task does the join of the corresponding hash
partition of tile outer and the inner tables (SchnR91. L.oad balancing among tasks is very important. This
requires choosing the partition sizes so that the tasks are balanced. l'his, in turn, requires estimating the
amount of work associated with each partition. Usually, we do not have statistics for each partition, mainly
because partitions are query dcpcndent. We may have to rely on the overall statistics to estimate the work
associated with each partition. It is expected that this estimate becomes increasingly inaccurate as thc
number of partitions grows, i.e., when increasing the dcgrce of parallelism, or reducing the size of each
partition. IIence, for a high degree of parallelism, we must find better ways of query cost estimation. We
believe extensible optimization can play a major role in this area.

Experience with rrtle-based rewrite optimization

A major feature of rule-bascd systems is their flexibility, allowing extension of the system logic by specifying
more rules. Ilcnce, thcy seem to be a suitablc base for building extensible optimizers. In Starburst we
have taken this approach. Thc EXOIIIIS project also has-taken a rule-hased approach (CrraefX7). Ilere,
we report on some of the advaritagcs and disadvantage9 that we have experienced in our rule-based
implementation (using productinn rules). Reforc doir~g this, let's quickly rcview the Starburst approach to
query optimization.

We have divided the problem of query optimization into two parts: rewrite optirnization and plan opti-
mization. Plan optirnization deals wilh low level operations such as choosing join order, join methods,
and the access paths to tables. Rewrite optin~ization does query transformation for better performance.
It does view merging, predicate pushdown, semantic query optimization ([KingRI]), etc. In a sense,
Starburst uses a divide-and-conquer strategy, allowing each phase of query optimization to solve its part
of the problem independently. Starhurst is intended to support full SQL (IIBM871) plus extensions to
support the type of user requirements discussed above. As a result, optimization is a complex task, and
decomposing it into two phases initially has helped us to simplify that task. We are investigating ways of
integrating the two phases in a better way. In this report, we discuss our experience with the query rewrite
optimizer. Iletails of the plan optimiper are discussed in IInhrn88, Ice881. Rosenthal, et al. [Rose861
uses a transformation-based optirnization similar to our query rewrite, for the entire query optimization
problem.

In Starburst, we specify a set of rewrite production rules for rewrite optimization. The system has a rule
engine, a library of rules, and an in-metnor). representation of the query being optimized (similar to the
working memory in the OPS5 model lRrow851). l 'he in-memory representation of the query, called Query
Graph Model (QGM), is a directed graph where the nodes (also sometimes called "boxes") correspond to
operations on one or more tables, and the edges describe flow of data between boxes (i t . , the output of
one box is used as an input table by another). Types of table operations include [Jnion, Inter.rcction,
Di/Je~er-ence, Gr-oup By, and Sclccl. The SPZPCI operation can involve join, projection, quantification, and
duplicate elimination. See (lIaas88, Ilasa881 for more details. System customizcrs map add new operations
to the QGM. Examples of operations that might be added are sampling, statistical analysis, outer join,
and heuristic searches. It is helpful to think of QGM as a flow graph, where tuples flow along the edges.

Rewrite rules describe transformations of QCiMs that satisfy certain properties into semantically equivalent
QGhIs. Each rewrite rule has an II; part, which checks if the transformation can be done, and a TIIBN
part, which does the transformation. 170r example, consider transformation of subqueries to joins in SQI,
(Kim82, Gans87, 1Iasa88j. 'l'he IF part of a rule checks to see if a subquery can be converted to join.
'I'he 1'11F,N part actually does the transformation. 'The current set of rules include subquery transformations
(existential, universal, etc.), predicate pushdown towards sources of the data (in the sense of the flow
graph), pushdown/pullup of duplicate elimination, table expression (IANSIR8, 11aas881) transformations,
projection pushdown, and an extended version of magic set transformations. The IF part and the I'IIEN
part of the rules are each a procedure written in a procedural language (currently in the language (1). The
reason for this is that the rule language must be able to access and manipulate QGM in a eomplrx way.
Below we discuss several areas that need particular attention: design of the rules, control of execution of
the rules, and interference between the rules.

Design of the rules

One problem we facc is nonlinear growth of thc nurnher of rulcs whcn ncw operators are added to the
query language. For example, for predicate pushdown, we need to specify under what conditions a prcdicate
can move from onc QGM box to anothcr. 'i'hese conditiorls depcnd on the types of the two boxes. As a
result, whenever we add a new box typc (c.g., for outer join), a naive implementation would have to
specify nlles for prcdicate pushdown from a11 the existing box typcs to the new box type, and vicc versa.
Ilencc, we need to specify at least 2 rulcs hctwccn any two box types. For a system with 20 box types,
thcre might have to be 800 rulcs just for prcdicnte pushdown! In fact, the problcm is even worsc, bccause
there are differcnt rules for predicates involving quantifiers (existential, universal, etc.) than for othcr
predicates. This numher of rulcs is not acceptable. Thcreforc, we designcd predicate pushdown so that
each rule is cancemed with only onc box typc. For each (existing or ncw) box type, we specify the qucry
transformation rulcs for predicates entering or lcaving this box. 7'0 move a predicate from box A to box
R, one rule specifics when and how thr predicate can leave box A and another rule specifies how a
predicate can enter box B. The rule for box A invokes the rulcs for box B bcforc it commits to the
pushdown of the prcdicate. Thus our rule systcm allows rules to be invokcd not only by the rulc engine,
hut also by other rulcs.

Control

Another problem we had to deal with was when to invoke a rule. We do not want rulcs to be fired
whenever they arc cligiblc; instcad, we want to have more control on them, but not necessarily unlimited
control. In 0 1 5 5 , conflict rcsolution strategies (c.g., specificity or recency) are allowed; we need a more
structured approach, for semantic clarity, performance, and extensibility. When we consider transforming
a QGhl box, we want to have as much information as possible about that box. Predicates (and duplicates)
play a key rolc in determining what kinds of transformations are legal. For example, the set of predicates
and the duplicate elimination attributcs of a Select box may determine whether merge is possible, when
ourer join can be converted to regular join, and when joins are redundant. Therefore, we want to wait
until all the rules associated with predicate pushdown and duplicates are applied to the boxes above a box
(in the sense of the QGM of a query which is a dirccted acyclic graph) before applying the merge rules
to that box. Control of the order of execution of thc rules is even more critical for optimization of
recursive queries using magic sets technique [Illlm85].

We do not want to have expLicit general control of the ~ I c s , since that level of procedurality would destroy
a major bcrlefit of the rulc-bascd approach. We introduce thc conccpt of contexts explicitly. Roughly
speaking, a context is a pointer to a Q<iM box. We establish a context and then we let the rule system
apply all thc rules applicable to that contcxt. 'rllereforc, each mlc. as one of its input parameters, gcts the
current context. Control of the context is separated into another (extensible) component. In the cc,~ltext
control component we traversc QGM and establish the context for the rules. In the transformation
component, rewrite rules may be applied in the current context. A more abstract view of this problem is
as follows. In optimization, control of the search space is critical. IIowever, rule systems, such as OPS5,
try to provide very limitcd control. This shortcoming is usually bypassed in an ad hoc way by introducing
control variables in the working memory. Wc needcd to have dircct control of the search space.

Interference

A difficult problem in rulc specification is interference between rules. Individual rules may seem clear, but
they may interact in unexpected ways, especially in an extensible system. One major advantage of the
rule-based approach is that it is easy to add new rules. Ilnfortunately, adding a new rule may require that
existing rules be examined to determine how thcy interact with the new rule. Obviously this can bc very
difficult (or unacceptable administrativcly), but there may be subtle interactions that can be surprising
(e.g., loops in the optimization of certain queries).

For example, assume the system already had the rules to eliminate redundant joins [Ott82], and rules using
stored views were added. ?'he new rules try to use stored views to filter the amount of information that
must be obtained from the base tables. These rules can be advantageous in case the stored views are much
smaller than their corresponding base tables because of column projection and tuple selection. Suppose
V is a stored view containing all the monetary information (e.g., salary) about the employees and their
departments for a particular division of a company. V is much smaller than the corresponding base tables
because it has fewer columns and it has tuples just for a division, not for the whole company. Suppose
a query wants aN the employee information for employees working in that division subject to predicates
on salary and location. 'l'he rule transforms the query so that it accesses the stored view V first to filter
the employee tuples, and then accesses the employee table to get the rest of the columns and apply the
rest of the predicates. Semantically, accessing the stored view V is redundant. After this transformation,
the join elimination rulcs transform the query so that it does not access the stored view V becausc it is
redundant, undoing what the stored view rule did. This may even loop because the stored view rule may
again do the transformation, and repeat the cyclc. Thus, when we add a rule, we must examine how it
interacts with existing rules, and somehow prevent this undesirable interference.

Conclusion

Optimization continues to play a key role in future IIRMSs. Current optimization technology is not
adequate to handle the considerable functionality being added to DBMSs in response to user needs.
Rule-based optimization is a promising approach, but still is immature. There is a need for much more
intensive research in this area.

In Starburst, uniform representation of operations, predicates, etc. in QGM proved to be very valuable
in reducing the task of introducing new operations and new rules. l'he generic structure of Q<;M allows
the new rules to benefit from the many generic library routines introduced for existing rules.

Rule-based optimi7ation proved to be valuablc to provide extensibility. Ilowever, special attention must
be made to design the rules to minimize redundancy between rules and maximize rule usability. Still more
work has to be done to allow a more structured control of rule execution, and to have a better handling
of rule interference.

Acknowledgemcnts: 'I'he author would like to thank I. Mumick, G. Inhman, and particularly S. Finkclstein
for careful reading and valuable comments.

IOtt821

(Rose861

[Schn 891

I S 0 - ANSI, Working Draft; Ilatabase Language SQ1.,2, (August 1988).
Brownston, I,., R . I:arrell, E. Kant and N. Martin, Programming Expert Systems in OPS.5,
Addiso?z- Wesley (1 98 5) .

I>..]. DeWitt, R.11. Gerher. G. Graefe, M.1,. Ileytens, K.R. Kumar, M. Muralikrishna,
Gamma-a high performance dataflow database machine, Procs. of the 12th lnfernational
Conference on Very 1-argc 1)ataha.res (San Francisco, CA, Oct. 1986).
Ganski, R. and E. Wong, Optimization of Nested SQI, Queries Revisited, Procs. of ACM
SIGIMOII Conference (1987).
G . Gracfe, D.J. I>e\Vitt, l 'he EX OI>L'S Optimizer Generator, Procs. of A CM-SIGMOI)
(San I~rancisco, CA, May 1987).
L.M. ? laas, J.C. Frcytag, (;. IM. Lohman, I I . Pirahesh, Extensible Query Processing in
Starburst, (1989). Procr. of A(:,\!-Sl(;i~OI> (Portland, OR, May 1989).
W. IIasan, 11. Pirahesh, Query Rewrite Optimization in Starburst, Il3ll.I Re.rearch Rcport
R.1 6367 (1988).
Ink1 Systems Application Architecture, Common Programming Interface: Database Refer-
ence. $(; 26-4348-0 (Sept. 1987).
Kim, W., On Optimizing an Sol,-like Nested Query, ACkf 7'ran.r. on Database Syst~rn.r 7:3
(Sept. 1982).
King, . I . , QI!IS-1': A system for scmantic query optimization in relational datahasc, Procs.
of !he Seventlt Intcrnationul Conference on Very Large Databases (1981).
M. Ixc, J.C. Freytag, G.iLI. 1,ohman. Implementing an Interpreter for Functional Rules in
a Q u e q Optimizer, Proc.r. of 14th lntl. Con/: on Very I,argc? Data Bares (VLDl3) (Long
Beach, CA, August 1988).
G.M. Imhman, Grammar-Like Functional Rules for Representing Query Optimization A1-
tematives, Procs. of ACM-SIGIMOII (Chicago, II.,, June 1988).
R. Lone, J . Uaudenarde, G. Ilallmark, J. Stamos, 11. Young, Adding Intra-Transaction
Parallelism to an Existing DI3MS: Early Experience, IEEE Datahare Engineering quarterly
Bulletin (March 1989).
Ott, N. and K. Ilorlander, Removing Redundant Join Operations in Queries Involving
Views, I-leidelherg Scientific Center, TR 82.03.003 (March 1 982).
A. Rosenthal, Understanding and Extending Transformation-Based Optirnkers, IELE Vata-
bare Engineering quarterly Bulleti~t (Dcc. 1986).
D.A. Schneider, D. DcWitt, A I'erfonnance l:valuation of Four Parallel Join Algorithms in
a Shared-Nothing Multiprocessor Environment, Procs. rf ACM-SIGMOD (Portland, OR,
May 1989).
Ullman, J., Irnplernentstion of Logic Query Languages for Ilatnhases, ACM 7'ran.r. on
Datahase Systemr 10:3 (Sept. 1985).

Distributed Object-Oriented Query Optimization:

Perspectives, Problems, and Paradigms

Extended Abstract

Umeshwar ~ayal l

Digital Equipment Corporation
Cambridge Research Laboratory
One Kendall Square, Building 700

Cambridge, MA 021 39
dayal@crl.dec.com

2 May 1989

'This work was done primarily while the author was at Xerox Advanced Information Technokgy p d y , Computer Corporation
of America, Research and Systems Division. Four Cambridge Centre, Camkidge, MA 021421.

I Perspectives
The goal of any query optimizer is to produce an inexpensive access plan for evaluating a query

expressed in some query language. The complexity of the optimization problem depends on the data
model, the query language, the target language (in which the access plan is expressed), the strategy
space considerd by the optimizer, and the execution environment (distributed, parallel, etc.). Object-
oriented query optimizers are the latest stage in a series of progressively more complex opttmizers that
have tried to push the state-of-the-art in one or more of these dimensions.

Eariy work on query optimization focused on the relational data model and the select-project-join
fmgment of the relational algebra (roughly equivalent to a single aggregation-free SELECT blodc In SQL).
The most important problems tackled by these optimizers were to find the optimal sequence of joins and
to select the particular access paths and implementation algorithms for each relation and each operation
in the query. In distributed database systems, additional complexities arose: the relations might be stored
at different sites and might be fragmented. The important problems (in addition to selecting the optimal
join sequence) were site selection (to join R and S, where R and S are at different sites, should we move
R to S's site, S to R's site, or both to a third site?), distributed implementations of joins (transferring blocks
of tuples across the network rather than single tuples at a time), distribution of a join across fragments,
and load balancing. Also, additional tactics such as semijoins, which could potentially reduce the volume
of data transferred across the network, were introduced. In distributed database systems that allow data
to be replicated at several sites, there was the additional problem of choosing a physical copy for each
operand relation (see papers in [14]).

Recently, the class of relational queries considered by the optimizer was extended to indude nested
queries, quantifiers, outejoins, and aggregates [71. The idea was to increase the power of the target
algebra into which the query is compiled, and thus to enable new transformations to be applied to the
query before access path selection. The extensions are especially relevant in a distributed environment
because the transformed query potentially involves the transfer of less data (e.g.. permitting nesting
predicates to be treated as joins and evaluated by methods other than tuple substiMion across the
network).

Enhancing relational query optimizers to handle recursive queries has also received considerable
attention in the literature, although the bulk of this work is for single-site queries only [I , 201.

Extending relational query optimization techniques to semantically richer data models (such as IF0 or
DAPLEX) required the solution of additional problems [3, 191. First, these models permit inter-entity links
(i.e., attributes whose values are references to entities) and queries can indude these links. To build on
the work on relational query optimization, these queries were mapped into an extended relational algebra,
in which the inter-entity reference was treated as a special kind of join (a linked join). For example, the
DAPLEX query: [for s in Student, for d in Dept(s), print (Narne(s), Location(d)), endfor, endfor] was tumed
into a query that link-joined @Student and @Department on the condition [@StudentDept =
@~epartment. l~]~ (followed by projection). These llnked joins may have special efficient
Implementations. At a single site, the links may be implemented by physical pointers. Across sites.
however, they have to be implemented by symbolic pointers or by indirection through an entity directory

we denote tho rd.t&n axrespondfng to entity lype E by @E

(which maps entity identiers to physical addresses). A second problem was that these semantic models
usually support set-valued attributes (e.g., Children: Employee -> set of Child). There were two
alternatives for dealing with this problem: (1) treat the set-valued attributes as separate (normalized)
relations (so, corresponding to Children, we would introduce the relation @Children with attributes
EmployeelD and ChildlD; then, the query [for e in Employee, for c in Children(e), print (Name(e), Age(c)),
endfor, endfor] would require two linked joins among @Employee, @Children, and @Child); and (ii)
complicate the target algebra with operators for non-first normal form relations (so the above query would
be tumed into a linked join between @Employee and @Child on the condition [@Employee.Children
contains @Child.lD]). The choice we made for DAPLEX was the latter, because it more accurately
reflected the special access paths provided in DAPLEX for implementing set-valued attributes. Third,
because of the idiosyncracies of DAPLEX syntax, unidirectional joins tumed out to be important, and we
developed valid transformations for them (not all the transformations possible with regular joins work for
outejoins). Finally, for DAPLEX, we also had the problem that the language is procedural, so "queries"
are actually written as programs involving iteration over entity sets (as in the above examples),
conditionals, etc. To enable the use of extended relational query optimization techniques, these
programs had to be "decompiled" into expressions (called "envelopes") in a target language to which
algebraic transformations could be applied.

The next level of complexity for query optimization occurred in heterogeneous distributed database
systems such as Multibase [l5, 41. Three problems were especially insidious. First, the various sites
connected to Multibase might have vastly different capabilites (e.g., they might not be able to execute
joins or semijoins, or to access temporary files). This required a descriptiondriven approach, in which the
capabilities of the individual sites were specified in a high-level language to the optimizer. Also, pieces of
the access plan that were sent to a site had to be filtered to ensure that they could, indeed, be executed
at that site, and then the missing pieces were subsequently compensated for (e.g., if a site was incapable
of doing even a local join, then the operands had to be retrieved to some other site and the join had to be
performed there). A second problem had to do with site autonomy: no site could have complete
information about the access paths and implementation algorithms that other sites were going to use to
process their pieces of the access plan. This led to a two-phased optimization approach: high-level,
description-driven global optimization (to decompose the query into singlssite subqueries), followed by
detailed local optimization (during which each site selected access paths and implementation strategies,
which could override some global decisions). Third, because the databases at different sites might
contain inconsistent data, Multibase supported the definition of complex views. When queries were
resolved against these views, complex queries involving (bidirectional) outerjoins and aggregates)
typically resuled. The common tactic of moving selections and projections past joins and unions so that
they can be locally processed does not generally work when aggregates and outerjoins are involved.
New tactics were developed for this purpose.

Optimizing queries in object-oriented database systems subsumes these problems of optimization for
relational and semantic data models, and introduces some new problems.

2 Problems
Optimizers for the relational model, and even for the semantic models, were I%losedW in that they used

a fixed set of tactics for optimizing a fixed repertoire of operators over a fixed set of access paths and
Implementation methods. The first new problem for object-oriented sytems is extensibility: users are

allowed to define arbitrary operators (methods) for each object type. Typically, the definer of the type can
specrfy new access paths for objects of this type and can implement the operators using special hardware
and software. The optimizer, therefore, has to be given enough knowledge about the types and their
implementations. (Note that this is similar to, but significantly generalizes, the description-driven
optimization problem considered for Multibase, where each site had a know subset of some fixed set of
capabilities). The important issues relative to extensible query optimization are: what knowledge should
be imparted to the optimizer? how should this knowledge be specified? how should the optimizer search
the knowledge base for pertinent knowledge in constructing good strategies for a given query? A few
recent papers describe first-cut solutions to these problems [2. 10, 121. Note that even "closed"
optimizers do not need to have complete information about how access methods (e.g., &trees or hashed
files) are implemented. The kind of knowledge useful to an optimizer includes the following: algebraic
properties of the operators (these determine the valid transformations that can be performed on the
query); cost information (e.g., execution times, result size); and properties of the input and output
arguments of the operators that might affect processing (e.g., if the input arguments are sorted, the result
might be, too; clustering or grouping is induced by some methods for computing projections and various
flavours of join-like operations; the result of a projection- or grouping-like operation may or may not
contain duplicates). In me first extensible optimizers, these propertles were expressed via transformation
rules. Search of the rule base was typically exhaustive and based on pattem matching. Extending these
techniques to work in a distributed database system poses additional challenges: because the rule base
may be distributed, some coordination among various sites is required to produce the global plan.

A second problem is how to deal with new, generic operators that appear to be common to many
application domains, and hence have been proposed for inclusion in object-oriented data models.
Examples of these from the PROBE project are traversal recursion and spatial join 18, 17. Understanding
the properties of these operators (e.g., does spatial join commute with regular join? are its results
clustered? can selections and projections be moved ahead of or "inside" a traversal recursion?) and
determining good strategies for queries that involve these operators, especially in a distributed system,
remain open problems.

A general issue here is the class of queries expressible in the query language. Early object-oriented
systems lacked powerful query primitives; instead, users wrote application programs to access one object
instance, and then to navigate through the database following inter-object links. Recent object-oriented
languages provide both navigational access (based on links) and associative access (based on attribute
values); they also provide collection types and iteration operators so that both instance-at-a-time
manipulation as well as collection-at-a-time manipulation is possible. The commonest collection type, of
course, is the set (as in DAPLEX), but other types (such as sequences, lists, bags, and arrays) have been
posited. For DAPLEX, we had studied how to optimize queries with mixed navigational and associative
elements. Also, decompilation was a way of optimizing mixed instance and set queries. Clearly, more
work is necessary to extend these techiques to work with collection types other than sets. Furthermore.
since the trend is to seamlessty integrate querying primitives into programming languages (e.g., rather
then invent new iterators for entity sets, DAPLEX was deliberately designed to blend into ADA syntax
[Smith83]), it would be interesting to explore the integration of compiler optimization techniques with query
optimization techniques. A start in this direction appears to have been made for the E persistent
programming language on the EXODUS project [I 81.

Several researchers have pointed out that a major problem in objectoriented query optimization is the

conflict between encapsulation and optimization [5, 111. A fundamental tenet of the objectoriented
approach is that users of an object "see" only the interface (l.e., the specification of its type and the
signatures of its operators); the details of how the objects are represented and how the operations are
implemented are hidden. However, if this information is hidden from the optimizer as well, then dearly
there is no hope for optimization. In general, it may not even be possible to predict which other methods
and objects may be invoked from within a method that is explicitly referenced in the query, or even at
which sites these other objects and methods are located. Several approaches to overcoming this
problem have been suggested. The simplest is to define a second interface to objects, through which the
optimizer can access the kind of knowledge it needs for extensible query optimization [q. In fact, any
number of such interfaces (or views) can be defined for each object type [13). A more sophisticated
proposal is to introduce a "revelation" phase in which each object type (or each object) involved in the
query has the option of revealing this information in the form of an algebraic expression that can be
subjected to optimization [I 11.

The site selection problem is exacerbated in object-oriented systems, because there is the additional
complexity of deciding whether to move the object to the method, the method to the object, or both to
some third site. Clearly, a prerequisite is that the method can in fact be executed at the selected site. In
homogeneous, distributed systems, each site can execute the same set of methods, and already has the
"code" for all these methods. In a heterogeneous system such as Multibase, each site was assumed to
be a server, capable of executing some fixed (but possibly different from other sites) set of methods. This
same simplifying architectural assumption could be made for distributed, object-oriented systems as well.

Finally, there is the "complex object" problem. It has been argued elsewhere that queries over a
complex object might spawn a collection of queries over the components of the complex object [6, 1 I].
Typically, the queries in the collection are related. (For example, the query to retrieve part assembly X
might require the retrieval of all components connected via various relationships to assembly
X.) Simuttaneoysly optimizing this collection of queries is an interesting problem. How the complex object
and its components are stored (e.g., whether they are clustered or not), and the availability of hierarchical
access methods such as indices (to aid the retrieval of the complex object and its components), could
dramatically affect the cost of processing. To enable the optimizer to consider efficient access plans over
hierarchical access methods, the target language should indude hierarchical operators. Note that
outejoins, which were important for DAPLEX and Multibase, may be interpreted as producing hierarchical
results, but we additionally need hierarchical selection and projection operators (like the ones in [91).
However, because our model also allows non-hierarchical relationships, and allows objects to participate
in muttiple relationships, clustering or other hierarchical access methods are not always feasible. In the
absence of such access methods, it might be more effective to use multiple query optimization techniques
to simultaneously optimize the collection of queries spawned by a complex object query [21,22]. Hence,
the optimizer must be capable of producing both types of access plans (involving hierarchical operators
and multiquery strategies).

3 Paradigms
We postulate a multiple server architecture for distributed, object-oriented database systems. Each

server stores one or more classes of objects, and implements operations (methods) of these classes. We
assume that each server is localized to a single site, although there may be more than one server per
site, and the same type of service may, in fact, be provided by servers at more than one site. Query

optimization is performed by agents that may be local to a single sewer (l.e., have knowledge of how to
optimize queries involving operators over the object classes supported by the sewer), local to a single site
(e.g., Multibase's local query optimizers), or global (e.g., Mottibase's global optimizer or Sytem R"s
distributed query compiler 1161). Thus, these optimizer agents may be specialized in various ways: for
spatial queries, for recursion, for integration operations (e-g., outejoins), for multiple query optimization,
and so on. This architectural paradigm addresses the extensibility, encapsulation, and autonomy
requirements for distributed, object-oriented database systems.

Optimizing a query will, in general, require coordination among several optimizer agents. A global
agent at the site where a client's query is posed may be the natural choice for coordinator. Various
paradigms for coordination may be useful. lnstead of assuming that all information needed for global
optimization is available at the coordinator (as in Multibase), we want to support negotiation. The
coordinator constructs an initial global plan, based on knowledge that it has about other agents and
servers. It broadcasts (or selectively mufticasts) a piece (one operation or a subplan) of the plan; other
agents respond with "bidsw summarizing (in a high-level language) their best strategies for processing that
piece of the plan, and their best costs. These bids will, presumably, be derived by local optimization,
based on knowledge that the agents have about the access methods, implementation algorithms, etc.. of
the local servers, the load at the local site, and other relevant factors. These bids are used by the
coordinator to refine its global plan (e.g., to apply algebraic transformations to the plan, to do site
selection for various operations in the plan, and to select a particular physical copy of a replicated object
and a particular sewer to provide a service); and so on.

Another relevant paradigm is that of collaborative planning. Instead of assuming that there is a single,
undifferentiated collection of rules (as in the first generation of extensible optimizers), we think of each
agent as an expert in solving some part of the optimization problem. (In particular, the global optimizers
are experts in coordination and in conducting negotiations.) Then, under the control of a coordination
expert, the v+ous participating experts (selected, perhaps, via negotiation) cooperate to solve the
problem af optimizing the whole query. For example, the query "Find all plastic parts and subassemblies
in assembly X that are located within 5 centimetres of a pipe carrying a hot fluid" may require the
cooperation of a spatial expert (to compute the distance of a part from a pipe), a selection expert (to
select plastic parts and pipes carrying hot fluid), a domain expert (to interpret the predicate "hot fluidw), a
hierarchical query expert (to retrieve the complex objects, viz., assemblies and component parts; this
expert may have come in with a lower bid than the multiple query expert), a traversal recursion expert (to
recursively compute the locations of parts within assemblies), and an integration expert (if data about part
assemblies is distributed over several servers).

These novel paradigms for query optimization generalize various existing and proposed optimization
techniques such as Multibase's two-phased optimization, System R"s distributed compilation, rule-based
extensible query optimization, and revelation. Several research problems have to be solved before this
approach can be realized in a working system. These include: languagets) for expressing rules used by
the various agents; the target language for expressing plans; protocols for negotiation and cooperation;
interfaces between the agents in support of these protocols; and the details of rules used by the
coordinator and by specialized agents. We believe that this is a promising, but challenging, prospectus
for research in query optimization in distributed, object-oriented database systems.

W. Kim, D. Reiner, D. Batory (editors).
Query Processing in Database Systems.
Springer-Vedag, 1985.

T. A. Landers, R. L. Rosenberg.
An Overview of Multibase.
Distributed Databases.
North Holland, 1982.

G. Lohman, et al.
Query Processing in R'.
Query Processing in Database Systems.
Springer Verlag, 1985.

F. Manola, J. Orenstein.
Toward a General Spatial Data Model for an Object-Oriented DBMS.
In Proceedings, Twetfth VLDB. 1986.

J. E. Richardson, M. J. Carey.
Persistence in the E Language: Issues and Implementation.
Technical Report 791, Computer Science Department, University of Wisconsin-Madison,

September 1988.

D. Ries, A. Chan, U. Dayal, S. Fox, K. tin.
Decompilation, Optimization, and Pipelining for Adaplex: A Procedural Database Language.
Technical Report CCA-82-04, Computer Corporation of America, 1983.

A. Rosenthal, S. Heiler, U. Dayal, F. Manola.
Traversal Recursion: A Practical Approach to Supporting Recursive Applications.
In Proceedings, ACM SlGMOD Conference. 1 986.

A. Rosenthal, U. S. Chakravarthy.
Anatomy of a Modular Multiple Query Optimizer.
In Proceedings, Fourteenth VLDB. 1 988.

T. K. Sellis.
Global Query Optimization.
In Proceedings, ACM SIGMOD Conference. 1 986.

References

F. Bancilhon, R. Ramakrishnan .
An Amateur's Introduction to Recursive Query Processing Strategies.
In Proceedings, ACM SIGMOD Conference. 1986.

D. Batory, T. Y. Leung, T. E. Wise.
lmplementation Concepts for an Extensible Data Model and Data Language.
ACM Transactions on Database Systems 13(3), September. 1988.

A. Chan, U. Dayal, S. Fox.
An ADA-Compatible Distributed Database Management System.
Proceedings, IEEE 75(5), May, 1 987.

U. Dayal.
Query Processing in a Muitidatabase System.
Query Processing in Database Systems.
Springer-Verlag, 1985.

U. Dayal, et 4.
PROBE - A Research Project in Knowledge-Oriented Database Systems: Preliminary Analysis.
Technical Report CCA-85-03, Computer Corporaton of America, 1985.

U. Dayal, et al.
Simplifying Complex Objects: The PROBE Approach to Modelling and Querying Them.
Datenbanksysteme in Buero, Technik, und Wissenschaft.
Springer Verlag, 1987.

U. Dayal.
Of Nests and Trees: A Unified Approach to Processing Queries that contain Nested Subqueries,

Aggregates, and Quantifiers.
In Proceedings, Thirteenth VLDB. 1 987.

U. Dayal, M. DeWitt, D. Goldhirsch, J. Orenstein.
PROBE Final Report.
Technidal Report CCA-87-02, Computer Corporation of Ammica. 1987

A. Deshpande, D. Van Gucht.
An lmplementation of Nested Relational Databases.
In Proceedings, Fourteenth VLDB. 1988.

G. Graefe, D. Dew*.
The Exodus Optimizer Generator.
In Proceedings, ACM SIGMOD Conference. 1987.

G. Graefe. D. Maier.
Query Optimization in Object-Oriented Database Systems: A Prospectus.
Advances in Object-Oriented Database Systems.
Springer Verlag, 1988.

L Haas, J. Freytag, G.Lohrnan, H. Pirahesh.
Extensible Query Processing in Stahorst.
In Proceedings, ACM SIGMOD Conference. 1 989.

S. Heiler, S. Zdonik.
Views. Data Abstracton, and Inheritance in the FUGUE Data Model.
Advancas in Object-Oriented Database Systems.
Springer Verlag, 1988.

Expression Processing in Iris

Waqar Hasan, Peter Lyngbaek, Kevin Wilkinson
lastname8hplabs. hp.com

Hewlett-Packard Laboratories

1 Introduction

The Iris object-oriented database system being developed at Hewlett-Packard Lab-
oratories [FBC+87] is intended to meet the needs of new and emerging database
applications such as office information and knowledge-based systems, engineering
test and measurement, and hardware and software design. These applications re-
quire a rich set of capabilities that are not supported by the current generation of
relational DBMSs. In addition to the usual requirement for persistence of data,
associative access, controlled sharing, reliable storage, and efficient access, the new
capabilities that are needed include: rich data modeling constructs, including con-
structs for modeling of behavior, direct database support for inference, novel and
extensible data types, and multiple versions of data.

In order to meet the above needs, Iris is based on a semantic data model
[LK86, FBC+87] that supports abstract data types. Object and function concepts
provide high-level structural as well as behavioral abstractions. Functions in Iris
may be implemented in three ways: stored, derived, and foreign. A relational storage
manager maintains the extensions of stored functions in tables. Derived functions
are defined by an Iris expression and foreign functions are defined by programs writ-
ten in conventional programming languages. Functions with side-effects are called
procedures. The roots of the Iris model can be found in previous work on Daplex
[Shi81] and the Taxis language [MBW80]. A number of recent data models, such
as PDM [MD86] and Fugue [HZ88], also share many similarities with the Iris data
model. Iris queries are mitten as functional expressions and function values can
be modified by database procedures. Extensibility is provided by allowing users to
define new functions.

2 Expression Processing in Iris

An Iris expression (query or update) is a functional expression tree, or F-tree, con-
sisting of function calls, variables, and constants. Such an expression is processed
by translating it into a form which is then interpreted. The translation process
consists of three main steps. First, the F-tree is converted to a canonical form. This
involves a series of tree transformations that are done to simplify subsequent trans-
formations. For example, nested function calls are unnested by introducing auxiliary

variables. Type checking is also performed. The actual arguments in a function call
must match or be subtypes of the corresponding formal argument types.

The second step converts the canonical F-tree to an extended relational algebra
tree known as an R-tree. This is a mechanical process in which function calls are
replaced by their implementations (which are, themselves, R-trees). For example,
comparison function calls (e.g. equal, not-equal, less-than, etc.) are replaced by
relational algebra filter1 operators. The logical function, And, is converted to a
cross-product operator.

The resulting R-tree consists of nodes for the relational algebra operations of
project, filter and cross-product. To increase the functionality of the relational
algebra interpreter, there are additional nodes. A temp-table node creates and,
optionally, sorts a temporary table. An update node modifies an existing table. A
sequence node executes each of its subtrees in turn. A foreign function node invokes
the executable code that is the implementation of a foreign function.

The leaves of an R-tree actually generate the data that is processed by the other
nodes. A leaf may be either a table node or a foreign function node. A table node
retrieves the contents of a storage manager table. A projection list and predicate
can be associated with the table node to reduce the number of tuples retrieved. A
foreign function node simply invokes a foreign function.

The semantics of the tree are that results of a child node are sent to the parent
node for subsequent processing. For example, a project node above a table node
would filter out columns returned by the project node. Joins are specified by placing
a filter node above a cross-product node to compare the columns of the underlying
cross-pr~duct .~

The final, and most complex, step is to optimize the R-tree. The optimizer is
rule-based. Each rule consists of a test predicate and a transformation routine. The
test predicate takes an R-tree node as an argument and if the predicate evaluates
t o true, the transformation routine is invoked. The predicate might test the relative
position of a node (e.g., filter node above a project node) or the state of a node
(e-g., cross-product node has only one input). The possible transformations include
deleting the node, moving it above or below another node, or replacing the node with
a new R-tree fragment. As in [DG87], the optimizer must be recompiled whenever
the rules are modified.

Rules are organized into rule-sets which, together, accomplish a specific task.
For example, one rule-set contains all rules concerned with simplifying constant
expressions (e.g., constant propagation and folding). Optimization is accomplished
by traversing the entire R-tree for each rule-set. During the traversal, a t a given
node, any rule in the current rule set may be fired if its test predicate is true.

'In order to distinguish the Iris system function, Select, from the select operator of the rela-
tional algebra, the term, filter operator, will be used to denote the latter.

'Of course, joins are rarely executed this way because the filter predicate ia typically pushed
down below the cross-product to produce a nested-loops join.

The optimization steps (i.e., rule-sets) can be roughly described as follows. There
is an initial rule set that converts the R-tree to a canonical form. The canonical
form consists of a number of expression blocks. An expression block consists of a
project node above a filter node above a cross-product node (any one of these nodes
is optional). A leaf of an expression block may be either a table node, a foreign
function node or another expression block. An expression block may be rooted by
a temp-table node, an update node or a sequence node.

A second rule-set eliminates redundant joins. This has the effect of reducing the
number of tables in a cross-product. A third rule set is concerned with simplifying
expressions. A fourth rule set reorders the underlying tables in a cross-product
node to reduce the execution time by taking advantage of indexes. A fifth rule set
handles Storage Manager-specific optimizations, for example, finding project and
filter operations that can be performed by the Storage Manager.

The final (optimized) R-tree is then sent to the relational algebra interpreter
which processes the R-tree and returns the result to the user. However, if the
R-tree defines the body of a derived function it is simply stored in the database
system catalog. The R-tree may be retrieved later when compiling expressions that
reference the derived function.

The expression translator is flexible and can accommodate any optimization that
can be expressed in terms of a predicate test on a node and a tree transformation.
Of particular interest is the ability to optimize the usage of foreign functions. As
a simple example, given a foreign function that computes simple arithmetic over
two numbers, rules could be written to evaluate the result a t compile time if the
operands are constants. The Iris optimizer is further described in [DS89].

3 Issues in the Design of the Iris Expression Translator

Based on our experience with the Iris expression translator, which has been func-
tional for more than two years, we expect to focus our research effort on the following
areas.

Optimizing Functional Rat her than Relational Expressions

We plan to explore the feasibility of evaluating functional expressions directly, thus
eliminating the need for translating the expressions to extended relational algebra
and then evaluating the relational expressions. This involve. developing a new exe-
cution model for the functional expressions, possibly incorporating function caches.
The expression processor must dynamically decide to process the functional expres-
sion directly, process the entire expression as a relational expression, or perhaps
split the expression into several parts, some of which are evaluated as functional
expressions and others as relational expressions. Such decisions are complicated by
the fact that data in the function value cache may be out of sync with corresponding

data in the database.

Optimizat ion of Foreign Funct ions

The Iris data model allows users to introduce functions that are implemented by
programs written in conventional programming languages. When such functions
are invoked as part of a query, the corresponding programs are dynamically loaded
and executed. Currently, the query optimizer has no special knowledge about such
functions except that input arguments must be instantiated before the function can
be invoked; see the following research area. Therefore, the optimizer cannot generate
optimal plans for queries that involve foreign functions. As part of defining a foreign
function, it should be possible for the definer to add rules to the optimizer's rule
base to indicate how usages of the function can be best optimized.

Extensibili ty of Opt imizer

As described above, a major part of the Iris expression translator is rule-based. In
order to introduce new optimization techniques or new constructs in the database
language, the rule-base needs to be extended. This has proven to be a difficult task,
due to close interrelationships between rules. For example, one rule set in Iris may
generate a join order for nested loop joins by placing relations with indexes as the
inner relations. Another rule set may generate a join order by placing relations
corresponding to foreign functions such that the functions' input arguments are
guaranteed to be instantiated before the functions are called. Defining the two rule
sets separately may be simple, but combining them to attain both goals has proven
difficult.

Side-Effects

The relational algebra used in Iris expression translation has been extended with
operators for function updates and sequences of such updates. A sequence of func-
tion updates that access different data elements physically stored in the same tuple
can potentially be combined into a single update operation. We plan to further
extend the algebra with operators for object creation and deletion. We need to un-
derstand how such relational agebra expressions can be optimized. We expect that
compilation techniques developed for programming languages can be applied.

S torage Manage r In te r face

Currently the Iris expression translator generates evaluation plans for a specific
storage manager. Actually, the code of the translator makes assumptions about the
storage manager, thus complicating the task of replacing the storage manager. In
the long run we would also like to simultaneously use multiple storage managers,
each specialized for a different purpose, e.g. text, spatial information, business data.

Two challenges we face are to define a "generic" storage manager interface and to
optimize expressions whose evaluations require access to several storage managers.

References

[DG87] D. J. Dewitt and G. Graefe. The EXODUS Optimizer Generator. In
Proceedings of ACM-SIGMOD International Conference on Management
of Data, pages 160-172, 1987.

[DS89] N. Derrett and M. C. Shan. Rule-Based Query Optimization in Iris. In
Proceedings of ACM Annual Computer Science Conference, Louisville,
Kentucky, February 1989.

[FBC+87] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J. W.
Davis, N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A.
Neimat, T. A. Ryan, and M. C. Shan. Iris: An Object-Oriented Database
Management System. AChI Transactions on Ofice Information Systems,
5(1), January 1987.

[HZ881 S. Heiler and S. Zdonik. Views, Data Abstraction, and Inheritance in
the FUGUE Data Model. In Klaus Dittrich, editor, Lecture Notes in
Computer Science 334, Advances in Object-Oriented Database Systems.
Springer-Verlag, September 1988.

[LK86] P. Lyngbaek and W. Kent. A Data Modeling Methodology for the Design
and Implementation of Information Systems. In Proceedings of 1986
International Workshop on Object-Oriented Database Systems, Pacific
Grove, California, September 1986.

[MBW80] J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong. A Language Facility
for Designing Database-Intensive Applications. ACM Tmnsactions on
Database Systems, 5(2), June 1980.

[MD86] F. Manola and U. Dayal. PDM: An Object-Oriented Data Model. In Pro-
ceedings of 1986 International Workshop on Object-Oriented Database
Systems, Pacific Grove, California, September 1986.

[Shi81] D. Shipman. The Functional Data Model and the Data Language
DAPLEX. ACM Tmnsactions on Database Systems, 6(1), September
198 1.

Query Optimization Basics for Object-Oriented Databases

Position Statement for Workshop on Database Query Optimization

S. L. Osborn

Dept. of Computer Science

The University of Western Ontario

London, On. Canada N6A-5B7

May 9, 1989

Object-oriented databases are characterized by complex data structures, specialized operations

and object identity which persists. The following assumptions are made in this position statement:

1. The possible structures which database objects have are rich and varied. At the very least,

there are sets of objects and aggregates or tuple-like structures, of which the elements or

components can also be complex structures. An application may deal with collections or sets

of objects, or with single, highly complex structures like a design. Only one data structure

was offered by the relational model - sets of tuples. In general, an object-oriented database

has more data structures.

2. Object identity is part of the data model and the user's perception of the data. In the

relational model, all connections between tuples are made by having equal values appear in

different relations. In an object-oriented system, two employee tuples can have the identical

address object as one of their attributes. Thus connections may be made by finding identical

sub-objects in two objects. We feel that as well as identity comparisons, equality comparisons

should also be allowed and supported in any query interface.

3. Since this is a database, querying and data manipulation take place. Querying can 11r done

by browsing through a complex object, or by taking subsets of sets of objects. l 7n f . l ma-

nipulation, on the other hand, involves taking bits and pieces of objects and p~ r ! i I r ; them

together in new ways to create new objects. We believe both kinds of activities should be

supported, although in some existing proposals for object-oriented database systems, only

the browsing activities are supported. Data manipulation was what set the relational model

apart from the record-at-a-time databases. Powerful data manipulation should also be a part

of object-oriented database systems. Actually, even an operation like the relational algebra

projection creates objects which are not currently in the database.

Assuming that non-trivial data manipulation is allowed in an object-oriented database, and that

the system can distinguish such operations as database operations, query optimization becomes an

issue. To begin with, rearranging a sequence of such operations to yield a more efficient sequence

should be considered. In order to do this, one needs a notion of when two sequences of operations

give "the same" answer. Since object-oriented databases have a notion of object identity. t~vo

queries might yield answers which are identical, which means, they are same object, i.e. they

have the same object ID. In other cases, two queries might produce results which are equal, which

means have the same values but not necessarily the same object IDS. A third case must also be

considered: two queries might produce a set (or a tuple) of objects, the members (components) of

which are identical, but for which the object IDS of the set (tuple) itself are different. We call this

type of "sameness" shallow identity. This use of equal is the same as the deep-equal of [KC86],

and shallow identity here corresponds to their shallow-equal.

We have been developing an object algebra for use with an object-oriented database system

[Osb88b, Osb88al. With an algebra, it is possible to konsider rearranging the operations to give

an alternative execution order. Some of our findings regarding this type of query optimization in

an object algebra are [Osb89]:

1. It is important to distinguish among equality, idientity and shallow identity when discussing

this type of query optimization.

2. For queries involving taking subsets of a set of objects (like the relational algebra Select), and

set operations like Union, Intersect and ~ub t r ac i , shallow identity can be guaranteed when

the algebra operations are rearranged. One might think this is a negative result, because

identity is not guaranteed. However, users probrlbly do not care about the object ID of the

set containing the objects they have retrieved, but would be content to know that the same

objects are in the set.

3. For queries which restructure the data, or build any new objects, such as would occur with

the relational algebra Project, the best we can expect is equal results, and occasionally when

working with singleton aggregates or tuples, shallow identity. This is not very surprising,

since new objects are being created. It is useful to know in what circumstances equality can

be guaranteed.

4. Single objects should not be overlooked in query optimization for object-oriented databases.

Relational databases deal only with sets of tuples, so all the optimization results deal with

sets. Object-oriented databases are meant to deal with objects, which may be single, albeit

deeply nested, objects. Many applications suggested for object-oriented databases deal with

design, either in an engineering sense or of software. In these applications, users may well

be dealing with a single object - the design. We have shown that sometimes with a single

aggregate, shallow identity can be guaranteed in situations where only equality would hold

with sets.

5. It makes no difference, for this kind of query optimization, whether we are working with

strongly typed sets or untyped sets. It will make a difference when building indices or other

specialized access paths.

References

[KC861 S.N. Khoshafian and G.P. Copeland. Object identity. In OOPSLA '86 Proceedings, pages

406-416. ACM SIGPLAN Notices, vol. 21, no. 11, Nov. 1986.

[Osb88a] S.L. Osborn. Identity, equality and query optimization. In K.R. Dittrich, editor, Advances

in Object-Oriented Database Systems, 2nd International Workshop on Object-Oriented

Datbase Sytems, pages 346-351. Springer-Verlag Lecture Notes in Computer Science 334,

Sept. 1988.

[Osb88b] S.L. Osborn. Polymorphism in an object-oriented database. submitted for publication,

Sept. 1988.

[Osb89] S.L. Osborn. Algebraic query optimization for an object algebra. in preparation, 1989.

Efficient Querying in an Object-Oriented ~ a t a b a s e t
Extended Abstract

Gail M. Shaw
Stanley B. Zdonik

Department of Computer Sciencet
Brown University

Providence, R.I. 02912

Abstract

We are interested in efficiently accessing data in an object-oriented database. We
have developed a query algebra [Sha89a], which forms a base for our current research
in query optimization, and have identified a variety of query transformations on that
algebra. Our current work involves estimating the cost of such transformations.

1 Introduction

A major aspect in the development of query algebras is the potential for optimization. In the
next section we outline an algebra that synthesizes relational query concepts with object-
oriented databases. The algebra supports an object-oriented model with abstract data
types, type inheritance, encapsulation, and object identity. Unlike other languages proposed
for object-oriented databases (e.g. [Ban87], [Mai87], [Ban88], [Car88], [Osb88]) our algebra
fully supports these object-oriented concepts and still provides full associative access to the
database, including a unique join capability. The similarities between the structure of the
algebra and the relational algebra lead us to believe that relational optimization results will
prove useful in object-oriented query optimization. In addition, our consistent approach
to abstract data types and support for object identity should offer flexibility in applying a
variety of optimization strategies.

Query algebras can support optimization through syntactic transformations (e.g.[Osb88],
[Ban87]) and we have found our algebra to be conducive to such transformations (see Sec-
tion 3). However, the implementation of abstract data types involves the encapsulation
of data and operations, requiring optimization strategies for encapsulated behaviors (e.g.
[Gra87]). We present some of our current thoughts on optimization for object-oriented
databases in Section 4.

