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Abstract

Resolving object references, or reference materialization, is a fundamental operation in object query
evaluation. Existing reference materialization techniques fall into two categories: pointer-based and value-
based. We identify several drawbacks of existing techniques, and propose a hybrid technique that combines
the advantages of each category. This algorithm relaxes the limitations of value-based techniques, while
preserving much of their performance advantage over pointer-based techniques. The hybrid technique shows
even stronger performance advantages in when moving from single-valued to collection-valued attributes.
We also show how to enhance the performance of value-based techniques on collection-valued attributes
when inverse relationships are available. Both the hybrid and enhanced value-based techniques can be easily
incorporated into rule-based query optimizers, using transformations we present.

The contribution of this paper is twofold. First, we exhibit a new technique for reference materialization that
performs well when no existing algorithm is applicable and efficient, and works with single-valued and
collection-valued attributes. Second, we provide two enhancements to value-based techniques, which help
adapt current work on path expression processing to the setting of collection-valued attributes. Initial
experimental results using a commercial object-oriented database show that both the hybrid approach and
the value-based enhancements can achieve an order of magnitude speedup over current algorithms.

The initial motivation for our work was optimization and evaluation of object-oriented query languages,
particularly OQL [ODMG].  However, the key features we have concentrated on, references and collection-
valued attributes, are present in object-relational products and the SQL:1999 proposal [EM99].

1 Introduction

Most object and object-relational models include the notion of reference attributes, also called object-valued
attributes. Thus, resolving referenced objects, or reference materialization, becomes an essential operation
in object query evaluation. In reference materialization, one object, containing a reference to a second
object, is brought together in memory with that referenced object. Existing reference materialization
techniques can be classified into two categories. The first kind, called pointer-based techniques, retrieve
referenced objects by converting references (if necessary) to disk addresses and retrieving the appropriate
pages. Pointer-based techniques include assembly [KM89], pointer-based hash, pointer-based nested-loops,
pointer-based sort-merge [SC90], and partition-merge [BCK98]. The second kind, the value-based
techniques, attempt to avoid “pointer chasing” on disk by instead performing joins between objects with
references and the objects being referenced (using an object’s identifier as an implicit attribute) [BMG93].
Thus, whereas pointer-based techniques treat references as physical pointers, valued-based techniques regard
references as just another kind of logical value, allowing the application of conventional join-processing
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technology to object query evaluation. In the remainder of this paper, we will generally shorten “reference
materialization” to simply “materialization”.

We observe some limitations of existing techniques. Pointer-based techniques can be inefficient, particularly
when there is sharing of object references. Value-based techniques generally do better, but require the
existence of a type extent. A type extent (or simply extent) is an explicit collection containing all the objects
of certain type. Most object-oriented database systems do not automatically maintain extents, and even in
some object-relational systems, they are optional. (While SQL:1999 requires REF columns to be scoped to a
single table, object-relational products aren’t as restrictive.) Besides these limitations, the behavior of
materialization techniques when attributes are collections of references has not been studied extensively.
Since one of our main interests in object query processing is collection-valued attributes (CVAs) [Rama et
al. 98], we need to know which materialization techniques are appropriate with CVAs, and possibly modify
those techniques to be more suitable in that case.

We address these issues in this paper. The remainder of Section 1 defines the terminology we use
throughout. Section 2 evaluates existing materialization techniques. Section 3 proposes the hybrid technique
to address some limitations of those techniques. Section 4 examines the various techniques in the setting of
CVAs, and notes some problems with the value-based and hybrid approaches. Based on these observations,
Section 5 presents two enhanced value-based algorithms for CVA materialization. Section 6 validates the
arguments and analysis presented in the earlier sections via performance experiments. Section 7 and 8
discuss related work, draw conclusions, and outline future work.

Below is a simple database schema that is used throughout this paper for examples.

• Student (name: string, dept: Department, advisor: string, status: string, Core:{Course}, Takes:{Course})
• Course (title: string, dept: Department, Instructors: {Professor}, Participants: {Student})
• Department (name: string, head: Professor, Majors:{Student}, Offerings:{Course}, Faculty:

{Professor})
• Professor (name: string, dept: Department, specialty: string, salary: int, Teaches: {Course})

This schema defines four types of objects, for students, courses, departments, and professors in a university
database. Our convention is that single-valued attributes, such as dept, begin with a lowercase letter, and
collection-valued attributes, such as Instructors, begin with uppercase. When the type of an attribute is
lowercase, it indicates a scalar-valued attribute that is assumed to be stored in the object itself. Uppercase
types indicate object-valued attributes, which are always assumed to be represented as references. In
particular, all the collection-valued attributes in our example have elements that are object references. Figure
1 shows some object instances for the example schema. Here, nodes represent objects; edges stand for
attributes; dashed edges represent non-CVA attributes.
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An attribute instance is the value of an attribute. For example, in Figure 1, object p1 is an instance of
attribute head for object dept1; Major1 is an instance of the CVA Majors. CVA elements are the members of
a CVA instance. In Figure 1, CVA instance Major1 contains three Student objects, s1, s2, and s3, which are
the CVA elements of Major1. By convention, a single-valued attribute instance is called a child of the
hosting object. A CVA element is called a child of the object hosting the corresponding CVA instance. In
Figure 1, p1 is a child of dept1; s1 is also a child of dept1. Note that the terminology of parent and child is
relative to the attribute that concerns us in each setting. Object A can be a child of object B, and a parent of
object C. Also, object A can be a child of B as well as a parent of B, when different attributes are
considered.