+ ~ u ~ ~ o r t for this research is provided by IBM under contract No. 559716, by DEC under award No.
DEC686, by ONR under contract NOO14-88-K-0406, by Apple Computer, Inc., and by US West.

$Electronic sddreeses: gms and sbz Qcs.brown.edu.

2 The Encore Query Algebra

Our query algebra is based on the ENCORE object-oriented data model (see [Zdo86] and
(Sha89bl). The model includes abstract data types, type inheritance, typed collections of
typed objects, and objects with identity. We query over collections of objects using the
type of objects in the collection as a scheme for the class. The collections are considered to
be homogeneous, although the objects in the collection may have a type which is a subtype
of the collection type.

The algebraic operations can be divided into two categories:

1) operations that retrieve data: Select, Image, Project, Ojoin, Union, Intersection, and
Difference

2) operations that support data retrieval through manipulation of result structure and
identities: Flatten, Nest, UnNest, DupEliminate, and Coalesce

The first four operations are defined in Table 1. The Select operation creates a collection of
database objects which satisfy a selection predicate. The Image operation is used primarily
to return a single component, or value, for each object in the queried class. In some ways,
this is a selection of objects from a different collection than the one over which the query is
posed.

The Project and Ojoin operations create new relationships not explicitly defined in the
object types. These operations produce tuples to store the computed relationships. The
Project operation creates one tuple for each object in the collection being queried, with
the tuple storing selected relationships between components of the object or relationships
involving database objects from other collections. Ojoin is an explicit join operator used
to create relationships between objects from two collections in the database. In the Ojoin
definition in Table 1 we assume that the two collections contain objects having user-defined
data types (i.e., not tuple data types). The Ojoin operation then creates 2-tuples, storing
one object from each collection in each attribute. When Ojoin involves a collection of n-
tuples, the result is an (n+l)-tuple; i.e. tuples will not be nested within tuples by the
operation. Although Ojoin is a special case of Project (see Table 2) the redundancy should
be useful for optimization. In particular, our definition of Ojoin is designed to preserve the
associativity of the operation.

The algebraic operators preserve the typing of the object-oriented data model and main-
tain the identities of objects in the database. The details of the operations are sensitive
to different notions of object equality, which may prove useful in optimization. For exam-
ple, DupEliminate provides the option of eliminating, from a collection, objects which have
separate identities but equal (by some definition) values. Coalesce d o w s manipulation of

Selec t (S ,p) = { a 1 (a in S) A ~ (3)) (1)

Image(S, f) = { f (a) I s in S) (2)

Projec t (S , < (-41, f i) , . .a , (An , f n) >) =
{< AI : f ~ (s) , ..., A, : fn (s) >I 8 in S) (3)

Ojo in (S , R , p) = {< A, : 8 , A, : 2 > I s in S A r in R A ~ (s , 2)) (4)

Table 1: Some Query Operations

0 join(As, B E , A, B, AaXb p(a, b))

Coalerce(S, Ah, i)

whereNoDupAk

Select(Sefect(S, pl), pz)
Select(Select(S, p l) , p z)

Union(Select(S, pl), Select(S, p2))

Select(0 join(A, B , p) , At p , (t .A))

Select(Ojoin(A, B , XaXb p(a, b)) , At p,(t .A, t . B))

0 join(A, B , XaXb p(a) A p'(a, b))

Select(UnNert(Pzoject(As, Xa < (A , a) , (B , B B) >),
B),At P (~ . A , t . B)) (1)

Project(Ojoin(S, NoDupAk, , K , AaXb a.Ar =i b),

At < (A1 t-A1), . . . , (Ah-1 t tk-1))

(A k , t . K) ,

(A k + l , t . A k + ~) , . .. I (A n , t - A n) >) (2)
DupEliminate(Image(S, Ar # .Ak) , i)

Select(Select(S, pz), pl) (3)

Select(S, PI A p2) (4)

Select(S, pl v pz) (5)

0 join(Select(A, Aa p , (a)) , B , p) (el
0 join(A, B , XaAb p(a, 6) p.(a, 6)) (7)

Ojoin(Select(A, ~ (a)) , B , XaAb ~ ' (a , b)) (8)

Table 2: Some Algebraic Identities

a result structure to provide aliasing of "equal" objects. Both of these operations could be
used to create result structures which might be more efficient for querying.

3 Query Transformat ions

We expect the structure of the operations and the redundancies in the operator set to offer
many opportunities for optimization. Some redundant algebraic operations are noted in
Table 2 (identities 1 and 2). The equivalent operations return the same objects from the
database, although the objects in which the results are stored have distinct identifiers.

We have also applied some relational optimization results to the object-oriented query
algebra. For example, in Table 2 we note that selection predicates can be applied in any
order (identity 3) and can be combined (identities 4 and 5), as in relational algebra. Iden-
tity 6 is equivalent to the relational optimization strategy of pushing Selection past Join.
Similarly, when a Select operation is composed with an Ojoin, it may be possible to instead
compose the two predicates to produce a single operation (identity 7). These two ideas are
combined in identity 8; if an Ojoin predicate contains a conjunct involving only one of the
operand classes, that conjunct can be extracted from the Ojoin predicate to form a Select
predicate on the appropriate operand.

Another optimization consideration for object-oriented databases is the creation of new
objects to store intermediate query results. The Project operation should prove useful in
such optimizations by allowing the extraction, from objects, of information needed by sub-
sequent operations. For example, consider the query 0 join(S, Q , XsXq s.length = q.length)
which creates pairs of stacks and queues with equal lengths. The join could involve multiple
accesses to each stack and queue to compute the length information. However, the Ojoin
could be transformed into the following sequence of operations:

ST := Project(Stacks,Xr <(S,r),(LenS,r.length)>)
Qu := Project(Queues,Xr <(Q,r),(LenQ,r.length)>)
Temp := Ojoin(ST,QU,Xs Xq s.LenS = q.LenQ)
SQPairs := Project(Temp,Xt <(S,t.S),(Q,t.Q)>)

These operations accomplish the same result with only one evaluation of the length property

for each object in the collections. The information required for the join (i.e., the length for
the predicate and the objects themselves for the result) is extracted once for each object
and stored in tuples (in colIections ST and QU).

4 Thoughts on Cost Estimation

In order to use the algebraic transformations effectively we need to identify a means for
estimating the cost of a query. This involves developing a definition of query cost, as well
as a method for evaluating the cost.

The cost measure will probably be related to the number of object accesses needed to
respond to the query. This, in turn, can depend on the query itself, the selectivity of the
collection(s) being queried, the implementation of the collection being queried, and the
type and implementation of the objects in the collection. The structure of objects implies
that access to a single object could additionally involve access (recursively) to objects it
references. The cost, in objects, of accessing a single object would be largely determined by
the query, although the disk access costs of retrieving different levels of the object could d so
depend on the storage implementation for the object type. Access to objects in a collection
would also depend on the availability of indexes on that collection. The structure of objects
leads to the question of what can be indexed, and the related problem of maintaining indexes
[Zdo89]. For example, a property of an object could be implemented as a function, so an
index can not be based on storage values.

Applying a cost measure is complicated by the need to respect encapsulation of the
objects in the database. A query and the collection over which it ranges are database
objects which will act upon each other when the query is executed. The cost of a query
will be the cost of that interaction, and thus involves knowledge about the query and the
collection being queried. Since query objects are ad hoc, our current thought is to attach
a cost evaluator to type collection (i.e. to the type object for type collection). When the
evaluator is activated the query object would have to cooperate with the collection type
object to allow that object to evaluate the cost of the query. In addition, the type object
needs access to information (selectivity, index availability and use, etc.) about the actual
collection object being queried. Thus we need to determine not only a method for evaluation,
but the requirements for defining types so that information needed by the query evaluator
will be accessible to the evaluator within the constraints imposed by the encapsulation of
the objects needed for the evaluation.

We expect that very few query transformations will be independent of the data being
accessed. Thus the determination of a cost measure and application of that measure, within
the encapsulation constraints imposed by abstract data types, will be of primary importance
in defining query optimization in object-oriented databases.

References

[Ban871 Francois Bancilhon et al. FAD, a Powerful and Simple Database Language. In
Proceedings of the 13th VLDB Conference, pages 97-105, 1987.

[Ban881 Jay Banerjee, Won Kim, and Kyung-Chang Kim. Queries in Ob ject-Oriented
Databases. In Proceedings 4th Intl. Con$ on Data Engineering, pages 31-38.
IEEE, Feb 1988.

[Car881 Michael J. Carey, David J. DeWitt, and Scott L. Vandenberg. A Data Model and
Query Language for EXODUS. In SIGMOD Proceedings, pages 413-423. ACM,
June 1988.

[Gra87] Goetz Graefe. Rule-Based Query Optimization in Extensible Database Systems.
PhD thesis, Univ. of Wisconsin-Madison, November 1987.

[Mai87] David Maier and Jacob Stein. Development and Implementation of an Object-
Oriented DBMS. In B. Shriver and P. Wegner, editors, Research Directions in
Object- Oriented Programming, pages 355-392. MIT Press, Cambridge, MA, 1987.

[Osb88] S. L. Osborn. Identity, Equality and Query Optimization. In Advances in
Object-Oriented Database Systems, pages 346-351. 2nd International Workshop
on Object-Oriented Database Systems, September 1988.

[Sha89a] Gail M. Shaw and Stanley B. Zdonik. An Object-Oriented Query Algebra. To
appear in Proceedings of the 2d Intl. Workshop on Database Programming Lan-
guages, 1989.

[Sha89b] Gail M. Shaw and Stanley B. Zdonik. A Query Algebra for Object-Oriented
Databases. Technical Report CS-89-19, Brown University, 1989.

[Zdo86] Stanley B. Zdonik and Peter Wegner. Language and Methodology for Object-
Oriented Database Environments. In Proceedings of the Hawaii International
Conference on System Science, January 1986.

[Zdo89] Stanley B. Zdonik. Query Optimization in Object-Oriented Database Systems. In
Proceedings of the Hawaii International Conference on System Science, January
1989.

Practical Complex Object Algebras

Scorr Vandenberg

(electronic mail: s c o t t v @ c s . wisc. edu)

University of Wisconsin-Madison

1. Introduction

One of the main reasons for designing algebras for data models is so that they can be used as vehi-
cles for query optimization in systems with non-procedural interfaces. This is especially clear in the rela-
tional model [Codd70]. Recently, a large number of algebras have been proposed for data models more
powerful than the relational model (e.g., nested relations, entity-relationship models, complex object
models, etc.). Some of these proposals have been highly theoretical in nature. while others have been
intended for use in a specific system. This situation leads to two interesting (and related) questions which
are receiving our attention.

First, this recent proliferation of data models, exemplified both by the models themselves (semantic
models, objectariented models, nested relations, complex objects with and without object identity, etc.)
and by extensible database systems such as EXODUS [Care86a] and Genesis Pam871 (which assume that
no single data model will solve all data modelling problems). leads one to ponder the question of whether
or not there can (or even should) be a complex object analogue of Codd's relational algebra. That is, is
such a standard possible or desirable in the case of complex objects? Many of these proposed &la models
operate on structures which are very similar, if not identical, to each other. Should they be manifestations
of a single algebra in the same way that ORACLE and INGRES, for example, are approximations of the
pure relational model? Or should the underlying formal algebras be substantially different from each
other?

Second, what do the characteristics of the formal algebras imply for their systemdependent counter-
parts? For example, what effect will reducing the power of a formal algebra by eliminating the powerset
operator have on the usefulness, efficiency, and ease of implementation of an algebraic optimizer for a
specific system supporting complex objects? Answering such questions can give us valuable hints on how
to design an algebraic optimizer for a specific dau model. This discussion is intended to identify some of
the more important algebraic qualities and their implications, not necessarily to point out the correct design
choices (which will vary with the model, DBMS. and application).

In the following section I will briefly discuss complex objects. Section 3 contains some comments
on algebraic standards. Section 4 summarizes some conclusions drawn from a survey of recent algebras in
order to clarify the second question posed above and contains an initial set of ideas on how one might
evaluate the suitability of a panicular algebra for a particular DBMS. A sketch of our current and planned
work is given in Section 5.

2. Complex Objects

Generally, a complex object is regarded as being composed from scalar values using the set and tuple
type amsuuctors, which can be applied to scalars as well as to previously formed sets and tuples. Some
pqKIsals also include arrays as a type constructor with the same status as the set and tuple Constructors.
Aside from its structure, a complex object may or may not have "object identity"; this depends on whose
&hition of "complex object" one uses. At any rate, it is an issue onhogonal to structure. An object is
said to have its own identity if it can be accessed via an unchanging identifia or surrogate. Objects without
identity can only be referenced by specifying one or more of the scalar values which make up the object
The remainder of this discussion will concern algebras for complex objects and for models which are
strictly less powuful (in tams of modelling capabilities) than complex objects. For example. the relational
and nested relational models are subsumed by the complex object model: relations are sets of tuples in
which the tuples contain only scalar values and nested relations are sets of tuples in which the tuples

Algebras
101

contain either scalar values or other relations (sets of tuples).

3. What About a Standard?

An important question is whether or not we need or want an algebra general or powerful enough to
be called "the" complex object algebra. As mentioned in the introduction, the Jariety of recently proposcd
models is staggering and it is not at all clear that a single model will emerge as the most popular one like
the relational model did in the 1970s. Both researchers and end-users have become aware of this variety,
and it seems unlikely that anyone will want to substitute a single model for the wide range of choices now
available (unless, of course, somebody comes up with the perfect data model). This is m e not only
because of the different (and loose) classifications of models as object-oriented, semantic, etc., but also
because within each of these classifications exists a large number of dala models with differences substan-
tial enough to require a different algebra. For example, some complex object models want to support
arrays as primitive type constructors and others do not; some require objects to have identity, some do not
permit it, and others make it optional. An algebra sufficient for all such complex object models would have
several "useless" operators in any model which did not support all of the constructs for which the algebra
was designed.

With this in mind, it seems that what is needed is not a single algebra but a method and some guide-
lines for designing algebras for the various complex object (and other) models currently under investiga-
tion. Of course this would m a n missing out on the benefits of having a standard algebra (a common foun-
dation for research and comparison, for example), but these benefits might be at least parually regained if
there are some generally agreed upon methods and guidelines for algebra design, implementation. and
analysis. The next section expands upon this point.

4. Some Algebraic Characteristics and Their Consequences

After surveying 28 algebras more powerful than the relational algebra, what became apparent was
the central nature of the relational algebra--virtu&' all of the algebras are based on thisalgebra in some
form or another. The most important common the:ne identified was the inadequacy of the relational model
and its algebra. Spechcally, the algebraic extensions employed in the more sophisticated models imply
that the relational model falls short in the areas of modelling constructs (not rich enough), expressive
power (can not do, e.g., a general transitive closure), computational power (absence of aggregates, etc.),
historical databases (i.e., we can not express the query "what was m e at time x?"), and object identity
notions (which can help alleviate some of the anomalies encountered in first normal form relations).

One motivation for the survey was to examine the operators defined for post-relational algebras and
to identify the ways in which they extend or supplant the relational operators. The most popular sets of
primitives seem to be based on the relational algebra, and two fairly standard sets of operators seem to be
catching hold in the area of nested relations (specifically, one set for nested relations which conform to a
normal form known as "Partitioned Normal Fom" and one set for general nested relations). But for data
more complex than nested relations, a clearly favorite set of primitives has not yet emerged (indeed, only a
handful of algebras for complex objects exist). More work remains to be done in this area, but we can
identify several important design considerations at this point.

One of these is the amenability of the operators to standard algebraic optimization techniques. For
example, a small set of extremely powerful operators may allow fewer alternatives for query processing
since it provides only a small number of algebraic transformation rules, whiIe a large set might provide too
many alternatives to consider in a reasonable amount of time. The nature and efficiency of the optimization
process will probably be very sensitive to the addition/removal of new operators and it is conceivable that
additional changes to the algebra may be necessary to ensure that an optimizer based upon it will be effec-
tive. And if, as discussed in the previous section, we have an algebra that is more powerful than the system
employing it, the set of transformation rules may be too large in the sense that some of them will never be
used and too small in the sense that the more restrictive domain of structures available in the model may
allow for a larger set of possible transformations. What we seek, then, is a fairly tight fit between an alge-
bra and a particular DBMS--the algebra should model exactly the set of queries expressible in the end-user
language (which is frequently a calculus-based language).

That, of course, would be the ideal situation. In reality there rarely seems to be such a tight fit. For
example, most commercial relational DBMSs support aggregate functions, which have no place in the

Algebras

relational algebra. This raises the issue of what to do with query language constructs that may be difficult
to model in an algebra; i.e., what should the scope of the algebra be--should it model the entire query
language or not? The relational algebra can be extended to include aggregates, but if arbitrarily complex
aggregates are allowed, what should be the legal algebraic transformations? In [Klug82], aggregates are
added to the relational algebra, but the algebra has no knowledge of the semantics of a particular aggregate,
making it much more difficult to come up with transformation rules involving aggregate usage. In order to
more effectively manipulate expressions with aggregates, the algebra would need some knowledge of what
the aggregate does. Unfortunately this would often involve giving the algebra the ability to actually com-
pute aggregates, which would significantly increase its power [Chan81, Chan881. Such an increase in
power brings the algebra one step closer to a full programming language, making optimization much more
difficult (e.g., there are many more possible transformation rules, and such rules would need to be defined
for every such aggregate function). The issue for a particular algebra, then, is how much power can be
added to it while preserving its utility and tractability.

Another (simpler) example of an algebraic design decision for a complex object algebra is whether
or not to include the powerset operator in the algebra. Inclusion of this operator gives some of the algebras
proposed in the literature the same power as most complex object calculi, while omission of the operator
renders the algebra strictly less powerful than the calculus (for example, recursive queries can no longer be
expressed) [Hu1187]. Unfortunately, the powerset operator is inherently exponential, thus one does not
want to include it in the algebra unless it is truly needed to answer certain classes of queries.

There are many other design issues to consider. For example, is the usual set-based query processing
paradigm still the best choice for complex object algebras? That is, is there a viable alternative to treating
all inputs and outputs of algebraic expressions as sets in light of the fact that type constructors may be
applied in any order? This will have an effect on the nature of the available operators.

A "good" algebra should bridge the gap between theory and practice by taking these and other issues
into account. Aside from the speed and effectiveness of query optimization mentioned above, an algebra
designer should also consider the ease of implementation of the operators, the ease with which cost and
other estimation functions can be specified for the operators, and whether or not the algebra is intended as
an end-user or as an intermediate language.

This discussion is not meant to exhaust either the important theoretical issues or their (equally impor-
tant) practical consequences.

5. Our Work
As a test vehicle for the EXODUS extensible database system being developed here at UW-Madison,

we are implementing of a complex object model (the EXTRAlEXCESS model, see [Care88a]) with sets,
arrays, and tuples as the available type constructors. Types may be defined using these constructors in any
order, and an "object identity indicator" may be placed before any of the constructors wherever they appear
(or before a scalar) to signify that the following (sub)structure of each object of the type being defined has
its own object identity. An algebra design taking into account the above ideas is complete, and an imple-
mentation of the optimizer using the EXODUS optimizer generator [Grae87] will begin shortly, also with
the above ideas in mind.

We also plan to quantify some of the more subjective characteristics and consequences described in
Section 4 by varying the characteristics of the algebra accordingly.

BIBLIOGRAPHY
[Abit86] S. Abiteboul and N. Bidoit, "Non First Normal Form Relations: An Algebra Allowing Data Res-
tructuring," J. Computer and System Sciences 33,1986.

[Abit88al S. Abiteboul and C. Beeri, "On the Power of Languages for the Manipulation of Complex
Objects," Technical Report No, 846, INRIA, May 1988.

[Abit88bl S. Abiteboul and R. Hull, "Update Propagation in a Formal Semantic Model." Data Eng. ll(2).
June 1988.

Algebras

[Ah0791 A. Aho and J. Ullman, "Universality of Data Retrieval Languages", Proc. Conf on Principles of
Programming Languages, 1979.

[Aris83] H. Arisawa, K. Moriya, and T. Miura, "Operations and the Properties on Non-Fit-Normal-Form
Relational Databases," Proc. VLDB Conf., Florence, Italy. October, 1983.

Panc871 F. Bancilhon. T. Briggs, S. Khoshafian, and P. Valduriez, "FAD, a Powerful and Simple Data-
base Language," Proc. VLDB Conf., Brighton, England, 1987.

[Banc88] F. Bancilhon. G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman, C. Lecluse, P. Pfeffer, P.
Richard, and F. Velez, "The Design and Implementation of O2 an Object-Oriented Database System,"
Tech. Repon 20-88, Altair, April 1988.

[Band61 F. Bancilhon and S. Khoshalian, "A Calculus for Complex Objects," Proc. PODS Conf., Cam-
bridge, MA, March 1986.

[Bane87a] J. Banerjee, H.-T. Chou, J. Gana, W. Kim, D. Woelk, N. Ballou, and H.-J. Kim, "Data Model
Issues for Object-Oriented Applications," ACM Trans. Office Info. Sys. 5(1), Jan. 1987.
[Bane87b] J. Banerjee, W. Kim, and K.-C. Kim, "Queries in Object-Oriented Databases," Tech. Report
DB-188-87, MCC, Austin, Texas, June 1987.

[Bat0871 D. Batory, "Principles of Database Management System Extensibility," Darabase Eng., June
1987.
[Bat0841 D. Batory and A. P. Buchmann, "Molecular Objects, Abstract Data Types, and Data Models: A
Framework," Proc. Tenfh VLDB Conf., Singapore, Aug. 1984.

[Brac79] R. J. Brachman, "On the Epistemological Status of Semantic Networks," in Grsociarive Ner-
works, N. V. Findler (Ed.), Academic Press. New York, 1979.

[Care86a] M. Carey. D. DeWitt, D. Frank, G. Graefe, M. Muralikrishna. J. Richardson, and E. Shekita,
"The Architecture of the EXODUS Extensible DBMS," Proc. Inf'l. Workshop on Object-Orienred Data-
base Systems, Pacific Grove, CA, Sept 1986.

[Care86b] M. Carey and D. DeWitt, "Extensible Database Systems", Proc. Islamorada Workshop on
Large Scale Knowledge Base and Reasoning Sysrems. February 1986.

[Care88al M. Carey, D. DeWitt, and S. Vandenberg, "A Data Model and Query Language for EXODUS,"
Proc. SIGMOD Conf., Chicago, Illinois. 1988.

CCare88bI M. Carey. D. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh, E. Shekita, and S. Van-
denberg, "The EXODUS Extensible DBMS Project An Overview", Comp. Sci. Tech. Report #808, Univ.
of Wisconsin, Madison, Wisconsin, November, 1988.

[Ceri871 S. Ceri. S. Crespi-Reghizzi, L. Lavazza, and R. Zicari, "ALGRES: A System for the
Specification and Prototyping of Complex Databases," Tech. Report 87-018, Dipanimento di Elettronica,
Politecnico di Milano. 1987.

[Chan81] A. Chandra. "Programming Primitives for Database Languages", Proc. Conf. on Principles of
Programming Languages. 198 1. pp. 50-62.

[Chan88] A. Chandra, "Theory of Database Queries", Proc. Conf. on Principles of Darabase Systems,
1988. pp. 1-9.

[Chen76] P. Chen, "The Entity-Relationship Model - Toward a Unified View of Data," ACM Trans.
Database Sys. 1(1), March 1976.

[Codd70] E. Codd, "A Relational Model of Data for Large Shared Data Banks," Comm. ACM 13(6), June
1970.

[Codd791 E. Codd, "Extending the Relational Model to Capture More Meaning." ACM Tram. Database
Sys. 4(4), Dec. 1979.

[Codd801 E. Codd, "Data Models in Database Management," Proc. Workshop on Data Abstraction. Data-
bases, and Conceptual Modeling". Pingre Park, Colorado. 1980.

[Dada861 P. Dadarn. K. Kuespert, F. Andersen, H. Blanken, R. Erbe. J. Guenauer. V. Lum. P. Pistor, and
G. Walch, "A DBMS Prototype to Support Extended & Relations: An Integrated View of Flat Tables
and Hierarchies," Proc. SIGMOD Conf., Washington, DC, 1986.

Algebras

[Desh88] A. Deshpande and D. Van Gucht, "An Implementation for Nested Relational Databases," Proc.
VLDB Conf., Los Angeles, CA, 1988.

[Desh87] V. Deshpande and P.-A. Larson, "An Algebra for Nested Relations," Research Report CS-87-65,
University of Waterloo, Dec. 1987.

[Fisc83] P. C. Fischer and S. J. Thomas, "Operators for Non-First-Normal-Form Relations," Proc. IEEE
COMPSAC, 1983.

[Fish871 D. Fishman, D. Beech, H. Cate, E. Chow, T. Connors, J. Davis, N. Derrett, C. Hoch, W. Kent, P.
Lyngbaek, B. Mahbod, M. Neimat, T. Ryan, and M. Shan, "Iris: An Object-Oriented Database Manage-
ment System," ACM Trans. Office Info. Sys. 5(1), Jan. 1987.

[Grae87] G. Graefe and D. DeWitt, "The EXODUS Optimizer Generator," Proc. SIGMOD Conf., San
Francisco, CA, May 1987.

[Grae88] G. Graefe and D. Maier, "Query Optimization in Object-Oriented Database Systems: The
REVELATION Project", Tech. Report CS/E 88-025, Dept. of Computer Science and Engineering, Oregon
Graduate Center, 1988.

[Guck88] R. L. Guck, B. Fritchman, J. Thompson, and D. Tolbert, "SIM: Implementation of a Database
Management System Based on a Semantic Data Model," Data Eng. 11(2), June 1988.

[Guti87] R. Guting, R. Zicari, and D. Choy, "An Algebra for Structured Office Documents", IBM
Research Report RJ 5559 (56648), IBM Almaden Research Center, March 1987.

[Gyss88] M. Gyssens and D. Van Gucht, "The Powerset Algebra as a Result of Adding Rogramming
Constructs to the Nested Relational Algebra," Proc. SIGMOD Conf., Chicago, Illinois, June 1988.

[Ha11841 P. A. V. Hall, "Relational Algebras, Logic, and Functional Programming," Proc. SIGMOD Conf.,
Boston. Massachusetts, 1984.

[Hamm81] M. Hammer and D. McLeod, "Database Description with SDM: A Semantic Database
Model", ACM TODS 6(3). September 1981.

[Horn871 M. Hornick and S. Zdonik, "A Shared, Segmented Memory System for an Object-Oriented Data-
base," ACM Trans. OfJlce Info. Sys. 5(1), Jan. 1987.

[Houb87] G. J. Houben and J. Paredaens, "The ~ ' - ~ l ~ e b r a : An Extension of an Algebra for Nested Rela-
tions," Tech. Report 87/20, Dept of Math. and Computing Sci., Computing Sci. Section, Eindhoven Univ.
of Tech., December 1987.

[Houb88] G. J. Houben, J. Paredaens, and D. Tahon, "Expressing Structured Information using the Nested
Relational Algebra: An Overview," Proc. Eighrh SCCC Int. Con$ Comp. Sci., Santiago, July 1988.

[Hull871 R. Hull, "A Survey of TheoreticaI Research on Typed Complex Database Objects", in Databases,
ed. J. Paredaens, Academic Press, London, 1987.

[Hu1188a] R. Hull and J. Su, "Untyped Sets, Invention, and Computable Queries," extended abstract, sub-
mitted to ACM Symp. Principles of Database Sys., March 1989.

[Hu1188bl R. Hull, "Four Views of Complex Objects: A Sophisticate's Introduction", draft, Dept. of Com-
puter Science, Univ. of Southern California, Los Angeles, California, May 1988.

[Jaes82a] G. Jaeschke. "An Algebra of Power Set Type Relations," TR 82.12.002, IBM Heidelberg
Scientific Center, Dec. 1982.

[Jaes85a] G. Jaeschke, "Recursive Algebra for Relations with Relation Valued Attributes," TR 85.03.002,
IBM Heidelberg Scientific Center, March 1985.

[Jaes85b] G. Jaeschke, "No~ecursive Algebra for Relations with Relation Valued Attributes," TR
85.03.001, IBM Heidelberg Scientific Center, March 1985.

[Jaes82b] G. Jaeschke and H.-J. Schek, "Remarks on the Algebra of Non First Normal Form Relations,"
Proc. ACM PODS Conf., Los Angeles, CA, 1982.

[JarkMI M. Jarke and J. Koch, "Query Optimization in Database Systems," Comp. Surveys 16(2), June
1984.

Algebras

[Jhin88] A. Jhingran, "A Performance Study of Query Optimization Algorithms on a Database System
Supporting Procedural Objects," Proc. VLDB Conc, Los Angeles. California. 1988.
[Kent791 W. Kent, "Limitations of Record-Based Information Models," ACM Trans. Database Sys. 4(1),
March 1979.

@hos87] S. Khoshafian and P. Valduriez, "Sharing, Persistence, and Object kent tat ion: A Database Per-
spective." DB-106-87. MCC. April 1987.

Wug821 A. Klug, "Equivalence of Relational Algebra and Relational Calculus Query Languages Having
Aggregate Functions," J. ACM 29(3). July 1982.

[Kort88] H. Korth, "Optimization of Object-Retrieval Queries (extended abstract)," Dept of Computer
Sciences, Univ. of Texas, Austin, Texas, April 1988.

[Kupe85] G. M. Kuper, "The Logical Data Model: A New Approach to Database Logic," PhD. Thesis,
Dept. of Computer Science, Stanford University, Stanford, CA. Sept. 1985.

ec187I C. Lecluse, P. Richard, and F. Velez, "02, an Object-Oriented Data Model," Proc. SIGMOD
Conf., Chicago, IL, 1988.

[Maie86a] D. Maier, 3. Stein, A. Otis, and A. Purdy, "Development of an Object-Oriented DBMS." Proc.
1st OOPSLA Conf., Portland, OR. 1986.

Maie86bJ D. Maier and 3. Stein, "Indexing in an Object-Oriented DBMS," Tech. Repon CSE-86-006,
Oregon Grad. Center. Beaverton, Oregon, May 1986.
[Maie86c] D. Maier, "A Logic for Objects," Tech. Report CSE-86-012, Oregon Grad. Center, Beaverton,
Oregon. Nov. 1986.
[Man0861 F. Manola and U. Dayal, "PDM: An Object-Oriented Data Model," Proc. Int'l. Workshop on
Object-Oriented Database Sys., Asilomar, CA, Sept. 1986.

[My10801 J. Mylopoulos, P. Bemstein, and H. Wong. "A Language Facility for Designing Database-
Intensive Applications", ACM TODS 5(2), June 1980.

[Ozso87] G. Ozsoyoglu, Z. Ozsoyoglu, and V. Matos, "Extending Relational Algebra and Relational Cal-
culus with Set-Valued Atmbutes and Aggregate Functions," ACM Trans. Database Sys. 12(4), Dec. 1987.

[Ozso83] 2. Ozsoyoglu and M. Ozsoyoglu, "An Extension of Relational Algebra for Summary Tables,"
Proc. 2nd Int. Workshop Stat. Database Mgmt., Lawrence Berkeley Labs., Univ. of California, Berkeley,
1983.

Pare881 3. Paredaens and D. Van Gucht, "Possibilities and Limitations of Using Flat Operators in Nested
Algebra Expressions," Proc. ACM PODS Conf., 1988.

Pare851 C. Parent and S. Spaccapicua, "An Algebra for a General Entity-Relationship Model," IEEE
Trans. Sofiware Eng. 11(7), July 1985.

Pis1861 P. Pistor and F. Andersen, "Designing a Generalized NF2 Model with an SQL-Type Language
Interface." Proc. Twelfth VLDB ConJ, Kyoto, Japan, Aug. 1986.

[Roth87] M. Roth, H. Konh, and D. Batory, "SQL/NF: A Query Language for TINF Relational Data-
bases." Inform. Systems 12(1), 1987.

(Roth881 M. Roth, H. Korth, and A. Silberschatz, "Extended Algebra and Calculus for T ~ N F Relational
Databases," ACM Trans. Database Sys., 13(4), December 1988.

[Sche85] H.-J. Schck, "Towards a Basic Relational NP Algebra Processor," Proc. Int. Conf. on FODO,
Kyoto, Japan, 1985.

[Sche88] H.-J. Schek, "Nested Relations, a Step Forward or Backward?," Data Eng. 11(3), September
1988.
[Sche86] H.-J. Schek and M. Scholl, "The Relational Model with Relation-Valued Attributes," Information
Sys. 1 l(2). 1986.

[Scho86] M. H. Scholl, "Theoretical Foundations of Algebraic Optimization Utilizing Unnormalized Reh-
tions," Proc. Int. Cog. Database Theory, Rome, 1986.

Algebras

[Scho87a] M. H. Scholl, H.-B. Paul, and H.-J. Schek, "Supporting Flat Relations by a Nested Relational
Kernel," Proc. VLDB Conf, Brighton, England, Sept. 1987.

[Scho87b] M. H. Scholl and H.-J. Schek, eds., Theory and Applicatiom of Nested Relations and Complex
Objects: An International Workshop, Darmstadt, Germany, April 1987.

[Ston861 M. Stonebraker, "Inclusion of New Types in Relational Database Systems," Proc. 2nd Data Eng.
Cog., Los Angeles, CA, Feb. 1986.

Psur861 S. Tsur and C. Zaniolo, "LDL: A Logic-Based Data Language", Proc. 12th VLDB Conf., Kyoto,
Japan, August 1986.

[Vald86] P. Valduriez, S. Khoshafian, and G. Copeland, "Implementation Techniques of Complex
Objects," Proc. Twelfrh VLDB Conf., Kyoto, Japan, Aug. 1986.

[VanG87] D. Van Gucht, "On the Expressive Power of the Extended Relational Algebra for the Unnor-
malized Relational Model," Proc. ACM PODS CON., 1987.

[VanG86] D. Van Gucht and P. Fischer, "Some Classes of Multilevel Relational Structures," Proc. ACM
PODS Conf., 1986.

[Zani83] C. Zaniolo, "The Database Language GEM," Proc. SIGMOD Conf., San Jose, CA, 1983.

[Zill80a] S. N. Zilles, "An Introduction to Data Algebras," Copenhagen Winter School Proc., LNCS #86,
1980.

[Zill80b] S. N. Zilles, "Types, Algebras, and Modeling," Proc. Workshop on Data Abstraction, Databases,
and Conceptual Modeling", Pingree Park, Colorado, 1980.

Algebras

Using Object-Oriented Subtyping in
Query Optimization and Processing

J. Eliot B. Moss

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003
MossQcs.umass.edu; (413) 545-4206

An outgrowth of the Mneme persistent object store project at UMass [Moss and Sinof-
sky, 19883 has been the realization that while a store can provide more appropriate seman-
tics (e.g., object identity) for object-oriented databases, database programming Ianguages,
and persistent programming languages, being able to understand, manipulate, and pro-
cess code, specifically queries, as well as data objects is crucial to providing adequate
performance for data-intensive object-oriented applications. This point is driven home
by considering object servers in a distributed client-server model. Suppose a query to be
evaluated is rather selective but (because there happens to be no relevant index) involves
a scan through a considerable number of objects. Given an object store approach, all the
objects must be brought to the client, since the object store provides only create/delete,
read/write operations. If the objects could be filtered before being brought to the client,
somewhat like the System R RSS subsystem, considerable network traffic and overhead
would be saved. Rather than building in particular features, such as "scan a set under
a predicate" (probably drawn from a restricted class of predicates), the extensibility and
open-endedness of object-oriented systems suggest a more general model of execution in
which processed (optimized) code can be divided between the client and the server. This
is somewhat analogous to traditional distributed database query processing-we expect
every node to be able to interpret query plans and/or execute compiled queries.

Our particular interest is in bridging the gap between programming languages and
database query languages, so we will attempt to optimize programs writ ten in a language
that is fully general (i.e., Turing complete), as opposed to a restricted query language. To
have much hope of doing effective optimization, we must choose the built-in data types,
and the constructors for new types, for such a language very carefully. While we do not
yet have a complete answer to that problem, in this position paper we sketch some ideas
and try to articulate the direction we are heading.

1 Sets and relationships

While a fully general object-oriented language will certainly allow the construction of
arbitrary new abstract data types, we focus on two kinds of types that are most relevant
to query optimization: sets and relationships. Sets provide the means to aggregate similar

Using Object-Oriented Subtyping in
Query Optimization and Processing

J. Eliot B. Moss

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003
Moss@cs.umass.edu; (413) 545-4206

An outgrowth of the Mneme persistent object store project at UMass [Moss and Sinof-
sky, 19881 has been the realization that while a store can provide more appropriate seman-
tics (e.g., object identity) for object-oriented databases, database programming languages,
and persistent programming languages, being able to understand, manipulate, and pro-
cess code, specifically queries, as well as data objects is crucial to providing adequate
performance for data-intensive object-oriented applications. This point is driven home
by considering object servers in a distributed client-server model. Suppose a query to be
evaluated is rather selective but (because there happens to be no relevant index) involves
a scan through a considerable number of objects. Given an object store approach, all the
objects must be brought to the client, since the object store provides only create/delete,
read/write operations. If the objects could be filtered before being brought to the client,
somewhat like the System R RSS subsystem, considerable network traffic and overhead
would be saved. Rather than building in particular features, such as "scan a set under
a predicate" (probably drawn from a restricted class of predicates), the extensibility and
open-endedness of object-oriented systems suggest a more general model of execution in
which processed (optimized) code can be divided between the client and the server. This
is somewhat analogous to traditional distributed database query processing-we expect
every node to be able to interpret query plans and/or execute compiled queries.

Our particular interest is in bridging the gap between programming languages and
database query languages, so we will attempt to optimize programs written in a language
that is fully general (i.e., Turing complete), as opposed to a restricted query language. To
have much hope of doing effective optimization, we must choose the built-in data types,
and the constructors for new types, for such a language very carefully. While we do not
yet have a complete answer to that problem, in this position paper we sketch some ideas
and try to articulate the direction we are heading.

1 Sets and relationships

While a fully general object-oriented language will certainly allow the construction of
arbitrary new abstract data types, we focus on two kinds of types that are most relevant
to query optimization: sets and relationships. Sets provide the means to aggregate similar

objects so that they can be treated in bulk, and also so that interesting members of the
set can be loca t~d according t.o t.lreir propt=tt.ies rather than hv t.lieir ir1cntit.y alone. In

many cases, the point is, in fact, to di~cover the identity of the objects in a set that satisfy
a property. Relationships play the role of tuples: a given relationship (which may itself
be an object) relates two or more specific objects. The correlat'e of a relation would be a
set of relationship objects. Relationship objects. differ from tuples in that they are objects,
possessing identity. They can also possess attributes, in addition to indicating the objects
related, and the attributes may be mutable. Furthermore, in general one can discover from
an object the relationships of a particular type in which the object participates in a given
role, etc. This sketch is necessarily brief, but we should point out that there are a number
of details wee have not worked out yet to our satisfaction. Still, let us continue with a
discussion of subtyping.

Suppose for a moment that there is only one set type constructor, s e t , that defines
a type for each element type; i.e., s e t [fool is the type of a set that contains objects of
type f 00. Similarly, for each list of name-type pairs we define a corresponding relationship
type, such as r e l a t i o n s h i p [advisor: p r o f e s s o r , a d v i s e e : student] , given that
professor and student are object types. Thus far this model is not particularly different
from the FAD model [Bancilhon et al., 19871, among others. What we wish to do, though,
is to impose a truly object-oriented view on this model, in which types correspond to
behaviors, and behavior is exhibited by the semantics of the operations available to create
and manipulate objects of a type. Thus, s e t [. . . I is important because we can filter
(select) members of a set, insert and remove members, etc. Our view of relationship
objects is that it must be possible (in general, at least) to find the relationship objects in
which a given object participates in a given role (e.g., the a d v i s i n g relationship objects
having a given professor in the advisor role, and to find all role members from the
relationship object. In this way we could find all the students a professor advises, and so
forth.

Behavioral subtyping

The importance of shifting to the behavioral view is that it makes clear that, as far as se-
mantics is concerned, it does not matter how a given set or relationship is implemented-we
just need to insure that each set acts like a set. So, we could have a number of implemen-
tations of sets, that provide different performance for different operations. This raises the
issue of having the compiler and optimize jointly choose the appropriate representation,
based on program analysis, programmer directives, run-time statistics, or any other basis
for a good choice. (Our research will also consider the problem of changing these decisions
later, in response to changes in the data or the decision criteria, a process we call adaptive
reoptimization that we will not explore deeply here.) Even once a given representation has
been chosen, it is well known that a given operation can still be carried out in more than

one way, e.g., a file scan or an index scan when an index is available. That decision can
be made at compile-time or deferred until run-time, with dynamic qilery plans heing a n

intermediate alternative. We suspect that partial evaluation of compiler/optimizer func-
tions may be a fruitful approach to examine, but discussing that would be a digression
from the thoughts we are trying to express here.

The point is that we can have a number of different implementations of sets, but all
of them are subtypes of (or equivalent to) the original set C . . .I types, according the the
notion of behavioral subtyping. A behavioral subtype is defined not as inheriting from its
supertype but as acting like the supertype. That is, object of a behavioral subtype should
be substitutable for object of its supertypes: they should provide all of the supertype's
functionality, though they may provide more. This notion, as well as the distinction be-
tween inheritance and subtyping are explored further in [Moss and Wolf, 19881 (submitted
for publication).

Exploiting special cases

While different implementations of general sets and the operations on them are certainly
interesting, we are interested in something that goes further: taking advantage of special
cases. There are a vast number of special cases of sets, and of sets of relationships in
particular. A set might be ordered (or be able to supply its members in some interesting
orders), it might be restricted as to the nature of its members (e.g., have a key constraint),
it might restrict which objects can be added or removed, it might have limited cardinality,
etc. Sets of relationships can have key, cardinality, and other constraints. Individual
relationships can have semantic constraints. Some of these special properties add behavior,
and some remove it. In addition to the various sort of restrictions mentioned so far, a given
application may not need all the functionality offered by general sets or relationships.
Since we are talking about adding and removing operations from sets and relationship
types, we are really talking about a large collection of different but similar and related
types. The important thing is that these different types allow for an even wider range of
implementations, both in terms of representation and in terms of coding the operations.
Thus, "subtypes" (some of the types may actually be supertypes) of the set type become
very interesting to explore.

As an example, let us consider the relationship between wires arid gates in a simple
CAD model. We might represent a wire as a set of relationships between a gate output
and some gate inputs, of type relationship [driver : output, driven: input]. This
could be implemented in the traditional relational way by having a single set containing all
members of this relationship. If we have a gate output and would like to know the inputs to
which it is connected, we do a filter (selection) on the whole set with a predicate indicating
that we are interested only in relationships having the given output in the driver role. A
symmetrical filter allows us to locate the driver of a given input line, etc.

We can retain the conceptual appeal of this relational view of the world, yet obtain
highly efficient navigationa.1 access if we use an appmpria.te s~lhtvpe for implcmentinq t h e

set of relationships representing the gate connections. Orie important restriction we will
assume is that we never need to enumerate the entire set: we are only ever interested
in the two filter queries that take us from a driver to the dAven components and vice
versa. A second restriction we will assume is that we never need the relationship objects
as objects-we use them only to traverse to the other member of the relationship. Making
these assumptions, each output and input can be directly connected to the set of things
connected to it, so that no additional filtering is required to execute the filter queries.
Third, we impose the reasonable cardinality constraint that an input be connected to at
most one driver. Given that knowledge, we can represent the driven-to-driver part of the
relationship by a direct pointer from the input object back to the output object that drives
it. Since an output may drive more than one input, we use a slot in the output objects
to point to a data structure representing the set of input object connected. This data
structure itself might turn out to be threaded through the input object if we like.

The point is that we envision that the compiler and optimizer can choose very efficient
representations if provided the correct "subtype" of set to be implemented. If the assump-
tions that allowed a given subtype to be used are changed later, we simply recompile the
code (and, less trivially, convert the existing objects to the new representation somehow).
We are currently involved in trying to enumerate the interesting cases in the limited setting
of binary relationships, as well as trying to get a handle on how to express the different
cases in a reasonable and convenient notation that might form the basis for a programming
language fragment.

One of the interesting questions here is whether or not we should try to recognize
special cases from examination of the code, or whether we should require declarations of
the interesting properties. It is not simply an issue of making things easier for the compiler,
since a declaration is a cross-check that must be changed explicitly. Thus, a declaration
could guard against an accidental and silent transformation of a very efficient form into a
less efficient one.

4 More special cases

There are several other useful things we would like to do in this framework. First, since
the ob ject-oriented view suggests that attributes are obtained by invoking a function given
an object's identifier, we should be able to group some attributes together (the traditional
notion of an object in, e.g., Smalltalk) but handle others separately by storing them in a

dictionary keyed by identifier. This is especially useful when a tool needs to add its own
annotations to objects of existing types: the annotations can be stored separately if we like.
Another thing we need to understand better is indexing based on the results of operations.
We need to recognize the special case where the result is a stored attribute of the object,

and especially when it is a well known type such as integer or string. Third, we want to
underst,and derived data and ~onst~raints milch better. Finally, we note that, fhe ohject-
oriented approach pretty much automatically gives us extensible query processing-any
new set-like type need only come with the appropriate operations, and the object-oriented
language's execution system, which we assume includes dynamic binding (method lookup),
will "do the right thing". Getting optimization to do useful things with the new type
requires more work, and an overall framework for expressing and performing optimizations
remains an interesting and challenging problem.

Conclusion

We have described some ways in which the notion of behavioral subtypes in an object-
oriented language can be used in query optimization and query processing. First, a whole
variety of closely related types, namely those defining sets, relationships, and similar be-
haviors, can provide a wide range of implementations of aggregations of objects, offering
efficient representations tailored to their uses. Second, such a collection of types also sup-
ports flexible query execution, allowing the same optimized query code to be used for a
variety of slightly different underlying representations. The query optimization process,
which we see as a broader program optimization process, would choose representations
(appropriate subtypes) for new or intermediate sets (and possibly suggest a change of rep-
resentation to existing sets). It would also need to transform code from the offered form
to a more efficient form. A combination of statically gathered information (available from
program analysis or declarations) could be used in the optimizer's decision making pro-
cess, in addition to static and dynamic statistics on the sets. Having a variety of slightly
different set types should be a benefit, since it enables more rapid recognition of important
special cases or limitations, while allowing general transformations for those operations .. many types have in common. We would expect, then that each new subtype added would
require only a few new rules in a rule based query optimizer. The point is that we may
not need vast new capabilities, only incremental extension of understood techniques.

References

[Bancilhon et al., 19871 Franqois Bancilhon, Ted Briggs, Setrag Khoshafian, and Patrick
Valduriez. FAD: A powerful and simple database language. In Proceeding3 of the 13th
International Conference on Very Large Databa~es (Brighton, England, Sept. 1987),
Morgan Kaufmann, pp. 97-1 05.

[Moss and Sinofsky, 19881 J. Eliot B. Moss and Steven Sinofsky. Managing persistent
data with Mneme: Designing a reliable, shared object interface. In Advances in
Object-Oriented Database Systern~ (Sept. 1988), vol. 334 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 298-316.

[Moss and Wolf, 19881 J. Eliot B. Moss and Alexander L. Wolf. Toward principles of
inheritance and subtyping in programming languages. COINS Technical Report 88-95,
Department of Computer and Information Science, University of Massachusetts,
Amherst, MA, Nov. 1988.