Now we introduce terminology that refers to a particular database state for a schema. A shared attribute is an
attribute via which several objects refer to the same attribute instance. The fan-in of a shared attribute is the
average number of parent objects that refer to each distinct attribute instance. An overlapping CVA is one
where different CVA instances have elements in common. In Figure 1, Core is a shared CVA, because two
students, s2 and s3, refer to the same instance Core2. The average number of students who have the same set
of core courses is the fan-in of Core. Note that Core is also an overlapping CVA, because, two Core
instances, Core1 and Core2, contain the same element, c2. Single-valued attributes can be shared too. For
instance, in Figure 1, the dept attribute of Student is a shared attribute as three student objects all refer to
dept1.

Types R and S have a m:n relationship if there exists attribute x in R and attribute y in S satisfying three
conditions: (1) a R object refers to n S objects on average through x, and a S object refers to m R objects on
average through y; (2) any R object referring to a S object is also referred to in turn by this S object; (3) any
S object referring to a R object is also referred to by this S object. (Conditions (2) and (3) mean that x and y
are inverse attributes.) For instance, in Figure 1, Department and Student have a 1:3 relationship through
attributes Majors and dept, assuming each department averages three students, as illustrated. As another
example, Student and Course might have a 4:30 relationship through Takes and Participants, if, on average,
a student takes four courses, and a course has an enrollment of 30 students. Apparently, in a relationship, if
m is one, y is a single-valued attribute. Otherwise, it is a CVA. Similarly for n and x.

The density of a type extent relative to a query is the ratio between the number of objects of the type that
qualify for the query and the cardinality of the extent. For example, the density of the Department extent
could be less than one in a query that accesses the major department of each student, if some departments
have no majors.

In a typical object-oriented database system (such as GemStone [Gem96]) or storage manager (such as
Shore [Carey et al. 94]), the value of a reference attribute is an object identifier (OID). OIDs might be
physical or logical. That is, they might or might not suggest the physical location of the objects they identify.
The actual location of an object with a logical OID is indicated by its physical object identifier (PID), which
is  obtained by consulting an OID-to-PID mapping table, called an object table, using the OID as key. We
assume a collection object (such as might be used for an extent) or a CVA instance contains a collection of
OIDs identifying the element objects. Note that there are other ways of storing CVAs, for instance, using a
table that contains the relationships between parents and children, or storing CVA elements within parents
[Rama et al. 98]. These other representations, in most cases, can be regarded as special cases of the one we
assume.

2 Existing Materialization Techniques
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In algebraic query optimization, a logical expression (or simply expression) is an algebraic tree consisting of
logical operators, such as select and join. A rule-based optimizer accepts an expression as input, then
transforms it into its equivalent expressions using transformation rules. Physical expressions are obtained by
implementing the logical operators in an expression using specific algorithms, such as merge join or hash
join. The goal of optimization is to pick the most efficient algorithms among all the physical expressions
implementing expressions equivalent to the original query. Relational algebra, being value-based, does not
have an operator for resolving object references. To explicitly indicate the resolution of inter-object
references in logical expressions, the Open OODB query optimizer [BMG93] introduced the materialize
operator. One way to view the materialize operator is that it brings referenced objects into scope, so that
succeeding operators can access them. Figure 2(1) is an expression that consists of a materialize (M)
operator for attribute r.a , where r ranges over the output of expression R. The result of this expression can
be regarded as pairs of objects <r, s>, where s is the object whose OID is r.a.

Pointer-based techniques directly implement the materialize operator using pointer-based physical
algorithms such as assembly [KM89], pointer-based hash, pointer-based nested-loops, pointer-based sort-
merge [SC90], and partition-merge [BCK98]. Among these algorithms, sort-merge and hybrid-hash are
popular and competitive [SC90]. The hybrid-hash algorithm would perform the logical materialize operator
in Figure 2(1) as follows. First, r objects from R are partitioned using the OIDs of their r.a instances. Then,
the objects in each partition are iterated, while the PIDs of r.a instances are looked up in the object table.
The purpose of the first partitioning is to avoid random accesses to the object table, thereby reducing I/O
cost if the entire table won’t fit in memory. Third, the objects from R are partitioned again using the PIDs of
r.a instances. Finally, the objects in each of these partitions are iterated, using the PIDs to locate and fetch
the r.a instances themselves. Notice that the first partitioning can be dispensed with if the OIDs are physical
to begin with, or can be used to directly compute physical addresses.

Although Figure 2(1) gives rise to pointer-based expressions when implemented directly, it can be
transformed to derive other materialization techniques. Figure 2 illustrates the join-materialization rule
[BMG93] that transforms a materialize into a join between R and a materialize on A, where A is the
appropriate type extent for r.a. Assume that a type extent is a collection of OIDs, the introduced materialize
brings A elements into memory in a pointer-based fashion. As mentioned before, we use term value-based
technique to refer to materialization accomplished by join with an extent. We use the term value-based
expression to refer to an expression that uses the value-based technique, for example, Figure 2(2). While the
materialization operator can be implemented by a single physical algorithm, value-based expressions
sometimes require the combination of several operators to materialize references. Nevertheless, we will
sometimes loosely refer to part of an evaluation plan that performs materialization as a value-based
algorithm, even when it comprises several operators.

r
                                                                                                      

 r.a=a

�  r.a=a  Mr.a                                          M
         r              a                                                                              a
        R            Ma               r             R          πr.a

                            r
         A     R                            R

(2) Value-based expression                    (1) Pointer-based expression                (3) Hybrid expression

Figure 2: Alternative materialization techniques and rules to derive them

join materialization rule hybrid rule
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Value-based techniques have many advantages. First, if the extent collection is appropriately ordered, these
techniques sequentially fetch referenced objects, thus avoiding the effort in reordering object accesses that a
pointer-based algorithm usually has to perform. Second, restrictive operations on referenced objects, such as
selections, can be evaluated earlier in a value-based expression than in a pointer-based expression. Third, if
the attribute to be materialized is shared, then operations on referenced objects are performed once for each
object in a value-based expression, but multiple times in a pointer-based expression. Fourth, the value-based
technique converts materialization into join, enabling the application of the conventional join re-ordering
techniques to object query optimization. Fifth, the join predicate in a value-based algorithm only compares
OIDs, thus the object table may be visited less frequently than in with a pointer-based algorithm.  (Note that
object table access is not totally avoided, as we assume the extent is a collection of OIDs that must be
converted to PIDs. However, each OID is converted just once.)

However, value-based techniques have their shortcomings. First, they require the presence of appropriate
extents. Second, if an extent is sparse relative to a query, a value-based algorithm may be inefficient because
of all the inapplicable objects in that join operand. In contrast, pointer-based techniques are not constrained
by extents, and apply in any circumstance. Also they carry out materialization with a single operator, thus
simplifying query optimization.

3 The Hybrid Technique

The previous section suggests that existing materialization techniques are not sufficient to provide efficient
solutions for all cases of materialization. In this section, we present a hybrid technique that combines both
pointer-based and value-based techniques. This technique relaxes the limitations of value-based algorithms,
while retaining most of their performance advantage over pointer-based algorithms.

The hybrid technique is illustrated by Figure 2(3), an expression equivalent to Figure 2 (1). This expression
performs a join between R and instances of the r.a attribute. The right operand is produced by two operators:
projection gathers all the OIDs of r.a instances, while materialize resolves them in a pointer-based fashion.
This combination of operators simulates a type extent. It also serves two other purposes. First, the projection
separates children from parents, so that the succeeding materialize (and possibly other operators) processes
only children, reducing the amount of data handled by those operators. (Note that this aspect mainly affects
any copying an operator may have to do between its inputs and outputs.) Second, more importantly, the
projection eliminates duplicate OIDs, thus minimizing the input cardinality to the successive operators. We
use term hybrid expression to an expression employing this hybrid technique in some form. Again, we
sometimes use hybrid algorithm loosely to refer to the portion of an evaluation plan that implements the
hybrid technique. Figure 3(3) illustrates a materialization process using the hybrid algorithm.

It might seem that the hybrid technique does all the work of both the pointer- and value-based techniques, as
it is both dereferencing pointers and performing a join. However, in general, it is chasing fewer pointers than
pointer-based methods and computing a smaller join than value-based methods. The hybrid technique does
not always win out over the others, but our experimental results will show that in some instances it is much
better than the other two. Also, the hybrid technique does introduce a repeated sub-expression, which we
will discuss later.

Both hybrid and value-based techniques perform a join, however, they differ in join operands. Hybrid
algorithms access referenced objects not through their extent, but through a collection of OIDs gathered on
the fly. This difference implies two advantages. First, the hybrid technique is not limited by availability of
type extents. Second, hybrid techniques will be more efficient even when an extent exists, if that extent is
sparse for the query. Figure 3(2) and (3) illustrate the data flows for the value-based and hybrid expressions
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in Figure 2. Since extent A contains objects, such as a3, that are not referenced by any object in R, the value-
based expression will have a larger right join operand, thus a higher join cost than the hybrid expression.

Compared to pointer-based techniques, the hybrid technique inherits the following advantages from the
value-based techniques. First, it allows restrictive operations on referenced objects to be performed earlier.
For instance, if a query has the predicate a.x=4, a selection can be pushed down to restrict the right join
operand. Second, when the attribute to be materialized is shared, any operation on the referenced objects is
performed once for each instance in a hybrid algorithm, but multiple times in a pointer-based algorithm. In
Figure 3 (1), a1 is mentioned by two r objects. As a result, a1 has to be resolved twice. In contrast, in Figure
3 (3), duplicate OIDs are eliminated, thus no redundant data is delivered to materialize. Third, in a pointer-
based expression, for instance, Figure 2 (1), materialize accepts parent attributes as input, while only the
OIDs of attribute instances are actually needed. In a hybrid expression, for instance, Figure 2 (3), materialize
only accepts the OIDs, thus substantially shrinks the width of input data. As some physical algorithms for
materialize move input data between disk and memory, reducing the amount of input data size may lower
I/O costs. Figure 3 (1) and (3) illustrate the difference in input sizes of the two materialize operators. Note
that the difference in width is equal to the number of attributes in the objects of R.  We will see further
benefits of the hybrid approach when we consider materialization of CVAs in Section 4.

While hybrid algorithms often have good costs, they are of little use unless they can be produced during
query optimization. We can use the hybrid rule, illustrated in Figure 2, to generate a hybrid expression from
a pointer-based expression. Like the join materialization rule, the hybrid rule transforms a materialize into a
join, and a materialize, but with an extra projection. We use the example query below to illustrate the
generation of a hybrid expression, and contrast it with other alternatives.

Query 1: Find all faculty who specialize in Mathematics and earn more than their department heads:

select f
from Faculty as f
where (f.specialty = ‘math’) and (f.salary > f.dept.head.salary) .