Query Optimization
in Ob ject-Oriented Databases1

Girish Pathak, Texas Instruments Incorporated, and
Josk A. Blakeley, Indiana University

Summary

At Texas Instruments we have been developing a distributed Object-Oriented Database
system (OODB), Zeitgeist [12], for Computer Aided Design (CAD) and Computer Inte-
grated Manufacturing (CIM) applications. The Zeitgeist/OODB system has been in use by
TI'S VLSI designers since 1987. The Zeitgeist system is intended to be navigated (about
90% of the time) or accessed through the native object-oriented programming environ-
ment. We are also developing a set-oriented interface for Zeitgeist/OODB users. The
set-oriented interface will be used to perform retrieve/update (about 10% of the time)
from the database as the top level querying facility that will be followed by object-oriented
computing. A linguistic interface of the query system is already under development and
is referred to as Object Query Language (OQL). This paper briefly describes the research
issues in OODB query optimization area, the OQL object model, and identifies some of
the query optimization techniques that may prove useful for OODB systems.

Because of the large size of the object-base for CAD/CIM applications, it is clear that
query optimization will be necessary to provide faster response. The research works in the
area of query optimization for conventional databases like relational systems provide an
initial step towards developing query optimization for our OQL system. However, most of
the query optimization techniques in OODBs are likely to be different from the relational
systems which enjoy a consensus over their data model and data manipulation language.
In the OODB arena, although several OODB data models have been proposed [I, 3, 51, it
is still not clear to us whether one can define an all comprehending data model for OODB
systems. Aside from the data model issue, the OODB query systems must optimize queries
over methods (i.e., computed functions). Some of these methods may have side-effects!

For the purposes of query system, OQL assumes a simple object data model of object-
oriented programming languages with (encapsulated) objects, object identifiers, and type
inheritance. Objects can be simple primitive objects or composite objects with references
to other objects. We propose to develop an OODB query system, that draws its semantics

'For further information, contact Dr. Girish Pathak at Phone: (214) 995-0662; Email :
pathak@csc.ti.com; and Address: Computer Science Center, Texas Instruments Incorporated, P. 0. Box
655474 MS 238, Dallas, Texas 75265.

from the relational calculus and can be used to query over simple values, complex objects
with methods, and can perform navigational queries through the class hierarchy.

Consider, for instance, a n employee type, which is a specialization on person (i.e.,
inherits properties from type person), and has attributes name, birth-date, a reference to
its picture, and a reference to a set children which are of type person. It is reasonable
to have a user request to retrieve all the descendants of a particular employee with the
condition that each descendant must be younger than 18 and has a picture with gray level
of 10.0. Here, age is a method or computed value. One would expect such a request to
be processed by the OODB system within reasonable time limit. This example reveals
various components of OODB query interface: complex objects, inheritance hierarchy,
recursion, transitive closure, and object-identity. The following list describes various query
optimization issues in OODB systems:

Indexing and clustering: Some of the interesting research areas in OODB query sys-
tems are indexing over attributes [9], clustering and prefetching over objects. In our
Zeitgeist system, we are just beginning to obtain some preliminary results on our
approaches of object prefet ching and clustering.

Caching the computation: This issue is a generalization of the problem of processing
queries through views in relational and extensible systems. The methods in an OODB
may be too complex to compute repeatedly. In such situations it is even more
important to rely on some form of cached or precomputed methods to be able to
process queries efficiently. Data caching mechanisms similar to view materialization
[4, 71 and support of stored procedures in extensible database systems [ll] may be
applicable not only for the optimization over methods with no side-effects but also
for materialized transitive closures.

Computation at client vs. server site: This issue has more to do with query opti-
mization in distributed database systems. The client vs. server site computation
issue is important to us because Zeitgeist/OODB system has built-in features to
compute methods locally at the client workstation or remotely at the server site.
Our query optimization strategies will comprehend the trade-offs of local vs. remote
computation to provide efficient processing.

Optimization over method or method-combination: In an OODB system, a method
or method-combination is invoked with some parameters by a user or application. An

~ -

individual method invocation can fire several other methods in the process. Math-
ematically, one can write an expression like Fl.(F2 + F3).F4 to denote that in the
method-combination, F2 or F3 is invoked after method F1 and so on (the dot operator
denotes ordering of method invocation whereas the plus operator represents invoca-
tion of methods with no order). If a database designer can provide some rules like

equivalence rules for method or method-combination invocation (Fn = Fa.Fb.Fc.Fd),
then it would be a matter of using appropriate algebraic rules and cost functions to
select an optimum method-combination from available choices. This approach is
similar to what the relational model provides by using the properties of the algebra
(e.g., commutativity, distributivity) in the optimization of relational expressions.

Local methods vs. global methods: Methods may be local to objects or inherited
from higher-level system objects (e.g., relation, set, collection). This distinction has
some implications in the design of a set-oriented query facility in an OODB system.
If the method is local, then it may be beneficial to provide a mechanism to make the
implementation of methods visible to the query optimizer. This is the issue addressed
by Graefe and Maier in the Revelation project [6]. If the method is global, that is,
it is available through a system-based object, then it may be possible to encapsulate
a generic query processing strategy to compute, for example, selects or projects on
objects [lo].

As discussed earlier, object-oriented database systems are bringing new parameters to
the database query optimization arena. Through OQL query system, we hope to address
the aforementioned issues which are relevant to CAD/CIM applications.

References

[I] Rakesh Agrawal and N. H. Gehani. "ODE (Object database and environment): The
language and the data model," I n Proceedings of A C M S I G M O D International Con-
ference o n Management of Data, 1989.

[2] Francois Bancilhon. "Object-Oriented Database Systems." In Proceedings of 7 t h A CM
S I G A C T - S I G M O D - S I G A R T Sympos ium o n Principles of Database Systems," 1988.

[3] Jay Banerjee, Won Kim, and Kyung-Chang Kim. "Queries in Object-Oriented Data-
bases", In Proceedings of Fourth International Conference o n Data Engineering, Los
Angeles, pp. 31-38, California, February, 1988.

[4] Josh A. Blakeley, per-Ake Larson, and Frank Wm. Tompa. "Efficiently updating ma-
terialized views," In Proceedings of A C M S I G M O D International Conference o n Man-
agement of Data, pp. 61-71, Washington, DC, May 1986.

[5] Carey, D. J. DeWitt and S. L. Vandenberg. "A data model and query language for EX-
ODUS," In Proceedings of A C M S I G M O D International Conference o n Management
of Data , pp. 413-422, September 1988.

[6] Goetz Graefe and David Maier. "Query optimization in Object-Oriented Database
Systems: A prospectus," Lecture Notes in. Computer Science, Advances in Object-
Oriented Database Systems, 2nd International Workshop on Object-Oriented Database
Systems, pp. 359-363, Published by Springer-Verlag, September 1988.

[7] Eric Hanson. "A performance analysis of view materialization strategies," In Proceed-
ings of ACM SIGMOD International Conference on Management of Data, 1987.

[8] David Maier. "Why isn't there an object-oriented data model," To appear in Proceed-
ings of IFIP, 1989.

[9] David Maier and Jacob Stein. "Indexing in an object-oriented DBMS," In Proceedings
of International Workshop on Object-On'ented Database Systems, pp. 171-182, Pacific
Grove, California, September 1986.

[lo] S. L. Osborn. "Identity, equality and query optimization," Lecture Notes in Computer
Science, Advances in 0 b ject-Oriented Database Systems, 2nd International Work-
shop on Object-Oriented Database Systems, pp. 359-363, Published by Springer-Verlag,
September 1988. 1988.

[ll] Michael Stonebraker, J . Anton, and E. Hanson. "Extending a Database System with
Procedures." ACM Transactions on Database Systems, Vol. 12, No. 3, pp. 350-376,
September 1987.

[I21 S. Ford, J. Joseph, D. Langworthy, D. Lively, G. Pathak, E. Perez, R. Peterson:
D. Sparacin, S. Thatte, D. Wells, and S. Agarwal. "ZEITGEIST: Database sup-
port for object-oriented programming," Lecture Notes in Computer Science, Advances
in Object-Oriented Database Systems, Second International Workshop on Object-
Oriented Database Systerns, pp. 23-42, Published by Springer-Verlag, September 198s.

On the Complexity of Nested Relational Operat ions

Marc H. Scholl
Institute of Information Systems, ETH Zurich

CH-8092 Zurich, Switzerland
em&: ~ c h o l l 8 i n f . ethz . ch

1 Introduction
Designing and implementing a query optimizer and query processor for a nested relational database system
(DBMS) requires a number of steps like deciding on operations supported on nested relations (i.e. the
semantics of a query language (QL)), defining a syntax (i.e. a concrete QL for the system), investigating
equivalences among expressions of the QL, devising optimization strategies or rules, and finding efficient
evaluation techniques for single operations of the QL and combinations thereof. While these activities are
rather theoretical in nature, they obviously have tremendous impacts on the architecture and implementation
of the corresponding DBMS. We have presented powerful operations on nested relations in an algebraic syntax
in [SS86], investigated equivalence rules in this algebra in (Sch86, SPS871, and described the implementation
of an efficient query evaluation algorithm in pPS86, PSS+87]. Here we focus on the following problem:
typical query evaluation techniques distinguish between "simple" and "complex* operations in the QL (like
selections and projections vs. joins or sorting in the relational setting). The simple operations are executed
"on the flyn in a rather low level of the DBMS architecture while more complex ones are processed on top of
that layer. Classical examples of such architecures are System R (RDS on top of RSS [ABC+76, CAB+81]),
Ingres (MVQP on top of OVQP [SWKH76]), LOLEPOPs in Starburst are a more recent example of simple
operations [Loh88].

The idea behind such a dichotomy in query processing strategies is that (combinations of) simple opera-
tions can be computed while scanning data, hence "on the flyn, we will call them "single scan operationsn in
the sequel. Intuitively, we read in blocks from the disk, inspect tuples sequentially and compute the result
of such operations without touching data more than once. Formally, these operations have linear complexity
in the size of the involved relations. Other operations require inspecting single data elements more than
once (like sorting, or joins with nested loops). The exact classification of operations into these two classes is
crucial as to avoid unnecessary scans of the input data, particularly as this usually means reading in data
from secondary storage.

Among the relational operations, clearly selection is a single scan operation: while scanning tuples of the
input relation sequentially, we can test the selection condition on each single tuple and decide whether it
belongs to the result or not. Projections are only linear if we ignore duplicate elimination. Obviously, joins are
not linear in general. Therefore, we find selections and projections in the lower level query processors (RSS,
OVQP) and joins (together with the other non-linear operations) in the higher level query processors (RDS,
MVQP) in typical relational DBMS architectures. In the flat relational context, the distinction seems to
be quite evident. However, when switching to nested relations with corresponding new styles of operations
things need a little more elaboration. Selection conditions may involve set comparisons, projections and
selections may involve complex operations (like joins) on deeper levels of the nesting hierarchy1. New
operations are added: nesting and unnesting. Deciding whether such operations are single scan processible
or not is non-trivial in some cases.

We present a model of query processing that explicates our intuition about single scan operations. Using
this model we analyse the operations individually and consider etpressions, i.e. compositions of operations.
In designing such a model we have to be very careful, as can be seen from the following simple example. Our
intuitive understanding is, of course, that join is no single scan operation, however, consider the following
algorithm:

begin
foreachrERdo

rmd(r) into Temp
for each r E S do

{ rdd Tempbd~ to the result)
end.

Obviously, the algorithm computes the correct result without "touchingn (i.e. reading in) stored tuples more
than once. However, we used intermediate storage space in this example, and accessed it multiply. So,
what is the point? Should we prohibit any intermediate storage? The answer is negative: we will need
some additional storage. Consider a nested relational selection (on the famous Departments and Employees

'We rue au terminology of a nakd r e k i d algebra [SS86]. However, all investigatiom and reault~ apply for other QLs
tm, provided they .upport the typa of operatiom we consider.

while not { End of input)
do mad (d(d#, dn, dl))

temp := get-paition (OTape)
write (d(d#, dn, dl))
found := f&e
while not { End of subrelation)
do nod (e(e#, en, a))

if e(en) = 'Smith'
then found := true

fl
mite (e(e#, en, s))

od
if not found

then rewind (OTape,temp)
A

od
markend-of-tape (OTape)

(a) LAM-Architecture

Linear Algebra Machine

ITape
-

mrd

(b) A sample program

Proc

Figure 1: The abstract linear algebra machine

-nested- relation) asking for departments that have an employee named 'Smith'. The employees working for
a particular department are stored as a 'subrelation'. Hence, assuming a hierarchical pre-order scan of nested
tuples we have to somewhere store department information (e.g. name and location) until we finished the
(subordinate scan) of all employees. Only then can we decide whether the department matches the selection
condition. So, as we want to consider such a nested selection a single scan operation, we in fact need some
intermediate storage. Thus, to avoid the above problem with the join operation, we have to limit the size of
additional storage used in an algorithm in order to consider it single scan.

We present our abstract model of a nested relational query processing engine for linear operations in
eection 2 and give our results concerning linearity of operations in section 3.

mate
get-porition/rcwind

OTape - - - - -

-

2 An Abstract Algebra Machine

RAM

Input data may be read only once, thus we use an input (firing) tape that is automatically moved forward
while reading data into the processor's memory. Tuples of the input (nested) relationZ are stored in a pre-
order linearization on the input tape. The units of transfer between the tape and the processor memory
are so-called 'atomic fragments", i.e. all atomic values of a single level of the nesting hierarchy are read in
one step. E.g. in our department and employees example, there would be one fragment for each department
followed by the fragments describing the individual employees (of this department), followed by the next
department and eo on3. Data is read in and used for computing results by the processor, which eventually
writes result tuples to an output (Itrring) tape. The ouput tape cannot be read, however, we allow rewinding
the output tape back to a position that has formerly been recorded in the processors memory. This allows
for dropping (department) tuples that have been considered candidate matches to a query but finally do
not qualify, for instance (see the nested selection example above). Once rewinded, the content of the output
tape behind the new position is lost, hence the output tape behaves like a stack with "pushn and "popw but
no Utop" operation.

The processor can h u e Sead" commands to the input tape, 'writew, "get position", and "rewind"
operatione to the output tape, and cbecks conditions on the input. It gets the query to perform on the
input in -me convenient form, e.g. aa an operator tree. Obviously, we need at least enough memory to
hold the query t r a and the data units tranefered by one read operation on the input tape. The sizes of
thee are determined by the query or the schema4, it is important to notice that the size is independent
b m the extension of the databaee! We already mentioned that we spend some more memory to 'remember'
output tape positions, the state of subconditions in complex eelections and some other information. Again,
we do not allow the size of that additional memory to depend on the cztension of the relation (it may well
depend on its intention, i.e. schema). The algebra machine can be thought of as shown in figure l(a) , where
we included the set of operations valid on the two tapes. Our criterion for an operation to be single scan
processible is

'only m o d e operakon rill be linear, .sc below
'this euct iy match- th implemcntrtion in DASDBSPGWBS. DPS86J
'the muirmlm laythr d dl .tornic attribute of the -nts, an information that is usudly found in the DB catdogs

Definition 1 An operation on nested relations is callcdsingle scan processible (linear), i f l i t can be computed
by the abstmct algebra machine with an amount of memory independent from the state of the database.

As an example, we give a "program" which run on the algebra machine computes the nested selection
mentioned above. On Dept(dno, dname, dloc, Empl(eno, ename, sal)) the query, written in our algebra is:

(notice that all employees are obtained from qualifying departments). A possible computation of the result
using the algebra machine is shown in figure reffig-mach(b). Here we used two local variables (i.e. additional
memory to store them): 'found' is a boolean flag set when the nested selection hits, and 'temp' is used to
rtore a poaition of the output tape, viz. the one before the current output tuple. If a department fails the
eelection, we remove it by simply rewinding the tape and overwriting with either the.next department or an
endof-tape mark.

3 Results
Now we look at the individual operations on nested relations and combinations of them and state whether
they are single pass processible, under what conditions they are, or not.

Theorem 1 The dyadic operations of the algebra (union, diflerence, product) and ihe nest opernfion are
not single scan processible. So are the derived ones like intersection, join, division, etc.

We do not give the detailed proofs here, they can be found in [Sch88]. Union might be considered a linear
operation if we omit duplicate elimination as with projections. Otherwise it requires sorting like difference,
intersection and nesting do, hence they are not linear. As input relations for a product can only be read
one after the other from the input tape, we would need storage to hold the first relation when scanning the
eecond, thus product is not linear.

Now, the interesting cases are (nested) selections and projections, with their variety of nested subexpres-
sions, and unnesting. Let us begin with projections. In our algebra, projection is used to eliminate some
columns of tables, but moreover, we use projection as one of the entry points for nested expressions. For
instance, we can project (from the department relation) the employee subrelation as it is stored, but also the
result of an arbitrary algebraic expression applied to it. This way we can obtain a new subrelation holding
e.g. only the employees named Smith, or the join of the employee subrelation with a children relation, and
the like5. Therefore, not all projections can be linear. This is the reason why we use the term single pass
rather than the classical single table operation. One possible restriction is that only linear expressions may
be nested inside a projection, but we need others. Consider the fact that more than one expression may be
applied to a subrelation to construct several new subrelations. If all of these are linear, they can be computed
in parallel while scanning the input, however, as subrelations are written one after the other on the output
tape (as on the input), we would have to collect the results of all but the first nested subexpression until the
first is written onto the output tape completely. Hence, what can be computed in a single scan is

Theorem 2 A (nested) projection is linear, ifl ai most one subetpmssion is applied to each subrelation and
all of these are linear.

As subrelations come one after the other on the input (and output) tape, we can compute the nested
subexpressions one after the other. If they are all linear, we need maxi(Ni) units of additional memory,
where Ni is the requirement of nested subexpression i .

Obviously selections with standard "1NF-style" conditions are linear. However, in the nested case we have
eet comparisons and nested subexpressions. This means we can select tuples based on the (set) comparison
between the results of two nested subexpressions, e.g. departments where the eet of all employees named
Smith equals (or not equals . . .) the empty set, or (equals or not equals or) contains . . . the set of employees
making more than 50k6 Selection in our algebra is a second entry point for nesting of expressions. A first
observation is that comparing two arbitrary sets on equality or containment is not a single scan operation
(it introduces join complexity). So the only possible set comparisons in linear eelections are those between
a set (expression or subrelation) and a (set) constant, i.e. a set whose value is explicitely given in the query
formulation, e.g. the empty set a. Then the space needed to hold the value of one of the two sets is given in
the query tree!

Theorem 3 A (nested) selection is linear, ifl it is buili according to the following rules:

arbitmry comparisons on atomic attributes,

&r [. . . ,New := o[enome = . . .](Empl)](Dept) a r [. . . , New := Empl M Children](Dept)
@we M y bd the first quay, the lecond m e looks iike o [~ [ename = . . .](Empl) 3 o[ral > . . .](Empl) J(Dept)

1 2 1

element tests (E) on subnlations (or nested subezpnssions)

set comparisons between constants and subnlations (or nested subezpnssions),

a logical conectives of these (A, V, -),

w h e n all nested subezpnssions a n Iinear.

Interestingly, we find no restriction on the number of nested subexpreasions per subrelation as we had for
projections. This is due to the fact that we can compute several linear operations in parallel a~ long as we do
not have to store the results of them (cf. projections above). For selections it is sufficient to keep a boolean
flag indicating the current truth-value of every subcondition. We need to r h e m b e r only one position of the
output tape (for the outermost nested selection).

Before we look at the unnest operation, we analyse' the use of so-called dynamic constants [SS86], i.e.
d u e s of higher level attributes inside a deeply nested subexpression. As an example, consider our depart-
ment relation and assume that we have the employee number of the department's manager (mno) as an
atomic value. Then ~ [d n a m e , *[ename](a[eno = mno](Empl)](Dept) retrieves a list of department names
together with (as a subrelation) the names of their managers. The value of mno is constant w.r.t. the sub-
relation Empl , thus we could use it in the nested selection condition. We can permit dynamic constants in
linear operations provided that the values of these constants do not require storage space depending on the
extension. As this is only the case with set (i.e. relation) valued attributes, we have

Theorem 4 The use of atomic dynamic constants is permitted in linear selections and projections.

For a given query representation we can determine in advance which attribute values are needed in deeper
levels of the nesting hierarchy and save their values in some intermediate storage. The size of that storage
depends only on the query and the schema (i.e. the maximal attribute length).

Dynamic constants are also the key to the unnest operation: unnesting means reducing the hierarchical
structure of the input relation by repeating attribute values with all subtuples of the unnested subrelation.

Theorem 5 Unnesting a subrelation S of a relation R is a linear operation, i f S is the only subrelation of
R (on that level).

The values of d l atomic attributes of R can be held as dynamic constants for the scan of S and output
together with the attributes of S repeatedly. We need additional memory to store one "atomic fragmentn of
R-tuples. A second subrelation would require extension-dependent storage space.

While selections and projections need extra memory for tape positions and boolean flags for parts of
selection conditions, i.e. in an amount primarily determined by the query, dynamic constants and unnesting
require space depending on the schema (the domains of the atomic attributes) of the involved relations.
Thus, unnesting and dynamic constants are linear operations w.r.t. a slightly more sophisticated notion of
linearity.

Finally, we are interested in combinations (compositions) of linear operations. If we use a query language
where the model is cloeed under its operations, we can construct complex expressions by applying more
operations to the result of previous operations. In such a sequence of operations, if all operations are
linear, is the combination linear too? We know from classical query optimization that given two subsequent
operations we can either (i) compute the first one and obtain an intermediate result on which we apply the
eecond operation subsequently, or (ii) compute both of them in a "pipelined" mode, apply the first operation
to the first input tuple and feed the result directly to the second operation (see e.g. [JK84]). Tbe second
alternative is more efficient in general since we avoid storage of potentially large intermediate results and
multiple scans. Therefore, we should be able to combine several linear operations into one linear expression
and compute it in pipelining mode.

Theorem 6 Any composition of linear operotions yields a linear operotion.

While we can combine linear operations in an arbitrary way due to the above result, we are interested in a
'canonical linear expressionn in order to develop guidelines for the implementation of a low-level (i.e. linear)
nested relational query procawror and for an optimizer. Using algebraic equivalence rules on our nested
algebra we can apply transformations similar to the cascading of selections and projections, commutation of
projections and selections, and so on [Sch86]. If we only consider (nested) selections and projections, such a
canonical form is:

@[F2l(~[Ll(~[Fll(R)) 1,
where Fl and L may contain nested linear subexpessions of this type in turn, F2 is a selection condition
which refers to the results of expressions in L (otherwise it could have been commuted with the projection).
Fl and L may have several neeted subexpressions on the same subrelation, however, only one of them may
occur in L. Typical examples of conditions found in F? are of the form "result# On , i.e. tuples that do not
have any matches in a nested subexpression of L are discarded, like in

("retrieve a list of department (names) each with a list of employees (names) making more than 50k, drop
departments without any such employeesn). In addition to the above canonical form we can have unnest
operations a t sny place, however, often it will be sufficient t o unnest as a last step:

where (p[. . .I)' means a sequence of unnests (each of which applies t o the only subrelation).

Conclusion

We identified the claes of single scan processible operations in a nested relational query language. We used
the nested algebra of [SS86] in the discuesion, however, the results apply t o all query languages with similar
query facilities. The class of linear operations plays an important role if we

implement a nested relational DBMS
where we should try t o realize the full functionality of that class within the lowest level of query
proceasing algorithms, the canonical linear expression may be used in defining the interface of such a
component,

design an optimizer
which should map as many queries as possible t o linear expressions, as this helps in reducing processing
costs by avoiding duplicate scans.

Concerning the DASDBS prototype, we find a subclass of linear expressions very close to the canonical form
a t the low-level query processing layer (CRM, see (DPS86, PSS+87]). Algebraic optimization in our nested
relational algebra has been studied in [Sch86, SPS87, Sch881, where we found that it is exactly this class of
queries that is needed t o efficiently support what would be select-project-join queries on an equivalent flat
relational database.

References
[ABCt76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffith, W. F.

King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.
System R: Relational approach to database management. A C M Tmnsactions on Database Systems,
1(2):97-137, June 1976.

[CABt81] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King, B. G. Lindsay, R. Lorie,
J. W. Mehl, T. G. Price, F. Putzolu, P. G. Selinger, M. Schkolnick, D. R. Shultz, 1. L. Traiger, B. W.
Wade, and R. A. Yost. History and evaluation of System R. Communications of the ACM, 24(10):632-646,
October 1981.

[DGW85] U. Deppisch, J. Ginauer, and G. Walch. Storage structures and addressing techniques for the complex
objects of the NF2 relational model. In A. Blaser and P. Pistor, editors, Prcrc. G I Conf. on Database
Systems for Ofice, Engineering, and Scientific Applimtions, pages 441-459, Kulsruhe, 1985. IFB 94,
Springer. (in German).

[DPS86] U. Deppisch, H.-B. Paul, and H.-J. Schek. A storage system for complex objects. In Proc. Int. Workshop
on Objact-Oriented Dotabase Systems, pages 183-195, Pacific Grove, September 1986.

[JK84] M. Jarke and J. Koch. Query optimization in database systems. A C M Computing Surveys, 16(2):111-154,
June 1984.

[Loh88] G.M. Lohman. Grammar-like functional rules for representing query optimization alternatives. In Proc.
A C M S IGMOD Conf. on Management of Doto, pages 18-27, Chicago, June 1988. ACM, New York.

(PSSt87] H.-B. Paul, H.-J. Schek, M. H. Scholl, G. Weikum, and U. Deppisch. Architecture and implementation
of the Darmstadt database kernel system. In P m . A C M S IGMOD Conf. on Monogement of Data, San
Rancko , 1987. ACM, New York.

(Sch86) M. H. Scholl. Theoretical foundation of algebraic optimization utilizing unnormdized relations. In
ICDT '86: Int. Conf. on Dotobase Theory, Rome, pages 380-396. LNCS 243, Springer, Berlin, Heidelberg,
1986.

[Sch88] M. H. Scholl. The Nerted Relatwnd Model -Eficient Support for a Relationd Database Interface-.
PhD the&, Dept. of Computer Science, Technical University of Dumstadt, 1988. (in German).

[SPS87] M. H. Scholl, H.-B. Palil, and H.-J. Schek. Supporting flat relations by a nested relational kernel. In
P m . Int. Conf. on Very hrge Dotaboses, pages 137-146, Brighton, September 1987. Morgan Kaufmann,
Lor A l b , CA.

[SS86] H.-J. Schek and M. H. Scholl. The relational model with relation-dud attributes. Informotion Systems,
11(2):137-147, June 1986.

[SWKH76] M. R. Stonebralrer, E. Wong, P. Krep, and G. Held. The design and implementation of INGRES. A C M
~ n r o c t w n r on Databose Syrtems, 1(3):189-222, September 1976.

123

Query Processing in a Nested Relational Database System

Josk A. Blakeley Anand Deshpande

Computer Science Department
Indiana University

Bloomington, IN 47405, USA
{blakeley,deshpand} @iuvax.cs.indiana.edu

Abstract

This paper presents a query processing architecture for a nested relational database system. The
focus of the paper is a brief description of its novel query processing features: (a) extensive use of
structured tuple-ids that allow computation in the tuple-id-world rather than in the value-world, (b)
application of the rule-based query optimization approach to provide the extensibility required in the
system, (c) main-memory query optimization similar to compiler-like optimizations, and (d) efficient
computation of joins.

1 Query processing

We are addressing the problem of query processing for applications involving complex objects. We started
by studying the problem in the context of the nested relational model. However, our long-term objective
is to build a system that can be extended to support facilities of object-oriented databases. In our
quest to implement an efficient nested relations/complex-object database system we found that query
optimization was a non-trivial task because:

The nested relational algebra operators involving select, nest and unnest lack the nice commutative
and associative properties of the relational algebra, making the optimization process along the lines
of algebraic relational optimization difficult [12].

Most nested algebras define projections and joins at the top-most level in the structure. Mathe-
matically it is possible to transform deeply-nested attributes to the top-most level by successive
restructuring operations (i.e., nest and unnest). Such restructuring operators are expensive and
should be avoided whenever possible.

Object-oriented databases use object-ids to identify objects. Unfortunately, object-ids are generated
in an ad-hoc fashion. Static ad-hoc object-ids make them unsuitable for optimization.

Queries in object-oriented databases involve extensive navigation making such queries difficult to
optimize.

Clearly, query processing for nested relations and complex objects is not a straightforward extension
of relational query optimization. We are currently developing ANDA (Architecture for Nested Database

Applications), a prototype system that supports the nested relational model. The salient features ibr
query evaluation in ANDA are described as follows:

Structured tuple-ids: A judicious design of tuple-ids and their exploitation for query processing.
Such tuple-ids facilitate the design of new data structures (i.e., VALTFLEE and RECLIST) that support
efficient retrieval of value-driven queries in the nested relational model.

Tuple-id based query processing: Query processing in ANDA follows the basic theme that the user
specifies queries in terms of values - the so called "value-world." As it is more efficient to process
queries on tuple-ids in main-memory, the query is converted to the "tuple-id" world. After process-
ing tuple-ids in the tuple-id world, the tuple-ids are materialized to return t o the value-world. A
typical query in ANDA involves a sequence of "value -r tuple-id -r value" (VTV) cycles.

Main-memory query processing: An access language that permits query processing on tuple-ids
in main memory unlike traditional query processing which uses temporary relations on disk. This
opens up new opportunities for query optimization not widely explored in previous database research
on query optimization for the relational model. In particular, by doing extensive query processing
in main memory on tuple-ids, it is possible to apply techniques commonly used in optimization of
code in compilers (e.g., data flow analysis).

Rule-based optimization: We build on the ideas of rule-based query optimization for extensible
database management systems [5,6] to provide the desired extensibility in our system. We have
already mentioned that the commutative and distributive properties of the nested relational algebra
do not hold as generally as in the relational algebra. Instead of designing yet another nested algebra
we chose to incorporate basic algebraic heuristics into rules that are used to generate query plans.
In our system, this is included in what we call the "algebraic rule-base."

We want to support in the future, object-oriented query processing features. Hence, it is Likely that
extensions, or even a new access language might be required. Therefore, rather than relying on
a single low-level interface for nested relations as it is the case in relational systems (e.g., System
R's RSS [2]) we support several possible implementations of the access language. We provide this
flexibility by encoding the implementation of the access languages in what we call the "access
language rule-base."

r Efficient joins: Single-value join operations on deeply-nested attributes are performed very efficiently
using the VALTREE. In particular, the VALTFLEE can be seen as a generalization of a join index [13].

So far, in ANDA we have addressed only set-oriented query processing issues. The nested relational model is
"purely" value-based. By extending the model to allow tuple-id values within nested relations the model
is no longer value-based. In such an extended model, it is important to support navigation through
tuple-ids. We plan to address navigational query processing in the future.

2 The query processing environment

Figure 1.a illustrates the query processing stages in our system. During parsing, a Nested SQL1 statement

Query Compilation

Figure 1.a: The query processing architecture Figure 1.b: The ANDA architecture

is translated to an internal graph representation. The graph representation is an annotated graph resulting
from the parse tree similar to the query graph model in Starburst [8,9]. The query rewrite component
takes the query graph resulting from parsing and transforms it into a graph leading t o a better plan using
the algebraic rules. The rule-base plan generator takes the query graph that results from the query rewrite
component and, using the access language rule-base, generates a program in the ANDA access language
that executes the query. Data-flow analysis similar to the one performed by optimizing compilers [l]
is performed on the plan produced by the plan generator. The resulting plan is then stored for future
execution.

ANDA's run-time system, illustrated in Figure l.b, consists of three basic components - the VALTREE,

the CACHE and the RECLIST. The VALTREE, stores an efficient mapping from values of the database to
a set of tuple-ids that correspond to all occurrences of the values in the entire database. The RECLIST
provides a mapping from tuple-ids to values. Retrievals on the VALTREE convert the query from the
value-world to the tuple-id world. The RECLIST is used to convert from the tuple-id world to the value
world. The CACHE which is the main-memory component of the database is used t o manipulate tuple-ids
in the tuple-id world.

The structure of tuple-ids in ANDA uses relation names tagged with subscripts and superscripts [3,4].
The subscripts go "down" tuples and superscripts go "across" the components (i.e., attributes and nested
structures). The organization of tuple-ids for hierarchies of nested relations has the following properties:
(a) every value has a unique tuple-id, (b) given a deeply-nested tuple-id, it is possible to determine
the tuple-ids of other components of the subtuple and the tuple-ids of the super-tuple and (c) given two

'We are currently developing a Nested SQL query language interface for nested relations similar to SQL/NF [10,11] and
Laurel [7] as part of this project.

tuple-ids it is possible to compare the tuple-ids t o determine if they belong to the same tuple or sub-tuple.

3 An example

We now show an example that will serve to illustrate a typical compila'tion of a query. The example is
based on the following nested relational database scheme describing courses and students.

Course = (cname, dept, cno, credits, Prerequisite, Section)
Prerequisite = (cno)
Section = (secid, term, instructor, Enrollment)
Enrollment = (sno, grade)

Student = (sname, sid, class, school)

Suppose we want to find all the courses taken a t the same time by Jones and Smith. This query can be
posed in Nested SQL as follows:

SELECT cno, cname, Section.term FROM Courses C
WHERE C.Section.Enrollment.sno
CONTAINS (SELECT sno FROM Student

WHERE sname = "Jones" OR sname = "Smith")

This Nested SQL query will be compiled into the following ANDA program:

value-world:
1. vt-retrieve(TEMPl,Name,Jones,sname,Student,relation)

2. vt-retrieve(TEMP1,Name,Smith,sname,Student,relation)

tuple-id-world:
3. cache-union(TEMPl,S**)
4. cache-transf orm(TEMP 1, S*a)

value-world :
5. tuple-id-to-value(TEMPl,TEMP2)
6. cache-explode(TEMP2)
7. vt-retrieve(TEMP3 ,Sid, cache-pop(TEMP2) ,sno ,Course ,relation)

, 8. vt-retrieve(TE~P3,Sid~ cache-pop(TEMP2) ,mo,huse ,relation)

tuple-id-wbrld:
A - - -L - 2-.. ----- - 2 - - / . ~ ~ u n q ,-AS&\

For a current description of each of the CACHE functions mentioned in the above program, the reader is
referred to Deshpande [31. The names TEMPI, TEMP2, TEMP3, and RESULT refer to named stacks. This is
similar t o the temporary storage locations generated in the code generation stage of a compiler. This
program shows several key ideas behind query compilation in our system.

As we mentioned before, the simplest Nested SQL query gets compiled into a program containing
a t least one VTV cycle. In this case our example contains two such cycles.

Statement 1, 2, 5, 7, 8, and 18 involve functions that retrieve values from secondary storage (i.e.,
VALTREE and RECLIST). Such statements should be minimized when possible.

Blocks of statements 3-4 and 9-17 represent cache operations performed in main memory. Two
observations can be made a t this point: (1) it is possible to eliminate some of the cache operations.
For instance, by performing the transformation in statement 4 after the v t~e t r i eve it is possible
t o avoid the cache union and explode operations of statements 3 and 6; and (2) it is possible to
change the semantics of the query to obtain all courses taken by Smith and Jones not necessarily at
the same time by using statement 9' rather than 9 which changes the "windown of the intersection
operation.

4 Current status of the system

A prototype of ANDA that implements the low-level access language has been implemented in the C pro-
gramming language on a Sun 3/60 running Unix. All routines that operate on the VALTREE and the
RECLIST perform actual secondary storage accesses. A Nested SQL interface has been implemented and
so far a direct translation from the parse tree to the access language is performed using the access language
rule-base. The implementation of the algebraic rule-base is currently under development. A rudimen-
tary data-flow analysis is performed on the access language programs currently generated. Additional
"compiler-liken optimizations are also under development.

In this paper we have briefly outlined ANDA's query processing system whose main features are: (a)
extensive use of structured tuple-ids that allow computation in the tuple-id-world rather than in the
value-world, (b) application of the rule-based query optimization approach t o provide the extensibility
required in the system, (c) main-memory query optimization similar to compiler-like optimizations, and
(d) efficient computation of joins.

References

[I] AHO, A. V., SETHI, R., A N D ULLMAN, J. D. Compilers, principles, techniques, and tools. Addison-
Wesley Publishing Company, Reading, Ma, 1986.

[2] ASTRAHAN, M., BLASGEN, M., CHAMBERLIN, D., ESWARAN, K., GRAY, J., GRIFFITHS, P.,
KING, W., LORIE, R., MCJONES, P., MEHL, J., PUTZOLU, G., TRAIGER, I., WADE, B., AND

WATSON, V. System R: Relational approach to database management. ACM Zhnsactions on
Database Systems 1, 2 (June 1976), pp. 97-137.

[3] DESH PANDE, A. An Implementation for Nested Relational Databases. PhD thesis, Indiana University,
Bloomington, Indiana 47405, Expected June 1989.

RANDOMIZED ALGORITHMS FOR OPTIMIZING LARGE JO d du!!I&! I
(Extended Abstract)

Yannis E. Ioannidis
Younkyung Kang

Department of Computer Sciences
University of Wisconsin, Madison

({yannis,younJ @cs.wisc.edu)

1. INTRODUCTION
The key to the success of a Database Management System (DBMS), especially of one based on the rela-

tional model [Codd70], is the effectiveness of the query optimization module of the system. The input to this
module is some internal representation of an ad-hoc query q given to the DBMS by the user. Its purpose is to
select the most efficient algorithm to access the relevant data and answer the query. Specifically, for the rela-
tional model, a strategy to answer q is a sequence of relational algebra operators applied to the relations in the
database that eventually produces the answer to q . Let S be the set of all such strategies. Each member s of S
has an associated cost c (s) (measured in terms of CPU and I/O time). The goal of any optimization algorithm is
to find the member so of S that satisfies

c (so) = min c (s) .
s.S

Whenever the cardinality of S is large, performing an exhaustive search of S is impossible. Which part of S is
worth exploring is the implementor's decision. The smaller the explored space is, the higher the probability that
the optimum is missed, and the faster the optimization algorithm runs.

Query optimization has been studied quite extensively theoretically [Aho79,Rose80], in the context of
centralized DBMSs [Wong76,Seli79,Mack86a], and in the context of distributed systems
[Epst78, Bern8 1, Mack86bl. Good surveys exist also [Jark84, Kim861.

The unit of optimization in most existing DBMSs is a single query. Each query involves a small number
of relations (e.g., less than 10). Hence, even though the number of alternative access plans to answer a query
grows exponentially with the number of the relations in the query, this number is relatively small. Most existing
query optimizers perform an exhaustive search over the space of alternative access plans, and whenever possi-
ble, use heuristics to reduce the size of that space.

The unit of optimization in most existing DBMSs is a single query. Each query involves a small number
of relations (e.g., less than 10). Hence, although the number of alternative strategies to answer a query grows
exponentially with the number of the relations in the query, this number is relatively small. Most existing query
optimizers perform an exhaustive search over the space of alternative strategies, and whenever possible, use
heuristics to reduce the size of that space.

The above picture is expected to change, however, in future DBMSs. The most important of these
changes are identified below.

participating queries that can speed up execution if they are taken into account. Finally, the number of nonrecur-
sive queries that are equivalent to a recursive one is arbitrarily large. These nonrecursive queries share several
common subexpressions, since each is equivalent to repeatedly applying the same query several times. Hence,
the size of the resulting strategy space can be arbitrarily large as well. One of the solutions proposed to face the
unprecedented size of strategy spaces is to use randomized algorithms, which are discussed in the foIIowing sub-
section.

2. RANDOMIZED ALGORITHMS FOR QUERY OPTIMIZATION
Two randomized algorithms have been recently proposed for query optimization on large strategy spaces:

one based on the Sirnulaled Annealing algorithm [Ioan87], and another based on Iterative Improvement
[Swam88].

2.1. Simulated Annealing

Simulated annealing is a Monte Carlo optimization technique proposed by Kirkpamck, Gelatt and Vecchi
for complex problems that involve many degrees of freedom [Kirk83]. Such problems are modeled by a state
space. where each state corresponds to a solution to the problem. A cost is associated with each state, and the
goal is to find the state associated with the globally minimum cost For complex problems with very large state
space, exhaustive exploration of all the states is impractical. Probabilistic hill climbing algorithms, such as
simulated annealing, attempt to find the globai minimum by traversing only part of the state space. They move
from state to state allowing both downhill and uphill moves, i.e., moves that reduce and moves that increase the
cost of the state respectively. The purpose of the latter Iund of moves is to allow the algorithm to escape from
local minima it may occasionally encounter. In simulated annealing, the uphill moves are controlled by a
parameter T , the temperature. The higher T is, the higher the probability an uphill move is taken. As time
passes, T decreases, and at the end, when the system is "frozen" (T = O), the probability of m h g an uphill
move is negligible. Many theoretical investigations have been performed on the behavior of the simulated
annealing algorithm [Rome84,Haje85]. It has been shown that, under certain conditions satisfied by various
parameters of the algorithm, as T approaches 0, the algorithm converges to the state of global minimum cost
Details about this algorithm can be found elsewhere [Kirk83. Ioan871.

2.2. Iterative Improvement
Iterative improvement is another Monte Carlo optimization technique, applied on similar problems (i.e.,

similar state space structure and cost functions) as simulated annealing. It is not a hill climbing algorithm,
because no uphill moves are taken. All the moves are downhill. Given an arbitrary state, the algorithm moves
to a local minimum that is close to that state by a series of downhill moves. This is done for several randomly
chosen states, so that the algorithm is not stuck in any local minimum. The whole process stops after it has been
repeated enough time, which can be measured in several ways (e.g., running time, number of local minima
reached, number of states visited). A simple stochastic analysis shows that as time approaches =, the algorithm
converges to the state of global minimum cost Details about this algorithm can be found elsewhere [Swam88].

23. Comments
The successful application of simulated annealing and iterative improvement on several optimization

problems, together with their theoretical foundation and their elegant simplicity, has been the primary motivation
to devise query optimization algorithms based on them. Although the structure of the algorithms is problem-
independent, some of their parameters depend on the particular problem in hand. Probably the most important
of these is the state space S. For query optimization, S is the set of strategies one can apply to answer a given
query q. The state space can be enhanced according to any special characteristics of q . or it can be made
smaller heuristically by removing strategies that are likely to be suboptimal. For simulated annealing, elimina-
tion of states must be done with great caution, because the reduced state space has to remain strongly connected.
Otherwise, the optimal state may not be reachable from the initial state.

Both simulated annealing and iterative improvement are especially well suited to optimization problems
with large search spaces and with cost functions that manifest a large number of local minima If the number of
local minima is small, which is the case in conventional query optimization, these algorithms are inappropriate.
This is not the case, however, when DBMSs are used in new application domains, which require optimization of
queries involving many relations, global optimization, or recursive query optimization.

3. GETTING THE BEST OF BOTH WORLDS

3.1. Performance Evaluation

We have performed a comprehensive study of the performance of Simulated Annealing and Iterative
Improvement for a variety of select-project-join queries. Our study is similar in nature to that of Swami and
Gupta [Swam88]. There are three distinct differences though. First, their state space consists of "left-deep
trees" only, whereas we include "bushy trees" as well. Second, they examine only one join algorithm, namely
hash-join, whereas we have experimented with two of them, namely nested-loops and merge-scan. Third, they
incorporate one transition rule from a state to its neighbors, namely exchanging the position of two relations in
the query tree, whereas our transition rules are based on algebraic properties of joins as well as switching join
algorithms for a join. All these differences make the state space that we have to deal with larger. They also
make certain wnsitions from one state to the other more expensive, e.g., sort-order of relations must be pro-
pagated up the query tree for possible use in a higher level merge-scan join.

Both algorithms have been implemented in C and tested under Unix on a Sun-4. Our results qualitatively
confirm those of the previous study [Swam88], but they also extend them in several insightful ways. Iterative
improvement very quickly reaches a good local minimum, beyond which the improvement in the cost of the
solution is not dramatic. On the other hand, simulated annealing spends much time in states with very high cost.
Nevertheless, it eventually finds its way into low cost states and converges to one that is always better, is.,
cheaper, than the one that iterative improvement has found. Figure 1 shows the cheapest state visited by the two
algorithms as a function of time, for the average run. The y-axis represents the ratio of the state cost over h e
best cost found among all runs of both algorithms. The specific diagrams are for 40 join tree-queries, but similar
results have been observed on other types of queries for sizes between 10 and 100 joins.

Scaled ,, \
\

1 .M
\ SA

1.40

J ,
o 90 1w no 3so 4% wo ao no 81o 900

Time (Secglds)
Figure 1: Cheapest strategy found as a function of time.

Contrary to the conclusions of the work of Swami and Gupta [Swam88], the above figure suggests that
simulated annealing has the ability to outperform iterative improvement if it is run long enough. One must admit
that the observed difference has been disproportionally small with respect to the extra time spent by simulated
annealing. Observed differences in final strategy cost have been between 10% and a factor of 2, whereas those
in optimization time have been between a factor of 5 and a factor of 10. Nevertheless, simulated annealing is
still valuable on the following basis. Both algorithms are only useful for very large queries. The execution time
of such queries is expected to be very long, so it is unlikely that they will be submitted interactively. Most
likely, these queries will be compiled (thus, optimized only once), and executed multiple times. Hence, even
small improvements in the cost of the strategy of choice can result in big savings in the amortized cost of all runs
of the query. The additional time that simulated annealing needs to achieve the improvements in the quality of
the result may well be justified.

3.2. The Shape of the Cost Function

The consistency with which diagrams like that of Figure 1 were observed for all types of queries and sizes
that we tried indicated to us that the algorithms' behavior must be a result of some fundamental features of the
state space we were exploring and its cost distribution. We decided to investigate the shape of the cost function
in the state space. The size of the latter is prohibitive of any attempt of an exhaustive search of it. Hence, ran-
domization was employed again to overcome this problem. The following experiments were performed and the

following results were observed:
We randomly generated states in the state space and calculated their costs. We only performed experi-
ments of 10 and 40 join queries, and we generated 50-100 million states in each case. In the 10 join
queries, the minimum that was found was the cost of the state that simulated annealing had converged to.
In the 40 join queries, the minimum that was found was about 4 times the cost of the state that simulated
annealing had converged to. The conclusion from this experiment is that the area of good. i.e., cheap,
states is very small compared to the total state space, and that simulated annealing finds a plan that is very
good, i-e.. the likelihood of the existence of a state with cost lower than the one simulated annealing found
is very slim.
We performed random walks in areas of low cost states. Our purpose was to get a feeling for the number
of good local minima that exist and their mutual distance. The random walks consisted of alternating
series of uphill moves and series of downhill moves. Each series of downhill moves ended in a local
minimum. Each series of uphill moves ended when the state cost exceeded a prespecified limit (so that it
is ensured that we remain in areas of low cost states). On the average, 70% of all visited local minima had
distinct costs. Also, these distinct local minima were close to each other; for example, for 40 join queries
and not much variance in the sizes of the relations, the average distance between local minima was 25
states (in a space of more than 240 s~ates). This implies that there is a relatively small area of low cost
states, which contains a large number of local minima. which are very close to each other. Interestingly.
we performed the same experiment in search for local maxima. Surprisingly, for a rather extensive area of
low to medium cost states, we found no local maxima The only local maxima we were able to identify
were states with very high cost.
The above results lead to the following conclusion regarding the shape of the cost function on the state

space.

The shape of the cost function resembles a cup, with some relatively small variations at the bonom.

In other words there is a small area of states with low costs, surrounded by the remaining states with increas-
ingly higher costs. There is relatively small variation among the costs in the low cost area, but enough to make
exploration of that area worth while. PictoriaIIy, and for a one-dimensional function, the situation is shown in
Figure 2.