Three expressions for Query 1 appear in Figure 4. The pointer-based expression contains three materialize
operators that successively fetch Professor, Department, and Professor objects. Note that, besides the
reference attributes, the objects in base collection Faculty also need to be materialized (Mf), since we assume
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a collection stores only the OIDs of its elements. In general, we assume such a materialization uses pointer-
based algorithms. The other two materialize operators, Mf.dept and Mf.dept.head, each resolves some objects
multiple times, due to the sharing of f.dept. Transforming the pointer-based expression using the join
materialization rule yields the value-based expression. Alternatively, a hybrid expression, Figure 4(3), can
be generated by applying the hybrid rule to Mf.dept, then pushing down the succeeding select and materialize.
Obviously, the value-based and the hybrid expressions do not have the problem of the pointer-based
expression that resolves one object several times. However, the value-based expression is less efficient than
the hybrid one when only a few departments have professors specializing in Mathematics, in which case, the
effort of materializing most departments is useless work.

The presence of object sharing is an important factor motivating the hybrid approach. Object sharing occurs
both directly, because of shared attributes, and indirectly, as the result of flattening an overlapping CVA, as
demonstrated by the example query below.

Query 2: Return all CS courses and their participants:

select struct (c: c, p: p.name)
from Courses as c, c.Participants as p
where c.dept  = ‘CS’.

To evaluate this query, a pointer-based expression first filters Courses, then flattens c.Participants, giving
<c, OID(p)> pairs, and finally materializes individual participating students. Note that c.Participants is an
overlapping CVA, since several courses may enroll  the same student. Therefore the result of flattening
c.Participants will contain multiple references to some students. This sharing degrades the performance of
the succeeding materialize operator, which will consequently resolve some objects multiple times.

Hybrid expressions do incur certain overheads in evaluation, from the need for projection and join, and the
introduction of common sub-expressions. We designed the hybrid rule to explicitly duplicate expressions,
rather than storing one to a temp and reusing the result. The reason is that other transformations may convert
different occurrences of a common sub-expression by modifying one or both of them. For instance, in the
hybrid rule of Figure 2, the projection operator might be pushed down into the underlying expression R, so
that it outputs only the needed attributes. Alternatively, operators above the join might be pushed down
towards the left occurrence of R. Note that such transformations can make the original common sub-
expressions distinct, but may in the process generate new common sub-expressions. Based on the cost of a
common sub-expression, an optimizer can choose to store and reuse its result, or evaluate it twice. Therefore
the hybrid rule needs to be used in a cost-based framework, so that a hybrid algorithm is chosen only if its

 πf
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benefit dominates its overheads. For simplicity, the remaining paper assumes a hybrid expression represents
both possibilities.

The introduction of a repeated sub-expression can also increase the cost of the query optimization process,
as well, due to increasing number of operators, and more importantly, possible duplicated effort from
optimizing the same sub-expression twice. However, previous work [GM93, CG94] successfully avoided
duplicate optimization of common sub-expressions using directed acyclic graphs (DAGs) representation of
expressions and memo structure.

4 Materializing Collection-Valued Attributes

The pervious section deals with materialization techniques in the setting of single-valued attributes. In this
section, we explore the ramifications of the three techniques in the context of CVAs. CVAs first appeared as
nested relations in the non-first-normal form (NF2) relational models [SS86], and subsequently appeared in
object-oriented and object-relational models. The presence of CVAs poses many challenges to conventional
query optimizers. For instance, classic indexing and hash algorithms often do not apply to queries involving
CVAs. In term of materialization, the techniques developed for single-valued attributes should be re-
evaluated for CVAs. We demonstrate that, when applied to CVAs, value-based algorithms become
inefficient, while hybrid algorithms are more competitive, but still have some shortcomings.

Materializing a CVA means bringing the elements of the CVA instance into memory. Some algorithms can
accepts CVA instances directly as input, and output collections of elements [BCK98]. Most algorithms
handle only flat data, in which case references to CVA elements are accepted and resolved [SC90]. The first
class of algorithms is useful when the algebra of an optimizer [SS86] can directly manipulate CVA elements
without flattening them. More often, an algebra mainly supports relational operators, in which case the
second class of algorithms is more desirable. Therefore, we assume materialize accepts and outputs flat data
(tuples of scalar values and OIDs). The example query below illustrates how CVAs are materialized using
different techniques.

Query 3: Return pairs of student and course title where the course is among the core requirements for the
student:

select struct(s:s, c:c.title)
from Students as s, s.Core as c.
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Expression (1) in Figure 5 is pointer-based. In this expression, CVA instances of s.Core are first
materialized, then flattened by unnest [FT83], which outputs pairs consisting of a Student object and a
Course OID. The OIDs are resolved by the succeeding materialize. Expression (2) is value-based, obtained
from Expression (1) by applying the join materialization rule to the upper materialize. In this expression, the
left join operand provides a stream of Student object-Course OID pairs. The right operand provides a stream
of Course objects. The streams are then joined.

Note that it is usually impractical to apply the join materialization rule to materialize on the CVA instances
themselves, for example, Ms.Core, because the CVA instances (that is, the collections themselves) generally
have no appropriate extent. The hybrid rule, however, does make sense for such operators. One can get
Expression (3) from Expression (1) by applying this rule to Ms.Core. Further, one can get Expression (4) from
Expression (3) by pushing down unnest and materialize. Note that, in both hybrid expressions, join predicate
is an identity check on CVA instances, rather than on CVA elements as in a value-based expression.

In the context of CVAs, the hybrid technique has two advantages over the value-based approach. First, it
applies to any CVA query, while value-based techniques are subject to the availability of appropriate type
extents. Second, a hybrid expression in general has a smaller left join operand, because it does not flatten
CVA instances in there, while a value-based expression does, as illustrated by Expressions (4) and (2) in
Figure 5. This difference often makes a hybrid expression superior to its value-based counterpart, which is
the opposite to what happens for single-valued attributes. We will see in the experimental results that value-
based expressions are often slightly better than hybrid-based expressions, due to smaller overheads.

Compared to pointer-based techniques, the hybrid technique also has two advantages in the context of
CVAs. First, the projection operator in the hybrid rule separates children from parents. This separation
removes parent attributes from the input to the succeeding materialize, while the corresponding materialize
in a pointer-based expression accepts both parent attributes and element OIDs. Note that parent attributes
will be highly redundant in the pointer-based case, because they are duplicated in order to be paired with
each element OID in the CVA during flattening. The second advantage is that a hybrid expression eliminates
duplicate CVA instances, thus reducing input cardinalities to relevant operators. (We are assuming here that
collections have their own identifiers that can be compared. We are not proposing to detect the case where
two distinct collection instances happen to contain the same set of elements.) A pointer-based expression,
however, has no such mechanism. Shared CVAs may occur in a database, as illustrated by the previous
query. They may also be present in views, or intermediate query results, as illustrated by the example query
below.

Query 4 : Return all professors who advise Ph.D students:
select distinct f
from Depts as d, d.Majors as s, d.Faculty as f
where s.status = ’Ph.D’ AND f.name = s.advisor

Expression (1) in Figure 6 is pointer-based, where two CVAs, d.Majors and d.Faculty, are successively
flattened and materialized. Expression (2) is value-based and materializes d.Faculty using a join. Expression
(3) is hybrid, derived from Expression (1) by applying the hybrid rule to Md.Faculty, and then pushing down
the succeeding operators. Expression (4) is also hybrid, but derived from Expression (1) by transforming
Md.Majors.

Expression (1) performs an operation similar to Cartesian product between d.Majors and d.Faculty (creating
a tuple for every combination of student and professor in the same department),  thus producing large
intermediate results. Expression (2) has a larger left join operand than Expression (3) or (4). Therefore,
Expressions (3) and (4) are superior to Expressions (1) and (2). Expression (4) apparently incurs less
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overhead than Expression (3) in terms of common sub-expressions. However, if the predicate
s.status=’Ph.D’ removes many Department objects (because many departments do not have Ph.D
candidates), Expression (3) is better due to the smaller right join operand.

There are other ways of obtaining Expression (3) than by using the hybrid rule. For instance, a query
interpreter may translate Query 4 into Expression (3) directly, by creating the same sub-expression for each
occurrence of a CVA. A potential problem is that generating other alternatives such as Expression (1) and
(2) is then difficult, whereas these alternatives may lead to promising expressions. Another way of

generating Expression (3) is using the transformation rule A = A �A. This rule bears some resemblance to
the hybrid rule. However, the hybrid rule is motivated by the observation that duplicating expressions in the
presence of CVAs often gives favorable expressions, thereby we regard it as containing more useful

guidance than the A = A �A rule. While A = A �A applies to any expression, the hybrid rule applies only

to materialize operators. For instance, the A = A �A rule can generate numerous alternatives, among which
few perform well, while among four alternatives that the hybrid rule may generate, at lease two (Expressions
(3) and (4)) are promising ones. Furthermore, the hybrid rule can only be applied once at a given point in an

expression, where as the A = A �A rule can be applied an unlimited number of times at the same location,
requiring some additional mechanism to bound its use.

5 Enhancing Value-based Algorithms

It has been noted that a value-based expression may be less efficient for CVAs than its hybrid counterparts,
due to larger join input. In Figure 6, the value-based expression, Expression (2), has a large left join input,
because CVA instances in the left join operand are flattened to allow evaluation of the join predicate. A
hybrid expression avoids this problem by checking the identities of CVA instances rather than those of CVA
elements in the join predicate. We attempt to overcome the problem in the value-based case by using the
identities of parent objects in the join predicate. This modification is possible if there is a relationship with
the appropriate inverse attribute. Notice that, in the example schema, Professor and Department have a 1:n
relationship via dept and Faculty. This connection implies that the predicate f = f in Expression (2) can be
replaced by d = f.dept, which makes μ d.Faculty and Md.faculty redundant. Expression (5), in Figure 8, can be
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regarded as an alternative of Expression (2) in Figure 6 by replacing the join predicate and removing the
unnesting operator. Apparently, Expression (5) overcomes the problem of large join input, and performs
competitively among the alternatives.

Figure 7 illustrates an enhancement rule, Rule 1, which utilizes a 1:n relationship to generate a value-based
expression from a pointer-based expression. Assuming that R and extent A have a 1:n relationship via
attributes a and R, Rule 1 transforms an unnest operator and two materialize operators into a materialize and
a join, using the parent identity as join condition. In Figure 8, this rule transforms Expression (1) of Query 4
into Expression (5).

Rule 1 improves value-based algorithms using 1:n relationships. Extending this idea to m:n relationships
gives rise to Rule 2, the second enhancement rule also depicted in Figure 7. Assuming an m:n relationship
between R and A, Rule 2 transforms an unnest operator and two materialize operators into an unnest, a
materialize, and a join, using the parent identity as a join condition. As with Rule 1, the motivation for Rule
2 is to reduce join costs by shrinking join operands. This is especially beneficial when the left join operand
is much larger than the right one so that the effort of partitioning and iterating it dominates the overall join
cost, as illustrated by the example query below.