Figure 2: Shape of cost function.
The shape of Figure 2 is further validated by the results of the observed behavior of the algorithms shown

in Figure 1. Iterative improvement starts from a randomly generated state and moves down to a local minimum
repea&edly. Because of the cup shape, very soon it reaches at a local minimum that is at the bottom of the cup
(this is also helped by the fact that there are no local maxima in low cost areas). However, because of the small
size of the cup bottom, it is unlicely thar iterative improvement will randomly pick a state in the cup bottom; so,
not many local minima in the low cost area are explored (this has also been verified by measurements of the time
that iterarive improvement spends in low cost states). On the other hand, simulated annealing spends much time
in high cost areas, but when the temperature starts cooling down it eventually is forced to the cup bottom, which
it explores quite extensively until freezing. This explains why it takes time for simulated annealing to visit a low
cost state. It also explains why, by spending more time around the cup bottom (with low temperature), simu-
lated annealing eventually converges to a state that is superior to the one that iterative improvement converges
to, i.e., to one of lower cost.

The above results are not in agreement with those of Swami and Gupta [Swam88], who observed that
Simulated Annealing was never superior to Iterative Improvement, independent of the amount of time that was
given to it. This difference, however, is very easily explained by the difference in the state space and in h e
transformations that were used in the two studies, primarily the latter. Swami and Gumpta used only one
transformation, namely exchanging the position of two relations in the access plan. This generates neighbors
that have large differences in their cost, which makes the shape of the cost function much less smooth (not a
cup), and therefore Simulated Annealing does not have the opportunity to spend much time in a low cost area.
In our experiments, by using different connections among the states, we managed to improve the algorithm's
performance and produce superior strategies.

33. Hybrid algorithm
The above observations on the shape of the cost function and the behavior of the two algorithms inspired a

new Hybrid algorithm to take advantage of the specific properties of query optimization. Hybrid is a combina-
tion of Iterative Improvement and Simulated Annealing. First it performs Iterative Improvement for a small
period of time. This gives the opportunity to the algorithm to start at a random state and move down at the cup
bottom for a few times. Then the algorithm performs Simulated Annealing. The initial state was the best state
visited in the iterative improvement phase. The initial temperature is low enough so that the algorithm cannot
escape from the cup bottom, but is high enough so that adequate time is given to it to extensively explore the cup
bottom.

Running the Hybrid algorithm on the same queries that Iterative Improvement and Simulated Annealing
were run yielded the results we expected. Hybrid almost always converged to a better plan than either Iterative
Improvement or Simulated Annealing did, and for the times it did not, it was very close to the better of the two
(usually, the one of Simulated Annealing). It also consumed much less time than Simulated Annealing (by about
a factor of 3 on the average), primarily because it did not waste time in the useless high cost areas. A represen-
tative graph of the behavior of all three algorithms, in terms of the best plan found during the course of the aver-
age run is shown in Figure 3. The specific graph shows again scaled cost for a 40 join tree-query.

I I
Scaled zm \

I ,
o 90 IW no 360 450 wo QO no aio 900

Time (Seconds)
Figure 3: Cheapest strategy found as a function of time.

4. CONCLUSIONS
The above results indicate that one can take advantage of the specific properties of the problem of query

optimization and the cost functions it gives rise to. Algorithms like Hybrid can be used, which converge in a
relatively short amount of time to close-to-optimal strategies even for large queries.

We are currently performing more experiments with the three algorithms on several additional queries to
validate our observations, and to confirm the extent of their applicability. We are also extending the algorithms
so that they can deal with queries that involve unions also. In that case, the state space is even larger, but some
very preliminary results indicate that one can take advantage of similar characteristics as for join-only queries
and develop fast randomized query optimization algorithms.

5. REFERENCES
[Ah0791

Aho, A.. Y. Sagiv, and J. Ullman, "Equivalences Among Relational Expressions", SIAM Computing Jour-
nal 8,2 (May 1979). pp. 218-246.

IBanc861
Banciihon, F. and R. Rarnakrishnan, "An Amateur's Introduction to Recursive Query Processing Sua-
tegies", in Proc. of the 1986 ACM-SIGMOD Conference on the Management of Data. Washington. DC,
May 1986. pp. 16-52.

[Bern8 11
Bernstein, P. A., N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, "Query Processing in a System
for Dismbuted Databases (SDD-I)", ACM TODS 6.4 (December 1981). pp. 602-625.

[Codd701
 odd, E. F., "A Relational Model of Data for Large Shared Data Banks", CACM 13, 6 (1970). pp. 377-
387.

lEpst781
Epstein, R., M. Stonebnker, and E. Wong, "Distributed Query Processing in a Relational Data Base Sys-
tem", in Proc. of the 1978 ACM-SIGMOD Conference on the Management of Data, Austin, TX, May
1978, pp. 169-180.

[Gran8 1 1
Grant, J. and J. Minker. "Optimization in Deductive and Conventional Relational Database Systems", in
Advances in Data Base Theory Vol. 1, edited by H. Gallaire, J. Mlnker and J. M. Nicolas, Plenum Press,
New York, N.Y., 1981, pp. 195-234.

[Haje85]
Hajek, B., "Cooling Schedules for Optimal Annealing", unpublished manuscript, January 1985.

~oan871
Ioannidis, Y. E. and E. Wong, "Query Optimization by Simulated Annealing", in Proc. of the 1987 ACM-
SIGMOD Conference on the Management of Data, San Francisco, CA, May 1987, pp. 9-22.

[Jark84]
Jarke, M.. J. Koch, and ""Query Optimization in Database Systems", , ACM Computing Surveys 16, 2
(June 1984). pp. 11 1-152.

[Kim861
Kim. W., D. Reiner, and D. Batory, Query Processing in Database Systems, Springer Verlag, New York,
NY, 1986.

[Kirk831
' Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by Simulated Annealing". Science 220,

4598 (May 1983), pp. 671-680.

[Kris86j
Krishnamurthi, R. and C. Zaniolo, "Safety and Optimization of Horn Clause Queries", in Preprints of the
W ?rkrhop on Foundations of Deductive Databases and Logic Programming, Washington. DC. August
1. 36, pp. 518-543.

CMack86al
Macken, L. F. and G. M. Lohman, "R* Validation and Performance Evaluation for Local Queries", in
Proc. of the 1986 ACM-SIGMOD Conference on the Management of Data, Washington, DC, May 1986,
pp. 84-95.

Flack8Gbl
Macken, L. F. and G. M. Lohman, "R Validation and Performance Evaluation for Distributed Queries",

in Proc. 12th International V W B Conference, Kyoto, Japan, August 1986, pp. 149-159.

[pome84]
Romeo, F., A. Sangiovanni-Vincentelli, and C. Sechen, "Research on Simulated Annealing at Berkeley",
in Proc. I984 IEEE International Conference on Computer Design, Pon Chester, N.Y., October 1984, pp.
652-657.

[Rose801
Rosenkrantz, D. J. and H. B. Hunt 111, "Processing Conjunctive Predicates and Queries", in Proc. 6th
International VLDB Conference, Montreal, Canada, October 1980, pp. 64-72.

[Seli791
Selinger, P. et al., "Access Path Selection in a Relational Dara Base System", in Proc. of the 1979 ACM-
SIGMOD Conference on the Management of Data, Boston, MA, June 1979, pp. 23-34.

[Sell861
Sellis, T. K., "Global Query Optimization", in Proc. of ihe 1986 ACM-SIGMOD Conference on the
Management of Data, Washington, DC, May 1986, pp. 191-205.

[Swam881
Swami, A. and A. Gupta, "Optimization of Large Join Queries", in Proc. of the 1988 ACM-SIGMOD
Conference on the Management of Data, Chicago, IL, June 1988, pp. 8-17.

[Wong761
Wong, E. and K. Youssefi, "Decomposition - A Strategy for Query Processing", ACM Transactions on
Database Systems 1,3 (September 1976), pp. 223-241.

Research in Optimization of Large Join Queries

Arun Swami

Computer Science Department, Stanford University, Stanford, C A 94305

arun@polya.sianford. edu

Keywords: search, large join queries, statistical distributions, combinatorial optimization tech-
niques, optimization heuristics, validation

Introduction

Much effort has been devoted to developing good plans for executing queries in relational database
systems [3]. These plans are termed query evaluation plans (QEPs). Current query optimizers
normally expect to process queries involving a small number of joins (less than 10 joins). The
search spaces are small enough that the use of search techniques such as the System R dynamic
programming algorithm [6] is feasible, even though the algorithm has a worst case time complexity
of 0(2N). However, these search techniques are inadequate for processing queries with a much larger
number of joins, say, 10 to 100 joins. Such large join queries can be generated by use of multiple
levels of views, applications from logic programming, and object-oriented database systems (for
example, Iris [I]) and knowledge base systems that use relational databases for storage.

In our research, we are investigating the problem of optimizing Select-Project-Join queries with
a large number of joins. The fundamental problem with optimizing large join queries is searching
the large spaces of query evaluation plans or solutions. We note that the optimization techniques
developed in this research can be adapted to processing other kinds of queries, that is, these search
techniques are generally applicable.

Distributions of Query Evaluation Plans

The size of the search space grows at least exponentially as a function of the number of joins in the
query. From this it does not immediately follow that the difficulty of finding a good query evaluation
plan (QEP) increases as rapidly. The ease or difficulty of searching for a good QEP depends to a
large extent on the proportion of good QEPs in the search space, or, in general, on the statistical
distribution of the costs of QEPs. We are using the techniques of random sampling to obtain the
statistical distributions of QEP costs for large join queries. Some of the results we have obtained
are summarized below (see [8] for more details).

Most query optimizers use the cross product heuristic. This heuristic restricts the solution space
to be searched by postponing cross products as late as possible. The intuition is that cross products
are expensive and result in large intermediate results. The heuristic would be considered effective if
it increased the proportion of good QEPs in the search space. We find that the number of low cost
query plans sampled increases significantly when the heuristic is used. For 10 join queries, using the
heuristic increases the percentage of low cost query plans from 2.4% to 79.6%; the corresponding

increase for 50 join queries is from < 0.1% to 3.8%. Thus, in absolute terms, the heuristic is not
sufficiently effective for large join queries.

Even when the cross product heuristic is used, we find that the percentage of low cost QEPs
decreases rapidly as the number of joins in the query increases. This holds even if the definition of
'low cost' is changed, that is, even if the acceptance threshold of query plan cost is increased. These
results were verified to hold for a large number of queries with differing c'haracteristics.

Combinatorial Optimization Techniques

The search space of QEPs for large join queries is pruned in some standard ways. Selections and
projections are pushed down, the cross product heuristic is employed, and only outer linear join trees
are considered. Outer linear join trees are binary join trees where the inner operand of each join is a
base relation. However, the solution space is still too large; the problem is an NP-hard combinatorial
optimization problem. Techniques such as iterative improvement and simulated annealing have been
applied to combinatorial optimization problems in other areas.

Iterative improvement is essentially the greedy heuristic with multiple start states. Simulated
annealing [4] has been used with great success in a number of CAD optimization problems. It
has been applied to the problem of optimizing recursive queries [2]. We adapt these and other
techniques to the problem of optimizing large join queries and compare them. We find that iterative
improvement is clearly superior to the other combinatorial techniques, and simulated annealing is
the next best algorithm. This work is described in detail in [9].

Optimization Heuristics

The power of combinatorial optimization techniques may be enhanced by combining them effectively
with good heuristics. In our research, we have developed two heuristics, augmentation and local
improvement. In our experiments, we also study the performance of a third heuristic proposed for
large join queries, the KBZ heuristic, named after the authors Krishnamurthy, Boral, and Zaniolo.
The heuristic is described in [5], and is evaluated for queries with upto 15 joins in [lo].

The augmentation heuristic works bottom up, buildings good join order a relation a t a time. The
heuristic tries to minimize the join selectivity in choosing the next relation in the join ordering. The
idea is to keep the intermediate result sizes small over the entire join ordering. Local improvement
works top down using the 'divide and conquer' paradigm. It decomposes the complete join ordering
into many small join ordering problems, finds good solutions for the ordering subproblems, and then
composes the entire join ordering out of these solutions.

We combine augmentation, local improvement, and the KBZ heuristic with iterative improvement
and simulated annealing in many different ways. As an example, the augmentation heuristic can
be used to provide start states for the greedy runs of iterative improvement. Our comparison of
the various combinations shows that two combinations of augmentation and iterative improvement
are superior to all the other optimization methods. These results are validated by using several
synthetic benchmarks of queries. A more complete description of this work is in [7].

Further Research

Much work remains to be done in this area. In the research to date, we have constrained the
problem in various ways. Relaxing these constraints can enhance the utility of these studies. We
have restricted our attention to the hash join method; extending our comparisons to other join
methods is fairly straightforward. We need to consider binary join trees other than outer linear join

trees; again, this should not be too difficult. Considering queries more complex than Select-Project-
Joins is more problematic; i t is no accident that most of the query optimization literature considers
only this class of queries. Of course, this is partially motivated by the fact that this class of queries
is a large and important class of queries.

Another interesting direction for research is to study carefully the relationships between join
graphs and the good QEPs for the queries that correspond to these join graphs. Such studies may
lead to a more intelligent application of the divide and conquer principle than currently done in local
improvement.

Acknowledgements

This research is supported by Hewlett-Packard Laboratories under the contract titled "Research in
Relational Database Management Systems" and, earlier, by DARPA contract N00039-84-C-0211 for
Knowledge Based Management Systems.

References

[I] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J . W. Davis, N. Derrett, C. G.
Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A. Ryan, and M. C. Shan. Iris:
An Object-Oriented DBMS. ACM Transactions on Ofice Information Systems, 5(1):48-69,
January 1987.

[2] Y. E. Ioannidis and E. Wong. Query Optimization by Simulated Annealing. In Proceedings of
ACM-SIGMOD International Conference on Management of Data, pages 9-22, 1987.

[3] M. Jarke and J . Koch. Query Optimization in Database Systems. ACM Computing Surveys,
16(2):lll-152, June 1984.

[4] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by Simulated
Annealing: An Experimental Evaluation (Part I). Draft, June 1987.

[5] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of Nonrecursive Queries. In Pro-
ceedings of the Twelfth International Conference on Very Large Data Bases, pages 128-137,
Kyoto, Japan, 1986. Morgan Kaufman.

161 P. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G . Price. Access Path
Selection in a Relational Database Management System. In Proceedings of ACM-SIGMOD
International Conference on Management of Data, 1979.

[7] A. Swami. Optimization of Large Join Queries: Combining Heuristics with Combinatorial Tech-
niques. To appear in Proceedings of ACM-SIGMOD International Conference on Management
of Data, May 1989.

[8] A. Swami. Statistical Distributions of Costs of Evaluation Plans for Large Join Queries. Sub-
mitted to VLDB-89, January 1989.

(91 A. Swami and A. Gupta. Optimization of Large Join Queries. In Proceedings of ACM-SIGMOD
International Conference on Management of Data, pages 8-17, 1988.

[lo] E. E. Villarreal. Evaluation of an O(N 2, Method for Database Query Optimization. Master's
thesis, The University of Texas a t Austin, May 1987.

Department of Electrical Engineering & Computer Science
Northwestern University
Evanston, Illinois 60208

E-mail: changp@eecs.NWU.Edu

Extended Abstract

The problem of optimizing large (equi-)join queries comes from expert database systems

(Krish861 [Swami88]. The equi-join queries may be categorized as tree queries and cyclic queries. A

tree query is a query whose join query graph is a tree or there exists an equivalent query whose join

query graph is a tree. A cyclic query is a query which is not a tree query. In this paper, we focus on

equi-join tree queries. Although the optimization of semi-join scheduling is NP-hard in general

[Gouda811 [Yu82], tree queries form an important class of queries such that the complete reduction

of irrelevant tuples can be done effectively by semi-joins [Berndla] [Berns8lb].

This paper was motivated by the following:

(i) A concluding remark from [Swami88] that the iterative improvement strategy surpasses others be-

cause it covers a larger region of the search space.

(ii) In [Krish86], taking a minimum cost spanning tree from a cyclic query graph may lose some join

clause(s) or may still result in a cyclic query graph.

(iii) Many of the optimization techniques such as [Sellin79], [IbaraW], [Krisha], [Swami881 consider

only the case that a tree query (graph) is obtained, and the optimization is done on this tree query

graph; they do not consider the equivalent queries which result from applying the law of transitivity to

the query qualification clauses.

(iv) Those who consider equivalent query graphs do not cover the whole set of equivalent queries;

e.g., [YuW] [VanG&] [Prama88].

We have the next example to illustrate these points.

Example I : Given a query Q with the qualif~cation q =

(1) R l A l = R2A2 & R2A2 = R3A3 &

(2) R2.B2 = R4.M & R3.B3 = R4.B4 &

(3)

t A full-length udierversion manuscript may be found in [ChangtB]; same methodologyd&bed in this extended
abstract has also been applied lo the qui-join logic query IChang89aI.

Let 1,2 and 3 denote three different equi-join amibure domains (or briefly, join domains) A, B and C

respectively. Let V1 , V2 and V3 be the set of referenced relations in the join domains 1.2 and 3

respectively. V1 = {Rl, R2, R3), V2 = {R2, R3, R4) and Vj = {RZ, R3, R4, R5).

We call Vi the reference domain of join domain i

The join query graph of Q is illustrated in Figure 1. We can see that taking a minimum cost spanning

tree (refer to [Krish86],) from the cyclic query graph may lose some join clauses. This flaw holds even

if we fust take the transitive closures for each reference domain before taking the minimum spanning

tree. If we take a (minimum cost) spanning tree for each reference domain, the resulting graph may

not be a tree.

By using Yu and Ouoyogiu's algorithm [Yu79] (also known as Graham redrrcnbn), we know that Q is

a tree query; i.e., an equivalent tree query may be generated. Usually, the generated tree query will be

used for further optimization. But, in many cases, there are more than one equivalent tree query.

For instance, Figures (a), (b) and (c) in Figure 2 are three distinct but equivalent tree queries of Q.

Clearly, the optimal costs of queries in Figure (a), (b) and (c) may not be the same.

/End of example/

Figure 1: the join query graph of Q in h p l e 1; edges are labeled by the join domains:
<i> each edgc R m ~ oh stands for a sigle-attribute join clause.

(9 (iii)

F i y r e 2: three instances of syntactically equivalent tree queries of Q in Exanrple I;

each edge m*h stands for a multi-attribute join clause.

From the above observations, we argue that the search space of the optimization of query

processing should be extended to cover the equivalent queries and may be limited to the syntactically

equivalent tree queries, given a tree query. Syntactic equivalence of a set of equi-join clauses of the

same reference domain is defined by the transitive dosure/transitive reduction of the equi-join

dauses. The result of transitive closure/transitive reduction of the equi-joins is taking the spanning

trees SP(V,) of the complete graph l i t (v i) formed by the equi-join attribute reference domain Vi .

Note that if two queries are of syntactic equivalence, semantic equivalence follows immediately such

that the same answer will be generated for any database state.

Figure 3: the shuffle unions of SP(V,) in Q.

Let {SP(Vi} be the set of distinct spanning trees of J~'(v~). The set of syntactically equivalent

queries of an equi-join query Q is the shulJIc unions (denoted @) of {SP(Vi)), for each rcfcrcnce

domain Vi; i.e., {SP(V,)) u@ u@ {SP(Vi)) @ fl {SP(Vk)} where k is the number of reference

domains in Q. Figure 3 illustrates the shuffle unions of the query in Example I . Clearly, generating

all the syntactically equivalent queries has a combinatorid explosion (due to taking spanning trccs

and the combinatoric shuffle) and some of them may not result in a tree query graph. To generare all

the syntactically equivalent tree queries, we will employ a graph method called spanning me projecriort

map, denoted G = SP(Vi) -* GT to analyze the intermediate states of generating syntactically equiv-
P

dent queries. The search space can be pruned by testing the cyclic condition of Gp = SP(V,) + G, in

linear time. The next theorem states the condition of this cyclic case.

77ieorenl 1: Let GT(VT, ET) be a tree, J ~ + (v ~) be the transitive dosure graph of reference domain i,

and V' = Vi n VT , IV'I 2 2. The spanning tree projection map Gp = SP(Vi) + GT is cyclic, for 311

SP(V,), iff the subgraph of GT , G'(V', E') where E' = { (R1, R2) I (R1, R2) is in %and R1, R, - arc

both in V' }, is not a connected component (refer to (Chang891 for a formal proof).

Clearly, the graph connectivity test can be done in linear time with a proper data SITUCIUIC,

e.g., the adjacency list. Before we describe the algorithm for generating all the equi5,alent trcc

queries, we !kt arrange the order of the reference domains to be < V1 , ..., Vj , ..., Vk > where I Vj 1 5

IV. I,(V,nV,+,I >O,and,ifpossibe,IV.nV. 1 2 IVj+l"V. I. Tbercasonsforhadngruch
J + 1 1 J+1 1+2

an order are two-fold: (i) to limit the branching factor of the state generation tree, and (ii) to

guarantee that, for each i-th step of Gp = SP(V,) + %, Gp will be a mnhccted component. In Algo-

rithm EQ-TREE-GEN, we assume that the input cV1 , ..., Vk> has been ordered as described above.

Algorithm EQ-TREE-GEN: { Generating all the syntactically equivalent tree queries)

Input - reference domains V1 , .,. , Vk of query Q;

Output - aII the syntactically equivalent tree queries (ALL-EQ-TREE);

Begin

GT : = TEMP-EQ-TREE : = empty;

ALL-EQ-TREE : = { GT);

For each reference domain i do begin

For each GT(VT , q) in ALL-EQ-TREE do begin

V':= v = n v i ;

E':= {(vj,v2) 1 v j , v 2 a r e i n V i a n d (v l , v 2) u i n ~)

If G1(V', E') is not a connected component then do begin

Remove GT from ALL-EQ-TREE;

Continue;

end;

Else do begin

For each SP(Vi) s.t. Gp : = SP(Vi) + GT is tree do begin

Add label i to the edges of SP(Vi) on Gp ;

Add Gp to TEMP-EQ-TREE;

end;

Remove GT from ALL-EQ-TREE;

end;

end;

ALLEQ-TREE : = TEMP-EQ-TREE;

end;

Output ALLEQ-TREE;

End;

All the twelve (12) syntactically equivalent tree queries of the Q in Euunple 1 generated from

Algorithm E Q - W E - G E N are listed in F w r e 4. Compared to the shuffle unions which has 3'3'4'

alternatives, we may see that Algorithm EQ-TREE-GEN incorporating Theorem 1 as a pruning condi-

tion is indeed effectively generating all the syntactically equivalent tree queryies. Query optimization

may be extended to a larger region (i.e., equivalent queries) due to a higher processing speed and

employing multiple processors as the hardware technology evolves. Given a tree query, the search

space of query optimization may be limited to the set of syntactically equivalent tree queries, under

the common assumption that processing tree query graphs is easier than processing cyclic ones. Fur-

ther research includes applying combinatorid optimization techniques and taking advantage of the

common expressions of the syntadically equivalent queries. We expect that further pruning

condition(s) for the query optimization will be derived.

(a) (b) t c) (d) (e) (1) (0) (h) (j) C j) (k) (1)
#tar dtain chain star

wry w r y w r y olrw

Figure 4: aN the twelve syntactically equivalent tree queries of the Q in Erornple I.

References

[B e d l a] P. A. Bernstein and D-M. Chiu, "Using Semijoins to Solve Relational Queries", J.
ACM, Vol. 28, No. 1, January 1981, pp.25-40.

[B e d l b] P. A. Bernstein, and N. Goodman, The Power of Natural Semijoins", SUM 3. Cont-
puting, Vol. 10, No. 4, December 1981, pp.751-771.

[Chang88] P. Chang, 'On Generating Syntactically Equivalent Tree Queries in Distributed
Databases* unpublished manuscript, February 1988.

[Chang89] P. Chang, "Query Processing and View Materialization in Logic Database Systems",
Ph. D. Dissertation, Northwestern University, June 1989.

[Chang89a] P. Chang and LJ. Henschen, "On Generating Syntactically Equivalent Tree Queries
of an Equi-Join Logic Query", submitted for publication.

[Gouda811 M. G. Gouda, "Op~imal Semi-Join Schedules for Query Processing in Local Dis-
tributed Database Systems", h. ACCM-VGMOD International Confere~rce 011

Mcmagement of Data, 1981, pp.164- 173.

[Ibara84] T. Ibaraki and T. Kameda, "On the Optimal Nesting Order for Computing N-
Relationai Joins", ACM Trans. Database Systems, Vol. 9, No. 3, September 1981,
pp.482 - 502.

[Krish86] R. Krishnamurthy et. al., 'Optimization of Nonrecursive Queries", Proc. VZDB,
August 1986, pp.128 - U7.

[Prama88] S. Pramanik and D. Vineyard, 'Optimizing Join Queries in Distributed Databases",
IEEE Tmns. Sofhoare Engineering, Vol. 14, No. 9, September 1988, pp.Ul9- 1326.

[Sellin791 P. Sellinger et. al., "Access Path Selection in a Relational Database Management
System", Roc. ACM-SIGMOD Internutional Conference on Management of Data.
1979.

[Swami881 A. Swami and A. Goupta, 'Optimization of Large Join Queries", Proc. ACAI-
SIGMOD International Conference on Management of Data, Chicago, June 198S,
pp.8 - 17.

[VanGe86] A. Van Gelder, "A Message Passing Framework for Logical Query Evaluation",
Proceedings of ACM-SIGMOD International Conference on Managentent of Dam,
Washington D. C., May 1986, pp.155- 165.

IYu791 C. T. Yu and M. Z. Ouoyoglu, "An Algorithm for Tree-Query Membership of a Dis-
tributed Query", IEEE Rvc. COMPSAC, 1979, pp.306-312.

[Y u821 C. T. Yu, K. Lam, C. C. Chang and S. K. Chang, "Promising Approach to Distributed
Query Processing", h. Berkeley Workshop on Disnibuted Data Manage~lrenr and
Computer Nerwork, 1982, pp.363 - 390.

[YuM] C. T. Yu and C. C. Chang, "Distributed Query Processing", ACM Contputing Sl inqs ,
Vol. 16, No. 4, December 1984, pp399-433.

Heuristic Search in Query Optimization

Hyuck Yoo and Stkphane Lafortune

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

e-mail: hxy @caen.engin.urnich.edu stephane@caen.engin.umich.edu

The importance of query optimization in centralized and distributed relational
database systems is widely recognized. One of the key components in query opti-
mizer~ is the search module. The ability to efficiently find an optimal (or good)
solution among all possible alternatives is indeed essential to the performance. In
particular, in future application areas of database systems such as Computer Aided
Design and Artificial Intelligence, the complexity of query processing is expected
to be much greater than in conventional areas so that the efficiency issue becomes
more critical.

We are developing new query optimization methods based on heuristic search.
Our objective is to achieve search efficiency willlout relaxing optimaIity. (Clearly,
optimality is subject to the given environment such as cost model and join method.)
We employ the A* algorithm, which is probably the best known heuristic search
technique. More precisely, we model the steps of query processing in terms of
states in a search space, and we develop heuristic information that is needed by
the A* algorithm in order to proceed with the search. Unlike many cases that
employ "heuristics" to ease the computational efforts during exhaustive search, we
try to derive heuristic information that satisfies (i) an "admissibility" condition,
thus guaranteeing that an optimal path is found between the initial and final states
in the search space, and (ii) a "consistency" condition, in order to avoid redundant
calculations during the search [I].

First, we consider the problem of finding optimal semijoin reduction sequences
(or programs) for a given tree query. Query optimization strategies based on the
reduction of the referenced relations by means of semijoins have received consider-
able attention. The limitations of such strategies have to do with computational
efficiency (very large search space of sernjjoin reduction sequences), optimality of
the solution (when heuristics are used), and generality of the class of queries al-
lowed (e.g., simple queries, chain queries, tree queries). We present a new method
that "intelligently" navigates the space of all semijoin sequences and returns an
optimal solution.

A database state is defined to be a set of relations. When a semijoin is per-
formed to a relation in a database state, the relation is reduced. The database
state is then transformed into a new one, where the relation is replaced by its
reduced version. For example, if xo = {rl , r2, rg) is the initial database state and
a semijoin from rz to rl is applied, then the resulting state is {rl o: r 2 , r2, r3}.
The initial database state is determined from the given query and represented as
a query graph. A sequence of semijoins performed on the given initial database
state generates a sequence of transformed database states. The goal state is the
state in which all relations are fully reduced. During the optimization, alternative
plans are represented by trajectories from the initial state and the best plan is
constructed step by step.

The generation of states is controlled by an evaluatio~l function f (x) = g(x) +
h(x) on each state x, where g(x) estimates the minimum cost from the initial
state to x: and where h(x) estimates the minimum cost from x to the goal state.
The function h represents the heuristic information that determines the power of
the algorithm. The admissibility condition requires that h(x) < h*(x) for any x,
where hm(x) denotes the optimal cost from x to the goal state, and the consistency
condition requires that h.(xl) 5 gW(xl , x2)+ h(x2), where g*(xl, x2) is the minimum
cost from X I to 22. Heuristic information based on edges in query graphs is derived
through simple observations on semijoins that can be done in the future. We show
that the derived h satisfies both conditions.

With the state transformations and the evaluation function, an optimal semijoin
program is obtained as follows. 1) Expand the given initial state, i.e., generate its
successors each of which represents a transformed state by a semijoin. The number
of successors is equal to the number of all possible semijoins in the initial state. 2)
Calculate f (x) for each successor x . 3) Choose a state with the smallest f value
and expand it. 4) Repeat steps 2 and 3 until the goal state is chosen.

We implemented a prototype in Common Lisp and measured its performance.
The experimental results show that our method prunes the state space drastically
to find an optimal solution very efficiently. On average, less than five percent of
the search space is searched before an optimal solution is found. For star queries,
which are known to have large search spaces, an optimal semijoin sequence can be
found by searching less than only one percent of the search space. Moreover, we
have observed that the improvement increases as the queries get more complex.
By measuring the run-time, the overhead of obtaining the heuristic information
was shown to be negligible as compared with the time savings that it achieves in
the search. Other advantages of the method are: (i) ease of implementation; (ii)
generality of the cost model considered; and (iii) ability to handle tree queries with
arbitrary target lists. For details, readers may refer to [a].

We also study the optimization of tree join queries. Algorithms which yield
an optimal solution for this problem employ either exhaustive search or dynamic

programming. Considering that this approach may not be successful for new future
applications with large search spaces, a probabilistic approach was proposed [2,6].
We have considered a heuristic search approach.

Because there are many methods for performing a 2-way join operation, in
order to make our method application-independent, we do not assume any specific
method for executing a join operation. Instead, we assume that the cost of each
join operation is given. Let A and B be two operand relations. Then the cost of
executing the join of the two is given as cost(A, B), where cost (., .) is a function
that is provided to the search module of the query optimizer. The justification for
this assumption is as follows. In 151, it is argued that once the first k relations are
joined, the method to join the composite to the (k+l)-st relation is independent
of the order of joining the first k. Hence, given two relations, the best method for
joining them can be chosen independently of how these relations were obtained. In
the context of this assumption, we concentrate on finding the best join order and
the best way to choose processing sites in the distributed case in order to achieve
the minimum total cost. ([6,4,3] have a similar approach.)

The cost function cost(., .) is assumed to be monotonic in its arguments. Let
s(A) be the size of relation A. Monotonicity means that s (C) r s(A) and s(D)>
s(B) imply cost(C, D) 2 cost(A, B). We believe that this assumption is reason-
able because bigger relations will naturally cause the same or more cost. With
this assumption, N-way joins are viewed as sequences of 2-way joins. By repeat-
edly applying 2-way joins to database states, a N-way join can be represented as
a sequence of transformed database states. Both nonlinear and linear joins are
considered to find a best join order.

For each state, an estimate cost of future joins is calculated and is shown to be
a lower bound of the optimal cost. The consistency condition is also proved. Then
the repeated expansion of states and the evaluation function lead to an optimal
join order. The search efficiency has been tested through experiments. The queries
used in the experiments have five to twenty joins. The improvement is from 50%
to 75% as compared with dynamic programming. Interestingly, the experiments
show different behaviors for linear and nonlinear joins. A complete presentation
can be found in [7].

We are currently working on the extension of this heuristic search method to
multiple query optimization. While most of the previous work on this problem used
given individual access plans of queries to find a global access plan, we construct
a global access plan directly from each query graph. A pruning mechanism is also
introduced to significantly improve the search by using parallelism.

References

[I] P. E. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determjnation
of minimum cost paths. IEEE Systems Science and Cybernetics, 4(2):100-107, July
1968.

[2] Y. Ioannidis and E. Wong. Query optimization by simulated annealing. In Proc.
1987 ACM-SIGMOD Int. Conf. on Management of Data, pages 9-22, San Francisco,
CA, May 1987.

[3] R. Krishnamurthy, H. Bord, and C. Zaniolo. Optirnization of nonrecursive queries.
In Proc. 12th Int. Conf. on Very Large Data Bases, pages 128-137, Kyoto, August
1986.

[4] S. Lafortune and E. Wong. A state transition model for distributed query processing.
ACM Trans. Database Systems, 11(3):294-322, September 1986.

[5] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price. Access
path selection in relational database management systems. Technical Report RJ
2429, IBM Research Laboratory, San Jose, January 1979.

[6] A. Swami and A. Gupta. Optimizing large join queries. In Pmc. 1988 AChf-SIGMOD
Int. Conf. on Management of Data, pages 8-17, Chicago, June 1988.

[7] H. Yoo. Intelligent Search in Query Optimization. PhD thesis, University of Miclli-
gan, 1989. In preparation.

[8] H. Yoo and S. Lafortune. An intelligent search method for query optimization by
semijoins. To appear in IEEE Trans. Ir'nowledge and Data Engineering, 1989.

Multiple Query Optimization: To Use or Not T o Use?

Sharma Chakravarthy
Xerox Advanced Information Technology

Four Cambridge Center. Cambridge. MA 02142
Email sharmaQxait.xerox.com

Introduction Multiple query optimization (MQO) is the process of simultaneously optimizing two
or more queries related according to some criteria. Two pertinent questions that need to be answered
in this context are: i) How much do we gain by processing n queries simultaneously? and ii) What is
the the cost of optimizing the set as a whole in comparison to the cost of optimizing each query
separately?. There is a definite known upper bound on the gain when a set of n queries are processed
simultaneously. However, if the cost of optimizing and evaluating the set as a whole is less than the
sum of the costs of optimizing each query individually, then it is beneficial t o use M Q O techniques.

The purpose of this paper is t o make a case for multiple query optimization as a useful technique
for processing queries in databases currently being developed for new classes of applications. The
overall objectives o f this paper are: t o create an awareness of this promising area of research and more
importantly, t o spark a vigorous discussion of the relevance and applicability of this area t o cull out
topics for further research. In the remainder of this paper, we will introduce the notion of advanced
databases. present scenarios that can benefit from multiple query optimrzation techniques, state the
M Q O problem concisely, and identify key topics for further investigation.

Advanced DBMSs The importance o f databases in non-traditional applications (e.g.. engineering
design, stock market applications. CASE, and document management) is well understood and needs no
elaboration. Conventional DBMSs do not adequately meet the requirements of non-traditional applica-
tions. In order t o support these applications, the functionality o f conventional DBMSs is being
extended in several ways. A t least three types of DBMSs (termed advanced DBMSs in the rest of
this paper), which overlap in their functionality, can be identified readily:

1. Object-oriented database systems: t o support new object classes, their operations and com-
plex objects in a modular and extensible manner.

2. Expert database systems: t o integrate large rule bases and their processing with relational
database systems and

3. Active database systems. to support situation monitoring, timing constraints. and a host of
related features.

Several research prototypes that are being pursued actively, such as POSTGRES (STON861.
EXODUS [CARE86. CARE871. PROBE [DAYA87]. DIPS [SELL88b]. and HiPAC [DAYA88a.
DAYA88bl can be viewed as advanced database systems as they fall into one or more of the
categories described above. Realization of these DBMSs requires extensions t o conventional query-
processing techniques, as well as reevaluation of the architecture and functionality of existing query
processors.

Current query processors optimize queries one at a time. Significant performance improvements
can be achieved by grouping several queries and optimizing the group as a whole. In fact. the need for
processing groups of queries arises naturally in many non-traditional applications as explained below.

Application Scenarios We identify a variety of application scenarios that require the capabilities
o f advanced DBMSs and in each case indicate opportunities for using M Q O techniques.

1. Situation Monitoring An essential characteristic of an active database is the capability t o moni-
tor situations defined over the state of the database Situations can be expressed using the
data manipulation language (as in POSTGRES and SYBASE), using rules (as in HiPAC). or
using rules with matching patterns (as in DIPS). HiPAC rules are of the form
<event, c o n d i t i o n , a c t i o n > , where c o n d i t i o n may reference data in the event and in
the database. In DIPS. matching patterns of rules are used to describe data that can trigger
the execution of actions.

The set of all conditions forms a potentially large set of predefined queries that have to be
evaluated efficiently In HiPAC [ROSE891 and DIPS, an event may trigger the evaluation o f one
or more conditions. leading to the optimization of a set of conditions rather than their evalua-
tion one at a time

2 . Support for Application-Oriented Objects: Support for complex objects requires a capability
for specifying the objects in the user's mental model and operations on the objects Internally.
a user object may be represented as sets of database views. Evaluation of these views is likely
t o generate overlapping queries requiring MQO techniques.

For example. consider a transaction in which a documentation group downloads specifications
and drawings for a product Suppose that in the stored database. Documents and Drawings
are associated with Parts. and a Product contains many Parts. T o make things more manage-
able. views Prod Specs(Prod# . Spec?. Author) and Prod - Drawings(Prod+. Draw#. Artist)
have been defined.

View Prod-Specs = [Prod-Part (P a r t # . Prod#) j o i ? a r t # Specs (Doc#. Author . P a r t #) 1

The definition of Prod - Drawings is similar. Now the download transaction for product 1234 is:

[Select (Prod-Specs l Prod#= 1234) ; S e l e c t {P rod -~ raw ings l Prod#= 1234) 1

When expanded. the two views represent queries with very substantial overlap

In this example, there is no natural way to combine the two views into one relation Joining
them yields a cartesian product of Specs and Drawings for each Part

3 . Expert and Deductive Databases: View definitions composed of union-compatible expressions
(or equivalently intensionally defined predicates in expert database systems) are likely t o have
substantial overlap Evaluation o f a query on such views (or predicates) can benefit from mul-
tiple query-evaluation techniques by exploiting intra-query commonalities.

As an example, the query S e l e c t {Employed I n a t i o n a l i t y o US) has substantial overlap
when the following definitions are used.

Base relations: Personnel(id, name, nationality)

Faculty (id, rann, compensation)

Staff (id, rank, compensation)

View: Employed = (Faculty j o h i d Personnel) union (Staff j o h i d Personnel)

4. Semantic Query Optimization: Semantic query optimization aims t o use application semantics
(e.g.. integrity constraints) t o optimize queries. Th is approach essentially introduces a level of
abstraction in which several semantically equivalent queries are generated using residues that
are derived from integrity constraints. Specifically, the process o f residue generation [CHAK85.
LEE88al analyzes several integrity constraints, which can be mapped t o the problem o f multi-
ple query processing.

5. Distributed/Multi-Database Query Processing In a distributed (or even a multi-database
environment), queries are decomposed, and query fragments are directed t o particular sites (or
databases) for processing. Distribution o f the database reduces the size o f the data stored at
each node, thereby increasing the locality o f reference for the queries processed at a given
node. Replicated databases provide an additional opportunity - that o f choosing the site at
which a subquery is sent for processing t o increase the probability of overlap wi th other
subqueries. Hence, queries processed at a site may have a lot o f overlap o f the data they
access. M Q O techniques can be used t o exploit inter-query commonalities in a distributed
DBMS. In both distributed and multi-database environments batching o f queries is likely t o be
one o f the query-processing strategies that can certainly benefit from M Q O techniques. Prel-
iminary work in this area has been reported in [SU86, PARK87).

It is evident f rom the above that the need for the use of multiple query processing techniques
arises naturally in various applications for which advanced DBMSs are being developed. I t is likely t o
become an extremely important component o f future query optimizers, hence needs t o be developed
from that perspective.

Problem Statement The idea behind M Q O is t o minimize the cost o f evaluation o f a set o f
queries related according t o some criteria by evaluating them simultaneously Characteristics of
queries that can be exploited for minimizing the total cost o f evaluation include identical subexpres-
sions or even subexpressions that subsume one another, common scan o f relations, using cached
results from earlier computation, etc The multiple-query optimization problem is t o find an execution
plan (termed multi-strategy) for a set o f queries that minimizes the total computational cost, usually
exploiting overlaps among queries in the group

Formally, let Q = {Q1. Q2. Qn) be a set o f queries t o be optimized as a unit Without loss of
generality. assume that n answer sets have t o be computed for Q . Let MQS(Q)
mqs2(Q). mqsm(Q)) be the set o f all multi-query strategies for the set o f queries Q .
o f multiple-query optimization is t o select a multi-strategy mqso(Q) such that

Cost(mqso(Q)) = M I N { Cost(mqs) I mqs belongs t o MQS(Q))

where mqso(Q) is an optimal multi-strategy

Research Topics Solution t o the problem o f multiple query optimization requires further research
in the following areas:

Generation of the strategy space: Even for the optimization o f a single query. it is impractical t o
generate the entire strategy space exhaustively. In the case o f multiple queries. it is even more impor-
tant that the entire strategy space is not generated. Furthermore. generation o f strategies for each
query in the set and then combining them does not seem t o be a viable strategy. Techniques for gen-
erating a small number o f promising multi-strategies need t o be developed. Overlap o f queries need to
be used as a constraint for restricting the strategy space generated. In addition, heuristics for restrict-
ing the strategy space as well as for choosing promising candidate strategies need t o be developed

Organization and representation of the strategy space: The likelihood o f a large number o f multi-

strategies (the number of multi-strategies increase multiplicativeiy with the number o f strategies for
individual queries) strongly suggests that the strategy space be organized intelligently. This has t o
be considered in conjunction with the representation chosen as well as the techniques used for search-
ing the strategy space. Partitioning of the strategy space into two or more spaces each exploring
different sets of strategies seems to be useful [CHAK88). An efFicient way to represent the strategy
space that minimizes redundancy is required. The representation chosen needs to accommodate. i)
overlap of computations within a multi-strategy and ii) overlap among-distinct multi-strategies As
suggested in [ROSE88], an AND/OR graph seems to be a good choice.

Constructs for expressing multi-strategies: Unlike an operator tree whose operator nodes take one
or more inputs and generate a single output, operators in multi-strategies are likely to produce multiple
outputs (e.g.. join of a relation with two distinct relations). Even though this can be expressed using a
conventional operator tree constructs for expressing multi-strategies will not only reduce the size of the
strategy space. but also contribute towards the expansion of an operator node from the logical level t o
the physical level

Cost models and search o n the mul t i -s t rategy space: Existing cost models seem to be adequate
and can be used for computing the cost o f a multi-strategy. However, the search of an AND/OR graph
for a minimum cost strategy (solution graph) is NP-complete. Hence heuristic algorithms need to be
extendedldeveloped for searching the space of multi-strategies efficiently.

Common subexpression identif ication: The underlying premise for multiple query optimization is
that there is substantial overlap among queries This overlap needs to be identified and exploited.
There has been some work [JARK84. SELL88a CHAK86. ROSE88. CHAK881 on the identification of
common sub-expressions but it needs to be extended further.

C

Architecture o f a mul t ip le query optimizer: A multiple query optimizer can be viewed as a generali-
zation of a single query optimizer. In [ROSE88]. we identified the subproblems of a multiple query
optimizer and their organizational structure to produce a modular multiple query optimizer. The ulti-
mate objective is t o design a modular query optimizer in which a variety of techniques can be mixed
and matched efficiently based upon application requirements. Results from current research on extensi-
ble query optimizers (BAT087. FREY87. GRAE87. LOHM87. LEE88bj have been encouraging and
seem to be useful for the design of a multiple query optimizer.

References

(B A T 0 8 7 1 D. Batory. A Molecular Database Systems Technology. Computer Science Department
TR-87-23. University of Texas at Austin.

[CARE861 M. Carey. et al.. The Architecture o f the EXODUS Extensible DBMS. Proc. lnt7
Workshop on Object-Oriented database Systems. CA. Sept. 86

[CARE871 M. Carey and D. DeWitt. An Overview of the EXODUS Project. Database Engineering.
June 1987.

[CHAK85] U. S. Chakravarthy. Semantic Query Optimization in Deductive Databases. Ph.D.
Thesis. Univ. of Maryland. College Park. 1985.

[CHAKS6] U. S. Chakravarthy and J. Minker. Multiple Query Processing in Deductive Databases
using Query Graphs. Proc. of 12-th VLDB Conf. Kyoto. Japan. August 86.

(LOHM871

(PAR K87]

U. S. Chakravarthy.. Multiple Query Optimization: Organization of the Strategy Space
and the Generation of Shared Multi-Strategies, Submitted for publication.

U. Dayal et al.. PROBE Final Report. XAIT Technical Report XAIT-87-02, 1987

Dayal. U.. et al.. HiPAC: A Research Project in Active. Time-Constrained Database
Management. XAIT Interim Report XAIT-88-02. Computer Corporation of America.
1988.

U. Dayal. Active Database management Systems. Proc. of Conf of Data and
Knowledge Bases. Jerusalem. 1988.

U. Dayal. A. Buchmann, and D McCarthy. Rules are Objects Too: A Knowledge Model
for an Active. Object-Oriented Database System,

J. C. Freytag. A Rule-Based View of Query Optimization. Proc. ACM-SIGMOD Confer-
ence on Management of Data. San Francisco, 1987.

G. Graefe and D. DeWitt . The Exodus Optimizer Generator. Proc. ACM-SIGMOD
Conference on Management of Data, San Francisco. 1987.

M. Jarke. Common Subexpression Isolation in Multiple Query Optimization. In Query
Processing in Database Systems. (W. Kim. D. Reiner, and D Batory. Eds.), Springer-
Verlag. 1984.

S. Lee and J. Han. Semantic Query Optimization in Recursive Databases. Proc. of 4th
International Con f on Data Engineering. pp . 444-451, 1988.

M. K. Lee. J. C. Freytag, and G. M Lohman, Implementing an Interpreter for Func-
tional Rules in a Query Optimizer. Proc. of 14th Int'l Conf on Very Large Databases.
Long Beach, pp. 218-229. 1988.

G. Lohman. Grammar-like Functional Rules for Representing Query Optimization Alter-
natives. Proc. of ACM-SIGMOD. 1988, pp. 18-27.

J. T. Park and T . J. Torey. A Knowledge-based Approach to Multiple Query Processing
in Distributed Database Systems, Proc. of ACM-IEEE Fall Joint Computer Conf. Dal-
las. TX. October 1987.

A. Rosenthal and U. S. Chakravarthy. Anatomy o f a Modular Multiple Query Optimizer.
Proc. of 14th lnt'l Conf on Very Large Databases. Long Beach. 1988.

A. Rosenthal, U. S. Chakravarthy. B. Blaustein. and J. Blakeley. Situation Monitoring in
Active Databases. T o appear in the Proc. of 15th Int'l Conf on Very Large Data-
bases. Amsterdam. 1989.

T. K. Sellis. Multiple-Query Optimization. ACM TODS. Vol. 13. No. 1. 1988

T . K. Sellis. C-C. Lin, and L. Raschid. Using Relational DBMSs for Data Intensive Pro-
duction Systems: The DIPS System. Proc. of the AAAI-88 Workshop on Databases in
Large AlSystems. St. Paul. MN. August 1988.