Query 5: Returns student-course pairs where the student is a MBA candidate, and takes the course that is
taught by his or her advisor:

select struct(c:c, p:p)
from Courses as c, c.Instructors as i, c.Participants as p
where p.advisor = i.name AND p.status=’MBA’

For this query, Expressions (1) and (2) in Figure 9 both generate large intermediate results, by successively
flattening two CVAs. Consequently, the top materialize in Expression (1) and the join in Expression (2)
become very expensive. Consider the join in Expression (2). Assume neither operand fits in memory. Then
the effort in partitioning and iterating the left operand dominates the join cost, because the left operand is

                                                                (1) Pointer-based (same as Figure 6(1))    (5) Enhanced value-based

   Figure 7: Enhancement Rules                     Figure 8: Another Expression for Query 4
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much larger than the right one. Apparently, reducing the left operand helps lower join cost. Utilizing the m:n
relationship between Course and Student, Rule 2 transforms Expression (1) into Expression (3), which has
much lower join cost.

Following the same idea, one can improve hybrid algorithms using m:n relationships. Note that the hybrid
technique is efficient when applied to a CVA that has 1:n relationship with its children; and is less efficient
when applied to a CVA that has m:n relationship with its children. Consider Expression (1) of Query 5 in
Figure 9.  If the hybrid rule is applied to Mc.Participants in Expression (1), the result expression is not efficient
because it does not eliminate duplicate student objects in the right join operand. On the other hand, if the
rule is applied to Mf, the result expression is still inefficient because of a large left join operand. To solve
this problem, one can apply an enhanced rule similar to Rule 2 on Mp, thus achieve an enhanced hybrid
expression that performs comparably to the enhanced value-based expression,

6 Experimental Results

In this section, we present experimental results from implementing the hybrid and enhanced techniques. The
experiments were conducted on a Sun SparcStation/20 and with the GemStone/S system, a commercial
object-oriented database system [Gem96]. A query evaluator was developed on GemStone for these
experiments. The evaluator supports such operators as unnest, pointer-based materialize, join, projection,
and select. All the operators, except unnest and select, are implemented using hybrid hash algorithms. The
operators are implemented in Smalltalk-DB, the DML of GemStone/S. If not stated otherwise, a hybrid
expression evaluates common sub-expressions as many times as they appear. We present the experimental
data for some of the queries mentioned in this paper. For each query examined, the alternative expressions
representing different approaches were executed. The performance was evaluated under various sharing
situations and extent densities. We measured CPU time, I/O amount, and total elapsed time. In most
experiments, I/O and CPU costs were affected in the similar fashion. Therefore, we use elapsed time as our
performance criterion in this presentation. The disk page size and buffer size in GemStone are 8K. We chose
the sizes of our test databases to be relatively modest, so we could run a large number of tests. In most cases,
the values shown are the result of one run. However, where two techniques had performance that was close
together, the data points are averages of several runs, in order to see fine distinctions. We organize this
section in two parts. First, we examine the performance of the three basic approaches, namely, the pointer-
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based, the value-based, and the hybrid techniques, for both single- and collection-valued attributes. Then, we
evaluate the effect of the enhancement rules.

6.1 Evaluating Pointer-based, Value-based and Hybrid Techniques

We begin by demonstrating the performance of the pointer-based, value-based and hybrid techniques in the
setting of single-valued attributes using Query 1. Three expressions in Figure 4 are executed when the fan-in
or the density of Department objects varies. Recall the notion of fan-in and density in Section 1. For Query
1, fan-in means the average number of professors in the same department; the density is the ratio between
the number of departments that have faculty member specializing in Mathematics and the total number of
departments.

Figure 10 (1) illustrates the elapsed time of three expressions when the fan-in of f.dept changes. When the
fan-in equals one, the pointer-based expression is the cheapest, while the other two expressions suffer from
large join operands. However, once sharing occurs, the curves for the hybrid and value-based expressions
drop quickly, while the one for the pointer-based expression remains high. At higher fan-in, it becomes
obvious that the hybrid expression is more expensive than its value-based counterpart, though in a narrow
margin, due to the overhead of an extra projection operator and common sub-expressions. Figure 10 (2),
however, shows the opposite case, where the hybrid expression outperforms the value-based expression as
the extent of Department becomes sparse. This figure contrasts the three expressions as the density of
Department increases. The value-based expression is cheapest when the density is one, but degrades as the
density goes down, and finally becomes the most costly.  The other expressions are not affected by density
change, since they don’t use the extent.

Now let us evaluate the three techniques in the context of CVAs using Query 3. The test data consists of a
total of 2048 Student objects, with 80 elements on average in each s.Core instance. Three expressions in
Figure 5, Expressions (1), (2), and (4), are executed as the fan-in of s.Core instances or the fan-in of s.Core
elements changes. The fan-in of s.Core instances, denoted as fan-in(s.Core), is the average number of
students with the same core course requirement. The fan-in of s.Core elements, denoted as fan-in(s.Core.*),
is the average number of Core collections that overlap on the same course.

(1) Varying the fan-in of f.dept                                       (2) Varying the density of f.dept

                   Figure 10: Query 1, elapsed time of the expressions in Figure 4
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Figure 11(1) varies the fan-in of s.Core instances, while the fan-in of s.Core elements is fixed as two. When
the fan-in of s.Core instances is one, the hybrid and value-based expressions are more expensive than the
pointer-based one. As the fan-in grows, the costs of the two expressions drop quickly. The decrease
essentially stops when the fan-in passes 15, because, for both expression, as the previously dominating
operands shrink to a certain degree, other cost factors that are independent of density change starts to
dominate overall expression costs.  In this figure the hybrid expression outperforms the value-based
expression, because of the large left join operand in the value-based expression. Figure 10(1) and Figure
11(1) suggest that value-based algorithms generally have less overhead than hybrid algorithms when applied
to single-valued attributes, but more when applied to CVAs.

Figure 11(2) demonstrates the performance of Query 3 when the fanin of s.Core elements goes from 1 to 40,
with the fan-in of s.Core instances fixed as one. Different data sets with various fan-ins are used in the test.
Since there is no sharing among s.Core instances, the hybrid expression suffers from a large right join input,
and becomes the worst algorithm throughout the test. The value-based expression, however, takes advantage
of the smaller extent size as fan-in grows, and becomes the best as the fan-in increases. This experiment
suggests that the hybrid approach is sensitive to the existence of object sharing.

   (1) Varying fan-in(s.Core)                                                   (2) Varying fan-in(s.Core.*)

             Figure 11: Query 3, elapsed time of the expressions in Figure 5

(1) Varying student selectivity       (2) Varying department selectivity      (3) Varying department selectivity

                              Figure 12: Query 4, elapsed time for the expressions in Figure 6 and Figure 8
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To examine the three techniques for a somewhat more complex CVA query, we execute the expressions for
Query 4. The test data includes 300 departments, each with 30 faculty members and 60 students. The
expressions in Figure 6 are executed as student selectivity or department selectivity changes from 0.1 to 1.
Student selectivity is the ratio between the number of Ph.D students and the total number of students.
Department selectivity is the ratio between the number of departments with Ph.D students and the total
number of departments.

Figure 12(1) shows the elapsed time for the four expressions relative to student selectivity, with department
selectivity fixed at one, meaning every department has some Ph.D students. As the selectivity increases, the
costs of both the pointer-based and value-based expressions grows rapidly, while the hybrid expressions are
quite stable at the lowest cost level. When the selectivity is high, the pointer-based expression suffers from
large intermediate results, especially the input to the top materialize operator. Similarly, with high
selectivity, the value-based expression incurs a high join cost due to a large left join operand. Both hybrid
expressions demonstrate their superiority. Expression (3), however, costs slightly more than Expression (4),
due to bigger common sub-expressions.

Figure 12(2) demonstrates the behavior of the four expressions as predicate s.status=’Ph.D’ removes more
and more departments. The time for these expressions is plotted against department selectivity. Student
selectivity is linear in department selectivity with a factor of 0.5, which means, for each department that has
Ph.D students, 50 percent of its students are selected. Different from in Figure 12(1), in Figure 12(2),
Expression (3) outperforms Expression (4) when the selectivity is small, because ruling out many
departments during selection help reduce the right join operand for Expression (3), but not for Expression
(4). This experiment also shows that the pointer-based expression can outperform the value-based
expression with small selectivity, even though it tends to diverge when selection becomes less restrictive.

Hybrid expressions contain common sub-expressions. To avoid evaluating a sub-expression twice, one can
store and reuse its evaluation result. We apply this strategy to Expression (3) of Query 4, and illustrate its
performance in Figure 12(3), where hybrid (3) stands for a algorithm derived from Expression (3) that
evaluates the common sub-expression twice, and hybrid (varied 3) represents a algorithm that stores and
reuses the intermediate result. The test is conducted using the same configuration as for Figure 12(2). The
pointer-based expression is also shown for reference. At least in this case, storing and reusing results of
common sub-expressions does not bring significant benefit.

6.2 Evaluating Enhanced Algorithms

We use Query 4 to evaluate the first enhancement rule, Rule 1. Figure 13 contrasts the value-based and
enhanced value-based expressions (in Figure 6 and 8 respectively). The pointer-based expression is also
included for reference. The test data includes 300 departments, each with 30 faculty members and 60
students. The elapsed time of the three expressions is shown with varied student selectivity. When the
selectivity is small, the gap between the value-based and the enhanced value-based is minimal. As the
selection becomes less restrictive, the gap grows rapidly, because the left join operand expands more quickly
in the value-based expression than in the enhanced value-based expression. Exploiting a 1:n relationship, the
enhanced technique achieves significant improvement compared to the original value-base algorithms.
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Figure 14 evaluates the second enhancement rule, Rule 2, using three expressions for Query 5. Among the
three expressions, value-based and enhanced value-based are illustrated in Figure 9. The hybrid expression,
not depicted in the figure, performs join between the unnesting result of c.Instructors and a select operator
which filters the unnesting result of c.Participants using the predicate p.status=’MBA’. The test data
includes 300 courses, each with 10 instructors and 40 students. In Figure 14, elapsed time of the three
expressions is depicted as a function of the selectivity of the predicate p.status=’MBA’. The value-based
expression chooses the smaller operand, the right branch in Figure 9 (2), as the inner operand. Thus it is
sensitive to selectivity change, while the other two expressions are barely affected, because they choose
different inner operands that happen to fit in memory. This test demonstrates that, utilizing a m:n
relationship, the enhanced technique can significantly improve value-based algorithms. We also conduct
experiments with the same enhancement for the hybrid technique, which yielded similar results to those of
Figure 14.

We see that the two enhancement rules can significantly improve the value-based technique using
relationships. Thus, relationships captured as inverse attributes can be quite useful in evaluating queries with
CVAs, and an optimizer can benefit from being aware of such relationships.