M. Stonebraker and L. Rowe. The Design o f POSTGRES, Proc of ACM-SICMOD.
1986.

S. Y. Su, et al.. A Distributed Query Processing Strategy Using Decomposition. Pipelin-
ing and Intermediate Result Sharing. Proc. IEEE Conf on Data Engineering, Los
Angeles. CA, February 1986.

QUERY OPTIMIZATION IN TEMPORAL DATABASES

Arie Segev and Himawan Gunadhi

School of Business Administration
University of California

and
Computer Science Research Department

Lawrence Berkeley Laboratory
1 Cyclomn Road

Berkeley, CA 94720
e-mail: segev@csam.lbl.gov and gunadhi@csam.lbl.gov

ABSTRACT. The importance of temporal data models is in their ability to capture the complexities of real world
phenomena which are inherently dependent on time. Traditional approaches, such as the relational model of data,
are incapable of handling all the nuances of such phenomena Temporal models open up the possibility for new
types of operations that enhance the retrieval power of a DBMS. One of the potential drawbacks of such models is
the potential for processing inefficiency: the large size of stored data for many applications, and the complexity of
time-oriented queries may yield unsatisfactory performance. Consequently, it is very important to devise efficient
query optimization strategies.

1. RELATIONAL REPRESENTATION OF TEMPORAL DATA

A convenient way to look at temporal data is through the concepts of Time Sequences (TS) and
Time Sequence Collection (TSC) [13]. A TS represents a history of a temporal attribute(s) associated with a partic-
ular instance of an entity or a relationship. The entity or the relationship is identified by a surrogate (or
equivalently, the time -invariant key [9]). For example, the salary history of employee #1 is a TS . A TS is charac-
terized by several properties, such as the time granularity, lifespan, type, and interpolation rule to derive data values
for non-stored time points. In this abstract, we are concerned with two types -- stepwise constant and discrete.
Stepwise constant (SWC) data represents a state variable whose values are determined by events and remain the
same between events; the salary attribute represents SWC data. Discrete data represents an amibute of the event
itself, e.g. number of items sold. Time sequences of the same surrogate and attribute types can be grouped into a
time sequence collection (TSC), e.g. the salary history of all employees forms a TSC.

There are various ways to represent temporal data in the relational model; detailed discussion can be found in
[14]. In our work, we assume first normal form relations (1NF). Table 1 shows two ways of representing SWC
data. The representations can be different at each level (external, conceptual, physical), but we are concerned with
the tuple representation at the physical level. The representation in Table l(b) stores data only for event points and
requires explicit storage of null values to indicate the transition of the state variable into a non-existence state.
Also, the tuples should be ordered by time in order to determine the values between two consecutive event points.
Both representations require the use of the lifespan metadata; it is required for the time-interval representation since
we do not store non-existence nulls explicitly, for example, the Lifespan is needed in order to correctly answer the
query "what was the commission rate of E2 at time 12?". In order to generalize the analysis, we assume SWC data
using the time-interval representation; for discrete data, using time-intervals is superfluous since the start time Ts is
equal to the end time TE for each tuple. We will point to cases where simplified algorithms can be used when we
describe the event-join operation. We use the terms surrogate, temporal attribute, and time attribute when refer-
ring to attributes of a relation. For example, in Table 1, the surrogate of the MANAGER relation is E#, MGR is a

'Ihis work was mppottd by the Applied Mathematical Samce: Reseuch Prognm of the Office of Energy Ruearch.
U.S. Department of Energy under Contraa DE-AC03-76SF00098.

(a) time-interval representation

COMMISSION MANAGER Ts

9
13

1

TE
1 5

12
20
18

1 2 0

E#

El
El
E2 a

E2

E#

El
El
E l
E2
E3

(b) time-point representation

Table 1: Representing Step-Wise Constant Data with Lifespan = [I, 201

MGR

TOM
MARK
JAY
RON
RON

COMMISSION T

1
6
9

13
1

19
1

MANAGER

temporal attribute, and Ts and TE are time attributes. We refer to the data construct as a 'relation', but we mean a
'temporal relation'; it is different Erom a standard relation because of the associated meta-data. We assume that all
relations are in first temporal normal form (ITNF) [14]. lTNF requires that for each combination of surrogate
instance, time point in the lifespan, and temporal attribute (or attributes) there is at most one temporal value (or a
unique combination of temporal values). Note that 1NF does not imply ITNF. for example, the relation COMMIS-
SION in Table l(a) would not be in lTNF if for any surrogate instance there were two tuples with the same com-
mission rate value and intersecting time intervals.

C-RATE

10%
12%
8%

10%

2. EVENT JOINS

There are many temporal operators tha require optimization, but the join types [2,6] require the most atten-
tion. In this section we provide more details about one of these operators -- the Event-Join, introduced in [14]. An
event-join groups several temporal attributes of an entity into a single relation. This operation is extremely impor-
tant because due to normalization, temporal attributes are likely to reside in separate relations. To illustrate this
point, consider an employee relation in a conventional database. If the database is normalized we are likely to find
all the attributes of the employee entity in a single relation. If we now define a subset of the attributes to be tem-
poral (e.g.. salary, job-code, manager, commission-rate. etc.) and they are stored in a single relation. a tuple will be
created whenever an event affects at least one of those attributes. Consequently, grouping temporal atrributes into a
single relation should be done if their event points are synchronized. Regardless of the naaure of temporal attributes,
however, a physical database design may lead to storing the temporal attributes of a given entity in several rela-
tions. The analogy in a conventional database is that the database designer may create 3NF tables, but obviously,
the user is allowed to join them and create an unnorrnalized result.

E#

El
El
E 1
E2
E2
E2

E#

El
El
El
El
E2
E2
E3

Let ri(Ri) be a relation on scheme Ri = [Si, Ai ..., Ah, Ts, TE 1. In many instances we illustrate the con-
cepts using a single temporal attribute, that is. m = 1; all apply to any m > 1. Also, when the two surrogate rypes

Ts
2
8
2
8

MGR

TOM
0
MARK
JAY
RON
0
RON

TE
7

20
7

20

C - RATE

0
10%
12%
0

8%
10%

T

1
2
8
1
2
8

Si of Ri and Si of Ri are the same, we simply use S. Instances of surrogate S are denoted by s 1, s2, - . . . We
use xi to refer to an arbitrary tuple of ri; xi(A) is the value of attribute A in tuple xi. In d e r to describe the
event-join between r and r2, we fmt present two basic operations TE-JOIN and TE-OUTERJOIN. TE-JOIN is
the temporal equivalent of a standard equijoin; two mples xl E r l and x2 E r2 are concatenated t if their join
attribute's values are equal and the intersection of their time intervals is nonempty; the Ts and TE of the result
tuple correspond to the intersection interval. Semantically, this join condition is "where the join values are equal at
the same time". Optimization issues in executing general TE-JOINS are discussed in [a. In the case of event-joins,
we are concerned only with a special case of TE-JOINS where the joining attribute is the surrogate. A TE-
OUTERJOIN is a directional operation from r l to r2 (or vice versa). For a given tuple xl E r outerjoin tuples are
generated for all points t E [xl(Ts), xI(TE)] where there does not exist x2 E r2 such that x2(S) = xl(S) and
t E [x2(TS), x2(TE)]. Note that all consecutive points t that satisfy the above condition generate a single outerjoin
tuple. Using those operations the event-join is done as follows.

r EVENT-JOIN r2:
templ c r l TE-JOIN r2 on S
temp2 t r TE-OUTERJOIN r on S
temp3 c r , TE-OUTERJOIN r on S

The above operations are illustrated in the example of Table 2, where an event-join is performed between the
MANAGER and COMMISSION relations of Table 1.

The most troublesome components of the event-join are the outer-joins. The situation is further complicated
by the time interval predicate associated with the TE-outerjoin, preventing the usage of non-temporal outerjoin pro-
cedures [4,10]. An easy solution that comes to mind is to store all non-existence mples explicitly, e.g., tuples like
(1.0, 6, 8) are added to the MANAGER relation of Table 1. In that case the outerjoin components disappear, and
the problem reduces to a TE-JOIN on S. Unfortunately, there are many situations where such a 'fix' will degrade
overall performance rather than improve it. For example, if the whole Si domain is represented in relation ri,
representing all non-existence data explicitly will in the worst case double the size of the table (this is the case of
alternating state transitions between existence and non-existence). A much worse problem may arise when a relation
contains only a fraction of the S domain values, e.g., if on the average, only 5% of the employees of a large cor-
poration earn commissions, adding to the non-existence data for the 95% other employees to the commission rela-
tion will add to storage cost, querying cost (including event joins), and maintenance of the commission relation and
any of its associated secondary indexes.

Consequently, we divide event-joins into two types -- 'easy' and 'difficult'. Easy cases are those where the
relations contain explicit tuples for all non-existence data and are sorted by (S, Ts). Other cases are regarded
difficult, and we are mostly concerned with them. More details about the optimization of event-joins are given in
[12]. It should be noted that some of the problems in optimizing event-joins are common to TE-JOIN optimization.

3. DISCUSSION ITEMS

The following important issues have to be addressed:
Architecture of Query Processor

The first issue is whether or not to use a conventional query optimizer for the processing of temporal queries.
An implementation such as that of [16] is based on the construction of a temporal database on top of a conventional
one. Minimal modification of the underlying processor is likely to cause inefficiencies in the processing of many
temporal operatas. Since there are operators which are not part of a relational system, An interface has to be
designed such that a temporal query is mapped into one or more relational queries, where the latter retrieve a super-
set of the required data which is then further manipulated by the interface software. The other option is to augment

t It is not a standard wnccrtenati.cn since only one pair d 7'' and TE M part of the result tuples.

MANAGER TE-JOIN COMMISSION ON E#

MANAGER TE-OUTERJOIN COMMISSION ON E#

COMMISSION TE-OUTERJOIN MANAGER ON E#

TE
5

12'
20
7

18

MANAGER EVENT-JOIN COMMISSION

C-RAE

10%
12%
12%
8%

10%

MGR

TOM
MARK
JAY
RON
RON

temp1

Table 2: Event-Join Derivation

Ts
2
9

13
2
8

E#

El
El
El
E2
E2

TE

5
7
8

12
20

7
18
20
20

Ts
0 1 1

2
6
8
9

13
0 1 1

2
8

19
1

C-RATE

10%
10%
12%
12%
12%

8%
10%
10%

0

MGR

TOM
TOM
0
0
MARK
JAY
RON
RON
RON
0
RON

resuit E#

El
El
El
El
El
El
E2
E2
E2
E2
E3

a relational optimizer by temporal modules, while the extreme case is to &sign a temporal database from scratch.
(Are extensible DBMSs which are designed today sufficient to support general temporal capabilities?).

Organization and Indexing of Data

Conventional indexing techniques are not sufficient for efficient temporal data retrieval. If appropriate index-
ing structures are available, it can improve performance substantially. Associated with indexing is the physical
organization of data, i.e. whether it is clustered, sorted on one or more keys, or physically kept in contiguous or
near contiguous block order. Different approaches have been undertaken, for example, reverse chaining of history
tuples [8], multidimensional partitioning for static data [l I], R -trees and versioning [3], multistore storage systems
[I], and nested indexes [5, 73. Research in this area has focused on single relation operations, but there is the
potential for performance gains if multirelational indexing are developed. We have also paid attention to Append-
only database which are attractive in some cases.

Statistical Data

Selectivity measures are fairly established for standard relational databases. There are several major distinc-
tions between temporal and non-temporal relations. First., there is a time dependency among tuples belonging to the
same surrogate. These tuples are orderable according to the Ts or TE time-stamp. Second, the generation of a new
tuple for a surrogate is determined by the first change among the temporal attributes associated with i t knowing the
rate at which each attribute changes will provide information about the distribution of attributes over time. For
example, if we know that historically employees remain with the company for 5 years and 100 new hirings are
made annually, we can determine something about the distribution of tuples across time.

The maintenance and availability of statistical information about the relation is a critical aspect of temporal
query processing. Metadata may include information on the life-span of the relation and characteristics of its time
attributes; and the probability distribution of each temporal attribute. While such data may be costly, they are use-
ful in capturing information that can influence selectivity measurement. Note also that even if no index is main-
tained on an attribute, it may still be desirable to keep detailed statistics about it.

Time Representation

We are concentrating on the case of a single time line representation of data. In [15] the idea of multiple time
lines was introduced. Clearly such a model will make the problems of indexing and query processing much more
difficult.

REFERENCES (for more references on temporal databases, see the special issue of
IEEE Data Engineering; vol. 11, No. 4, Dec. 1988).

[I] Ahn, I., Towards an Implementation of Database Management Systems with Temporal Support, Proceedings of
the International Conference on Data Engineering, Fcbruary 1986, pp. 374-381.

[2] Clifford, J., Croker, A., The Historical Relational Data Model (HRDM) and Algebra Based on Lifespans,
Proceedings of the International Conference on Data Engineering, February 1987, pp. 528-537.

[3] Colovson, C.P., Stonebraker, M., Indexing Techniques for Historical Databases, Proceedings of the International
Conference on Data Engineering, February 1989.

[4] Dayal, U.. Of Nests and Trees: A Unified Approach to Processing Queries That Contain Nested Subqueries,
Aggregates, and Quantifiers, Proceedings of the International Conference on Very Lmge Data Bases, August
1987, p ~ . 197-208.

[5] Gunadhi, H., Segev, A., Physical Design of Temporal Databases, Lawrence Berkeley Lab Technical Report
LBL-24578, December 1988.

[6] Gunadhi, H., Segev, A., A Framework for Query Optimization in Temporal Databases, Lawrence Berkeley Lab
Technical Report LBL-26417, December 1989.

[7l Gunadhi, H., Segev, A., Indexing Structures for Temporal Databases, In preparation.

[8] Lum. V.. Dadam, P., Erbe. R.. Guenauer, J., Pistor. P., Walch, G., Werner. H.. W d l l . J.. Designing DBMS
Support for the Temporal Dimension, Proceedings qf t k ACM SIGMOD Inrer~rwnal Conference on
Management of Data. June 1984, pp. 115-130.

[9] Navathe. S., Ahmed, R., A Temporal Relational Model and a Query Language, UF-CIS Technical Report TR-
85-16, Univ of Florida, April 1986.

[lo] Rosenthal. A., Reiner, D., Extending the Algebraic Framework of Query Processing to Handle Outerjoins
Proceedings of fhe International Conference on Very Lorge Data Bases. August 1984, pp. 334-343.

[ll] Rotem, D., Segev, A.. Physical Organization of Temporal Data, Proceedings of the International Conference
on Data Engineering, February 1987, pp. 547-553.

[12] Segev. A., Gunadhi, H., Event-Join Optimization in Temporal Relational Databases, Proceedings of the Inrer-
national Conference on Very Large Data Bases, August 1989, forthcoming. Also Lawrence Berkeley Lab
Technical Report LBL-26600, January 1989.

[13] Segev, A., Shoshani, A., Logical Modeling of Temporal Databases. Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, M a y 1987. pp. 454-466.

[I41 Segev, A., and Shoshani, A.. The Representation of a Temporal Data Model in the Relational Environment,
Lecture Notes in Computer Science. Vol 339, M. Rafanelli. J.C. Klensin, and P. Svensson (eds.). Springer-
Verlag, 1988, pp. 39-61.

[15] Snodgrass. R., Ahn, I., A Taxonomy of T i e in Databases, Proceedings of ACM SICMOD International
Conference on Management of Data , M a y 1985, pp. 236-246.

[16] Snodgrass, R., Ahn, I., Performance Analysis of Temporal Queries, TempIS Document No.17, Department of
Computer Science, University of North Carolina, Chapel Hill, August 1987.

Optimization of Alerters/Triggers/Rules in Active DBMSs:

Sharma Chakravarthyl
Xerox Advanced Information Technology

Four Cambridge Center. Cambridge. MA 02142
Email: sharma@xait .xerox.com

Introduction In this paper we articulate the problem o f efficient rule management and i ts evalua-
tion t o meet the requirements o f an active database management system. We first analyze the
characteristics o f this problem and contrast them wi th that o f processing queries in a conventional.
passive D B M S Based on this analysis, we identify techniques that are especially useful for managing
and evaluating rules efficiently. Finally, we present the architecture of a rule processor along wi th i ts
functional components and i ts interaction wi th other components o f an active D B M S

An active database management system is characterized by i ts ability t o monitor and react t o
several types o f events - both database and non-database - in a timely and efficient manner There
have been several attempts [STON85. STON87. DARN87. DITT861 at integrating this capability wi th
conventional. passive DBMSs In fact, this capability has been shown t o be pivotal for supporting a
variety o f database functions (e g integrity constraint enforcement, materialization and maintenance o f
derived data, access/authorization control) in an elegant manner

Providing active capability requires several conceptual as well as architectural extensions t o a
conventional D B M S One such extension - perhaps a primary one- is the component that is
responsible for the efficient management and evaluation o f triggers and alerters (RuMES for Rule
Management and Evaluation Subsystem) This article draws upon the work done on situation moni-
toring [ROSE891 in HiPAC a research project on active, time-constrained database management
system being investigated at X A I T (DAYA88a. DAYA88bl. In the rest o f the discussion, rules denote
HiPAC rules consisting o f event. condition, action, and associated context information. These rules
have been shown t o subsume the functionality o f triggers and alerters [DAYA88c].

Characteristics of rules in active DBMSs Rules that are specified t o an active database. are
temporally persistent. In other words, compared t o queries rules have a longer life-span and as a result
are likely t o be evaluated many times. The set o f all rules form a potentially large set o f predefined
queries that have t o be evaluated efficiently. Rules (or i ts components) may have priorities as well as
t iming requirements associated wi th their execution.

The semantics o f rule execution (i.e.. the execution o f i ts components) is also different from that
o f query evaluation. Evaluating a rule either as part o f the triggering transaction (immediate evalua-
tion) or prior t o the commit o f the transaction (deferred evaluation) are restrictive in at least t w o
ways: i) they do not capture the semantics o f many applications and ii) enforcement o f serializability

tThis work was supported by the Defense Advanced Research Projects Agency and by Rome Air Development Center
under contract No. F30602-87-C-0029. The views and conclusions contained in this papet are those of the authors and
do not necessarily represent the official policies of the Defense Advanced Research Projects Agency. the Rome Air
Development Center. or the U.S. Government.

$This paper draws upon the research done as part of the situation monitoring task of the HiPAC project. Besides the
author. Barbara Blaustein and Arnie Rosenthal were co-responsible for the situation monitoring task. Other members of
the HiPAC project team are: Alex Buchmann. Un~eshwar Dayal (currently with DEC). Meichun Hsu. Rivka Ladir~ Dennis
McCarthy of XAIT. and Michael Carey. Miron Livny. and Rajeev Jauhari of the University of Wisconsin. Madisori

severely limits the concurrent evaluation o f rules. For example. in an inventory control application.
there is no apparent reason t o execute the reorder action within the transaction that reduced the quan-
tity on hand below the threshold level. Allowing actions (and even conditions) to occur in separate
transactions permits the triggering transactions to finish more quickly and thereby release the system
resources earlier and improve transaction response times. Execution of rules relative to transaction
boundaries has an impact on the grouping as well as optimization of rules and their components.

The collection of rules needs to be managed efficiently by the system' Operations that need to be
supported for rule management include add (or create),. delete. enable. and disable. I t is not the case
that all the rules will be enabled at the same time. Rule sets need to be enabled and disabled as
required (dynamically specified as an action of some rule). Rules may also have to be enabled and dis-
abled selectively requiring modifications t o optimized versions. Also, there may be rules that are gen-
erated by the system itself (e.g.. for materializing an intermediate relation) which also need to be
enabledldisabled in a consistent manner with the rules it supports.

Optimization issues The techniques that are useful for the optimization of rules can be inferred
from the characteristics discussed above. Even though. temporal persistence of rules clearly indi-
cates the benefit of grouping rules and the need for multiple query optimization techniques several
additional factors need to be taken into account t o assure correctness o f execution i) coupling of rules
(or its components) with the triggering transaction. ii) priority specification. if any of rules and iii)
timing constraints. if any. on the evaluation of rules. In addition, repeated nature of evaluation of rules
indicate the need for materialization of intermediate results as well as incremental evaluation of rules
where possible. Incremental evaluation strategy is based on the properties of the operators in the con-
dition and the data resulting from events This strategy will reduce the computation and in some cases
may even eliminate the computation itself Timing constraints may necessitate exhaustive optimiza-
tion and the use of main memory processing techniques. Furthermore. the need for the management
of rules influence the way in which the optimized versions of the rules are maintained. The representa-
tion of optimized versions of rules need to be amenable to incremental modifications rather than
requiring recompilation/reoptimization Finally. the properties of the components of rules along with
how the rules are to be executed relative to the transaction that triggered them can be exploited for
performing optimization For example. if the condition and action are queries (i.e.. no side-effects)
and the rules are to be executed as part of the triggering transaction, then multiple query optimization
may be relevant.

Architectural issues The architecture of RuMES has to take into account its interaction with
other components of an active DBMS From the point of view of extensibility the interfaces need to
be well defined. Evaluation o f rules is governed by the occurrence of one or more events specified as
part of the rule and their detection As a result. RuMES needs to interface with a variety of event
detectors (database event detector -- one which detects events corresponding to database opera-
tions, clock event detector for detecting clock events, application event detector etc.) and receive
event occurrences and associated parameters. In addition. RuMES has t o interact with the transaction
manager for creating subtransactions in accordance with the coupling specification o f rule execution
and the object manager indicating what primitive events to be monitored and for executing functions
on objects. Finally. RuMES has t o interface with the knowledge model/User interface for transforming
certain specifications into ones understandable by the system.

Figure 1. illustrates the intercation of RuMES with the other components of a DBMS. The com-
ponents of RuMES are shown in Figure 2. Briefly, it consists of: a signal manager, a rule manager. and
a rule processor composed of an optimizer and a rule evaluator. The task o f the signal manager is t o
receive signals (event - id + descriptive data associated with the event) as they asynchronously arrive
from event detectors and signal managers, combine them, and further group them for submission to
the rule manager. The signal manager is primarily responsible for detecting events that are recognized

APPLICATION

Object Manager

Database
event detector

Application

Clock event
detector

RuMES

Figure 1. Interaction of RuMES with other DBMS Components

beginlcommitl
aDor; (suD) b
transaction

Signal
4 event

Transaction

Manager

Figure 2. Functional Components of RuMES
167

Signalslconditions satisfied

Rule Processor

Rule
evaluator Rule

opt ip izer

4
Exe :ute enabl~,/disable

rules

Rule Manager

Signals

Signal Manager .
Signals

by the DBMS and generating associated descriptive data The rule manager then examines relations
to determine which rules need to be evaluated

The rule manager is responsible for the management of rules in general This includes initial pro-
cessing of rules. grouping them for optimization. maintaining the correspondence between rules and
their computation graphs. and supporting rule manipulation (add. deletion. enable, and disable)

The rule processor is the analog of a query processor whose task is t o apply optimizing
transforms to computation graphs. The algorithms used for the efficient evaluation and incremental
manipulation of computation graphs are also part of the rule processor.

References

(DARN871 M . Darnovsky. J. Bowman. "TRANSACT-SQL USER'S GUIDE." Document 3231-2.1.
Sybase Inc., 1987.

(DAYA88aJ Dayal. U.. et al.. HiPAC :A Research Project in Active. Time-Constrained Database
Management. X A l T Interim Report XAIT-88-02. Computer Corporation of America.
1988.

(DAYA88bl U. Dayal. Active Database management Systems. Proc of Conf of Data and
Knowledge Bases. Jerusalem. 1988.

[DAYA88c] U. Dayal. A . Buchmann. D McCarthy. "Rules are Objects Too: A Knowledge Model
for an Active. Object-Oriented Database Management System." In Proceedings 2nd
International Workshop on Object- Oriented Database Systems. Bad Muenster am
Stein. Ebernburg. West Germany. September 1988

(DITT861 K. R . Dittrich A. M. Kotz. J A. Mulle. "An Event/Trigger Mechanism to Enforce
Complex Consistency Constraints in Design Databases." SIGMOD Record 15, No. 3.
1986. pp 22-36

[ROSE881 A. Rosenthal and U. S Chakravarthy. Anatomy of a Modular Multiple Query Optimizer.
Proc. of 14th Int '1 Conf on Very Large Databases. Long Beach. 1988.

[ROSE891 A. Rosenthal. U S. Chakravarthy. et al.. Situation Monitoring in Active Databases. T o
appear in the Proc. of the 15th International Conference on Very Large Databases.
Amsterdam. The Netherlands. Aug 89.

(STON85) M. Stonebraker. "Triggers and Inference In Database Systems." in On Knov~ledge Base
Management Systems (Brodie and Mylopoulos.eds.) Springer-Verlag (1986).

(STON871 M. Stonebraker. M. Hanson. S. Potamianos. "A Rule manager for Relational database
Systems." Technical Report. Dept. of Electrical Engineering and Computer Science.
Univ. o f California. Berkeley. 1987.

QUERY PROCESSING FOR
DATABASES WITH PROCEDURAL VALUES

Yao-Nan Lien and Shu-Shang Wei

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210-1277
(614) 292-5236,(lien, wei-s)@tut.cis.ohio-state.edu

ABSTRACT

This project is investigating the performance problem of databases with procedural values and
proposing a new approach to process queries for such databases. To process a query in such databases

may induce many secondary queries if the query includes procedure attributes in its predicate as vari-

ables. To minimize VO overhead in processing such a query, we follow the same direction as Sellis'

to process more than one induced query at the same time, but with a different approach, the predicate-
cascading (PC). The PC approach will reduce the VO overhead by having each data unit brought into

the internal memory to be evaluated against all applicable secondary queries simultaneously. To apply
this approach, it is neither necessary to have any implication relationship among queries nor to invoke a

complicated searching process to determine the best query plan. With appropriate concurrency control,

this approach can be applied to the general multiple query optimization problem as well. A bench-

marking experiment is being conducted in the Ohio State University to evaluate the proposed approach
when it is applied to multiple query optimization.

1. INTRODUCTION

Traditional relational database systems are primarily designed for business applications. The use
of a table-like data model and non-procedural query languages greatly simplifies the management of

databases. After being recognized as a dominating model, the relational data model is being introduced
to other application areas, such as knowledge base and engineering design automation. Many new

extensions are being proposed to extend the descriptive power of relational model. Among all newly

proposed extensions, the procedural-value relational database (procedural-value database), which

accepts procedures as primitive values, is an amactive approach.* An example consisting of four rela-
tions in INGRES+ is as follows:

EMP (name, age, salary, hobbies)
SOFTBALL (emp-name, hour-spent, position, average)
SAILING (emp-name, hour-spent, rating, boat-type, marina)
JOGGING (emp-name, hour-spent, distance, best-time, number-of-races).

The attribute "hobbies" in relation EMP is a procedure attribute possibly with the following form:

retrieve (REL.al1) where REL.emp-name = "value-for-thisemployee",

where REL is one of the hobby relations.

To process a query in such a database may induce many secondary queries if the query needs to

retrieve or to evaluate any procedure attribute (EMP.hobbies in the above example). The processing

overhead will be significantly higher than that in a traditional relational database, especially when the
database is disk based, where the system performance is very sensitive to the VO overhead. After a

careful evaluation of the evolution of the computer technology, we find that the speed mismatch

between the processor and the VO is likely to be enlarged, not reduced. Therefore, the procedural-value

darabase may not be able to offer a satisfactory performance even for simple queries unless the VO
overhead can be reduced.6

2 MULTIPLE QUERY OPTIMIZATION

It is appropriate to apply the so called multiple query optimization technique to this database?
'Tbe basis of this approach is to treat the induced secondary queries as a set of independent queries and
to optimize the whole set of queries together using the multiple query optimization technique.3* 2, 5, 1. 4.6

In multiple query optimization, the common suberpresswn reduction is the most popular

approach. It identifies the implication relationship among queries (i.e. the result of one query covers

the result of the other) and pipelines the result of one query to another. Then a combinatorial search
procedure is invoked to determine the best execution plan to maximize the overhead reduction.

To apply the common subexpression reduction to procedural-value databases may not be very

effective. First, the number of tuples returned by a secondary procedures in a procedural-value database

is normally very small so that it may not exist a large overlap among secondary queries. Secondly, a
large number of secondary queries may be induced by a given query so that the best execution plan

can not be determined in a reasonable amount of time. Therefore. there is a need to develop a better
approach that does not rely on the implication relationship and does not need a combinatorjal search.

3. PREDICATE CASCADING APPROACH

Judging from the fact that I/O is the major bottleneck of large database systems, we propose a
new approach, the predicate-cascading (PC). to reduce the VO overhead without encountering the

problems mentioned above. This approach evaluates each data unit brought into the internal memory
against all applicable secondaq queries together. At the extreme case, the sarne data object needs to be

read only once for all procedures that reference the sarne relation. To apply this approach, it is not
necessary to have any implication relationship among queries nor to invoke a complicated searching

process to determine the best query plan. With an appropriate concurrency control, this approach can
be applied to the general multiple query optimization problem as well.

The PC approach uses a three phase query processing strategy to process an incoming transaction.

In the first phase, the syntactic reductwn phase, all procedures contained in a procedure amibute are

analyzed and partitioned into disjoined procedure groups according to the relations they reference. In

the second phase, the secondnry qualifrcafion phase, all secondary procedures are processed group by
group; relations referenced by each procedure group are read; and then all procedures in the group are

processed using predicatecascading operations. In the third phase, the ordinmy qualification phase, the

ordinary predicate is evaluated. The second phase is actually converting the secondary pmxdllres in

procedure attributes into atomic values so that the system can process it as a traditional relational data-
base in the third phase. For each page read from the secondary storage into the internal memory. the

query processor retrieves the tuples in this page that are qualified for the first procedure in the group

and then remeves the tuples that are qualified for the next procedure immediately before next page is

md. This research effort is to reduce the overhead in the secondary qualification phase.

In the rest of this section, we briefly describe the optimization of simple selections and simple

tweway joins, where secondary procedures do not include procedure attributes. They are referred t as
PC-selection and PC-join, respectively. A multiway pin is decomposed into a sequence of two-way

joins and processed by PC-joins.

PC-selection is used to process a group of secondary selections that reference the same relation

regardless of what the predicates are even if the variables are in different attributes. The secondary
procedures in this case have the following simplest format

retrieve (secR.*)
where secR.secF op constant

Where "secR" is the secondary relation referenced by the procedure in the group; "op" is the
comparison operator; and "secF is the attribute to be compared with "constant". All procedures that

are grouped into the same procedure group need to reference the same secR. There is no restriction

imposed on "secF, "op", or "constant". Although an actual predicate may consist of more than one

term, it will not make the problem more difficult.

During the syntactic reduction phase, a predicate table is generated for each procedure group.

The table is usually small enough to reside in the internal memory when the procedure group is being

processed. A buffer, called selection-collater (collater, in short), is associated with each procedure to

collect the results. Whenever a page is read into the intemal memory, all tuples in the page are

evaluated against all procedures in the group before next page is read. The results are sent to the

corresponding collater. If a collater is too small to store all possible results, a larger buffer in the

external storage will be created to expand the in-memory collater. Since the external buffer may

significantly increase the 110 overhead, it is necessary to develop some way to minimize the need of

external collater. The followings are some examples to do so:

1. Pipeline the result generated by a procedure to the ordinary qualification immediately before the

data is evaluated against the next procedure.

2. Create an index table to store the pointers of each tuple and a set of boolean vectors, one for each

secondary procedure. Each bit in a vector corresponds to the qualification of a tuple in the tar-
geted relation when it is evaluated against the corresponding procedure. Whenever a tuple is
qualified for a procedure, the corresponding bit is set in the vector. The index table together with

these boolean vectors can be used in the ordinary qualification phase to retrieve the tuples from
secondary relations.

If a secondary procedure references more than one relation, a join operation will have to be

invoked to instantiate the "procedural-value" for the ordinary predicate. It is well known that a join

operation may induce a much higher overhead than a selection. We follow the same approach that the

PC-selection takes to process all two-way joins that reference the same pair of relations together. In the
syntactic reduction phase, all procedures that need to join the same pair of relations are grouped into
the same procedure group. The secondary procedures in this case have the following format

retrieve (secRl.*, secR2.*)
where secRl.secF jop secR2.secF
and secRl .secFl op 1 constant1
and secR2.secF2 op 2 constant2

The first term in the predicate is a join operation that joins relations secRl and secR2 over the joining
attribute secF on the join operator jop. The predicate "secRl.secF jop secR2.secFN is referred to as the
join predicate. The second term and the third term are selections applied on secRl and secR2,

respectively.

Unlike conventional query processors where the two selections may be executed before the join in

order to reduce the joining overhead. the selections in PC-join will not be ex~uted before the join.
Since only those procedures that use the same join predicate can share the same join resul~ the pro-

cedures in the same procedure group are further partitioned into smaller groups according to their join
predicates. Two procedures are in the same subgroup only if their joining atnibutes and joining opera-
tors are identical. The results of a particular join can then be used by all procedures in the same sub-
group for further processings. (Note that the partitioning can be done in the syntactic reduction phase.)
The PC-join itself is divided into two phases. All pins are processed in the first phase and al l selec-

tions are then applied to the outputs of p i n operations in the second phase. In the first phase, a join

processor and a join-collater are set up for each individual join. Without loss of generality, the nested-
loop join is used and one tuple from secRl and one tuple from secR2 are joined in each step. As shown

in Figure 2, whenever a pair of tuples from both relations is fetched, it is sent to all join processors.
The output of a join processor is saved in the associated join-collater. In the second phase, all selec-

tions of each subgroup are applied using PC-selection to the tuples in the corresponding join-collater to
get the final results for all secondary procedures. Similar to the PC-selection, a data compression and a

memory management scheme are needed to reduce the storage requirement of PC-join.

4. SUMMARY

Following are some of the problems that remain tn be solved at this stage.

1. The data compression and memory management for various colhters.

2. The decomposition of multiway join and ways to reduce the overhead when the same data

object is needed in different joining steps.

3. Index management and the query optimization when indices are available.

4. Recursive procedural value evaluation, i.e. a secondary procedure also needs to evaluate pro-

cedural values.

5. The extension of PC-approach to other extensible databases.

Because there is a sigmiicant increase in the ratio of processor overhead and I/O overhead (it is

possibIe that the processor overhead overruns VO overhead in PC approach), a system with a larger pro-

cessor capacity may be needed to balance the VO load and processor load. With its cost-effectness, the

multiprocessor system would be a good candidate to support the PC approach. It is not difficult to see

that there exists a high degree of parallelism in this approach so that an efficient parallel execution of

this approach can be easily developed. However, further research has to be done before any conclusion

can be drawn.

Of course, the final conclusion of the PC approach cannot be made without an appropriate perfor-

mance evaluation. A benchmarking experiment is being conducted at the Ohio State University to

evaluate the PC approach when it is applied u, the multiple query optimization and the results will be

reported in a forthcoming paper.

References

1. Chakravarthy, U. S. and J. Minker, "Processing multiple queries in database systems," Database
Eng., vol. 5, No. 3, pp. 38-44, Sep 1982.

2. Grant, J. and J. Minker, "Optimization in deductive and conventional relational database sys-
tems," Advances in Data Bare Theory, vol. 1, pp. 195-234, Plenum Press, New York, 1981.

3. Hall, P. V., "Common subexpression identification in general algebraic systems," Tech. Rep.

UKSC 0060, IBM United Kingdom Scientific Centre, Nov. 1974, Nov. 1974.

4. Kim, W., "Global optimization of relational queries: a first step," Qwry Processing in Database

Systems, pp. 206-216, Springer-Verlag, New York, 1984.

5. Roussopoulos, N., "View indexing in re-nal databases," ACM Tram. Database Syst., vol. 7,
NO. 2, pp. 258-290, J ~ n e 1982.

6. Sellis, Tiios K. and Leonard Shapiro, "Optimization of Extended Database Query Languages,"
Proc. ACM-SIGMOD, pp. 424436, May 1985.

7. Sellis, Tirnos K., "Multiple-Query Optimization." ACM Trans, on Database Systems, vol. 13. No.
1. pp. 23-52. March 1988.

8. Stonebraker, Michael. Jeff Anton, and Eric Hanson, "Extending a Database System with Pro-
cedures." ACM Trans. on Database System, vol. 12, No. 3, pp. 350-376, Sep. 1987.

COLLATORS

O r d i n a r y
R e d u c t i o n

Figure

operato?
..a-a Join Collators I - - . /Different join

or join a t t r i b ~ ~ ~ ~ ~ ~ (" i v Rj)I -WRj selection krRi * Rj

'igure

Optimization of Nested Tree Queries'

m1cr.a1i@cookie.dec.com
Digital Equipment Corporation
Colorado Springs, CO 80920

Keywords: unnesting, optimization, SQL, the COUNT bug, outer join, anti-join, correlation predicate.

1. Abstract

The SQL language allows users to express queries that have nested subqueries in them. Optimi-
zation of nested queries has received considerable attention over the last few years. Most of the previ-
ous optimization work has assumed that at most one block is nested within any given block. The solu-
tions presented in the literature for the general case (where an arbitrary number of blocks are nested
within a block) have either been incorrect or have dealt with a restricted subset of queries. In this
paper we discuss optinlimtion strategies for queries that have an arbitrary number of blocks nested
within any given block.

2. Introduction

Traditionally, database systems have executed nested SQL [Astrahan75] queries using Tuple itera-
tion Semantics (TIS). It was analytically shown in [Kim821 that executing queries by TIS can be very
inefficient. It was first pointed out in [I(lm82] that nested queries can be evaluated very efficiently
using relational algebra operators or set-oriented operations. The process of obtaining set-oriented
operations to evaluate nested queries is known as u~es t ing .

It was later pointed out in [KiesslingM] and rGanski871 that the unnesting techniques presented in
[Kim821 do not always yield the correct results for nested queries that have non equi-join correlation
predicates or for queries that have the COUNT function between nested blocks. Unnening solutions for
these types of queries were provided in [Ganski87]. These solutions were funher refined and extetlded
in [Dayal87].

In this paper, we will focus our attention on unnesting Join-Aggregate (JA) [Kim821 type queries.
These queries have correlation join predicates and an aggregate function (AVG, SUM, MIN, MAX, or
COUNT) between the nested blocks. The reason for focusing on JA type queries is that many other
nesting predicates (such as EXISTS, NOT EXISTS, ALL, ANY) can be reduced to JA type queries
[Ganski87, Daya1871. An example of a JA type query is:

SELECT Rl.a
FROM R1
WHERE R1.b =

(SELECT COUNT (R2.b)
FROM R2
WHERE R1.c > R2.c
1

The predicate (R,.c > R,.c) is the correlation join predicate.

We introduce a couple of definitions here:

Definition 1: A (Nested) Linear Query is a JA type query in which at most one block is nested
within any block.

'This is the abridged version of the paprr that has been accepted for publication at the VLDB conferem in August. 19R9.
The unabridged version also discusses a new dataflow algorithm for the execution of neatcd tree queriea in a multi-processor en-
vironment. The new dataflow algorithm cuts down on masage and CPU costs over conventional dataflow algorithms.

Definition 2: A (Nested) Tree Query is a JA type query in which there is at least one block
which has two or more blocks nested within i t at the same level.

It is worth pointing out that the unnesting solution presented in rGanski871 for a linear query with
more than two blocks is incorrect (see Section 4). [Daya187] does not discuss uee queries.

The rest of the paper is organized as follows: In Seaion 3, we introduix the notation that we will
use for JA type queries. In Section 4 we will briefly summarize the results presented in [Dayal87] that
enable us to unnest nested Linear queries. We wdl present our solution for tree queries in Section 5.

3. Notation

A JA type query may be represented as a me. Each node in the tree corresponds to a SQL query
block. Query blocks that are nested within a parent block are represented as child nodes of the node
conespondinp to the parent block. For ease of explanation, we shall assume that each block has one
relation in its FROM clause. By definition. a node is also its own ancestor. A predicate clause in a
given block may reference a relation associated with any ancestor block. Predicate clauses may either
be selection or join predicates.

The relation associated with block (or node) i is represented by Ri (i) 0). Lower case letters (a,
b. etc.) represent attribute names. A '*' is used to denote all the attributes of a relation. Ri.# is some
unique key of Ri. ri, ri', rit' are each used to denote a tuple of relation R,. OP, (n > 0) is any one of
the following operaton (=, t, <, 1. >, 1). Fi(Rj) represents a selection predicate in tbe ith block on Rj.
To simplify the notation, we will assume that ail join predicates are binary2. A join predicate in the ith
block is then represented as Fi(Rj, Rk), where j, k > 0 and j # k. If a predicate in the ith block does not
reference Ri, then it is called an outer predicate. In this paper we will assume that there are no outer
predicates in our queries. Outer predicates can be handled as shown in [Daya187].

4. From TIS to Set-Oriented Semantics

In this section. we briefly summarize the general solution presented in [Dayal871 and show how it
c,m be applied to unnest linear queries. For reasons of space constraints. we do not discuss the more
specific solutions that are based on the strategies presented in [KimgZ]. Besides, the solutions in
[Kim821 llre not general and hence can be applied only in special cases (as pointed out in Section 2).
However, as pointed out in Payal871, the unnesting solutions (when applicable) presented in [Kim821
may yield a more efficient execution strategy than the general solution.

Consider the following Linear JA type Query.

Example 1: A Two Block Linear Query

SELEm R,.a
FROM RI
WHERE FI(RI)
AND Rl.b OP1

(SELECI' COUNT (Rz.*)
FROM R2
WHERE Fz(Rz) AND Fz(R2, R,)
1
An unnesting algorithm would outer join3 Rl and R2 using predicate F2(Rz, R,) (after performing

tbe respective selections first). The algorithm would then group the result by R,.# (some unique key of
R , ~) and compute COUNT(R2.*) for each group and select only those groups associated with each tuple
of R1 that satisfy (R,.b OP, COUNT(R2.*)). Note that an outer join (OJ) is performed to avoid the
COUNT bug [Ganski87].

In-ary join p d k a w un k easily i n c - d into tk soluti- presenrd in this p a p .

*n we talk about outer joins, we implicitly mean leh outer joim.

'A unique key is required in ordcr to avoid the probkm with duplicates in Rl [Gurski87].

A linear query with multiple blocks will give rise to a 'linear J/OJ expression' where each
instance of m operator is either a join or an outer join. A general linear JIOJ expression woulcl look
Like :

Rl J/OJ R2 J/OJ R3 J/OJ ... J/OJ R,

Relation Rl is associated with the outermost block, relation R2 with the next inner block md so
on. An outer join is required if there is a COUNT between the respective blocks. In all other cases
(AVG, MAX, MJN, SUM), we need perform only a join. The joins and outer joins are evaluated using
the appropriate predicates. Since joins and outer joins do not commute with each othe?, a legal order
may be obtained by computing all the joins first and then computing the outer joins in a left to right
order (top to bottom if you like) [Daya187]. Thus, the expression R, OJ R2 J R3 J R4 OJ R5 J Rn can
be legally evaluated as ((R1 OJ (R2 J R3 J R4)) OJ (R5 J R6)). Since we can evaluate joins in any order,
we cao choose the cheapest join order to join R2. R3, and R4.

It is worth pointing out here that the solution presented in Section 9 of [Ganski87] for multiple
level queries was incomplete in the sense that it does not discuss legal orderings when joins and outer
joins are present in the same expression.

After dl the joins and outer joins have been evaluated, the aggregate functions are eval~~ated in a
bonom-up order after grouping the result by the appropriate unique keys. We will illustrate these ideas
using the query of Example 2.

Example 2: A Three Block Linear Query

SELECT Rl.a
FROM R1
WHERE FI(RI)
AND Rl.b OPl

(SELECT COUNT (R2.*)
FROM R2
WHERE Fz(R2) AND Fz(R2, R1)
AND R2.c OP2

(SELECT (COUNT(R3. *)
FROM R3
WHERE F3(R3) AND FdR3, R2) AND S(R3, RI)
)

)
The corresponding linear expression is R, OJ R2 OJ R3 and hence a legal order is (R, OJ R,) OJ

R3. The predicate for RI OJ R2 is F2(R2, R1) and the predicate for the outer join with R3 is F3(R3, R2)
AND F3(R3r RI).

We now show how the query of Example 2 can be evaluated using set-oriented operations. The
result is obtained by executing more than one query. The result from one query may be pipelined to
h e next query. The two queries in this case lue (not in strict SQL syntax!):

Query A:

SELECT INTO TEMP
RI.X. R1.a. Rl.b, R2*
FROM R1. R2. R3
WHERE (RI OJ R2) OJ R3
GROUP BY RI.#. R2.#
HAVING R2.c OP2 COUNT(R3.*)

' ~ a ~ a l proposed the notion of generalized joim (G-Joins) to make joins and outer joins commutabk but the equation given
in the paper was incomct. Without repeating the notation u d in defining G-Join a d the formal definition of G-Join, we simply
state that the following equation was given in [DayalR7]: G-loin (R G-Join(S, T: 0: J2): R.*: JI) = G-Join(G-Join(R S: R.*: JI).
T: R.*: J2). However, it can be shown that this equation does not hold for the query in Figure 4.1 on page 202 in Dayal's paper.

Query B:

S E L E n R1.a
FROM TEMP
GROUP BY RI.#
HAVING Rl.b OPI COW(R2.*)

The results from Query A are fed into Query B. Even though the selection predicates (Fi(Ri), i =
1, 2, 3) have not been shown in Query A, they are applied to the respective relations before they paxti-
cipate in the outer joins. The outer join predicates are also implicit in Query A.

4.1. A Few Subtleties

Query A ha$ a few subtleties that were not mentioned in PayalR71 and deserve to be highlighted.
These subtleties will lead us to the development of the new dataflow algorithm (discussed in the VLDB
paper). The outer join between Rl and R2 results in two sen of tuples, viz., (R1- X NULL)^ and RIRt.
RIRl denotes the set { (r,, rz): F2(R3 AND F2(R2, RI) AND FI(RI)), where the rl tuple E R, and the rz
tuple E R?. Let R1+ denote the set of tuples of R1 present in RIRl (tuples of Rl that participated in the
join with Rz). RI- denotes the set RI - (Rl+) (the tuples of Rl in the anti-join).

Similarly, let R,R2R3 denote the set {(rl, rt, r3): F3(R3) AND F3(R3. RZ) AND F3(R3, R,) AM)
F2(RI) AND F2(Rt, RI) AND FI(RI)). Let the set of (r,, rt) tuples in R1R2 that joined with at les t one
tuple of R3 be denoted by RIR2+. The set of (r,, r2) tuples that did not join with any tuple of Rj is
denoted by RIR2- and is equal to RIR? - (RIR2+). Thus, the outer join with R3 may yield up to three
distinct sets of tuples, viz., (R1- X NULL X NULL), (RIR2- X NLILL), and RIR2R3 respectively.

The (GROUP BY ... HAVING) operation in Query A has special semantics associated with it.
For a given group of (rl.#, r2.#), if (rZ.c OP2 COUNT(R3.*)) is true, the (rl.#, r2.#) group is passed dong
to Query B. However, if (rZ.c OPz COUNT(R3.*)) is false, the (rl.#, r2.#) group cannot be discarded. If
the (rl.#, rl.#) is discarded and if this is the only p u p in which rl was present, COUNT(R2.*) associ-
ated with the r, tuple is 0 and hence should be preserved. If (r,.b OPl 0) is true, r, will be part of the
result. The (rl, r2) tuple that does not satisfy (r2.c Opt COW(R3.*)) should be passed along to Query
B as (r,, NULL). Similarly, for tuples in the set (RI- X NULL X W), the GROUP BY ... HAVING
operation passes them as (Rl- X NULL) to Query B because the predicate (r2.c OPz COUNT(R3.*)) is
false as (NULL OP 0) is false.