7 Related Work

Other materialization techniques not covered in this paper are indexing [MS86, BK89] and access support
relations [KM90]. An index maps attributes to their parents. Retrieving parents through their entries in an
index is itself a materialization process, where the techniques discussed in this paper apply. An index may
also be considered an implementation of relationships (with all the inverse references gathered into one
place), and thus can be used in the enhancement methods. Access support relations are a mechanism that
stores the results of reference materialization (“materialization materialization”), which is complementary to
the materialization process.

Path expression processing [ODE95, GGT96] aims at finding the optimal evaluation order for segments of
path expressions, assuming that segments can be evaluated using value-based algorithms. Since original
value-based techniques are not efficient for processing CVAs, the enhanced technique could play a key role
in adapting existing path expression processing techniques to collection-valued attributes. Compared to the
value-based techniques, one limitation of the hybrid technique is that it does not facilitate path expression re-
ordering. Therefore, when processing a path expression, all the materialization techniques might be

Figure 13: Query 4, elapsed time versus student
selectivity while department selectivity equals one

Figure 14: Query 5, elapsed time
versus selectivity
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employed. For instance, the path expression can be cut into sub-paths. Within a sub-path, various algorithms
can be applied, while between sub-paths, value-based algorithms are employed to facilitate reordering.

Ross [Ross95] proposes decomposing parent and child objects at the beginning of materialization, then
sorting and resolving the child references, and finally merging the parent and children attributes to give the
materialization result. His algorithm minimizes the space taken by the sorting phase, and under certain
circumstances, eliminates the need for partitioning. However, the benefit of decomposition is localized in
that it only reduces the cost of materialization itself, while hybrid algorithms may benefit other operators as
well.

Similar to join materialization [BMG94], the hybrid rule transforms an implicit join into an explicit one, but
duplicates the input expression instead of using extents.

Braumandl et al. [BCK98] base a new pointer-based algorithm for CVA attributes on a storage model
similar to GemStone and Shore. To our knowledge, their work is the first effort towards adapting pointer-
based algorithms to CVAs. The enhancement algorithms we present can be considered an initial effort to
adapt value-based algorithms in the same manner.

We consider set comparison too expensive for join predicates. Therefore, we did not include alternatives that
use set predicates in materializing CVAs. However, Helmer and Moerkotte [HM97] demonstrate that set
predicates can be implemented efficiently using superimposed signatures. Such techniques can be used
together with the value-based and hybrid techniques for CVA materialization.

8 Conclusions and Future Work

We have extended the current body of work on materialization techniques in two dimensions. First, to
address major shortcomings of existing techniques, we proposed the hybrid technique that gives rise to
competitive materialization algorithms in many circumstances. Second, we present some enhancements for
existing techniques when they are applied to CVAs.  Initial experiments with an evaluator written on a
commercial object-oriented database confirm our informal analyses of various techniques.

More techniques for materialization and CVAs mean a larger search space for the query optimizer.
Exhaustive search of this space might not always be desirable. Therefore we will do more analytical and
experimental evaluation to develop guidance for optimizers to generate promising expressions quickly. For
instance, among many materialize operators in an original expression, an optimizer should seek to choose
the most effective places to fire the hybrid rule and enhancement rules. One strategy is to apply the hybrid
rule where attributes are highly shared, or where the materialization input has not had the hybrid rule applied
already. Of course, we also need to develop appropriate cost functions and statistics so that we can reliably
choose a relatively inexpensive plan among the alternatives.

The work described in this paper is part of an ongoing effort to explore new techniques for efficiently
processing CVA queries. We have noted three kinds of CVA query techniques, and classify them according
to the algebra in which queries are represented and transformed. The nested algebra approach [SS86] allows
bulk operators on CVAs to be performed and transformed within a nested projection operator. The recursive
algebra approach [Colby89] includes complex select, projection, and join operators that can manipulate
both parent objects and CVA elements. These operators simulate their relational counterparts, but accept and
produce nested collections (collections with CVAs). The flat algebra approach [Steen95, Feg98] uses
essentially the relational algebra to process CVAs queries. Since the relational algebra has no means of
manipulating CVAs, CVA instances have to be unnested before being accessed by relational operators.
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Besides the relational operators, an actual algebra may include unnest and nest [FT83]. The nest operator
achieves an effect similar to what is provided by a group-by operation, except that nest may generate CVAs
for a group instead of a single value.

The flat algebra approach is more compatible with conventional query processing frameworks, thus is
adopted in much work on object query optimization [Cluet93, Feg98, Steen95]. However, we observe that
each approach has its own advantages, and can outperform the others in certain circumstances. Based on this
observation, our work on CVA query processing will be carried on in two directions. One is to explore
evaluation techniques for these three approaches. Lack of efficient algorithms is a major factor impeding the
adoption of the nested and recursive algebra approaches. Good materialization strategies may alleviate this
problem. So far, most work on materialization (including this paper) assumes the flat algebra approach.
However, Braumandl et al.[BCK98] demonstrate that adapting the pointer-based algorithms to the nested
and recursive algebra approaches is possible. Other adaptation and techniques remain to be explored. The
other direction for investigation is a combined query processing approach that integrates more than one
existing approach. An appropriate algebra and corresponding transformations will be developed to generate
a combined expression space, which will likely much larger than the space for any single approach. Thus,
exhaustive search may become impractical. Therefore, effective search strategies, for instance, pruning
techniques [Shapiro et al. 99], will also be investigated to limit the search effort required for optimizing
queries.
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