5. Tree Expressions or Non Linear Expressions

So far we have restricted our discussion to linear queries only. If we permit more than one block
to be nested within a given block at the same level (nested tree queries), we can get JIOJ expressions
that are arbitmy trees. In this section, we will extend Dayal's solution to tree queries. A simple
extension, albeit inefficient, to evaluate a tree expression would be the following: Choose an arbitrary
path (perhaps tbe least expensive one) from the root to a leaf and evaluate the linear expresion
specified by this path as outlined in the previous section. This will yield a subset R,' of the tuples of
the root relation RI. Using tuples in R,', another path is evaluated yielding RIM, a subset of R,'. This
is repeated until all paths are exhausted and the final set of result tuples are obtained.

The above scheme is inefficient because relations that belong to two or more paths win be
accessed more than once. For example, consider the tree query shown in Example 3 whose tree expres-
sim is shown in Figure 1. The edges in Figure I are labeled either by a J (denoting a join) or by an OJ
(denoting an outer join).

b~ rrprcwno the cc.rtcsian product operation.

Example 3: A Tree Query
Figure 1 : Tree Expression for the

Query in Example 3.

Assume that the first path chosen is R1--R2--R3. After evaluating the expression (RI OJ R2) OJ
R3 and computing the respective aggregates bottom up, we will get a subset R1' of tuples. Using these
tuples, we take the other path. The J/OJ expression along this path is R1' OJ (R2 I R4). Thus, the rela-
tion R2 is accessed again. It would be ideal if each relation is accessed only once. After evaluating a
JIOJ expression along one path, we would like to compute the aggregates bottom up only up to the
point where a new branch begins. The idea is to use the tuples obtained thus far to evaluate the
remainder of the J/OJ expression along the new path. However, this cannot be accomplished in a
straight forward manner. Two kinds of anomalies may occur. We will illustrate these using the tree
expression of Figure I.

After evaluating (Rl OJ R2) OJ R3 and the aggregate COUNT(Ry*), there are two distinct sets of
tuples. Tuples in the first set are of the form (r,, NULL) and tuples in the second set are of the form
(rl, r2) where rl E RI and r2 E R2.

Anomaly 1: Consider a tuple (r, ', NULL) from the first set. If rl ' is not present in the second
set. COUNT(R2.*) associated with r,' is 0 and will be part of the result if (rl'.h OP1 0) is true. How-
ever, if (r,', NULL) is joined with R4 when the second path is taken, rl' will be lost (because F4(R4.
R2) is false since the R2 fields are NULL).

Anomaly 2: Consider a tuple (r,", r2') from the second set. If there is no tuple of R4 such that
F4(R4, R,) is true, then the r," tuple will be lost after the join is computed. However, if the second path
(R1--RZ-R4) was taken first, we would have got (r,", NULL, NULL) after evaluating R, OJ (R2 J R4).
In this case, we do not lose r,". When the other path (R,-R2--R3) is taken, r," will not be lost as
there is already an wter join between the R2 and R3 blocks.

SELECT R ,. a
FROM Rl R 1

The two anomalies demonstrate that tuples will be lost if a join is performed afier evaluating an
outer join. These hlples can be saved if the join between the R2 and R4 blocks is performed as an outer
join. This leads to the following lemma.

Lemma: Let R1--R2-- ...-- Ri-- ...-- R, and R1--R2-- ...-- Ri-I-Rj-- ...--4 be two paths from the root R1
to the leaves & and % respectively in a tree expression. Let there be at least one wter join in the
shared path R,--R2-- ...-- RI. Assuming we chose the R1--R2-- ...-- R, path first and there is a join between
Ri and Rj, we can obtain the correct result by treating the join between Ri and Rj as an outer join.

Note that any joins below Rj are not affected as they will be evaluated before the wter join
between the Ri and Rj blocks.

The proof for the lemma can be obtained by following the wain of thought of the previous piua-
graphs and is omitted here. In summary, any join that comes after an outer join in a path must be

WHERE FI(RI)
AND Rl.b OP1

(SELECT COUNT (R2.*)
FROM R2
WHERE Fz(R2) AND Fz(R2. R1)
AND R2.c OP2

(SELECT (COUNT(R3. *)

OJ

FROM R3
WHERE F3(R3) AND F3(R3, R2) AND F3(R3, R 1)

)
AND R2.d OP3

(S E L E n (AVG(%.d)
FROM R4
WHERE F4(R4) AND F4(R4, R2) AND F4(Rdr R1)
)

1 R3 R4

evaluated as an outer join. Then each relation need be accessed only once.

6. Admowiedgments

The author wishes to thank Bob Gerber, Goetz Graefe, Krishna Kukami, Shirish Puranik. Jim
Reuter, Mateen Siddiqui, Lynn Still, and Wai-Sze Tam for carefully reviewsing earlier versions of this
paper. Their efforts have considerably improved the quality of the paper.

[Astrahan751 M. Asmhan, and D. Chambedin, 'Implementation of a structured English query
language," Cornm. of tbe ACM, Vol. 18, No. 10, (October 1975).

[Dayall371 U. Dayal. "Of Nests and Trees: A Unified Approach to Processing Queries That Contain
Nested Subqwries. Aggregates, and Quantifiers," Roc. VLDB Conf., pp.197-202, (September 1987).

[Gaski87] Richard A. Ganski and Harry K. T. Long. "Optimization of nested SQL Queries Revisited,
Proc. SIGMOD Conf., pp. 23-33, (May 1987).

[Kiessling84] W. Kiessling, "SQL-like and Quel-like correlation queries with aggregates revisited",
UCBERL Memo 84/75, Univ. of California at Berkeley, (Sept. 1984).

[Kim821 W. Kim, "On Optimizing an SQL-like Nested Query", Trans. on Database Systems. Vol 9, No.
3, (1982).

BLAST Query Optimization

Brad ley Hammond
ShareBase from Br i t ton Lee, Inc.

1. Overview of the BLAST Optimizer

The goal of the BLAST project is to build an ANSI SQL database system, includ-
ing the referential integrity addendum. The project includes a new query optimizer,
parser, semantic checker, and executor. I t is a successor t o an IDL database system,
and many of the access routines have been kept.

The optimizer works with the following data structures:

Query Tree: A representation of the query whose structure closely
corresponds t o the BNF structure of SQL. This is the input t o the op-
timizer.

Query Graph: The query is represented as a partially ordered list of re-
lational operations. The partial ordering of the operations corresponds
to the d a t a flow constraints imposed by the query, i.e. the partial ord-
er guarantees tha t a value is not used before it is computed. While we
have made some refinements to it, the query graph representation is
based on [DAYA87].

Plan Tree: The specification of how the query is t o be processed. This
is the output of the optimizer. Each node of the plan tree specifies the
implementation details for an operation, and the tree hierarchy specifies
the order of operations.

The optimization process consists of the follo~ving four components

Query Graph Builder: A query tree is converted into a query graph.

Plan Building: Given a partial plan and a new table t o add, the plan
builder generates a number of new plans. For example, t o join a new
table onto a partial result, it generates a plan tha t uses a nested loop
join and a plan tha t uses a merge join.

Cost Estimator: T h e Cost Estimator estimates the costs of executing a
plan.

Dynamic Programming Control: The optimizer uses dynamic program-
ming techniques to search the space of all possible join orders. I t does
a breadth first search and incrementally builds the best plan for the
query. A t each level of the search it calls the plan builder and cost es-
timator in order to generate the best sub-plan.

The following diagram shows the basic structure of the BLAST Optimizer

2. The Optimizer's Input: Query Graphs

Augmented Parse Tree

V

Query Graph Builder

Query Graph
V

The BLAST optimizer uses a query graph structure that has two basic elements:
Restrictions and Nodes. In turn, a node may represent either a base table o r an aggre-
gate formed from one or more base tables. While [DAYA87] uses edges t o represent

* m, Plan Builder

Dynamic Programming

Controller

Query Plan
V

I w Cost Estimator

joins, and directed edges t o represent outer joins, this imagery s t a r t s t o wear a bi t thin
with complex restrictions such A.x = B.x + C.X.

In cases where restrictions tie together more than two nodes, i t is difficult t o illus-
t r a t e the relationship with nodes and edges, but the internal representation of such com-
plex restrictions is fairly simple. T h e nodes t h a t participate in a restriction are
represented by a precedence bitmap. Bitmaps tha t represent precedence are also em hed-
ded in nodes, for example when certain outer restrictions must be applied before com-
puting an aggregate.

As another consequence of the fact t h a t restrictions can connect more than two
nodes, the restrictions don't carry the notion of semi-join o r outer-join. T h e relation of
tables with respect t o semi-ness and other qualities is represented by se ts of level
numbers in the nodes of the graph.

For example, take the following query:

SELECT * F R O M A, B WHERE
EXISTS (SELECT * F R O M C WHERE C.y = A.y + B.y);

T h e BLAST optimizer represents this query with a query graph containing three
nodes and one restriction. T h e semi-ness of the relation between the tables is
represented by giving tables A and B a semi-level of 0 and table C a semi-level of 1.
One plan t h a t would be considered would be t o join tables A and B (Cartesian product)
and then doing a semi-join between the result and table C .

3. The Optimizer's Output: Plantrees

T h e BLAST optimizer produces plan trees containing nodes t h a t represent such
basic objects as index scans, heap scans, nested loop joins, merge joins, unions, "exists"
and "not exists" nodes, sorts, and aggregates. Generally plan tree nodes have two or
fewer children, although unions are sort of an exception. (A union of n objects is origi-
nally built as a tree of n binary union nodes, which are subsequently collapsed into a
single object with n children.) Joins may have modes, such as semi-joins and outer-joins,
which is independent of the method contained in the join node. T h e "exists" and ' 'not
exists" nodes are used extensively in the checking of referential integrity constraints
during deletes, inserts, and updates.

3.1. Shape Of Plan Trees

One interesting feature of the plan trees produced by the BLAST optmizer is t h a t
the shape of the trees may not always be linear. This is different from many systems,
see for example [ORAC86] and [PONG88]. For example, consider the following query
and plantrees:

SELECT * F R O M A, B WHERE
EXISTS (SELECT * FROM C, D

WHERE ...);

Semi- Join , [J , / l JOIN1 \
[Table A] [Table B] [Table Dl [Table C]

Semi-Join, Elim. Dups

While there are other valid plans that will be considered, the first tree is always
more efficient than the second. The advantages of the non-linear tree lie in the seman-
tics of the semi-join. T h e BLAST executor uses tuple substitution, so tha t values of
tables A and B can be used in the scans over D and C. The semi-join a t the top of the
tree ensures tha t once a given pair of tuples from A and B have been qualified, the exe-
cutor will only search for a single matching C,D tuple pair. If the executor had to work
from the linear version of the plan, then the scan over table D could not s top until all
matching tuples were found. T h e generation of duplicates and subsequent elimination
of duplicates is less efficient than using the non-linear tree. In similar ways, the shape
of the tree can preserve the semantics of user specified outer-joins, while tuple substitu-
tion allows efficient use of indices in scanning tables.

3.2. Use of Existential UNIONS
One of the useful plan tree nodes is an existential UNION. T h e existential UNION

node differs from a usual UNION node in tha t its subscans need not be union-
compatible, no d a t a is passed up, and they are only used t o check whether all of the
sub-scans are empty. T o see how these existential UNIONS are useful in queries, con-
sider the following query:

SELECT * F R O M A WHERE (A.x = 6) O R
EXISTS (SELECT * F R O M B WHERE ...) OR
EXISTS (SELECT * F R O M C WHERE .. .);

If the first clause were not present, we could simply do a semi-join between A and the
existential UNION of the scans on B and C. T o optimally execute the full query, we
should only scan B or C when (A.x = 6) is false. Accordingly, we have extended the
existential UNION t o include a predicate. T h u s the plan for this query becomes:

Semi- Join

[Table A] [Ex. UNION, A.x = 6]

[Table B] [Table C]

4. The Optimizer Framework

T h e BLAST query optimizer uses a dynamic programming approach t o choose
optimal plans. Plans are built in a tree structure, and during intermediate stages of
optimization several trees can share children. For example, if the optimal plan for com-
puting (A join B) has been determined, then this plan might be a subplan for both (A
join B join C) and (A join B join D). T h e optimizer maintains two types of structures
t h a t point t o plans, a hash table and priority queues. T h e hash table facilitates looking
for the optimal plans corresponding t o various combinations of tables t h a t have already
been examined. T h e priority queues are used for pruning the set of plans which will be
pushed forward and developed further.

T h e combination of a pruning technique in conjunction with dynamic programming
implies t h a t under some circumstances the pruning might prevent finding the optimal

plan. However, for a sufficiently large query, any completely exhaustive search will
require either too much memory o r too much time to be practical in a high performance
database machine. T h e parameters of pruning can tuned, and for reasonably small
queries the search can be exhaustive.

T h e dynamic programming framework is based on incrementally adding tables, and
is not constrained t o follow join edges. One perhaps surprising advantage of this
method is that Cartesian products are automatically considered. T h e following exam-
ple, inspired by queries from customers' applications, shows a case in which Cartesian
products are part of the optimal plan:

Table X in the above diagram is very large, and has an index consisting of the
four columns k l , k2, k3, and k4. The other tables will return very few tuples after the
applicable restrictions are applied. The best plan is to access table X last, and use the
complete key. I t would be simple for a rule based system t o determine tha t i t is better
t o access Table A before accessing Table X, but it might require a lot of special cases to
force consideration of performing the Cartesian products between A, B, C and D before
accessing Table X. T h e BLAST optimizer automatically pushes forward all of the valid
plans, and needs no sophisticated rules t o determine when Cartesian products are part
bf a good plan. In cases where Cartesian products are not desirable, the BLAST optim-
izer drops them when the strategies become dominated by other plans.

5. References

[DAYA87] DayaI, U. "Of Nests and Trees: A Unified Approach to Processing Queries
T h a t Contain Nested Subqueries, Aggregates, and Quantifiersn Proc. 13th VLDB
conference 1987.

[ORAC86] "Oracle Database Administrator's Guide". 1986-87.

[PONGSS] Pong, M. "Nonstop SQL Optimizer: Query Optimization and user Influence"
Tandem Systems Review 1988.

Optimizing SQL Queries for Parallel Execution

Giinter von Biiltzingsloewen

Forschungszentrum Informatik an der Universitat Karlsruhe
Haid-und-Neu-StraBe 10-14, D-7500 Karlsruhe 1

Abstract: The optimization problem discussed in this paper is the translation of an SQL query into an efficient
parallel execution plan for a multiprocessor database machine under the performance goal o f reduced response times
as well as increased throughput in a multiuser environment. We describe and justify the most important research
problems which have to be solved to achieve this task, and we explain our approach to solve these problems.

1 Introduction

Recently, several experimental database machines (e.g. ARBRE [Lori89], BUBBA [AlCo88, CABK881,
GAMMA [DeWi86] and KARDAMOM [Biilt89]) have been designed which use parallelism to obtain in-
creased performance (both response times and throughput). They are based on a loosely or closely coupled
multiprocessor system. A disk can be accessed only by the processor it is attached to (i.e. no disk sharing).
Disks may be attached to some or all of the processors. Relations are partitioned and spread over several
disks.

Parallelism is exploited at two levels (at least): we have inter-transaction parellelism for increased throughput
as well as intra-query (and thus intra-transaction) parallelism on the level of set-oriented algebraic operations
for reduced response times. A query execution plan in such a system can be represented by a data flow
program, a directed acyclic graph whose nodes represent operations and whose arcs represent the flow of
data between operations [Chan76, BoDe821. Independent operations of a dataflow program can be executed
in parallel. Additional potential parallelism can be obtained in the following ways:

Change order of operations: An example of this kind of transformation is the use of flatter and bushier
join trees compared to the linear trees often used in today's optimizers (e.g. [Seli79]).

Node splitting: Operations, which access or manipulate base relations, have to be split into subop-
erations according to data distribution: each partition of a base relation resides on a disk attached
to a certain processor and can be accessed only by this processor. Additional node splitting can be
performed for operations like join and aggregation which operate on intermediate relations produced
by former operations (e.g. parallel join algorithms [DeGe85, KTMo83, RiLM871).

Pipelining: The (pseud+)parallel execution of operations which follow each other is already useful
in a single processor execution plan: main memory requirements for intermediate results are reduced,
hence the swapping of intermediate results to disk may be avoided. In a parallel execution plan, besides
allowing additional parallelism, it is a choice to optimize communication: size of messages vs. number
of messages. Therefore, it is always advantageous to use pipelining if intermediate results are large
enough, and the possibility of pipelining should always be marked in a query execution plan.

In order to express how much of the potential parallelism is actually realized, the dataflow program can be
augmented by scheduling information (e.g. assignment of operations to processors, priority of operations).

The optimization problem we are concerned with is: Determine an efficient parallel execution plan for a given
query using the above poeaibilities, which can afterwards be executed several times (i.e. precompilation of
queries). In the remainder of this paper, we describe and justify the most important research problems which
have to be solved to achieve this task, and we explain our approach to solve these problem.

2 Objective of Optimization

Usual objectives of query optimization are to minimize total processing cost (a weighted sum of CPU-
cost, I/O-cost, and communication cost) or to minimize execution time. In centralized database systems,
these objectives are largely equivalent, and optimizers attempt to minimize total processing cost [JaKo84].
In a multiprocessor database machine, these objectives do not coincide as a higher degree of parallelism
usually implies reduced execution times and increased total processing cost because of increased processing,
communication and control overhead. Hence we have

Problem 1: How should the objective of opfimization in a multiprocessor database machine be defined?

Proposed Solution: The overall performance goal of a multiprocessor database machine is to obtain
increased throughput as well as reduced response times in a multiuser environment. Throughput is reduced
if we increase the parallelism inside single queries because of increased processing overhead; average response
time is usually reduced because of reduced execution time. However, in case of high resource utilization (high
throughput) it may actually be increased as higher total processing cost may cause longer waiting times until
a query can be executed. Hence, the optimization problem involves a tradeoff between execution time and
total processing cost. Which combination leads to the desired throughput and response times depends on
the load conditions and can only be determined at run time. Therefore, the optimizer should construct
several alternative plans under the following objectives:

(1) Minimize total processing cost.

(2) Minimize execution time subject to a maximum x%-increase of total processing cost (for several values
of x); or equivalently

(2') Maximize the degree of parallelism (defined as the average number of processors used during the
execution of the query, i.e. total processing cost divided by execution time) subject to a maximum
xyo-increase of total processing cost.

To choose an appropriate plan at runtime, we have to know more about the effects of increased total
processing cost and reduced execution time on response time and throughput. In order to obtain this
knowledge, simulation experiments or performance measurements should be performed, which examine query
execution in a multiprocessor database machine under several load conditions using the query execution plans
determined by the optimizer.

3 Architecture of the Optimizer

The generation of an optimal query execution plan is a complex (NP-hard) optimization problem. Solution
procedures for such problems have been studied extensively in Operations Research and Artificial Inelligence
[Pear84]. They can be described using the following basic elements:

A code which can represent each object of the search space (solution candidate, set of possible solution
candidates).

A rule base containing rules to transform the encoding of one object to that of another object in order
to scan the search space.

A search strategy, i.e. an effective method to select the next transformation rule to be applied to an
object.

Cost functions which serve to evaluate objects of the search space.

We can distinguish two basic possibilities to organize the search space:

(1) Stepwise Improvement: Objects represent complete solution candidates. Starting from an initial solu-
tion, transformations are applied in order to obtain improved solutions.

(2) Split-and-prune: Objects correspond to subsets which contain all potential solutions which are derivable
from a certain partial solution. Transformations split subsets into smaller subsets (extend partial
solutions). Subsets which presumably do not contain an optimal solution can be pruned, i.e. excluded
from further expansion. If only such subsets which certainly do not contain an optimal solution are
pruned, we obtain a branch-and-bound algorithm.

Both possibilities have been used in query optimization. Examples of the use of stepwise improvement are
[IoWo87, SwGu88, GrDe871, examples of branch-and-bound (or the corresponding dynamic programming
algorithm) are [Shan88, LeFL881. Several search strategies can be used in combination with these possi-
bilities: unsystematic search (e.g. local search, simulated annealing), blind, systematic search (depth-first
search, breadth-first search) and informed, systematic search (best-first search, A'-algorithm). Up to now,
there is no clear evidence which choice is best. Hence we have

P rob lem 2: Should a query optimizer use stepwise improvement or split-and-prune (branch-and-bound,
dynamic programming)? If either possibility is chosen, which search strategy should be used?

Proposed solution: We choose to investigate split-and-prune strategies for one main reason: it leads to
a better analysis of the optimization problem, as we have to define precisely the decisions involved in the
generation of a parallel execution plan. Thus we can possibly exercise more control on the solution candidates
examined during the search; to accomplish this, we have to develop heuristics to prune the search space and
to evaluate objects in order to perform a best-first search.

We can organize the search as a number of steps, each of which makes certain decisions and thus reduces
the number of plans obtainable from a partial solution:

(1) Generate all reasonable algebraic expressions for a given SQL query. An algebraic expression corre-
sponds to the set of all query execution plans, which perform the algebraic operations in the same
order as in the expression.

(2) Generate execution methods for the operations of an algebraic expression. The result of this step is a
single processor execution plan.

(3) Generate parallel execution plans using node splitting and determining scheduling information. Ac-
cording to the different objectives, several execution plans are generated.

Code, rule base and search strategy used in these steps are discussed in the following sections.

4 Generating Single Processor Execution Plans

In conventional implementations of SQL, queries are executed at least partially tupel-oriented, i.e. by nested
iteration (System R, System Re). In contrast to that, we want to generate execution plans that contain
only (methods for) set-oriented algebraic operations. All known approaches to translate SQL queries into
relational algebra [CeGo85, LeVi85, Daya87, Kim821 are incomplete and some are partially incorrect (see
[Biilt87]). Furthermore, all approaches except [Daya87] generate very complicated expressions which are no
good starting point for further optimization. Hence we have

Problem 3: How can we generate all reasonable algebraic ezpnssion for a given SQL querp in a systemaiic
way?

Proposed solution: The generation of algebraic expressions is performed in three steps:

(1) An SQL query is translated into an expression of an extended relational algebra (extension of [Klug82]).
The expression is in a special normal form which defines an order of algebraic operations only as far
as absolutely necessary, so that an optimal expression can be reached from this etarting point. The
translation has been developed starting from [Biilt87], however avoiding unnecessarily complicated
expressions.

(2) The expression is simplified using transformations which are known t? produce better expressions.

(3) Starting from this normal from, algebraic expressions and methods for the execution of algebraic
operations are generated using functional rules similar to [LeFL88].

The normal form we use is a union of expressions

Projections are extended to retain duplicates (x X (y) denotes a projection on X which retains duplicates
according to the number of different Y-values). An extended selection predicate $ is a conjunction of simple
predicates (without logical connectives). However, in case of a selection on a single relation (n = I) , it may
also contain disjunctions to avoid unnecessary unions. An extended selection predicate may contain join and
semijoin conditions. The latter are expressed as [3Si : +i] or [-3Si : $i], indicating a positive or negative
semijoin of (R1 x Rz x . . .&) with ei. The motivation behind this unfamiliar notation is that we wish to
perform several sernijoin operations on a relation in a single filter operation.

dcX,,=>(e) denotes the aggregation, which groups e by Xg-values and applies the aggregate functions F
to each group. In semijoin expressions e;, we also use a generalized aggregation @ < X p r ~ > (el D e2) which
attaches aggregate function values to each tuple t of el by applying F to the group of tuples t' of ez having
identical Xg-values (t[Xg] r t'[Xg]). It is used in the translation of subqueries with aggregate functions and
is equivalent to an outer join followed by the standard aggregation Q<x, , r> . Arithmetic expressions may
be used in projections, selection predicates and aggregations.

Transformations ~erformed in the second step include the replacement of a generalized aggregate formation
by an aggregation q5<xaF> (without using an outer join); the elimination of unneccesary join predicates; and
the replacement of two negative semijoins by a division. All of these transformations are only applicable
under certain restricted conditions.

The generation of algebraic expressions starting from this normal form requires the following decisions: In
conjunctive expressions, the main decision is the ordering of join operations. Furthermore, we have to decide
wether selections are performed before or after a join. Aggregation operations have to be positioned with
respect to join operations. We may use the generalized aggregation in combination with simple joins or the
standard aggregation in combination with outer joins.

Algebraic expressions whose results are combined by a union may be optimized independently, whereupon
subexpressions common to several algebraic expressions can be combined. An alternative to this appraoch
is the optimization of the complete expression in one step. The advantage of this alternative is that common
subexpressions can be produced intentional, possibly yielding a better expression. However, it is an open
problem how to accomplish this.

5 Generating Parallel Execution Plans

To generate parallel execution plans we can introduce additional potential parallelism by changing the order
of operations and by node splitting (assuming the pawibility of pipelining is already marked in the single
processor execution plan). A change in the order of operations is considered automatically, if we paralleiize
not only the most cost effective single processor execution plan, but also the second, third, etc (but only
such plans, where the order of operations aud not only the execution methods differ). Hence the only change
in the underlying dataflow program is node splitting which may be enforced (access of base relations) or
optionally chosen (other operations).

In order to evaluate total processing cost of a dataflow program, we have to assign the operations to processors
(assuming that an operation is executed completely by one processor), as the cost for local communication on
one processor is different from the cost for remote communication. The minimization of total processing cost
is thus similar to query optimization in distributed database systems (however, communication is usually
not the most important cost factor).

In order to evaluate execution time, we have to build a schedule as in deterministic scheduling theory .

[CofRG]. Besides the assignment of operations to processors, it also assigns execution intervals to each
operation. Minimization of execution time is thus similar to the problems studied in scheduling theory;
i t differs mainly in the possibility of pipelining and node splitting, and in a more complicated cost model
including CPU-cost, I/O-cost and communication.

The scheduling decisions underlying the evaluation of execution time have to be transformed into scheduling
information, upon which runtime scheduling can be based. As cost estimations are generally imprecise,
it does not make sense to fix execution intervals for each operation. Instead, we need a more abstract
description of a parallel execution plan, from which execution intervals can be deduced for cost evaluation
and which can be used for runtime scheduling.

P rob lem 4: What scheduling informaiion should parallel ezecution plans contain?

Proposed solution: We assume that an operation is executed by a process running on a certain processor
and can be interrupted only, if it is waiting for a certain event (110, operand, pipelining), or if an operation
(process) with a higher priority becomes executable (usually fulfilled by a real time operating system). Under
these assumptions, runtime scheduling decisions are based upon the following information:

(1) Assignment of operations to processors. I t has to be fixed only for operations that access base relations.
All other nodes can be collected into groups which are mapped to processors at runtime, at most one
group to one processor. Thus a limited dynamic load balancing at runtime is possible besides the
choice of an appropriate execution plan.

(2) Priority of an operation. It is assigned to the process which executes the operation and thus influences
the scheduling of the underlying operating system.

Execution intervals can be deduced from assignment and priority of operations assuming that always the
executable operation (i.e. all operands are at least partially available) with highest priority is scheduled.

The number of possible parallel execution plans is much larger than the number of single processor execution
plans due to the possibility of node splitting and the scheduling decisions. Hence, while the complete
enumeration of all reasonable single processor execution plans may still be feasible, this is certainly impossible
for parallel execution plans. Therefore, we need effective heuristics to prune the search space.

Former solutions for the generation of parallel execution plans are not convincing. (CePS851 considers only
parallelism between independent operations and an a priori fixed degree of node splitting for each operation.
[BaYH87] assumes that node splitting is always possible without additional CPU-cost, and uses pipelining
always, if any reduction in execution time is achieved, thereby possibly precluding a better parallelization.
Hence we have

P r o b l e m 5: What are effective heunsiics for the generation of parallel execution plans?

We want to find execution plans which maximize the degree of parallelism subject to a maximum x%-increase
in total processing cost. Two basic decisions are involved in this task: adding additional potential parallelism
by node splitting and realising parallelism by associating processors and priorities with operations. As we can
not decide in advance, wether it is better to use pipelining or node splitting, we define potential parallelism
on a per pipe basis (a pipe is built by several operations (possibly only one) communicating with each other
in a pipelined fashion). Thus the generation of parallel execution plans also involves a number of steps:

(1) Iteratively generate execution plans with increased potential parallelism (number of processors associ-
ated with a pipe). The search can be limited, as in each iteration we only have to increase the number
of processors for pipes lying on the critical path in order t o obtain reduced execution times.

(2) Minimize the execution time of a pipe utilizing the number of processors allowed. We may use node
splitting and have to assign operations to processore. The execution time is minimized by balancing

the load across the ~articipating processors with aa less expensive node splitting and communication
aa pogsible.

(3) Determine an optimal schedule given the degree of parallelism and execution time of each pipe. The
scheduling deckions can be based on a heuristic which has been proven to be w f u l in deterministic
scheduling theory: critical path scheduling.

We expect that both degree of parallelism and processing cost will increase while we proceed increasing
potentid parallelism, hence we can finally choose an optimal processing plan for each increase in total cost
we are interested in.

6 Conclusion

We have described an approach to the optimization of SQL queries for parallel execution in a multiprocessor
database machine, which, considering the increasing performance of communication networks, will become
relevant for distributed database systems as well. We plan to implement it until the end of this year, thus
replacing the limited optimizer for an SQL subset currently used within the prototype of the KARDXhlOh.1
database machine.

Our approach is rather static in that only a limited number of decisions is performed at runtime. Therefore
it depends on reliable cost estimates which are not easy to obtain. Thus the next problem to be examined
will be

Problem 6: What is the influence of imprecise cost estimates on the quality of etecution plans? In case
imprecise estimates have a significant influence, how can we perform dynamic optimization at runtime?

An approach to solve the first part of this problem is to use our optimizer to produce execution plans under
different cost estimates and compare their quality under the different estimates. The design of dynamic
optimization at runtime can be based upon an analysis of the differences of the produced execution plans.

References

[AlCo881 W. Alexander, G. Copeland: Process and Dataflow Control in Distributed Data-Intensive Sys
terns. Proc. ACM SIGMOD, Chicago, June 1988

[BaYH87] T. Baba, S.B. Yao, A.R. Hevner: Design of a Functionally Distributed Multiprocessor Database
Machine Using Data Flow Analysis. IEEE Trans. on Computers, C-36,6, June 1987, pp. 650-666

[BoDe82] H. Boral, D.J. DeWitt: Applying Data Flow Techniques to Database Machines. IEEE Com-
puter, August 1962, pp. 57-63

[Biilt87] G. v. Biiltzingsloewen: Translating and Optimizing SQL Queries Having Aggregates. Proc.
13th Int. Conf. on Very Large Data Bases, Brighton, September 1987, pp. 235-243

[Biilt89] G. v. Biiltzingsloewen, C. Iochpe, R.-P. Liedtke, R. Krarner, hl. Schryro, K. R. Dittrich, P.
C. Lockemann: Design and Implementation of KARDAMOhl - A Set-oriented Data Flow
Database Machine. To appear, 6th Int. Workshop on Database Machines, Deauville, June 1989

[CABKBB] G. Copeland, W. Alexander, E. goughter, T. Keller: Data Placement in Bubba. Proc. ACh1
SIGMOD, Chicago, June 1988, p 2. 99-108

[CcGo85] S. Ceri, G. Gottlob: 'hns la t ing SQL into Relational Algebra: Optimization, Semantics and
Equivalence of SQL Queries. IEEE Trans. S.E., April 1985, pp. 324-345

[CePSBS] F. Ceearini, F. Pippolini, G. Soda: A Technique for Analyzing Query Execution in a Multi-
processor Database Machine. Proc. 4th Int. Workshop on Database Machines, Grand Bahama
Island, March 1985, pp. 68-90

P.Y. Chang: Parallel Processing and Data Driven Implementation of a Relational Database
System. Proc. of the 1976 Conf. of the ACM, pp. 314-318

E.G. Coffmann (ed.): Computer and Job-Shop Scheduling Theory. John Wiley k Sons, 1976

U. Dayal: Of Nests and Trees: A Unified Approach to Processing Queries That Contain Nested
Subqueries, Aggregates, and Quantifiers. Proc. 13th Int. Conf. on Very Large Data Bases,
Brighton, September 1987, pp. 197-208

D.J. DeWitt, R. Gerber: Multiprocessor Hash-Based Join Algorithms. Proc. l l th Int. Conf. on
Very Large Data Bases, Stockholm, 1985

D.J. DeWitt et al.: GAMMA - A High Performance Dataflow Database Machine. Proc. 12th
Int. Conf. on Very Large Data Bases, Kyoto, August 1986

M.R Garey, D.S. Johnson: Computers and Intractability - A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, San Francisco, 1979

G , Graefe, D.J. DeWitt: The Exodus Optimizer Generator. Proc. ACM SIGMOD, San Fran-
cisco, May 1987, pp. 16@172

Y.E. Ioannidis, E. Wong: Query Optimization by Simulated Annealing. Proc. ACM SIGhlOD,
San Francisco, May 1987, pp. 9-22

M. Jarke, J . Koch: Query Optimization in Database Systems. ACM Computing Surveys, June
1984, pp. 111-152

[Kim 821

[Klug82]

W. Kim: On Optimizing an SQGlike Nested Query. ACM TODS, Sept. 1982, pp. 443-469

A. Klug: Equivalence of Relational Algebra and Relational Calculus Query Languages Having
Aggregate Functions. Journal of the ACM, Vol. 29, No.3, July 1982, pp. 699-717

M. Kitsuregawa, H. Tanaka, T. Moto-oka: Application of Hash To Data Base Machine and Its
Architecture. New Generation Computing, Vol. 1, No. 1, 1983

M.K. Lee, J.C. Freytag, G.M. Lohman: Implementing an Interpreter for Functional Rules in a
Query Optimizer. IBM Research Report RJ 6125, March 1988

C. Le Viet: Translation and Compatibility of SQL and QUEL Queries. Journ. Inf. Proc., Vol.
8, No. 1, 1985, pp. 1-15

R. Lorie et. al.: Adding Intra-Transaction Parallelism to an Existing DBMS: Early Experience.
IEEE Data Engineering, Vol. 12, No. 1, March 1989, pp. 2-8

J . Pearl: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison
Wesley, 1984

J.P. Richardson, H. Lu, K. Mikkilineni: Design and Evaluation of Parallel Pipelined Join
Algorithms. Proc. ACM SIGMOD, San Francisco, May 1987, pp. 399-409

P.G Selinger et. a].: Access Path Selection in a Relational Database System. Proc. ACM SIG-
MOD, Boston, May 1979, pp 23-34

M.-C. Shan: Optimal Plan Search in a Rule-Based Query Optimizer. Proc. Int. Conf. on Ex-
tending Database Technology, Venedig, March 1988, pp. 92-112

A. Swami, A. Gupta: Optimization of Large Join Queries. Proc. ACM SIGMOD, Chicago, June
1988, pp. 8-17

Communication Considerations for
Query Optimization for Distributed/Parallel systems1

(Extended Abstract)

W.S. Luk and Xiao Wang
School of Computing Science

Simon Fraser University
Bumaby, B.C. Canada V5A IS6

(E-mail: woshun@cs.sfu.ca)

1. Introduction
A distributed database system is distinguished from a centralized one by the fact that the database in thc
former is distributed geographically over more than one site. Consequently, any scheme to evaluatc
distributed query must consider the cost of moving data from one site to another (i.e. communication
cost), in addition to the processing cost. The main difficulty one encounters in estimating the cost of
processing a distributed query is that the communication cost and processing cost are often evaluated in
different and incompatible units.

In the literature, there are many different approaches to amving at a solution to this problem. The most
common one is perhaps the simplest one: the processing cost is considered to be negligible in comparison
with the communication cost. The cost formula is usually a linear function of the amount of data
transmitted. In many research papers, the startup cost (i.e. the constant in the linear function) is
considered to be zero, so that the communication cost is equivalent to the amount of data transmitted. A
good survey of research work adopting this approach may be found in [YC 841. A variation of this
approach is to assume that local processing has taken place before data transmission ([GS 863).

In some systems, all three costs, i.e. disk retrieval cost, communication cost and processing (or CPU) cost
are considered. The cost formula is a linear function of these three cost components with an appropriate
weight factor assigned to each of them. System R* adopted this approach ([SA 801).

Recently, there have been several experimental studies in evaluating various distributed query processing
strategies (e.g. [HF 861 and [CAR 851). These strategies were actually implemented on a distributed
system and the actual timing information of each strategy was collected for comparison. These systems
are often disk-based, so that disk 1/0 cost accounts for a substantial portion of total elapsed time.

Like [HF 861, we believe that distributed query optimization can best be studied by observing an actual
system, since the interrelationships among the application software, underlying distributed operating
system and communication hardware are quite complex. On the other hand, we also believe that the
analytic modelling approach will continue to be usefully employed because this low-cost approach can
provide a rough estimate of the system performance so that obviously poor strategies may be ruled out
before the implementation phase begins. Furthermore, it is our experience that faulty implementarions can
be detected by means of analytic techniques.

Over the last two years, we have been studying the communication aspect of distributed qucry
optimization by actually implementing distributed algorithms in a network of Sun workstations over an
Ethernet local area network. Specifically, the disk I/O aspect of the algorithms is not considered, and no
program has to fetch data from the disk. Three different types of algorithms have been considered:

l ~ h i s work was partially supported by grants from the Natural Sciences and
Engineering Research Council of Canada and the Centre for Systems Science at Simon
Fraser University.

distributed sorting algorithms, distributed join algorithms and transitive closure algorithms. Typically, for
each type of algorithms, we implemented selective algorithms published in the literature and our own
algorithms, which were devised based on the observations of the experimental results of these algorithms.
These algorithms were evaluated on the basis of the total response time, i.e. the longest wall-clock time of
a l l machines participating in the distributed operation. Specific results related to each class of algorithms
have been reported in [LL 891, [WL 881 and [A 881. In this paper, we provide a summary of our
observations regarding the communication aspect of these algorithms, which we believe are applicable to
distributed query optimization in general.

2. Observations

2.1. The Hardwarelsoftware Factors
The "raw" communication performance, i.e. the data transfer speed between two applications running in
different sites at the operating system level, is a critical factor in the design of a distributed database
system. Given that the bandwidth of the Ethernet is fixed, two main factors that may affect thc
communication performance are: the underlying distributed operating system and the main processor in
each site. The following table shows the performance of the V-sys:em2 in data transfer between two
diskless Sun-2's. In each case. a message of a certain size is transmitted from one site to another and
communication time (cost) is taken to be the time between initiation of the send command and reception
of the acknowledgement from the receiver.

32 bytes 0.5K bytes 1K bytes 2K bytes 4K bytes 8K bytes 16K bytes

3.1 ms 6 ms 8.6 ms 16.4 ms 23.9 ms 38.5 rns 68.5 rns

Table 2-1: SUN-2 V-System IPC Timing Information

For the identical system configuration, the performance for Berkeley Unix 4.2 is a lot worse. Note that in
the case of Berkeley Unix 4.2, TCP/IP was employed. The typical overhead of creating a TCP/IP session
between any two sites, which ranges from 220 and 400 ms, was not included in the following table. Thus
in actual application environment. the communication performance of Berkeley Unix 4.2 will be even
worse.

32 bytes 0.5K bytes 1K bytes 2K bytes 4K bytes 8K bytes 16K bytes

Table 2-2: SUN-2 BSD 4.2 IPC Timing Information

A fast processor will definitely have great impact on the communication performance. The following
table shows the communication performance of Sun-3 on the V-System.

32 bytes 0.5K bytes 1K bytes 2Kbytes 4Kbytes 8K bytes 16K bytes

2 ms 4 ms 6 ms 9 ms 1 1 ms 16 ms 25 ms

Table 2-3: SUN-3 V-System IPC Timing Information

-e V-System is a message-based, high-performance dismbuted operating system that runs on Sun and VaxStation
workstations [Che 841. While it is intended to be a general-purpose operating system. it also has a low operaring system
overhead which implies a low 'noise' level when the performance of the application is measured. In addition. it has a very fmely
timed interprocessor communication mechanism.

2.2. Short Messages vs. Long Messages
The first observation we can make from the above tables is that the time required to transmit shon
messages, i.e. 32-byte messages is not much shorter than the time required to transmit much longer
messages3. Indeed, the unit transmission time (i.e. time to transmit one byte) is 40 times larger for a shon
message than that for a long message (Table 2-3).

There are two consequences arising from this observation. First, it is necessary to provide different timc
measures for transmissions of short and long messages. In [LL 891, the time for transmission of shon
messages is measured by the number of messages, while the time for transmission of long messages is
measured by the total amount of data for transmission. The resulting timing analysis was confirmed by
empirical data. Second, it is a common practice to assume that data will be transmitted as soon as they
are ready. However, batching of several short messages for one transmission is beneficial so long as the
generation of one short message is not dependent on the transmission of an earlier short message.

2.3. Impact of Processor Speed on Communication Time
Due to protocol processing by the processor, the network engagement time, which is the amount of time
required for data to travel from one site to another site over the network medium, may account for a vcry
small percentage of the total transfer time (i.e. communication time in this paper). Take for example the
transfer of a 1K-byte message in a BSD 4.2 system (see Table 2-2). The network engagement time for this
message over a 10Mbit/sec Ethemet accounts for 2.5% of the total time. Nonetheless, this percentage
value depends on the operating system, processor speed and the network bandwidth. For example, this
percentage becomes considerably higher for SUN-3 over the V-System. The transfer rate for 16K-byte
messages is about 5Mbit/sec. This means that the network engagement time accounts for about 50% of
the total time.

This observation will have significant implications for optimization of communication cost, as the
following two subsections show.

2.4. Concurrent Transmissions
Most distributed query processing algorithms we have implemented proceed by stages such that at the end
of each stage, the machines (Sun workstations) exchange data with each other at roughly the same timc.
Consequently it is important to schedule concurrent transmissions properly.

Generally speaking, concurrent transmissions should be scheduled sequentially to avoid excessive packet
collisions and subsequent retransmissions. However, when the percentage of network engagement timc
over the total communication time is small, one can take advantage of communication parallelism by
allowing concurrent transmissions to proceed asynchronously. In this way, the time for concurrent
transmissions would be drastically reduced since the protocol processing by each individual machine may
proceed in parallel.

2.5. Network Bandwidth
With microprocessors becoming more powerful all the time, the network bandwidth is a potential
bottleneck in a distributed database system. Already the network engagement time for a Sun3-to-Sun3
data transfer accounts for 50% of the total transfer time.

Conversely, if the network bandwidth is increased by 10 folds, the percentage of the network engagement
time out of the total time will shrink from 50% to 10%. Communication parallelism would be beneficial
again.

3This of course is mainly due to the fact that the maximum packet size in an Ethernet network is 1K-byte.

199

2.6. Communication/Local-Processing Trade-off
The assumption that communication is the dominant cost factor in distributed database processing is not
borne out by the performance data we have collected. We suspect the assumption is generally not valid
for distributed database processing over local area networks. In fact, it is often a good policy to distribute
the workload to keep the machines busy at the expense of extra communication oved-iead. In [WL 881,
we showed that the operation of building a hash table can be effectively distributed to 4 machines.

2.7. Parallel vs. Distributed Database Processing
While the system in which the experiments were performed is definitely a distributed system, our
aIgorithrns can also run on a loosely coupled (i.e. disuibuted memory or message-passing) multiprocessor
system with only cosmetic changes. Naturally the bus speed is much higher than that on Ethernet.
Perhaps the penalty for sending short messages on a bus is not as severe. Despite the speed limitation of
the Ethernet. many (but not all) distributed sorting, distributed join and distributed transitive closure
algorithms have achieved speedups over a network of Sun workstations in comparison with their uni-
processor counterparts.

The basic strategy adopted to achieve maximum speedups is to keep all processors busy by distributing
data to them. Thus the communication cost is the overhead for parallel database processing. As the
number of machines increases and the communication cost will not decease, there is a limit to the number
of machines that can be usefully employed for parallel processing in our processing configuration, given
of course, a fixed file size. In all three classes of algorithms we have considered, the optimal number is no
more than sixteen, given a global file size of 64K integers (or tuples).

Interestingly, those distributed sorting algorithms that were adapted from parallel sorting algorithms
intended for a processor array do not perform as well as other algorithms intended for a distributed system
[LL 891. This is due to the fact that the grain size assumed by the parallel sorting algorithms is too fine

for the message-passing architecture.

2.8. Broadcasting
Many distributed database operations involve broadcasting messages/files to all other machines on the
network. Since Ethernet is inherently a broadcast network. it is very tempting to assume the time of
broadcasting one message is equivalent to the time required for a point-to-point transmission of that
message.

In actual fact, it is not so. We have found that for both BSD 4.2 Unix and V-System, it is more efficient to
do multiple point-w-point transmissions than one broadcast. This is due to the difficulty of handling
multiple acknowledgements that arrive almost simuitaneously at the Ethernet controller of the
broadcaster. We are cumntly working at some schemes to modify the system kernel of V-System to
make broadcasting work.

2.9. Future Research Directions
It appears that high bandwidth networks (>= 100 Mbps) are becoming available soon. Coupled with a
high speed microprocessor, the memory-to-memory data transfer will be much speedier. Also, as the
high-density memory chips (4 to 16 Mbits) become commercially available, the memory cost will drop,
and the disk 1/0 factor in query optimization will be less important. All these should have a significant
impact on the design of distributed query processing algorithms.

With a much lower overhead in terms of communication, parallel database processing will become more
widespread. From the research perspective, what is the best parallel database architecture? Bus (Ethernet-
like), hypercube or tree?

3. References

[A 881

[CAR 851

[GS 861

[LL 891

[SA 801

[YC 841

Almstrom, C.
Distributed Computation of Transitive Closure.
Master's thesis, Simon Fraser University, Bumaby, B.C., Canada, 1988.

Carey,M.J. & Lu,H.
Some Experimental Results on Distributed Join Algorithms in a Local Network.
Technical Report 587, Comp Sc Dept, U. of Wisconsin-Madison,March, 1985.

Cheriton, D.R.
The V Kernel: A Software Base for Distributed Systems.
IEEE Software. 1(2), April, 1984.

Gavish, B. and Segev, A.
Set Query Optimization in Distributed Database Systems.
ACM Trans. on Database Systems 11(3), September, 1986.

Hagmann, R.B. and Ferrari, D.
Performance Analysis of Several Back-End Database Architectures.
ACM Trans. on Database Systems 11(1), March, 1986.

Luk, W.S. & Ling, F.
An Analytic/Empirical Study of Distributed Sorting on a Local Area Network.
IEEE Transactions on Software Engineering 15, May, 1989.

Selinger, P.G. and Adiba, M.E.
Access Path Selection in Distributed Database Management Systems.
In Proc. of the Inter. Conference on Databases. July, 1980.

Wang, X. and Luk, W.S.
Parallel Join Algorithms on a Network of Workstations.
In Inter. Symp. on Databases in Parallel and Distributed Systems. IEEE Computer

Society, December, 1988.

Yu, C.T. and Chang, C.C.
Distributed Query Processing.
ACM Computing Surveys 16(4), December, 1984.

Site Selection in Distributed Query Processing

T. Patrick Martin

Department of Computing & Information Science
Queen's University

Kingston, Ontario K7L 3N6.

E-mail: martin@qucis.queensu.ca

1. INTRODUCTION

A key component of any relational database system is the query processing subsystem. It is
vital to the performance of the system that the most efficient version of a user's query is produced
before the query is handed over for processing. This is especially true in a widely-distributed
database system where just the communication costs alone can be prohibitively expensive.

We consider the processing of a distributed query to be divided into three phases: the site
selection or copy identificatio~t phase, the reduction phase and the assembly phase [I]. In the site
selection phase, one or more copies of each relation in the query are chosen. In the reduction phase,
semijoins are normally used to eliminate tuples of the relations that do not satisfy the qualxcation of
the query. In the assembly phase, relations in the qualif~cation component of the query are sent to
one site to produce the result.

Site selection plays a critical role in query optimization for replicated, widely-distributed
databases. Despite this fact, it has received little attention compared with the reduction and assembly
phases and, in practice, is often bypassed or assumed to be solvable by simple enumeration. This
assumption only holds for very simple queries involving a small number of relations and, in general,
the problem of finding the allocation of subqueries to sites that yields the minimum cost is an NP-
hard problem [2].

The main goal of our project is to develop cost-effective methods of site selection for query
processing in large, heterogeneous, widely-distributed databases. There are a number of tasks
involved in achieving this goal: defining a representative cost model; choosing heuristics and
algorithms which will make the site selection process computationally feasible; incorporating both
static and dynamic system information into the decision process, and understanding the effects
different properties of the site selection problem will have on the results produced for each of the
preceding tasks.

2. WORK IN PROGRESS

Initially, we are considering a homogeneous distributed database and queries that are run
repeatedly, that is, queries that are compiled and the resulting access plans saved. We are
experimenting with a two stage approach to site selection. The first stage, called static selection, takes
the optimization process as far as it can using only static information about the database and the
system, and a description of the "typical" state of the system. Static information includes profiles of
the relations and attributes, the available implementations for the different relational operators at the
sites, the capacity, processing rate and I/O rate of each the sites, and the data rates of the paths
between pairs of sites. The typical state of a system is represented by all sites and links experiencing
their average load and the base relations being used by their average number of concurrent

This work is supported by the Natural Science and Engineering Research Council of Canada under grant OGP0000929.

transactions. These average values have to be arrived at by observing the system. The state space of
possible allocations can be pruned si&icantly using just static information and, depending upon the
closeness of the system state at execution time to the typical state, further optimization may not even
be required at runtime. The cost of static site selection is amortized over the repeated executions of
the query.

The second stage, called dynamic selection, is employed at query execution time if the static
allocation is rendered infeasible because the current system state deviates from the assumed typical
state as the result of failures or heavy loads on particular sites or links. Dynamic selection must find
an acceptable alternative in a small amount of time since it directly results in a delay of query
execution. Dynamic selection would also be used for ad-hoc, or one-time, queries where static
selection is not appropriate.

We believe that a two stage approach to query optimization is required in a large widely-
distributed database system. Dynamic optimization alone, while suitable for a local area network
environment [3,4], is not enough in our environment. The number of alternative access plans is
extremely large for even relatively simple queries and our experiments have shown that fast heuristic
algorithms cannot find acceptable near-optimal solutions in these large search spaces. Static
optimization can narrow the search space so that these fast algorithms have a much better chance of
finding a good access plan. Similarly, just static optimization is not sufiicient since the system state at
runtime may be radically different from the state at optimization, for example some of the sites could
be down. The access plan has to be adjusted, or a new plan found, if the query is to be executed.

We conducted a series of experiments to analyze the performance of a number of different
types of algorithms for finding a near-optimal allocation of subqueries to sites during the static
selection stage [5]. We considered five different types of algorithms - branch-and-bound (BB), greedy
(GR), iterative improvement (II), local search (LS) and simulated annealing (SA). The experiments
used a set of queries ranging from simple to very complex and assumed a database consisting of a
large number of relations and/or fragments. Both full and partial replication of the relations were
considered. The algorithms were evaluated based on the communication costs involved in their
solutions, and the runtimes required to reach those solutions.

The BB and GR algorithms were found to perfom well for simple queries. The BB
algorithm's runtime grew exponentially once complexity rose to a moderate level which makes this
dass of algorithm of limited use in a large distributed database system. The GR algorithm gave a
low cost solution only so long as all of the processing could be done at a single node. This is not
practical in a partially-replicated system and eliminates the GR algorithm from serious consideration.
The II algorithm required relatively little runtime but did not produce a satisfactory query cost for
any of the queries. I1 would only be useful in the case where the amount of runtime was very limited
and the query was too complex to be answered by an enumerative algorithm such as BB.

The LS and SA algorithms both yielded reasonable solutions for the whole range of queries but
at significant runtime costs, especially for the more complex queries. The LS algorithm always found
a better query cost than SA for both the partially-replicated and the fully-replicated databases. Our
experiments demonstrated the cost-effectiveness of sophisticated algorithms, such as LS and SA, for
static site selection when we are dealing with compiled queries in a large widely-distributed database
system. The other simpler algorithms could not find suitable allocations in at least some subset of
the queries examined.

Our results indicate that no one algorithm is dominant for all cases. The choice of the
algorithm must be made based on the complexity of the query and the environment, and on the
importance of obtaining a good query cost. An enumerative algorithm is best for simple queries.
The point at which the runtime becomes unreasonable depends upon query complexity and the size
of the system. Local search is the best approach for complex queries. It yields a good query cost in
all cases but is not cost-effective for the simpler queries relative to an enumerative algorithm.

Our findings seem contrary to those of Bodorik and Riordon [6] who favour a greedy algorithm
for static access plan selection in a distributed database. The different conclusions stem from

different assumptions about the system model and a different objective function. Our experiments
assumed a much larger system than those reported by Bodorik and Riordon. Also, their experiments
were concerned with response time, not total query cost, so algorithm runtime played a more
important role in their evaluation.

3. FUTURE WORK

We are currently trying to gain more insights into the use of the local search algorithm and into
the properties of the site selection problem by conducting experiments with local search over a wide
range of query complexities and system sizes. We hope to analyze the effect different parameters of
the problem have on the performance of the local search. We are also investigating variations of the
algorithm. Local search is very dependent upon the choice of an initial allocation and an efficient
way of narrowing the options should reduce the computation time required to arrive at a good
solution. One variation is to use a greedy algorithm to quickly arrive at a potentially good initial
allocation and then refine that allocation using local search. A second variation is a distributed
version of the algorithm. Local search lends itself to distribution so there is a possibility of significant
runtime savings.

The problem of developing appropriate cost models is vital to research in distributed query
optimization. The cost model we used for our experiments, taken from the work by Liu and Chang
[A, was too abstract. It considered only select, project and join operators and made a number of
other simplifying assumptions. We hope to develop a more detailed cost model that, besides the
select, project and join operators, will also include the union and semijoin operators; that will
consider alternative implementations of operations, and that will allow other distributions, besides the
uniform distribution, for attribute values.

An extension of a transformation-based approach, such as the one described by Rosenthal and
Helman[8], seems promising for two reasons. First, the operator graphs of Rosenthal and Helman
already contain much of the static information required; in particular, they can represent alternative
strategies for performing an operation. We would like to extend the graphs to also incorporate the
dynamic system state information. Second, the transformation-based approach is appropriate for a
heterogeneous environment. Operators can be initially expressed at a high level and then refined in
different ways depending upon the type of database chosen to answer the subquery.

We also plan to study the impact of changing the objective function from minimizing total
query cost to minimizing response time. Perhaps different types of queries respond better to one or
the other objective function. It would also be interesting to see what effect a mixture would have on
overall system performance.

The two main areas we wish to study with regards to dynamic selection are the algorithms that
could be used, and the defmition, representation and maintenance of system load. The main
characteristic of an algorithm used for dynamic selection is that it should arrive at a reasonable
allocation of subqueries to sites in a minimum amount of time. Algorithm runtime is important since
it will be a component of the delay the query experiences before it can execute. Our study of
algorithms for the static case suggests that greedy or iterative improvement algorithms are the most
likely candidates.

A key concept in dynamic selection is that the algorithm should make use of as much of the
information provided by the static selection as possible. One approach could be to salvage at least a
partial solution from the static allocation and then to converge to a total allocation from that point.
A second approach could be to have the static selection produce several candidate access plans and
the dynamic selection could refine these based on current state information and choose the best one.
If none of the candidate plans could be executed in the current state we would have to resort to the
first approach.

The problem of defining system load can be approached in several ways depending upon the
assumptions made about the database system. For very large homogeneous distributed databases
communication costs will dominate. Copies of a relation are likely to be far apart and choosing one

copy over another would involve signif~cant communication cost differences that probably would
outweigh any differences caused by delays at sites, Thus only site failures or substantial congestion
on a path would force a change in the allocation. The system state, in this case, could be represented
by a flag for each site indicating whether that site is up or down, and a load measure, such as
message queue length, for each path between pairs of nodes. We assume that this load measure is
for the "best" path between the nodes at that time if there are multiple paths.

If we assume a heterogeneous system, with respect to sites, links and even databases, or if we
assume the use of a high bandwidth transmission technology such as fiber optics, then differences in
processing costs and delays will be significant. For example, performing the join of two large
relations on a close PC is likely to be more costly than performing the same join on a more remote
mainframe. In this case some measure of the load at a site is required such as CPU queue length,
CPU utilization, estimated response time or the number of CPU-bound and 110-bound tasks. While
we are not sure if such a IeveI of detail is required, it would be theoretically interesting to try and
include some measure of the load on the any copies of base relations at a site. For example, the
number and types of locks held on a copy of a relation give an indication of the load on that copy.

4. SUMMARY

We are studying the problem of site selection in large heterogeneous distributed databases. We
are experimenting with a two stage approach to the problem which first finds a near-optimal
allocation of subqueries to sites using the static information available about the database and the
network, and second, if necessary, revises the allocation based on the current state of the system. We
feel that the three most important tasks in this research are the development of an appropriate cost
model, the development of algorithms and heuristics to carry out the site seIection at an acceptable
time cost, and the refrnement of the concept of dynamic selection. Although dynamic selection in
widely-distributed databases has not received very much attention until now, its use could resuIt in
substantial improvements in the reliability of the query processor.

The general area of distributed query processing, and the particular problem of site selection,
for large heterogeneous distributed databases still require a great deal of study. While we can use
some of the techniques from related areas such as query processing for centralized databases and
task allocation in distributed systems, unique aspects of the problem require new solutions. This
search for solutions is complicated by the lack of working examples of such systems which forces us
to hypothesize about the characteristics of these databases and about their workloads.

5. REFERENCES

[I] C.T. Yu and C.C. Chang, "Distributed Query Processing", ACM Computing Surveys 16(4),
December 1984, pp399-433.

[2] C.T. Yu, C. Chang and Y. Chang, "Two Surprising Results in Processing Simple Queries in
Distributed Databases", Proceedings of the IEEE 6th International Cornputer Sofhuare artd
Application Conference, Chicago, 1982, pp.377-384.

[3] MJ. Carey and H. Lu, "Load Balancing in a Locally Distributed Database System", Proceedings
of the ACM SIGMOD International Cor?fererice on Management of Data, Washington, May 1986,
pp.108-119.

[4] P. Agrawal, D. Bitton, K. Guh, C. Liu and C. Yu, "A Case Study for Distributed Query
Processing", Proceedings of the International Syntposiunt on Databases in Parallel and Distributed
Systems, Austin, December 1988, pp.124-UO.

[q T.P. Martin and K.H. Lam, "Algorithms for Site Selection in Distributed Query Processing",
Technical Report 88-240, Dept. of Computing and Information Science, Queen's University,
Kingston, November 1988, and submitted to ACM-SIGMOD 1989.

[6] P. Bodorik and J.S. Riordon, "Heuristic Algorithms for Distributed Query Processing",
Proceedings of the International Symposium on Databases in Pamllel and Distributed Systems,

Austin, December 1988, pp.144-155.

[A kc. Liu and SX. Chang, "Site Selection in Distributed Query Processing", Rvceedings of the
3rd Intemusiond Confernce on Disbibuted Computer Systems, Miami, October 1982, pp.7-12.

[8] A. Rosenthal and P. Helman, "Understanding and Extending Transformation-Based
Optimiiers", Database Engineering 9(4), December 1986, pp.44-51.

Query Optimization in a

Main-Memory-Resident Database System1

Kyu-Young Whang

IBM Thomas J. Watson Research Center

P. 0. Box 2 18

Yorktown Heights, New York 10598

CSNET: WHANG @IBM.COM

Ravi Krishnarnurthy

M. C. C.

3500 West Balcones Center Dr.

Austin, TX 78759

CSNET: RAVI @MCC.COM

We present techniques for optimizing queries in memory-resident database systems. We discuss them in -
the context of Office-by-Example(0BE) that has been under development at IBM Research. Optimization

techniques in memory-resident database system differ significantly from those in conventional disk-resident

database systems. In particular, the following aspects are of importance:

1. A new approach to developing a CPU-intensive cost model.

2. New optimization strategies for main-memory query processing.

3. New insight into join algorithms and access structures that take advantage of memory-residency of data.

4. The effect of the operating system's scheduling algorithm on the memory-residency of data.

' 'Ihe full paper will appear in the ACM Transactions on Database Systems.

209

We present a simple index data structure suitable for a memory-resident database. The index is imple-

mented as a flat array of TIDs that are pointers to tuples. This structure saves the storage space significantly

compared with conventional index structures. The reduction of the storage space allows us to have more in-

dexes with less storage overhead. In fact, in OBE, it is possible to implement the strategy of having indexes

for all the attributes in the database. This strategy obviates physical database design problem, which is a

nuisance for novice users.

We emphasize that a proper scheduling algorithm of the operating system is crucial for realizing a

memory-resident database system. In particular, we show that the working-set scheduling algorithm provides

an excellent approximation for memory-residency of data By using this algorithm, the system prevents po-

tential thrashing due to heavy usage of virtual memory. In contrast, a pure demand paging scheme would not

work in a practical time-shared environment (even with a physical memory size sufficient for a single user)

because of potential thrashing.

Finally, we believe that a database system based on the memory-residency assumption is suitable for ef-

ficient main-memory applications including many aspects of artificial intelligence and logic programming

(such as Prolog [9]). In particular, nonrecursive queries expressed in function-free Horn-clause logic can be

directly processed by the techniques proposed in this paper [43].

Hall, P. A. V., "Optimization of a Single Relational Expression in a Relational Database," IBM J. of

Res. and Dev., Vol. 20, No. 3, pp.244-257, 1976.

Hammer, M. and Chan, A., "Index Selection in a Self-Adaptive Database Management System," In

Proc. ACM Intl. Conf. on Management of Data, Washington, D. C., pp. 1-8, June 1976.

Hiller, F. S. and Lieberman, G. J. Introduction to Operations Research, Holden-Day, Inc., San

Francisco, CA, Third Edition, 1980.

Ibaraki, T. and Kameda, T., "On the Optimal Nesting Order for Computing N-Relational ~oins," ACM

Trans. Database Syst., Vol. 9, No. 3, pp. 483-502, Sept. 1984.

IBM, PW/SP: System Logic and Problem Determination Guide (CP), LY20-0892-2, Third Edition, LBM

Marketing, Sept. 1983.

Jarke, M. and Koch, J., "Query Optimization in Database Systems," ACM Computing Surwys, Vol. 16,

No. 2, pp. 11 1-152, June 1984.

Kambayashi, Y. and Yoshikawa, M., "Query Processing Utilizing Dependencies and Horizontal De-

composition," In Proc. ACM lntl. Con$ on Management of Data, San Jose, Calif., pp. 55-67, May 1983.

Kim, W., "On Optimizing a SQL-like Nested Query," ACM Trans. Database Syst. Vol. 7, No. 3, pp.

443-469, Sept. 1982.

Kitsuregawa, M. et al., "Application of Hash to Data Base Machine and its Architecture," New Gener-

ation Computing, No. 1 , pp. 62-74, 1983.

Knuth, D., The Art of Computer Programming-Sorting and Searching (Vol. 31, Addison-Wesley, 1973.

Kooi, R. and Frankforth, D., "Query Optimization in INGRES," Database Engineering Bulletin, Vol.

5, No. 3, IEEE Computer Society, pp. 2-5, Sept. 1982.

Krishnamurthy, R., Boral, H., Zaniolo, C., "Optimization of Nonrecursive Queries," In Proc. I . t h Intl.

Con$ Very Large Data Bases, Kyoto, Japan, pp. 128-137, 1986.

Lehman, T. and Carey, M., "Query Processing in Main Memory Database Management Systems,"

Proc. ACM Intl. Con$ on Management of Data, Washington, D.C., pp. 239-250, May 1986.

Lehman, T. and Carey, M., "A Study of Index Structures for Main Memory Database Management

Systems," Proc. 12th Intl. Conf. on Very Large Dara Bases, Kyoto, Japan, pp. 294-303, Sepc 1986.

Luk, W. S., "On Estimating Block Accesses in Database Organization," Commun. ACM, Vol. 26, No.

11, Nov. 1983.

Pecherer, R. M., "Efficient Evaluation of Expressions in a Relational Algebra," In Proc. ACM Pacific

Conf., pp. 44-49, 1975.

Power, L. R., "EPLEA, Using Execution Profiles to Analyze and Optimize Programs," IBM Res. Rep.

RC9932, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, Apr. 1983.

Reiner, D. S., Ed., Database Engineering Bulletin, Vol. 5, No. 3, IEEE Tech. Comm. on Database En-

gineering, Sept. 1982.

Schkolnick, M. and Tiberio, P., "Estimating the Cost of Updates in a Relational Database," ACM

Trans. Database Syst., Vol. 10, No. 2, pp. 163-179, June 1985.

Selinger, P. G. et al., "Access Path Selection in a Relational Database Management System," In Proc.

ACM Inrl. Con$ on Management of Data, Boston, Mass., pp. 23-24, May 1979.

Shapiro, L, " ~ o i n Processing in Database Systenls with Large Main Memories," ACM Trans. Database

Syst., Vol. 11, No. 3, pp. 239-264, Sept. 1986.

Smith, J. M. and Chang, P. Y., "Optimizing the Performance of a Relational Algebra Database Inter-

face," Commun. ACM, Vol. 18, No. 10, pp. 568-579, 1975.

Stonebraker, M. et al., "The Design and Implementation of INGRES," ACM Trans. Database Syst.,

Vol. 1, No. 3, pp. 189-222, Sept. 1976.

Ullrnan, J. D., Princ@ks of Darahase Systems, Computer Science Press, Rockville, Maryland, 1982.

Vander Zanden, B.T., Taylor, H.M., and Bitton, D., "Estimating Block Accesses when Attributes are

Correlated," Proc. I.?th Intl. ConJ Very Lmge Dato Bases, Kyoto, Japan, pp. 119-127, Aug. 1986.

Warren, D.H.D., "Efficient Processing of Interactive Relational Database Queries Expressed in Logic,"

In h. 7th Intl. Conf Very Large Data Baws, Cames, France, pp. 272-28 1, 198 1.

21

Whang, K.-Y., Wiederhold, G. and Sagalowicz, D., "Estimating Block Accesses in Database

Organizations-A Closed Noniterative Formula," Commun. ACM, Vol. 26, No. 11, pp. 940-944, Nov.

1983.

Whang, K.-Y., Wiederhold, G. and Sagalowicz, D., "Separability-An Approach to Physical Database

Design," IEEE Trans. on Computers, Vol. C-33, No. 3. pp. 209-222, Mar. 1984.

Whang, K.-Y., "Query Optimization in Office-by-Example," IBM Res. Rep. RC11571, IBM T.J.

Watson Res. Center, Yorktown Heights, NY, Dec. 1985.

Whang, K.-Y. et al., "Office-by-Example: An Integrated Office System and Database Manager," ACM

Trans. Office Infor. Syst., Vol. 5, No. 4, pp. 393-427, Oct. 1987.

Whang, K.-Y. and Navathe, S., "An Extended Disjunctive Normal Form Approach for Processing Re-

cursive Logic Queries in Loosely Coupled Environments," In Proc. 13th Intl. Conf. Very Large Data

Bases, Brighton, England, pp. 275-287, Sept. 1987.

Wiederhold, G., Database Design, McGraw-Hill, New York, 1983.

Winston, P.H., Artificial Intelligence, Addson-Wesley, 1979.

Wong, E. and Youseffi, K., "Decomposition-A Strategy for Query Processing," ACM Trans. Database

S ' t . , Vol. 1, No. 3, pp. 223-241, Sept. 1976.

Yao, S. B., "optimization of Query Evaluation Algorithm," ACM Trans. Database Syst., Vol. 4, No.

2, pp. 133-155, June 1979.

Zloof, M. M., "Query-by-Example: A Data Base Language," IBM Systems J., Vol. 16, No. 4, pp.

324-343, 1977.

Zloof, M. M., "QBE/OBE: A Language for Office and Business Automation," IEEE Computer, Vol.

14, No. 53, pp. 13-22, May 1981.

Zloof, M. M., "Office-by-Example: A Business Language that Unifies Data and Word Processing and

Electronic Mail," IBh' Systems J., Vol. 21, No. 3, pp. 272-304, 1982.

Query Optimization for Memory-Resident Databases

(extended abstract)
Gran t E. Weddell

Department of Computer Science, University of M7aterloo
Waterloo, Canada, N2L 3G1

gweddell@uwaterloo.edu

1. PROJECT OVERVIEW

Almost any software system will have components that access and update information residing
in main-memory. For example, a query optimizer for a database system has procedures t o main-
tain the so-called "symbol table", which is essentially a memory-residen t database of parsed
queries, access strategy specifications, meta-data describing the various database schema, and so
on. The Resident Database Manager (RDM) is the name of a software toolset under develop-
ment a t our institution tha t helps with the development of such components in a way similar to
how Yacc, for example, helps with the development of other components responsible for parsing.

RDM presently consists of two compilers. Input t o the first compiler is a list of specifica-
tions in an object-oriented database language called LDM, another acronym for "Logical Data
Model". The main features of the various sublanguages of LDM are as follows:

The d a t a definition language manifests a da ta model that generalizes the relational model
in two ways. First, the notions of "relation" and "domain" are combined into a notion of
"class" by introducing surrogate keys for tuples, and by allowing attributes t o be "tuple-
valued". Second, classes can be organized in a generalization taxonomy whereby more spe-
cialized classes will automatically inherit attributes of more general classes. The taxonomy
is established by declaring any number of immediate superclasses for each class (LDM sup-
ports so-called "multiple inheritance").

Da ta access requests are expressed in a SQL-like query language tha t has been generalized
for access t o classes. Another component of the d a t a manipulation sublanguage is a simple
transaction language which allows the user t o specify simple combinations of update opera-
tions on the database. One operation allows the user t o change the "identity" of an object
(effectively changing its type).

a A d a t a statistics language (DSL) is used t o specify statistical information about a database.
Using the DSL, a user can supply estimates of the number of objects in a class, how often a
query o r transaction is invoked, the relative cost of space and time, and so on. The statist-
ical information is used by the component of the compiler responsible for performance
prediction.

A storage definition language (SDL) can be used t o override some of the decisions made by
the compiler on internal encoding of data. In particular, a user can specify a selection of
the indices t o be maintained in order to support searching within the database, and a selec-
tion of storage managers for managing the space used by objects.

Output from the first compiler is access and representation code in a language called PDM
(for "Physical Data Model"). PDM code can then be input to the second compiler along with
applications written in an extended C language called C/DB. C/DB has additional language
constructs tha t permit the direct use of d a t a access specifications originally written in LDM.
T h e result of this second compiler is "pure" C code tha t can then be*compiled with a standard C
compiler. A summary of overall dataflow for the toolset is given in Figure 1.

LDM So;rce File C/DB S O T

Figure 1. Basic Dataflow in RDM

2. OVERVEW OF T m QUERY OPTIMIZER

Queries are represented internally by an access specification language (ASL).[4] The ASL is a
wide-spectrum language in the sense that it allows the specification of a query with varying
degrees of commitment t o an access strategy. This includes forms that represent a number of
alternative strategies.131 Optimization is accomplished by a process of refinement, in which less
committed ASL constructs are gradually replaced with more committed constructs that espli-
citly establish join order, index use, subquery organization, the order in which t o check selection
conditions, and so on. Each step in the refinement of a query corresponds t o the application of a
rewrite rule.[l] The possible sequencing of rules is expressed in a rule-control language, which
also allows for explicit traversal of subparts of a query (in ASL).

An initial version of the query optimizer has now been completed in the Franz lisp p r e
gramming language. A t present, there are thirty-six rewrite rules used in essentially three
separate phases of query optimization.

(a) query normalization - A "least committed" ASL version of the query is derived from its
input form, which is specified in an SQL-like language.

(b) join-order selection - A nesting order for join operations is chosen, which also results in
determining independent sub-queries. (Only the nested-loops strategy for join evaluation is
expressible in our ASL. This is a reasonable limitation for memory-resident databases.[2,6])
Join order selection is accomplished by a branch-and-bound procedure derived from 151.
Note tha t the s t a te of a branch-and-bound search is itself an ASL construct.

(c) conjunct order selection - Various post-join-order optimizations are performed. This
includes the ordering of selections conditions within scans, automatic cu t insertion and pro-
jection elimination. T h e lat ter optimizations use a procedure for reasoning about a form of
functional dependency generalized for semantic d a t a models.[7]

2.1. Example of Data Definition

In the next subsection, we illustrate operation of the query optimizer for an example query con-
cerning a database of information about students, teachers and courses a t some university. A
description of the d a t a is illustrated by the entity-relationship diagram in Figure 2. Specifica-
tions in the LDM d a t a definition language tha t correspond t o this description are given in Fig-
ure 3, with keywords in a bold typeface. Lines 36 t o 40 express additional information in the
LDM d a t a statistics language t h a t estimate the number of objects in various classes.

(integer) Y (String)

Teacher D
l p i q

Professor

Figure 2. ER Diagram of a University Schema

2.2. Example of Query Optimization

In English, our example query is t o

"Find all graduates supervised by a professor who has taught a course in which a stu-
den t with a given name has enrolled."

T h e query can be expressed in the LDM query language a s follows.

achema University

clam Person
properties Name, Age
constraints

Id determined by Name
cover by Student, Teacher

property Name on String maxlen 50
property Age on Integer range 16 to 75

class Student isa Person

clsss Teacher isa Person
constraints cover by GradStudent, Professor

clsss Professor iaa Teacher

elm GradStudent isa Student, Teacher
properties Supervisor

property Supervisor on Teacher

clsss Course
properties Name, TaughtBy
constraints Id determined by Name

property TaughtBy on Teacher

clsss Enrolledln
properties Student, Course, Grade
constraints Id determined by Student, Course

property Grade on Integer range 0 to 100

size Student 500
size GradStudent 100
size Course 100
aize EnrolledIn 4000
size Professor 50

Figure 3. The University Schema in LDM

query SpecialGrads
given N from Name
eelect G from GradStudent
where exist P from Professor where

G.Supervisor = P and
Enrolledln {N as Student.Name, P as Course.TaughtBy)

We shall illustrate the results of query optimization for SpecialGrads in two separate cases
involving two different se ts of index declarations in the LDM storage definition language.

Case 1. In this case, we assume four different indices have been declared by the user.

index PersonIndex on Person
of type binary tree ordered by Name asc

index GradIndex on GradStudent
of type binary tree ordered by Supervisor.Name asc, Age desc

index EListl on EnrolledIn
of type distributed l i t on Course.TaughtBy

index EList:! on EnrolledIn
of type distributed list on Student

The first two indices are binary trees of all Person objects (including Student objects, and so on)
and of all GradStudent objects respectively. In the first tree, the Person objects are.sorted on
the value of their Name property, and in the second tree on the value of the Name of their

oon

Supervisor, then of their Age. T h e last two indices a re essentially owner-coupled sets , with the
class EnrolledIn as the member record type. EList l , for example, asserts t h a t each Teacher
object will point t o a list of EnrolledIn objects for courses taught by the teacher.

T h e P D M specification indicating the access s trategy generated by our query optimizer for
this collection of indices is as follows.

query SpecialGrads
given N from Name
select G from GradStudent
declare S1, El , P from Student , EnrolledIn, Professor
find all unique G

subclass access S1 in PersonIndex with S1.Name = N;
scan El in EList2 with E1.Student = S l ;
subclass assign P to E1.Course.TaughtBy;
scan G in GradIndex with G.Supervisor.Name = P.Name;
verify G.Supervisor = P;
success

W e refer to the "find ... succesa" construct used in the s trategy as a quant l ist . A quant list
represents a sequence of joins by nested iteration. This is illustrated by Figure 4, in which we
present PASCAL-like code tha t would correspond t o the above evaluation strategy for query
SpecialGrads.

S1 := <first entry of PersonIndex where Name = N > ;
if (not S1 = nil) and (S1.Name = N) and (S1 IN Student) then begin

El := <first entry of EList2 where Student = S1>;
while (no t E l = nil) a n d (E1.Student = S1) do begin

P := E1.Course.TaughtBy;
if (P IN Professor) t h e n begin

G := <first entry of GradIndex where Supervisor.Name = P.Name>;
while (n o t G = nil) a n d (G.Supervisor.Name = P.Name) do begin

if (G.Supervisor = P) t h e n
<remember G if not previously retrieved>;

G := <next entry of GradIndex>
end

end;
E l := <next entry of EList2>

end
e n d

Figure 4. Case 1 access s trategy for query SpecialGrads

Note t h a t "unique G" occurring after "find" indicates the need for a projection operation on
GradStudent objects. Th i s is necessary since a particular Professor object can be the Teacher
value for more than one course for which a s tudent with the given name is enrolled.

Case 2. Now consider where the user has declared only two indices which are lists of all Person
objects and all EnrolledIn objects respectively.

index PersonList on Person of type lit
index EList on EnrolledIn of type lit

The access strategy generated by our query optimizer now has the following form.

query SpecialGrads
given N from Name
select G from Gradstudent
declare E l , P from EnrolledIn, Professor
find all unique G

scan El in EList;
verify E1.Student.Name = N;
subclass assign P to E1.Course.TaughtBy;
subclass scan G in PersonList;
verify G.Supervisor = P;
success

This second strategy also has two loops, in which a scan of all Person objects using index Per-
sonList is nested within a scan of all EnrolledIn objects using index EList. Note tha t a projec-
tion of graduate objects remains necessary for the same reason as in the first case above.

3. SUMMARY

We have found the selection of a richer object-oriented da ta model together with the physical
circumstance of memory-resident t o have a major impact on problems in query optimization.

The index types appropriate in main-memory are not the same as traditional file structures
used for disk-based storage of data.

Clustering is much less of a performance issue. For example, the same record can serve as
an index entry in more than one index.

The circumstance of memory-residence together with the choice of an object-oriented da ta
model introduces the possibility of sort conditions for indices tha t correspond t o a "pro-
perty path". An example of this is the "GradIndex" declared and used in Case 1 above.

An object-oriented d a t a model introduces the ability to express so-called. "functional
joins". Memory-residence implies that functional joins can be supported for very little cost.
Both cases above illustrate this.

Cost models for performance prediction are different, and are also complicated by the pres-
ence of superclasses.

4. References

1. J. C. Freytag, A rule-based view of query optimization, Proc. A C M S I G M O D Conference
o n Management of Da ta , pp. 173-180 (May 1987).

2. R. Krishnamurthy and S. B. Navathe, A join processing strategy for memory-resident data-
bases, Research Report, Microelectronics and Computer Technology Corporation (1987).

3. G. M. Lohrnan, Grammar-like functional rules for representing query optimization alterna-
tives, Proc. A C M S I G M O D Conference on Management of Data, pp. 18-27 (June 1988).

4. R. A. Lorie and J. F. Nilsson, An access specification language for a relational da ta base
system, IBM Journal of Research and Development 23(3) pp. 286-298 (May 1979).

5. D. E. Smith and M. R. Genesereth, Ordering conjunctive queries, Artificial Intelligence
26(1985).

6. G. E. Weddell, Physical design and query compilation for a semantic d a t a model (assuming
memory residence), Technical Report 198, Computer Systems Research Institute, Univer-
sity of Toronto (1987).

7. G . E. Weddell, Reasoning about functional dependencies generalized for semantic data
models, Research Report CS-89-14, Department of Computer Science, University of Water-
loo (1989).

A Performance Study of Nested Relational DBMSs involving Query
Optimization

James E. Kirkpatrick and Mark A. Roth

Department of Electrical and Computer Engineering
Air Force Institute of Technology

Wright-Patterson AFB, OH 45433-6583

jkirkpat@afit.af.mil, mrothoafit .af.mil

March 31, 1989

1 Introduction
One of the reasons most often cited for studying the area of nested relations is the observed need for
"better" support for advanced application areas whose requirements do not seem to be well served by the
standard relational (or any other particular) data model. Those advanced application areas most often
mentioned are: statistical data, VLSI CAD, engineering applications in general, and spatial/image data. A
common theme is that these areas are not "simply" record-based such as the more traditional business/bank
applications. They employ higher volumes of data within simple objects; the operations required do not
match well with traditional DB operators (particularly relational algebra operators); the objects usually
have inherent hierarchical relationships to one another which are not explicitly retained/expressed within a
standard (relational) DB design; and ,in general, the requirements of the engineering/scientific community
(among others) have progressed beyond the point where a standard relational DB, or any other existing type
of DB, can provide adequate support.

One of the key elements of any "bettern DBMS, however, must be its level of performance. No DBMS will
be accepted, regardless of capabilities, if the resulting performance is unacceptable. Therefore, an interesting
area of research might involve the investigation of the performance inherent in the new data models being
developed. Nested relations provide one such data model.

The areas of nested relational database (NRDB) performance research to be found in the literature can
be roughly categorized as:

a Proposals on how one might use the NR and complex object (CO) concept to implement a DB for a
particular application (spatial, statistical, musical, etc) and why these models should be better (i.e.,
yield better performance) for the associated application.

a Proposals for Object Oriented (0 0) DB models and Extensible DB systems which expect to result in
better support of user requirements and performance increases. These propoeals typically involve the
concepts of complex objects, hierarchical decomposition, and inheritance which are/- be associated
with a NRDB.

a Designs of actual NRDB implementation projects currently taking place (DASDBS [PSS+87], AIhl
[Dad@], and VERSO [Bid87]).

Models/proposals for pads of a NRDB (i.e., storage methods [H088a, H088b], and query languages
(RKB87J).

Theoretical results which might be directly applicable in the development of NRDB performance models
[Sch86, Bid87, DVG88J.

We find it interesting that many papers begin with a section justifying the need for a NRDB model
via examples of how NRs should be able to represent information more concisely and in a more logical
(uaer-meaningful) manner than an equivalent series of flat relations. This section of a paper usually gives
references to a series of example application areas where NRs should iniuiiively be a promising alternative
to flat relations for data modeling. Unfortunately, we find no "real" justification for why the NR model
should be strictly "better thann the flat model. In addition, there are no studies suggesting under which
circumstances one model could be expected to lead to better performance than the other. It seems that
this belief in a "better, more usefuln NR model is common, but substantiated only in occasional and limited
ways [Sch86, PSS+87].

At the Air Force Institute of Technology, we have begun a project involving the development of a
NRDBMS using the EXODUS extensible DBMS. One of the primary purposes for initiating this project
is to study performance aspects of nested relations. As a result, we have begun to investigate the optimiza-
tion of queries within a NRDB.

In section 2, we briefly present some problems being addressed by our project as well as several of our
research goals. Section 3 presents a quick look at concept of nested relations. Section 4 then gives an
overview of query optimization results in the area of nested relations. Finally, section 5 presents a look at . . .

physical storage structures for nested relations.

2 AFIT NRDB Research Project

We believe that the "spacen in which the performance of NRDBs can be improved over that of flat
relational DBs will be formed by:

Taking advantage of opportunities in properly structuring the relations in the first place (i.e., NR DB
design, or NR "normalizationn).

Proper use of adapted implementations of relational operators which use these structures to their
benefit (the lion's share of developing a NR query optimizer).

Sound decisions on what type of storage structures to use for a particular DBMS (on the basis of
workload and application).

Therefore, we believe that the most beneficial initial work in this area will involve studying the effect
of application (type of queries normally issued), workload (distribution of queries occurring in a particular
application), and storage structures used on the performance of a NRDB.

As a result, we have defined the following problems to be addressed:

1. Develop a rule-based query optimization capability for Nested Relational DBMSs.

2. Study the effect of workload and storage structure on the performance of a nested relational DBMS.

3. After the analysis performed in 1 and 2, a need for non-existing operators, access methods, etc may
be discovered. Investigate sGch needs as they are discovered and provide solutions.

Finally, our research goals include:

1. Develop a eet of algebraic rules for performing transformations of nested relational operators within a
query tree.

2. For each of the three basic storage models (FSM, DSM, NSM) defined by [B088b], develop cost
functions which characterize the cost of applying available nested relational operators.

3. Using the techniques and theory developed by Freytag [he871 and Graefe [GD87, Gra871, develop a
rule-based query optimizer which will generate execution plans based on the algebraic transformations
and cost functions developed above.

This will result in a method of generating (predicting) cost information (in t e r m of CPU time and
the number of disk accesses required) associated with particular queries (expressed in terms of nested
relational algebra) intended to be executed within a nested relational DBMS based on a known storage
methodology.

4. Develop realistic workload information (a "representative" set of queries and distributions of these
queries) for a particular application area (e.g., VLSI CAD or Structured Analysis (SA) Design).

5. Design and carry out an experiment based on predicted cost information derived from the query opti-
mizer which determines the effect of workload and storage structure on the performance of a NRDB.

6. Validate predicted results via actual implementation (through the use of EXODUS, with the support
of MS students).

7. Expand the scope of both predictive and actual performance studies by adding a second application
area and corresponding workload study.

8. Add the capability to process SQL/NF [RKB87] statements rather than nested relational algebra
expressions.

3 Nested Relations
When one assumes that the value of an attribute must be "atomic," the resulting database is said to be
in First Normal Form (1NF). The concept of a nested relation involves the relaxation of this "atomic
attributes only" requirement. As a result, nested relations can produce a much more compact and intuitive
representatioi of the relationships which the database is intended to record.

In 1982, Jaeschke and Scheck [JmS82] presented research involving the creation of unnormalized (nested)
relations from normalized (INF, or flat) relations and what operations should be defined for nested relations.
In [FT83], Fischer and Thomas expand the work of [JmS82] by generalizing the nest and unnest operators to
allow for multiple attributes and multiple levels; extending the definitions of the relational algebra operators
in view of the enlarged "scope" of nested relations; and providing results concerning properties associated
with the interaction of nest, unnest, and the relational algebra operators.

In the nested algebras discussed above, manipulations of deeply nested relations will involve first unnesting
to the point where the desired "sub-relation" is "exposed" and renesting when the operation has been
carried out. This costly, unnecessary, and sometimes destructive process is alleviated by the introduction
of recursive algebras. These algebras provide "direct access" to required sub-relations and are discussed by
[Jae84, SS86, DL87, Co189].

4 Query Optimization of Nested Relations
In order to study the potential performance of the nested relational data model, one haa to be able to

associate potential costs with a particular query. This is essentially the job of the query optimizer (plus the
eelection of a minimal cost execution plan from within the set of such potential ah).

There has been very little research performed in this area. To our knowledge, research involving the
optimization of queries based on the concepts of nested relations and complex objects hae been limited to

1. The algebraic optimization of queries expressed in flat relational algebra based on a knowledge of nested
physical storage structures [Sch86],

2. The algebraic optimization of recursive nested relational algebra expressions [Co189],

3. The development of access plans and the analysis of access costs for Summary Table By Example
(STBE) queries [OM0851 (eseentially non-recursive nested algebra exereseiona proposed by Jaeschke
and Scheck).

4. A proposal for the extension of System R's optimizer for handling "complex objects" [LDE+85], and

5. The maeter's thesis of Bartels and Moeller [BM85]. We have only recently come across these references.
This work was evidently intended to be used by the AIM project, however, recent publications by the
AIM "team," while mentioning the need for query optimization, do not reference this work.

Developing a functioning query optimizer for nested relatione using the EXODUS "optimizer generator"
approach will be a primary contribution of our research.

5 Storage Structures

The "heart and soul" of any DBMS has to be the methods by which data is stored, accessed, and manipulated.
The basis of these overall data management methods is the way in which data is physically stored. For any
"real-lifen system, this, in turn, means how the data is structured on secondary (disk) storage devices.

Unlike query optimization, the subject of storage structures for nested relations has been fairly well
explored. This research has arisen from efforts to develop a DBMS based on the concept of nested relations
[PSS+87, Dad88, LKD+88, KCB88, DVG881, as well as individual investigations into storage structures
which will best support the use of nested relations [HO88a, H088b, DPS86, VKC861. In reviewing these
results, one finds that a common set of requirements that any acceptable storage structure must have would
include:

The ability to "quicklyn access either an entire nested relation or any sub-relation within the overall
structure of a nested relation.

A nested relation should be capable of growing or shrinking "in place" as tuples within sub-relations
are added or deleted, without having to constantly re-organize the entire nested relation.

Any implementation must allow for variable-length attributes (atomic or set-valued).

Sub-relations should be clustered as closely as possible to the relation under which they are nested.
The idea here is that an access to nested relations which follows the hierarchical schema should be able
to obtain the necessary pages from disk in sequential order.

Traditional access methods such as B+-trees should be supported in order to allow for rapid access to
required tuples as is true in existing flat relational DBMSs.

In [H088b], Hafez and Ozsoyoglu present a method of classifying the storage structures which have been
proposed for the support of nested relations. In this classification scheme, there are three basic storage
modela (Decomposed, Normalized, and Flattened) and three further "hybrids" (Partial Decomposed (P-
DSM), Partial Normalized (P-NSM), and Partial Flattened (P-FSM)) which describe those storage models
involving elements of two other models. The P-NSM model in particular is discussed in detail in [H088a].
Thia paper also describes a proposed algorithm for determining, on the basis of expected queries (workload),
the moet efficient compromise between a normalized and completely flattened model.

References

[Bid871 Nicole Bidoit. The VERSO algebra or how to answer queries with fewer joins. Journal of
Comput er and System Sciences, 35(3):321-364, December 1987.

[BM85] R. Bartels and J . Moeller. Entwurf und implementierung einer regelbasierenden planungskom-
ponente fuer die optimierung von datenbankanfragen in einer sequel-artigen sprache (design and
implementation of a rule-based planning component for the optimization of sequel-like database
queries). Master's thesis, Tech. University of Darrnstadt and IBM Heidelberg Scientific Center,
November 1985. In German.

[Co189] Latha S. Colby. A recursive algebra and query optimization for nested relations. To appear in
SIGMOD 89, 1989.

[Dad881 Peter Dadam. Advanced information management (AIM): Research in extended nested relations
Data Engineering, 11(3):4-14, September 1988.

[DL871 V. Deshpande and Per-Ake Larson. An algebra for nested relations. Rearch Report CS-87-65,
Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1,
December 1987.

[DPS86] U. Deppisch, H.-B. Paul, and H.-J Scheck. A storage system for complex objects. In International
Workshop on Object Oriented Database Systems, pages 183-195, 1986.

[DVG88] Anand Deshpande and Dirk Van Gucht. An implementation for nested relational databases. In
Proceedings of the Fourteenth International Conference on Very Large Databases, Los Angeles,
pages 76-87, August 1988.

[Fre87] J. C. F'reytag. A rule-based view of query optimization. In Proceedings of ACM-SIGMOD 1987
Annual Conference, San Francisco, pages 173-180, 1987.

[FT83] Patrick C. Fischer and Stan Thomas. Operators for non-first-normal-form relations. In Pro-
ceedings of the 7th International Computer Software Applications Conference, Chicago, pages
464-475, November 1983.

[GD87] G. Graefe and D. DeWitt. The exodus optimizer generator. In Proceedings of ACM-SIGMOD
1987 Annual Conference, San Francisco, pages 160-172, 1987.

[Gra87] Goetz Graefe. Rule-Based Query Optimization in Eztensible Database Systems. PhD thesis,
University of Wisconsin-Madison, 1987.

[H088a] Aladdin Hafez and Gultekin Ozsoyoglu. The partial normalized storage model of nested relations.
In Proceedings of the Fourteenth International Conference on Very Large Databases, Los Angeles,
pages 100-11 1, August 1988.

[H088b] Aladdin Hafez and Gultekin Ozsoyoglu. Storage structures for nested relations. Data Engineering,
11(3):31-38, September 1988.

[Jae84] Gerhard Jaeschke. Recursive algebra for relations with relation valued attributes. Technical
Report 84.01.003, Heidelberg Scientific Center, IBM Germany, 1984.

[JmS82] Gerhard Jaeschke and Hans Jorg Schek. Remarks on the algebra of non firat normal form relations.
In Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
Los Angeles, pages 124-138, March 1982.

[KCB88] W. Kim, H. Chou, and J . Banerjee. Operations and implementation of complex objects. IEEE
lfansactions on Software Engineering, 14(7), July 1988.

[LDE+85] V. Lum, P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner, and J. Woodfill. Design
of an integrated DBMS to support advanced applications. In qmceedings of the International
Conference on Foundations of Daia Organization, Kyoto, pages 21-31, May 1985.

[LKD+88] V. Linnemann, K. Kuspert, P. Dadam, P. Pistor, R. Erbe, A. Kemper, N. Sudkamp, G. Walch,
and M. Wallrath. Design and implementation of an extensible database management system
supporting user defined data types and functions. In Proceedings of ihe Fourfeenth International
Confennce on Very Large Databases, Los Angeles, pages 294-305, 1988.

[OM0851 Giiltekin Ozsoyoglu, Victor Matos, and 2. Meral Ozsoyo~lu. Query processing techniques in the
summary-table-by-example database query language. Technical report, Department of Computer
Engixering and Science, Case Western Reserve University, Cleveland, OH, 1985.

[PSS+87] H.-B. Paul, H.-J. Schek, M.H. Scholl, G. Weikum, and U. Deppisch. Architecture and implemen-
tation of the darmstadt database kernel system. In Proceedings of ACM-SICMOD 1987 Annual
Conference, San Francisco, pages 196-207, 1987.

[RKB87] Mark A. Roth, Henry F. Korth, and Don S. Batory. SQL/NF: A query language for -1NF
relational databases. Information Systems, 12(1):99-114, 1987.

[Sch86] Marc H. Scholl. Theoretical foundation of algebraic optimization utilizing unnormaiized relations.
In International Conference on Database Theory, Rome (Lecture Notes in Computer Science 243),
pages 380-396. Springer-Verlag, 1986.

[SSSG] Hans-Jorg Schek and Marc H. Scholl. The relational model with relation-valued attributes.
Information Systems, 11(2):137-147, 1986.

[VKC86] Patrick Valduriez, Setrag Khoshafian, and George Copeland. Implementation techniques of com-
plex objects. In Proceedings of the Twelfth International Conference on Very Large Databases,
Kyoto, pages 101-110, August 1986.

An Operational Optimization Approach for

Parallel n-join with Large Number of Processors

Li Tong

Nick Roussopoulos~

Departnlent of Computer Science
T Tniversit,y of Maryland
('ollege P a r k , M D 20742

T h e prot)lem we are investigating is the optilnal completion t ime of parallel join of n
base relat ioni (n-join). Th i s p rob len~ ha.; been well recognized and previous researcll work
for sequential n-join can 1)e seen in [1][2][3]. M'e found that the problem iq entirr l j- rle\t
for parallel case and ne\n o p e r a t i ~ n a l approach has been propo.;ed. Parallel Processil~g
Tree (PPT) i.; used t o model parallel non pipelined n-join [dl. W e proved that o l) t a i ~ ~ i ~ l g
a n optinlal PPT in gelicral is El' ('omj)letc even for t h e tree queries. -4 qet of transfornla-
tion operations of the PPT were defined and a n a lgor i thn~ for building u p a canonical PI'T
for any query by applying these operations has heen presented. A canonical PPT has the
nice properties that are required t o perfon11 a set of j o i ~ i s efficiently. .Among them arc l ~ i g l ~
parallel degree, halancecl d a t a f l o w . goo(1 .;election of source and target relationi. ,411otl1rr
advantage of these operations is that they can also he applied t o adjust t h e c a l ~ o ~ ~ i c a l 1'PT
dynamicall)- during thrl execution of the joins if qomc i~nexpected delay is e~lcoui~tc.~.ecl i l l

some of t he processes.

\Ye feel tha t PPT iq a very convenient and powerful model for capturing 1)ot 11 secluen-
tial and parallel t)eliavior. of n-join. I t can model tmth pipelined and non pipelined par;il-
lel joins. T h e dynamic asl)rct \ o f t h e PPT allow adjustment.; of the processes dllrilig the
join execution. Th is can he used for controlling t h e number of joins executed concl~rrent ly
in a n environment with limited n i ~ m her of processors.

T h e result.: in thi3 paper have general purpose. They d o not restrict to a n y t w o \t;ij.
parallel join method, any parallel join algorithm which breaks down t o a se t of seqi~ent i ;~l
joins running on single processors re\l)ect,ively and t h e sequential join has t h e coqt 1noclf.l
satisfies t h e formula proposed hy will he in the opt,inlization scope of th is paper. Ncit I1c.r.

do the results rely on any specific DB machine architecture. They are applicable t o any
multiple processor system in which several transactions are running parallelly. T h e proces-
sors can be either tightly coupled o r loosely coupled as long a s each secondary storage unit
can be accessed by all the processors and accessing t o different storage unit by different
processors can be done parallelly. Following are the illustration of the PPT operations tha t
are defined t o transform an arbitrary PPT into a canonical o n e . * ~ u e to the limitation of
the space, we include here only the description directly relate t o the operations, all other
details are not included.

The first operation is j l ipping. Consider the component given in Fig.1 (a). T h e flipping
operation transforms it in to the component shown by Fig.1 (b) if G(rho,,, y) < G(rho,. z),

otherwise the result is shown by Fig.] (c). Kotice tha t p, , = p,,. In Fig.1 (a), y must he
the root. of the leftmost children component of x. C1 and C;2 in Fig.1 (a) (b) and (c) are

the sets of children components of y and x respectively in Fig.1 (a). Similar representation
i s used for the other figures in this section.

Fig. 1 1111lstrat.ion of Flipping

The intuition and the effect of flipping is to parallelize a nilinher ol' o t 11~1.1vi~e secllleli-
t,ial joins. For example. the join of base relations x and y is parallelecl wit 11 other join\ in
C', and C', after the flipping. Initially. the join represented by the edge from r to y in Fig.1

(a) is activated after the completion of t,he coniponent rooted a t y.

The second operation is called sofnt;on. It halances the two designatetl r.eIiltic>~~s t o an
edge in case one relation has heen produced much earlier than the other. an(f thus.]la.\ to
wait. Given a component represented 1)y Fig.:! (a) where all the children component\ of
any root are in the optinial order. the rotation transforms the component into the one in
Fig.f(b) if G(p . C I S) i G(p. C.,'). - Otherwise the new component is represented by Fig."(-).
Here C,' is the cornponelit rooted a t x and containing the children components in C1. and
C2' is the component rooted a t y and containing the children components C',, - I t ~ p t o C',,, p

is the join se lec t i~ i t~y hetween C,' and C','. We require that F(C,,,) .. < F(C',') 5 F(C',k) for k

= i + l , ..., d . According t o the ordering of t h e children components, only left rotation is
necessary.

Fig. 2 Illustration of Rotation

F o r t h e two relations designated t o an edge, the one represented by t h e component
pointed t o by t h e edge is assumed t o be t h e target relation. T h e source a n d target rela-
tions are weil defined by t h e PPT and can he decided based on the function C value of
these tmo relations. T h e one with smaller C; value i.; preferred t o he t h e target relation
according t o the cost formula we have del-eloped for t,he PPT. T h e operation . s u l l l c . h ~ ~ ~ g i5
designed t o change t h e roles of the source and t h e target relations designated t,o all edge in
a PPT. Given a component defined in Fig.3 (a) , t h e switching operation t ransforms it jnto
the conlponent shown in Fig.3 (h). Tlie qource and t he target relations designated t o t I l t

edge (x,y) have switched their roles.

(3 (h)

Fig. 3 Illustra.t,ion of Switching

In o u r canonical PPT generation algorithm, each application of t h e operations i.;
always profitable. It t u r n s o u t t h a t t h e triggering condit.ion for a profitable application of
the operations is very simple. Th is assets t h e applicability of o u r algorithm.

Currently the canonical PPT generation algorithm has been implemented and statistic
da ta are being collected. The preliminary results are very encouraging. For example. with
20 relations, the ratio of the optimal PPT cost to the canonical PPT cost reaches o n aver-
age 81% with the same amount of processors.

References

[I] T. Ibaraki. and T. Kameda. "Optimal nesting for computing N-relational join3."
ACM TODS Vo1.9, No.3. Sept. 1983

[2] R. Krishnamurthy, H. Boral, and C. Zaniolo, "Optimization of nonrecilr4ve
queries." Proceedings o f lZDB 86, h-yoto

[3] A. Swami, and A. Gupta, "Optimization of large join queries." SIGh40D REC'ORD
Vol. 17, No. 3. Sept. 1988

(41 N. Roussopoulos. L. Tong. "Optimization of Response Time in Parallel Pipelinerl
n-Joins." IT,VlI.-i('.c-TR-89-6 CS-TR-2180 Dept of Con lp t~ ter .<cience [- H I ! - 01
Marylnwi. College Pork. .Jon. 1989

Evaluation of Linear Recursive Predicates in Deductive Databases

Louiqa Raschid
Institute for Advanced Computer Studies

Department of Information Systems
University of Maryland

3129 A.V. Williams
College Park, MD 20742
louiqa@secd.cs.umd.edu

Extended Abstract

We present our research on efficiently evaluating linear recursive predicates in deductive databases.
Results of this research have been presented in PAS86 and RAS891. Deductive databases integrate techniques
from logic programming and database management systems. Recent research has focused on compiling logic
programs in deductive databases. Compiling a clause of a logic program generates a proof tree, for each inten-
sional database predicate, comprising only extensional database predicates. This compiled clause is equivalent to
a relational algebra expression that can be optimized and evaluated efficiently by the relational database manage-
ment system.

In the presence of recursive predicates, infinite proof trees are generated. To avoid this, a connection
graph is used to represent the clauses of the logic program; recursive intensions occur in the connection graph as
a potential recursive loop (PRL) [HEN84]. Traversing the PRL generates a sequence of resolvents or a set of
equivalent relational algebra expressions.

The research presented here is a strategy for efficiently evaluating the resolvents generated by a linear
recursive predicate. Our approach is to exploit various database query optimization techniques. We identify
three techniques, namely query decomposition, sharing of intermediate results and the pipelined execution of
relational algebra operations, that are critical to our evaluation.

To describe our optimization, we first decompose each resolvent into a hierarchy of primitive algebraic
operations that can benefit from pipelining. We then identify possible parallelism in executing these primitive
operations as well as opportunities for intermediate result sharing among the resolvents. Finally, we determine a
termination condition to halt the evaluation of the query. Although it is advantageous to maximize the number
of primitive operations being executed in parallel, the degree of parallelism is limited by the availability of pro-
cessors in the evaluation environment. Similarly, the amount of intermediate result sharing among resolvents is
limited by the bandwidth and the structure of the interconnection network. As the resolvents become longer (by
the repeated traversal of the PRLs), there is increasing opportunity for parallelism and there are several ways to
decompose each resolvent into primitive operations. However, to maximize the opportunity for result sharing, it
is desirable to decompose each resolvent so that it can share the greatest common sub-expression from a previ-
ously evaluated resolvent. To avoid irregularity in the interconnection network and to simplify the network
structure, it is desirable to limit the sharing of results only between adjacent resolvents.

An analytical performance evaluation that compared a distributed system that supports horizontal con-
currency of operations with a pipelined system that supports both horizontal and vertical concurrency of opera-
tions was used to study the benefits of the query optimization. In a distributed system with horizontal con-
currency, operations that are independent of each other are executed in parallel. In a pipelined system with vert-
ical concurrency, as soon as an operation computes a block of data of a result relation, it passes this block to
(all) other operations that use this result relation as input. Thus, several dependent operations along the pipeline
execute concurrently.

Our evaluation accurately models the pipelined execution of accumulation type operations, i.e., operations
such as the relational join where the output rate varies as more input data accumulates. To explain, in a data-

flow based algorithm for an accumulation type operation, the rate of output blocks produced by the operation is
determined by the availability of input, as long as the i-th block of input can be completely processed before the
(i+l)-th input block is available; i.e., the output rate is determined by the input rate (which is the output rate of
the previous operation providing the input). At some point, the input blocks are available at a faster rate than
they can be consumed. This is the critical point for this operation, and after this point, the output rate is deter-
mined by the processing rate of the operation, itself. Our model reflected this-behaviour of the pipelined join
operation

The two measures used in the evaluation study are the response time (the time to produce the first block
of data) and the execution time (the time to complete execution), for each resolvent. Expressions for both the
response time and the execution time for an operation at a level, m, are defined recursively with respect to
operations at levels (m-1) and lower, that provide input dong the crin'cal path of the pipeline.

We study the performance of this evaluation stmtegy with and without pipelining, with respect to four
parameters. The first parameter is the block size, B. The second parameter is the join selectiviry, j , of the criti-
cal path operations that provide input. The join selectivity, j, is not an absolute value but is normalized with
respect to the size of the input relations, and is defined as a growth factor. A growth factor of 1.0 implies that
the relations sizes along the pipeline remains steady while a value greater than 1.0 implies that the relation sizes
grow (increase) along the pipeline and that later operations of the pipeline execute for longer periods. The third
parameter is the number of tuples, N , of the extensional database relations, against which the resolvent are
evaluated. The fourth parameter that we study is the complexity of the relational algebraic expressions opera-
tions executed at each node in the pipeline.

The performance evaluation proves the benefit of exploiting these database query optimization techniques
when evaluating linear recursive predicates in deductive databases. Currently, this evaluation is being extended
to the case where there are are multiple potential recursive loops for any linear recursive intensional predicate.

References

HEN84
Henschen, L.J. and Naqvi. S.A., "On Compiling Queries in Recursive Fist Order Databases," Jownal
ACM, 31.1, 1984.

RAS86
Raschid, L. and Su, S.Y.W., "A Parallel Processing Saategy for Evaluating Recursive Queries," Proceed-
ings of the International Conference on Very Large Databases. Kyoto, Japan. 1986.

RAS89
Raschid, L. and Su, S.Y.W., "An Efficient Strategy for Evaluating Linear Recursive Predicates," submitted
to ACM Transactions on Database Systems. Also appears as University of Maryland Institute for
Advanced Computer Studies technical report UMIACS-TR-89-18, 1989.

Query Compilation and Rule Storage in a

Knowledge Base Management System

Louiqa Raschid
Institute for Advanced Computer Studies

Department of Information Systems
3129 A.V. Williams

University of Maryland
College Park, MD 20742
louiqa@ secd.cs.umd.edu

Extended Abstract

A knowledge base comprises an intensional database of rules that capture problem-solving knowledge and
an extensional database of facts. Executing a transaction against a knowledge base is significantly different from
executing a DBMS transaction. If we consider a DBMS transaction to comprise a sequence or tree of database
operations, then, these operations are compiled, (optimized) and executed; when the transaction commits,
changes are made to the database. In contrast, a KBMS transaction cannot be executed against the database,
independent of the rule base. For example, retrieval operations against the database are affected by deductive
rules that provide new data for retrieval. Updates to the database are affected by constraints from the rule base
which must be satisfied before the updates can be made to the database. Updates may also require further
operations on the database to maintain consistency.

In many A1 environments rules are stored and processed interpretively, in main memory. This proves
inefficient if the rule base is very large and cannot be stored in main memory. If the rules must access a data-
base which is disk resident, then the overhead of accessing the disk, each time data is required is excessive. In
addition, interactive accesses to the database cannot be optimized, if the rules are being interpreted.

In order to overcome these limitations, we propose the following techniques:

(1) The use of compilation that allows operations in the transaction to be compiled against the intensional rule
base. The compiled transaction can be optimized before execution against the database.

(2) The use of hashing to physically cluster large intensional rules bases on disk, so they can be accessed
efficiently through a hash table index.

We have studied the use of these techniques in a knowledge base management system based on an
object-oriented semantic data model OSAM* [RAS88, SU881. One of the components of an object class is the
rule-based knowledge defined for that object class. These rules must be applied when applying operations
against the instances of the object class (both retrieval and updates of the object instances). We briefly describe
our research on using these techniques, in this environment.

Compiling Operations of a Transaction

The operations in the transaction that are to be executed against the knowledge base must first be com-
piled against the rule base. In PEI781, compilation is defined as follows: In the presence of an intensional data-
base a query is compiled if it passes through two distinct phases. In the compilation phase, the query is first
processed against the intensional database to produce some form of object code. In the second execution phase,
the compiled object code is executed against the extensional database alone. If these two phases are not distinct,
then the approach is interpretive.

When the intensional rule base is very large, then, compiling the query may prove to be very expensive;
rules that will never have their antecedents satisfied will be expanded completely and compiled and they will
generate large query trees that require many unnecessary accesses to the database. Interpretation, however, is

more selective and expands only those rules whose antecedents may be satisifed by verification against the data-
base. It is a depth-first strategy which veniies rules one at at time.

We propose a [Match/Modify/Look-Aheadmxecute method, or [M/M/LA]/E method, to execute a transac-
tion against the knowledge base; this method is a compilation technique but it has the advantage that it only
compiles rules that are relevant and whose antecedents must be verified.

Processing in this method alternates between the h4/M/LA and the E phases. In the MIMLA phases,
operations in the transaction will be compiled against the intensional rule base. This will result in modifying the
transaction and incorporating new operations and rules into the transaction. Only those rules that are relevant
and whose antecedents must be verified will be accessed and expanded. The compiled transaction is now exe-
cuted against the extensional database. In the E phase, the consequents of those rules whose antecedents are
satisfied will be applied. If this results in further modifications to the &ransacLon, then, we re-invoke the
[M/M/LA]/E phases for the modified portions of the transaction.

The benefits are that the compiled portions of the transaction may be optimized before execution. By
alternating between the M/M/LA phase and the E phase, we are able to selectively verify the antecedents of
relevant rules and apply their consequents, which funher modify the transaction. Thus, we derive some of the
benefits of the interpretive approach.

The compilation assumes that there are two kinds of rules, differentiated on the basis of the antecedents,
namely, value independent rules (VIRs) and value dependent rules (VDRs). The antecedents of VIRs test the
execution of operations against object classes or the execution of VDRs defined for object classes. The
antecedents of VDRs are well-formed formulae describing a relationship among object instances that must be
verified against the database. When the antecedents of VDRs are verified, they generate retrieval operations
against object classes, that must be executed. The consequents of VIRs and VDRs can be (a) update operations
against object classes, (b) well-formed formulae which are descriptions of derived data, i.e., derived instances of
object classes, and (c) VDRs defined for object classes; these result in explicit execution chains of VDRs.

In the M/M phase, operations and VDRs defined for object classes, in the transaction, are matched against
VIRs defined for those object classes; if there is a match, then, the consequents of the matching VIRs modify
the transaction by appending operations or VDRs. The M/M phase is cycled through repeatedly until it ter-
minates; cycles must be eliminated. In the LA phase. the VDRs in the transaction are expanded; the retrieval
operations generated by their antecedents are attached to the transaction. These retrieval operations must also be
processed by the M/Tvl/LA phase. The retrieval operations (from the antecedents of the VDRs) are appended at
a higher execution level, in order to distinguish them from the VDR at a lower execution level. Cycles that
cross execution levels must be identified; if they are caused by (linear) recursive VDRs, then, they can be further
optimized. If they do not include VDRs they must be eliminated. The M/MILA phase terminates when all
operations and VDRs have been matched against VIRs.

In the E phase, operations in the transaction are executed against the instances of the object classes in the
database. Operations at a lower execution level have precedence, in execution. Next, VDRs at that execution
level are executed. Each VDR points to a smcture at a higher execution level. The smcture comprises a con-
junction of reuieval operations representing the antecedent of the VDR and possibly. other operations and/or
VDRs that were attached (in the M/M/LA phase for each retrieval operation). The reuieval operations are exe-
cuted against the instances of the object class and the VDRs are expanded as described. Those VDRs whose
antecedents are satisfied during the E phase are marked so that they can be processed further; i.e., their conse-
quents will be applied to the transaction and the M/M/LA/E phase is re-invoked for the modified portions of the
transaction.

Currently, we have implemented many of these algorithms. We propose to run some experiments on the
BBN Butterfly parallel processor machine.

Efficient Storage of Large Rule Bases

During compilation. we wish u, provide efficient access to the disk resident rule base defined for the
object classes. The h4/M phase accesses VIRs whereas VDRs are accessed during the LA phase.

VIRs are defined for a single object class; they are clustered on the disk by the unique name of his object
class. Since VIRs are selected, in the M/M phase, using the object class and the operation type or rule name

specified in the antecedent, this clustering scheme is adequate. VDRs must have a unique rule name within the
unique object class for which they are defined. Their antecedents will test instances of several object classes; at
least one of those object classes must be the one for which it is defined. VDRs are physically clustered on disk
in two different ways. If they are explicitly selected for execution as a consequent of a single rule, (eilher a
VDR or VIR), then they are physically clustered with that rule. If they are explicitly selected for execution by
several rules then they are physically clustered by the unique object class for which they are defined.

A hash table is maintained in main memory. It is an array ObjTbl. Each element of the array points to a
linked list of elements ObjTblE. Each element ObjTblE is a structure comprising the name of an object class,
two file pointers (or block pointers) to the VIRs and VDRs defined for that object class, and a pointer to the
next element in the list.

The array ObjTbl is first initialized before processing any transactions. For each object class, a hash func-
tion is used to obtain an index, i, into the array. Since many object classes may hash to the same location, we
traverse the list pointed to by ObjTbl[i] until we find the end of the list. A new element ObjTblE is created for
the object class. Next, we determine the physical block (or file) pointers for the VlRs and the VDRs defined for
this object class. The values are entered in the ObjTblE element.

During the IWM phase, the ObjTblE structures for the appropriate classes are accessed to obtain the loca-
tion of relevant VIRs. The consequents of the VIRs are used to modify the transactions. If the consequent of a
VIR explicitly executes a VDR, then the current block, (or the subsequent record of the file), is scanned to see if
the VDR is clustered with the VIR. If this is the case, then, an additional file (or block) pointer is stored with
the transaction element.

During the LA phase, VDRs in the transaction are expanded. If there is already a pointer, then, the VDR
is directly accessed. If not, the unique name of the object class for which the VDR is defined is used to access
the hash table index (ObjTblE) and thus, the location of the VDR. If the consequent of this VDR explicitly exe-
cutes another VDR, then, the current block or subsequent file segment is scanned to determine if the VDR is
clustered here.

Currently, we are running experiments with the hash table index. We plan to use this index to help iden-
tify cycles. Subsequently, we pIan to compare other access methods to the hash table index.

References

IRE1781
Reiter, R., "Deductive Question Answering on Relational Data Bases," in Logic and Databases, 1978.

WAS881
Raschid, L. and Su, S.Y.W., "A Transaction Oriented Mechanism to Control Processing in a Knowledge
Base Management System," Proceedings of the International Conference on Expert Database Systems,
1988. Also University of Maryland Institute for Advanced Computer Studies technical report UMIACS-
TR-89-44.

[SU88]
Su, S.Y.W., et al, "An Object-Oriented Semantic Association Model (OSAM*) for CADICAM Databases,"
AI in Industrial Engineering and Manufacturing, AIIE, 1988.

Optimization of Complex-Object Queries in PRIMA -
Statement of Problems

Harald SchCIning
University Kaiserslautern

P.0.-BOX 3049
6750 Kaiserslautern

Federal Republic of Germany

Abstract

The MAD model allows the dynamic construction of complex objects via implicit joins (using an identi-
fier 1 reference concept). This leads to new questions for optimization. Only the problems are
addressed; solutions cannot yet be presented.

1. Basic Features of the MAD Model

One approach to extend the relational model for complex object handling is the concept of identifier
(surrogate) and reference. The values of reference attributes consist of values of the identifier
attributes of the referenced atoms. Thus, arbitrary directed graphs can be defined via reference val-
ues. The strength of such an approach depends highly on the means by which the object structures
defined this way are used to describe the object as a unit, including object specification without explic-
it formulation of joins and selections of objects based on their structure and on their components'
values.

The molecule-atom data model (MAD model [I]), which is implemented in the PRIMA project 12) also
uses a symmetric identifier 1 reference concept to supporl dynamically defined object structures.

Binary relationships among basic objects (called atoms, which correspond to tuples in the relational
model) are represented by a pair of reference attributes. On the type level, a relationship type
between atom types A and 3 is represented by a reference attribute a6 in atom type and a corre-
sponding reference attribute 6a in B. Thus, the atom types are nodes in a graph, where the pairs of
reference attributes (i.e. the relationship types) install the edges (atom type network). A similar graph
can be found on the occurrence level, where the nodes of the graph are atoms (atom network). If
the reference attribute a6 of an atom of type A with identifier value a contains the identifier value 6
of atom type B, the reference attribute 6a of 6 must contain a The traversal of a relationship is sup-
ported symmetrically in either direction by the concept of the reference attribute pairs. This is the
basis for a central concept of the MAD model: the dynamic object structure definition. A complex
object type is defined individually for each query by selection of a set of atom types and assignment
of a direction to some relationships among them. The complex object type mu@ be a directed, coher-
ent subgraph of the atom type network (molecule type), containing one root node (root atom type).
Each occurrence of the root atom type (root atom) induces one occurrence of the molecule type. All
atoms that can be transitively accessed from the root atom via the specified directed relationships
also belong to the molecule. Thus, the molecule is a directed coherent subgraph of the atom network.
If, for example, the molecule type definition is A-B-(C,D) (direction left-to-right, i.e. A is root atom
type, is related to 5, which in turn is related to C and D), each atom of type A constitutes a molecule,

even if it is not actually related to a '3 atom , while 23 atoms without relationship to an A atom do not
belong to a molecule of this type.

In contrast to the common ~ ~ ~ - ~ o d e l s , the object's structure cannot be reflected on the secondary
storage by clustering, because it may change from query to query, and cannot be predicted at stor-
age time. Thus, retrieval of the complex objects must exploit the values of the appropriate reference
attributes by performing an implicit hierarchical join. On the other hand, network-like, recursive, and
nondisjoint objects can be easily modeled.

The management of atoms in PRIMA is the task of the access system, which can be compared to the
RSS of System R. It provides two basic mechanisms for retrieval, both capable of attribute projec-
tion:

The scan facility allows the scanning of an atom type, and the option to restrict the result by a
search expression (which must be decidable on a single atom). Additionally, if there are different
storage structures (e.g. 5-Tree, Grid-File) associated with the corresponding atom type, one may
choose one of them for this access.

Additionally, a direct access via the identifier value is provided. This operation is implemented very
effiaently, because it is the most frequent access during the construction of a molecule.

Queries in the MAD model deliver a set of molecules of one type, which may be constructed and
restricted by a set of quite complex operations, e.g.

explicit join (without use of reference attributes) and Cartesian Product of molecules. This opera-
tion, however, has not the importance it has in the relational model, because relationships among
objects are expressed by the reference concept. For the same reason, it is unlikely that more than
two molecule types are joined.

a structure specific and a value specific selection of molecules by a quantified expression which may
address all components of a molecule.

projection and qualified projection, i.e. a value dependent projection of molecule components. In
any case, the resulting molecules must be coherent and contain the root atom.

Furthermore, the MAD model allows network-like and recursive object structures, which are formed
from hierarchical ones by specialized operators. The basic operator is Construcfion of simple
molecules, which builds up a set of hierarchical molecules (by hierarchical joins), and performs selec-
tions that can be evaluated on a single molecule (i.e. no query nesting). It is also able to perform pro-
jections on atoms and attributes. All other operators get their input from this operator in a pipelined
way. Often, however, Construction of simple molecules is the only operator representing a query,
since in many cases the complex object facilities are sufficient to model the application's objects with-
out explicit join or other higher operators. Therefore, it is necessary to direct one's attention to the
optimization of the execution of Construction of simple molecules.

2. Optimization Problems

For the reasons stated above, the following considerations concentrate on the optimization of Con-
struction of simple molecules. The construction of a mlecule without selection-and projection requires
only a sequence of hierarchical joins. In contrast to the classical optimization, the pin method is fixed
for the hierarchical join: Once an atom of a molecule has been found, further atoms of this molecules
are fetched by the value of the appropriate reference attributes, i.e. by direct access using their identi-

fier values. Internal mechanisms prevent repeated access to an atom that is addressed by more than
one reference.

In order to get all atoms of a molecule, one has to traverse all its relationships in the specified direc-
tion, i.e. one has to start with the root atom. The sequence of the subsequent joins is of little impor-
tance, since all possible sequences yield the same number of atom accesses and the same result size.
If a projection is specified on attributes, it can be passed on to the access system. Since resulting
molecule structures must be coherent, projections on atoms can cut away only complete subtrees of
the structure. Nevertheless, this is not unlikely to happen, since queries may refer to predefined
molecule structures, which may contain more atom types than actually desired. In this case, the projec-
tion is carried out by just omitting the corresponding joins.

The problem becomes harder when a restriction is posed on the molecule set to be delivered by Con-
struction of simple molecules. It would be inefficient to construct a molecule completely before evaluat-
ing the restriction, if only parts of the molecule are referenced in the corresponding expression.
Therefore, one can identify two phases of a molecule's construction: the first phase checks the qualifi-
cation of the molecule with respect to the restriction, the second one completes its components.
While the second phase corresponds to the case discussed above, the first phase poses questions
concerning execution control of the hierarchical joins. The goal of optimization decisions should be to
minimize the average number of atom accesses to determine the disqualification of a molecule. This
fact shall be illustrated by an example: Consider molecule type a-23-(C,D), and the restriction:
(EXISTS B: B.Att2>7) AND FOR ALL C: Cdttl=S) (there must be at least one B atom with
attribute Att2 having a value greater than 7, and all C atoms of the molecule must have the A t t l val-
ues 5). The first phase will consider atom types A, 23 and C. A atoms must be considered to deter-
mine the scope of the FOR-ALL quantifier. Certainly, the last part of the condition is the strongest,
but in order to access C atoms, one has to retrieve the corresponding B atoms. In this case, a
promising strategy might be depth-first search to check the condition on the C atoms as early as pos-
sible. In other situations, breadth-first or mixed strategies (execution schedules) are better, depen-
ding on the selectivity of the conditions. In order to estimate this selectivity, one has to assume that
the selectivity does not depend on the specific complex object under consideration. This assumption
is a bit dubious. In this context the question arises, as to how the selectivity of atom type connecting
conditions is to be estimated, e.g. of conditions of the form (FOR-ALL 23: EXISTS C
Cdttl=BAttZ), which are not join conditions in our case.

The problem to find an optimal execution schedule for the hierarchical pins only partially overlaps
with the classical join order problem, because the problem cannot be described as a choice of relation-
al algebra terms (such as 'choose Ax(BxC) or (AxiB)xC ?"). Furthermore, representations have to be
found to represent the various schedule choices in the query evaluation plan.

The first phase need not always take the root atom type as entry point to the molecule: very selective
existential quantified conditions on other components can be evaluated first, followed by a naviga-
tion to the appropriate root atom, if a corresponding relationship exists. Cardinality restrictions of
the schema often guarantee this existence.

Until now, only storage structure independent decisions were discussed (because the hierarchical join
is supported by an efficient mechanism). Of course, the existence of storage structure has to be con-
sidered when choosing the entry point for a molecule's construction. If one existential quantified fac-
tor of a conjunctional form restriction can be evaluated on single atoms of one type, this restriction
may be used to determine the starting point of molecule construction by using it as a restriction of a

scan which uses an appropriate storage structure, if available. In special cases, it may also be useful to
compute result sets from different entry points in the same molecule by identifier set manipulations,
as the following example suggests: Assume a molecule type A-(23,C) with highly selective existential
quantified conditions on 23 and C supported by an index, and a huge'number of $4 atoms and related
B and C atoms. In this case, the intersection of the union of all 6a attribute values of the qualifying B

atoms, and the union of all ca attribute values of the qualifying C atoms determine the identifiers of
the A atoms of the qualifying molecules. These considerations of course have to be combined with
those about execution schedules.

In order to accelerate access to molecules with a certain structure, the database administrator may
explicitly specify clustering criteria (in terms of molecule structure definitions, which are used to
redundantly store replicas of the data). Access to molecules of this structure should be possible with-
out hierarchical pins, since the access systems supports access to the whole cluster. The question,
however, is how such clusters can be used when accessing molecules with a similar structure. This
decision again depends on the degree of similarity as well as on the restrictions associated with the
molecules, and is further discussed in [3].

The PRIMA system is designed to run on a closely-coupled multi-processor machine [4]. Thus, paral-
lelism has to be specified in the query evaluation plans. Concerning Construction of simple molecules,
the second phase of molecule construction can be fully parallelized, i.e. all atoms whose identifier val-
ues are known, can be accessed in parallel. In the first phase, however, introducing parallelism and
saving atom accesses are contrary goals. A compromise between run time reduction by parallelism
and overhead by unnecessary atom accesses has to be found, and the strategy descriptions men-
tioned above have to be enhanced by parallelism specifications. Furthermore, cost formulas have to
be developed to combine the costs of parallel executions (cost are not additive any longer). Finally, it
must be investigated, whether parallel construction of different molecules [5] is not superior to paral-
lelizing the construction itself (easier to control and to determine), or if both methods should be com-
bined. This also depends of the number of available units of parallel execution (processors), which will
range from 2 to 30 in the PRIMA project. Note that parallel methods like hash partitioned join do not
help in this environment.

Another goal of the PRIMA project is to support efficiency enhancing actions (such as creation of
indices, clustering, etc.) by the system, i.e. at least propose the installation or release of certain stor-
age structures, or even undertake these actions itself. To be able to do this task, the system must car-
ry detailed statistic describing access patterns to the data. We do not yet know, which information is
to be kept in these statistics and how they will burden the system at query execution time.

PRIMA is designed to be extensible. Thus, the optimizer must be rule-driven in any way, in order to
be able to integrate new optimization directives easily. The problem is to find an appropriate language
for these rules, since dealing with complex object structures will require complex wle structures. On
the other hand, complex rules may require a certain amount of overhead to decide their applicability.

3. Summary

Some optimization problems occurring in the PRIMA project were identified:

The classical p in order and join method problems do not apply to the MAD model; here we have to
solve the hierarchical join schedule problem.

This problem covers the question of entry point selection and search strategies as well as the
amount of parallelism to be exploited within each hierarchical join.

Join sequences can be replaced by cluster accesses. This must be covered by the plan generation
within the optimizer. On the other hand, the system should propose clustering structures which
are useful for as many queries as possible.

It is not clear, whether every possible kind of parallelism really should be exploited, when the
amount of parallelism supported by the hardware can be reached without doing so.
The kind information to be kept in the system statistics must be determined.

A language for the formulation of optimization rules has to be developed.

4. References to Papers Concerning MAD and PRIMA Specific Problems

[I] Mitschang, B.: Towards a unified view of design data and knowledge representation, in:
Proc. 2nd Int. Conf. on Expert database Systems, April 1988.

121 Harder, T., Meyer-Wegener, K., Mitschang, B., Sikeler, A.: PRIMA - A DBMS Prototype
Supporting Engineering Applications, in: Proc. 13th VLDB, 1987.

[31 Schbning, H., Sikeler, A.: Cluster Mechanisms Supporting the Dynamic Construction of
Complex Objects, in: 3rd Int. Conf. on Foundations of Data Organization and Algorithms,
Paris, 1989.

141 Harder, T., SchGning, H., Sikeler, A.: Evaluation of Hardware Architectures for Parallel Exe-
cution of Complex Database Operations, in: Proc. 3rd Annual Parallel Processing Symp.,
Fullerton, 1989.

151 Harder, T., Schbning, H., Sikeler, A.: Parallelism in Processing Queries on Complex
Objects, in: Proc. Int. Syrnp. on databases in Parallel and Distributed Systems, Austin,
Texas, Dec. 1988.

INDEX SELECI'ION USING REORDERING TECHNIQUES

Marc Woyna

University of Illinois at Chicago

Dina Bitton

Stanford University and University of Illinois at Chicago

1. Introduction

One of the most difficult aspects of physical database design is the selection of access paths. Since a relational

database system utilizes only available predefined access paths, the database designer is responsible for determining

the set of access paths which balance efficient data retrieval against storage overhead and maintenance costs

involved in updates, deletions, and insertions. A poor choice of primary and secondary access paths in a relational

database can result in serious performance problems.

The purpose of this paper is to present a heuristic based algorithm for secondary index selection in relational

databases which produces near-optimal solutions with considerably smaller computational cost. The index selection

problem concerns finding an optimal set of indexes that minimizes the average cost of processing queries. Cost is

measured in terms of the number of VO accesses required to process the queries. The algorithm presented uses a

reordering technique to order the columns in the database according to an estimation of their usefulness for index-

ing, and a cutoff heuristic to determine which columns to index from the ordered list. In an extensive test to deter-

mine the optimality of the algorithm, it found optimal or near-optimal solutions in all cases. The time complexity of

the algorithm shows substantial improvement when compared with the approach of exhaustively semhing through

all possible alternatives. The algorithm is designed to incorporate multiple-file databases for which clustering

columns have been previously determined and secondary indexing is limited to single columns.

2. Reordering Techniaues

Reordering techniques are useful when one wishes to heuristically reduce a search space while retaining a

near optimal solution. Rather than attempt to remove unwanted objects from the search space, an attempt is made to

order the search space such that unwanted objects appear near the bottom of the list. Initially, an ordered list of

objects is produced using some technique such that the ordering is an estimate of the objects' usefulness, with the

most useful object at the head of the list and the least useful object at the tail of the list, although the technique can

be applied to a randomly ordaed list Next. using some criterion, the list is iteratively reodead, with the result that

useful objects move forward in the list Reordering continues until no further reordering is possible or some other

condition is reached. The resulting ordered list of objects is considered optimal if objects 1 to n are equivalent to the

optimal object set of size n

The A C reordering criterion has been developed and has been proven effective in problems in which a non-

heuristic cost for a set of objects can be calculated (Gose and Wu. 1973). The A C method for reordering assigns a

value to each object, A C, calculated as follows. For each object n. A C is equal to the difference in cost between the

set of objects 1 to n, and the set of objects 1 to n - 1. For example, if adding object 15 to the set of objects 1 to 14

results in a cost that is less than the cost of set 1 to 14, the A C for object 15 is negative. reflecting a decrease in cost

associated with adding object 15 to the resultant set. Intuitively, the greater the reduction in cost due to the inclu-

sion of an object into the object set, the more likely the object will be a member of the optimal set.

Calculating the A C for n objects requires n+l steps. Initially, the cost of the empty set is calculated This set

is the resultant set. Next, the object at the head of the input list is added to the resultant set. and the cost of the new

set is calculated. The difference in cost. A C, between the new set and the old set is assigned to the first object This

process continues until all n objects from the input list have been added to the resultant set, and each assigned a A C.

The resultant set is then reordered according to this A C estimate such that objects having a lower A C are

moved forward in the list, producing a new ordered list of objects. If the new ordered list differs h m the original

input list, the process is repeated. It may be necessary to restrict the number of iterations if thrashing occurs, or if

the computational costs become excessive. However, in applying the technique to a set of 157 feafures used for

automated pattern recognition of electmardiograms Gose found that approximately 20 iterations were sufficient to

order the set (Gose, 1974).

3. Index Selection Using Reorderinn Techniaues

Applying r e 0 r d e ~ g techniques to index selection involves the selection of a reordexing criterion. Since it is

possible rn calclllate the cost of processing a set of queries on a scheme with a given index configuration, the A C

reordering technique can be applied. An ordered index set is produced using the A C criterion such that the index in

position n would be chosen which, when included with the set of indexes 1 to n - 1, would reduce rhe cost of pro-

cessing the query set the maximum. The number of indexes to use is left as a variable to be optimized at a later stage

in the design.

The time complexity of the index reordering algorithm is O(k*g*v), where k is the number of iterations per-

formed, g is the number of queries specified in the query set, and v is the number of columns in the relation set. The

time complexity is estimated in terms of the number of calls to the query cost evaluator, the costliest operation in the

process. The cost evaluator is called v times for each iteration of the reordering technique. In each call, the query

cost evaluator must calculate the cost of processing each of the g queries, for a total cost of O(g*v) for each itera-

tion.

3.1. Zero Cutoff Criterion

Having ordered the set of n columns using the index reordering algorithm, a set of m 5 n columns must be

chosen which will be indexed. The zero cutoff criterion has been developed as a heuristic means of choosing the

subset of columns to index. If the resultant ordered list of indexes produced by the index reordering algorithm is

assumed to be optimal, the optimal set will be all indexes that have a negative A C after the final iteration of the

reordering algorithm. However, since the reordering algorithm is not guaranteed to produce optimal solutions, the

criterion is a usefuI heuristic.

4. Exoerimental Model

4.1. Assumotions

Only nonclustered indexes are considered in the index search space. It is assumed that the relations' cluster-

ing column(s) are defined in the logical design phase. It is assumed that each relation is stored in a secondary

storage medium which is divided into fixed-size units called blocks. Furthermore, each relation is mapped into a sin-

gle file and each file contains only one relation. A B+-tree index can be created for a column of a relation. The leaf

level of the index consists of key-TID pairs for every tuple in that relation and the leaf level blocks are chained to

assist in the sequential scan of the index. Finally, only conjunctive predicates consisting of equality predicates are

considered (e.g. Column A = 'a').

42. Quew Model

Four types of queries are considered in the index selection problem: select, update, delete, and insen Each

class is restricted to queries involving only one or two relations. This reshiction redkes the complexity of the query

cost evaluator.

43. Cost Model

The cost of processing a query is measured in the number of UO accesses necessary to complete the request.

In determining this cost, only the cost of accessing and maintaining the database and its indexes are considered. The

cost of processing a query is calculated in the query cost evaluator. The query cost evaluator calculates the cost of

processing a query against the database scheme having a given index configuration using cost formulas developed in

earlier work on transaction-messing cost estimation (Whang, 1985).

4.4. Data Sets

Forty-eight data sets representing varying database statistics and usage are used to validate the index reorder-

ing aIgorithm. Each data set is composed of four parts, a database scheme. a cardinality set, a query s e ~ and a query

frequency set

A single database scheme consisting of 2 relations with 5 columns each was used. This allowed for both

single-table and multiple-table (joins) queries. Optimal solutions are determined by exhaustively searching through

al l 1024 possible indexing combinations (2 '9.
Four cardinality sets are used. Each set is composed of a cardinality for each relation in the scheme, a block-

ing factor for each relation in the scheme, a selectivity for each column of each relation, and a bIocking factor for

the indexes used in the index configuration.

Two query sets were used. Each query set consisted of 30 queries: 15 select, 5 delete, 5 inseq and 5 update

queries, including both single-table and multiple-table queries.

Six sets of relative query hquencies were used. Each set consisted of 30 frequencies, mapped to each query

in the query set. Frequency values ranged from 0 to 50. Each set aftempted to focus on a diffemt aspect of query

processing (i.e retrieval, Llpdates).

45. Validation of the Algorithm

Two experiments were performed to validate the reordering algorithm. In each experiment, an index

configuration was determined for each data set using both an exhaustive search algorithm, and the reordering algo-

rithm. The results of the two methods were then compared. In particular, the deviations of the reordering solutions

from the optimal solution for each data set was measured. In each of the experiments, the zero cutoff criteria was

applied after the reordering algorithm to determine if a column should be indexed. In the first experiment, the initial

ordering of the columns was a sorted list based on the estimated usefulness of each column when indexed individu-

ally. In the second experiment, the columns were randomly ordered before applying the reordering algorithm. The

purpose of the second experiment was to determine the benefits, if any, of initially ordering the index set. Addition-

ally, a third experiment was designed to test the reordering algorithm on a larger scheme. Two data sets consisting

of a 20 column scheme, 2 query sets, 1 frequency set, and 1 cardinality set were used.

5. Results and Analysis

Extensive testing has demonstrated the feasibility of the reordering algorithm. The results of the experiments

are presented in tables in the appendix. For each experiment, the error rate for each data set was calculated as:

Error Rate = I Optimal Cost - Zero Cutoff Costl /Optimal Cost.

In experiment 1, the algorithm found optimal solutions in half of the input data sets, and had an average error rate of

less than 0.2 percent for all data sets, when compared to the optimal solution. In the worst case, the error rate was

still less than 4 percent.

The results of experiment 2 show the benefit of ordering the index set before applying the reordering algo-

rithm. Whereas ordering the index set resulted in 24 optimal solutions, the randomly ordered set produced no

optimal solutions. In addition, the average error rate was significantly higher than the ordered set, and the average

number of iterations was slightly higher.

The low number of iterations necessary to reorder the index set in experiment 1 indicate that the initial order

is relatively close to optimal. Thus, the assumption that an index is a good candidate for indexing if it reduces the

cost of processing the query set when used alone appears to be heuristically sound.

The benefits of index selection using the reordering algorithm for large schemas are demonstrated in experi-

ment 3. Although a 20 column schema by no means represents a large schema, the cost of finding the optimal index

set has already become excessive, particularly if the solution was required as part of an intemtive database design

session. Additionally, the number of iterations compares favorably with the average number of iterations required

for experiment 1, although the number of columns in experiment 3 was doubled. While two data sen are

insufficient to draw any strong conclusions, the low m r rates produced are an indiction that index selection for

larger database schemas will benefit Erom the reordering algorithm.

6. Summarv

In this paper we have presented a heuristic algorithm for index selection in relational databases using reorder-

ing techniques. Reordering techniques were presented as a computationally efficient way t reduce a search space

by ordering the objects in the search space according to some estimation of the object's usefulness, rather than

removing objects. The benefit of this approach is that the number of objects to include in the final search space can

be optimized at a later stage in the design.

The feasibility of applying reordering techniques to the index selection problem was demonstrated in exten-

sive testing, producing optimal or nearaptimal solutions in all cases. The time complexity for the reordering algo-

rithm, O(k*g*v), is less than previous algorithms which could be applied to multiple-file databases, such as the

DROP heuristic (Whang, 1984). In addition, the zero cutoff criteria proved to be an effective heuristic for determin-

ing the columns to index, given the complete ordered index set produced by the reordering algorithm.

References

Gose, E.E. and Wu, F.B.H.: Some Second Order Techniques for Selecting Subsets of Pattern Recognition Proper-
ties. Proceedin~s of the Sixth Hawaii International Conference on Systems Science, 73-76.1973.

Gose, EX.: Selecting Useful Information for Medical Decision Making. Proceedinns of the Intemational Confer-
ence on Medical Informatics, 1-10.1986.

Whang, Kyu-Young: Index Selection in Relational Databases. IBM research report, IBM, Yorktown Heights, NY,
1984.

Whang. Kyu-Young: Transtion-processing Costs in Relational Database Systems. IBM research repo* IBM,
Yorktown Heights, NY, 1985.

APPENDIX

Table I.
ACCURACY AND PERFORMANCE OF INDEX REORDERING ALGORITHM USING

SORTED INlTIAL ORDER AND ZERO CUTOFF CRITERIA (10 COLUMN)

Card Set
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3

Optimal Cost

3045090
12654530
10172780
8097760

7300
55151650
3045090

12654530
10172780
8097760

7300
5013950
2125270
9434905
6492800
6258820

5950
5014700
2125270
9434905
6492800
6258820

5950
5014700
326450

1339140
1095040
863660

5800
520250
326450

1339140
1095040
863660

5800
520250
318010

1294925
1042860
864620

7250
542850

2621370
1294925
1042860
864620

7250
542850

Query Set
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1

Freq Set
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5

% Error
0.0
0.00845
0.00845
0.01902
0.0
0.0
0.0
0.01019
0.00845
0.01902
0.0
0.0
0.0
0.01304
0.01232
0.02461
3.36135
0.0
0.0
0.01304
0.01232
0.02461
3.36135
0.0
0.17461
0.13815
0.10593
0.26168
0.0
0.0
0.17461
0.13815
0.10593
0.26168
0.0
0.0
0.0
0.0
0.0
0.06708
0.0
0.0
0.0
0.0
0.0
0.06708
0.0
0.0

Zero Cutoff Cost

3045090
12655820
10173640
8099300

7300
55151650
3045090

12655820
10173640
8099300

7300
5013950
2125270
9436135
6493600
6260360

6150
5014700
2125270
94361 35
6493600
6260360

6150
5014700
327020

1340990
1096200
865920

5800
520250
327020

1340990
1096200
865920

5800
520250
318010

1294925
1042860
865200

7250
542850

2621370
1294925
1042860
865200

7250
542850

Passes

3
2
2
2
2
2
3
2
2
2
2
2
3
2
3
2
2
2
3
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Table II.

ACCURACY AND PERFORMANCE OF INDEX REORDERING ALGORITHM USING
RANDOM INITIAL ORDER AND ZERO CUTOFF CRITERIA (10 COLUMN)

Pus=
3
3
3
3
3
2
3
3
3
3
3
2
2
3
2
2
2
2
2
3
2
2
2
2
3
3
3
3
3
2
3
3
3
3
3
2
4
3
4
3
3
3
4
4
4
3
3
3

%Em.'
0.01445
0.01051
0.00885
0.04051
1.36986
0.08177
0.01445
0.01051
0.00885
0 . W 1
1.36986
0.08177
0.02211
0.01489
0.01571
0.05336
9.24370
0.08575
0.022l1
0.01489
0.01571
0.05336
9.24370
0.08575
0.38291
0.29048
0.231%
057430
4.31034
125901
0.38291
029048
0.231%
057430
4.31034
125901
0.18238
0.13398
0.11699
0.32847
8.96551
0.63553
0.18238
0.13398
0.11699
0.32847
8.96551
0.63553 -

0pim.l Cost

3045090
12654530
10172780
8041760

7300
5013950
3045090
12654530
10172780
8097760

7300
5013950
2 125270
9434905
6492800
6258820

5950
5014700
2 125270
9434905
6492800
6258820

5950
5014700
326450
1339140
1095040
863660
5800

525250
326450
1339140
1095040
863W
5800

520'29
318010
1294925
1042860
864620
7250

542850
318010
1294925
1042860
864620
7250

542850

Freq Sa
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5

Card-
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3

ZeroClutoff Gnt

3045530
12655860
10173680
8101040

7400
50 18050
3045530
12655860
10173680
8101040

7400
501 8050
2125740
94363 10
6493820
6262160

6500
5019000
2125740
94363 10
6493820
6262160

6500
501900
327700
1343030
1097580
868620
6050

526800
327700
1343030
1097580
868620

6050
526800
3 18590
1296660
1044080
867460
7900

546300
318590
1296660
1044080
867460
7900

546300

Query Sa

0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1

Table 111.

ACCURACY AND PERFORMANCE OF INDEX REORDERING ALGORITHM USING
SORTED INITIAL ORDER AND ZERO CUTOFF CRITERIA (20 COLUMN)

card

0
0

FW
0
0

Query Scl
0
1

Optimal Cost

3 105480
7910

Zero Cutoff Cost

3 105870
7910

Passes
3
2

% Error
0.01256
0.0

