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Abstract� We introduce MetaML� a practically�motivated� statically�
typed multi�stage programming language� MetaML is a �real� language�
We have built an implementation and used it to solve multi�stage prob�
lems�
MetaML allows the programmer to construct� combine� and execute code
fragments in a type�safe manner� Code fragments can contain free vari�
ables� but they obey the static�scoping principle� MetaML performs type�
checking for all stages once and for all before the execution of the �rst
stage�
Certain anomalies with our �rst MetaML implementation has led us
to formalize an illustrative subset of the MetaML implementation� We
present both a big�step semantics and type system for this subset� and
prove the type system�s soundness with respect to a big�step semantics�
From a software engineering point of view� this means that generators
written in the MetaML subset never generate unsafe programs� A type
system and semantics for full MetaML is still ongoing work�

We argue that multi�stage languages are useful as programming lan�
guages in their own right� that they supply a sound basis for high�level
program generation technology� and that they should support features
that make it possible for programmers to write staged computations
without signi�cantly changing their normal programming style� To illus�
trate this we provide a simple three stage example elaborating a number
of practical issues�
The design of MetaML was based on two main principles that we iden�
ti�ed as fundamental for high�level program generation� namely� cross�
stage persistence and cross�stage safety� We present these principles� ex�
plain the technical problems they give rise to� and how we address with
these problems in our implementation�
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� Introduction

High�level program generators can increase the e�ciency� productivity� reliabil�
ity� and quality of software systems ��	���� �
�� Despite these numerous examples
of program generators� almost all these systems deal with the construction of
program fragments using ad hoc techniques�
Our thesis is that a well�designed statically�typed multi�stage programming

language supplies a sound basis for high�level program generation technology�
Our goal is to design a language that allows the user to construct� combine� and
evaluate programs at a higher level of abstraction than the classic �programs�
as�strings level� Using such a language would make the formal veri�cation of
generated�program properties easier�

��� Multi�Stage Programs and Languages

The concept of a stage arises naturally in a wide variety of situations� For a com�
piled language� the execution of a program involves two distinct stages� compile�
time� and run�time� Three distinct stages appear in the context of program gen�
eration� generation� compilation� and execution� For example� the Yacc parser
generator �rst reads a grammar and generates C code� second� this program is
compiled� third� the user runs the compiled code�
A multi�stage program is one that involves the generation� compilation� and

execution of code� all inside the same process� Multi�stage languages express
multi�stage programs� Multi�stage programming is important because it ad�
dresses the need for general purpose solutions which do not pay run�time inter�
pretive overheads� This is the purpose of program staging and it can be highly
e�ective as demonstrated in many studies ��� ��� �	� �� ��� ��� 
�� ���� Recently�
multi�stage languages have also been proposed as intermediate representations
for partial evaluation ��
��� ���� and as formal foundations for run�time code
generation ���� However� there has generally been little support for writingmulti�
stage programs directly in high level programming languages such as SML or
Haskell�

��� MetaML

MetaML is an SML�like language with special constructs for multi�stage pro�
gramming� MetaML is tightly integrated in that programs can be constructed�
combined� compiled� and executed all under a single paradigm� Programs are
represented as abstract syntax trees in a manner that avoids going through
string representations� This makes verifying semantic properties of multi�stage
programs possible� The key features of MetaML are as follows�

� Staging nnnotations� Four distinct constructs which we believe are a good
basis for general�purpose multi�stage programming�

� Static type�checking� A multi�stage program is type�checked once and for all
before it begins executing� ensuring the safety of all computations�



� Cross�stage persistence� A variable bound in a particular stage� will be avail�
able in futures stages�

� Cross�stage safety� An input �rst available in a particular stage cannot be
used at an earlier stage�

� Static scoping of variables in code fragments�

� Relationship to LISP

MetaML has three annotations� Brackets� Escape� and Run� that are analogous
to LISP�s back�quote� comma� and eval constructs� This analogy is useful if
the reader is familiar with LISP� Brackets are similar to back�quote� Escape is
similar to comma�Run is similar to eval in the empty environment� However� the
analogy is not perfect� LISP does not ensure that variables �atoms� occurring in
a back�quoted expressions are bound according to the rules of static scoping� For
example ��plus � �� does not bind plus in the scope where the term occurs�
We view this as an important features of MetaML� We view MetaML�s semantics
as a concise formalization of the semantics of LISP�s three constructs� but with
static scoping� This is similar in spirit to Brian Smith�s semantically motivated
LISP �����	� Finally� whereas LISP is dynamically typed� MetaML is statically
typed�
The annotations can also be viewed as a providing a simple but statically�

typed macro�expansion system� This will become clear as we introduce and
demonstrate the use of these constructs� But it is also important to note that
the annotations don�t allow the de�nition of new language constructs or binding
mechanisms� as is sometimes expected from macro�expansion systems�
Finally� we should point out that back�quote and comma are macros in LISP�

This leads to two problems� First� they have non�trivial formal semantics �about
two pages of LISP code�� Second� because of the way they expand at parse�time�
they can lead to exponential overhead for representing multi�level programs �����
MetaML avoids both problems by a direct treatment of Bracket and Escape as
language constructs�

� Relationship to Linguistic Re�ection

�Linguistic re�ection is de�ned as the ability of a program to generate new pro�

gram fragments and to integrate these into its own execution� ����� MetaML is a
descendent of CRML ������� ���� which in turn was greatly in�uenced by TRPL
�
��
��� All three of these languages support linguistic re�ection� Both CRML
and TRPL were two stage languages that allowed users to provide compile�time
functions �much like macros� which directed the compiler to perform compile�
time reductions� Both emphasized the use of computations over representations
of a program�s datatype de�nitions� By generating functions from datatype de��
nitions� it was possible to create speci�c instances of generic functions like equal�
ity functions� pretty printers� and parsers �
��� This provided an abstraction
mechanism not available in traditional languages� MetaML improves upon these



languages by adding hygienic variables� generalizing the number of stages� and
emphasizing the soundness of its type system�

� Relationship to Partial Evaluation

Today� the most sophisticated automatic staging techniques are found in partial
evaluation systems ����� Partial evaluation optimizes a program using a priori

staging information about some of that program�s inputs� The goal is to identify
and perform as many computations as possible in a program before run�time�

O�ine partial evaluation involves two distinct steps� binding�time analysis

�BTA� and specialization� BTA determines which computations can be per�
formed in an earlier stage given the names of inputs available before run�time
�static inputs��
In essence� BTA performs automatic staging of the input program� After

BTA� the actual values of the inputs are made available to the specializer� Follow�
ing the annotations� the specializer either performs a computation� or produces
text for inclusion in the output �residual� program�
The relationship between partial�evaluation and multi�stage programming is

that the intermediate data structure between the two steps is a two�stage an�

notated program ��� 
��� and that the specialization phase is the �rst stage in
the execution of the two�stage annotated program produced by BTA� Recently�
Gl�uck and J�rgensen proposed multi�level BTA and showed that it is an e��
cient alternative to multiple specialization ������� Their underlying annotated
language is closely related to MetaML� but without static�typing�

� Why Explicit Annotations�

While BTA performs staging automatically� there are a number of reasons why
the manual staging of programs is both interesting and desirable�

Pragmatic� The subtlety of the semantics of annotated programs warrants
studying them in relative isolation� and without the added complexity of other
partial evaluation issues such as BTA�

As a Pedagogical Tool� It has been observed that it is sometimes hard for
users to understand the workings of partial evaluation systems ����� New users
often lack a good mental model of how partial evaluation systems work� Fur�
thermore� new users are often uncertain� What is the output of a binding�time
analysis� What are the annotations� How are they expressed� What do they
really mean� The answers to these questions are crucial to the e�ective use of
partial evaluation� Although BTA is an involved process� requiring special exper�
tise� the annotations it produces are relatively simple and easy to understand�
Our observation is that programmers can understand the annotated output of
BTA� without actually knowing how BTA works� Having a programming lan�
guage with explicit staging annotations would help users of partial evaluation
understand more of the issues involved in staged computation� and� hopefully�



reduce the steep learning curve currently associated with learning to use a partial
evaluator e�ectively �����

For Controlling Evaluation Order� Whenever performance is an issue�
control of evaluation order is important� BTA optimizes the evaluation order
given the time of arrival of inputs� but sometimes it is just easier to say what
is wanted� rather than to force a BTA to discover it ����� Automatic analyses
like BTA are necessarily incomplete� and can only approximate the knowledge of
the programmer� By using explicit annotations the programmer can exploit his
full knowledge of the program domain� In a language with automatic staging�
having explicit annotations can o�er the programmer a well designed back�door
for dealing with instances when the analysis reaches its limits�

For Controlling Termination Behavior� Annotations can alter termina�
tion behavior in two ways� �� Specialization of an annotated program can fail to
terminate� and �� the generated program itself might have termination behavior
di�ering from that of the original program ����� While this is an area of active
investigation in partial evaluation� programming with explicit annotation gives
the user complete control over �and responsibility for� termination behaviour in
a staged system�

� MetaML	s Staging Annotations

MetaML has four staging annotations� Brackets � �� Escape � � Run run � and
Lift lift � An expression �e� builds a piece of code which is a representation
of e� An expression �e splices the code obtained by evaluating e into the body
of a surrounding Bracketed expression� An expression �e is only legal within
lexically enclosing Brackets� An expression run e evaluates e to obtain a piece
of code� and then evaluates that code� The expression lift e evaluates e to a
value v� and then constructs a piece of code representing v� The term e must
have ground type� A ground type is a type not containing a function type� To
illustrate� consider the script of a small MetaML session below��

	
 val triple � ���� ����� lift ����

val triple � ����� �� ������ � �int � �int� � �int��

	
 fun f �x�y�z� � � � 	 �y ��

val f � fn � ��b � �int� � �a� 	� �int�

	
 val code � f triple�

val code � �� �	 �� �� �� � �int�

	
 run code�

val it � � � int

� The reader should treate the percentage signs as white space until they are explained
in the next section�



The �rst declaration de�nes a variable triple� The addition in the �rst com�
ponent of the triple is evaluated� The evaluation of the addition in the second
component is deferred by the Brackets� The addition in the third component is
evaluated and then the result is Lifted into a piece of code� Brackets in types
such as �int� are read �Code of int�� and distinguish values such as ���� from
values such as �� The second declaration illustrates that code can be abstracted
over� and that it can be spliced into a larger piece of code� The third declaration
applies the function f to triple performing the actual splicing� And the last
declaration evaluates this deferred piece of code�
To give a brief feel for how MetaML is used to construct larger pieces of code

at run�time consider�

	
 fun mult x n � if n��

then ���

else � �x � ��mult x �n	��� ��

val mult � fn � �int� 	� int 	� �int�

	
 val cube � �fn y �� ��mult �y� ����

val cube � �fn a �� a � �a � �a � ���� � �int 	� int�

	
 fun exponent n � �fn y �� ��mult �y� n���

val exponent � fn � int 	� �int 	� int�

The function mult� given an integer piece of code x and an integer n� produces
a piece of code that is an n�way product of x� This can be used to construct
the code of a function that performs the cube operation� or generalized to a
generator for producing an exponentiation function from a given exponent n�
Note how the looping overhead has been removed from the generated code�

��� Roles

Having Run in the language implies introducing a kind of re�ection ���� 
�� and
allows a delayed computation to be activated�
Both Lift and Brackets create pieces of code� The essential di�erence is that

Lift evaluates its argument� and Bracket does not� Function values cannot be
lifted into code using Lift� as we cannot derive a high�level intensional represen�
tation for them in general� Functions can be delayed using Brackets�

��� Syntactic Precedence Issues

The Escape operator has the highest precedence� even higher than function appli�
cation� This allows us to write� �f �x y� rather than �f ��x� y�� The Lift and
Run operators have the lowest precedence� The scope of these operators extends
to the right as far as possible� This makes it possible to write �f ��lift g y�

z� rather than �f ��lift �g y�� z��




 The Design of MetaML

MetaML was designed as a statically�typed programming language� and not
as an internal representation for a multi�stage system� Our primary goals for
MetaML were� �rst� it should be suitable for writing multi�staged programs�
second it should be as �exible as possible� and third it should ensure that only
�reasonable things can be done using the annotations� Therefore� our design
choices were di�erent from those of other multi�stage systems�
To de�ne the semantics of MetaML� a syntactic notion of level is needed� The

level of an expression is the number of surrounding Brackets� minus the number
of surrounding Escapes� It is possible to use a variable at a level di�erent than
the level of the lambda abstraction which binds it� In this sections� we discuss
two principles for determining which uses are acceptable� and which are not�

��� Cross�Stage Persistence

Cross�stage persistence is one of the distinguishing feature of MetaML� To our
knowledge� it has not been proposed or incorporated into any multi�stage pro�
gramming language� In essence� cross�stage persistence allows the programmer
to use a variable bound at the current level in any expression to be executed
in a future stage� We believe this to be a desirable and natural property in a
multi�stage language� The type system will have to ensure that these variables
are available before this expression is evaluated�
When the level of the use of a variable is greater than the level at which it

was bound� we say that variable is cross�stage persistent�
To the user� cross�stage persistence means the ability to stage expressions

that use variables de�ned at a previous stage� Bracketed expressions with free
variables� like ��abstractions with free variables� must resolve their free variable
occurrences in the static environment where the expression occurs� One can think
of a piece of code as containing an environment which binds its free variables�
For example the program fragment

val a � �� in ����a��

computes the code fragment ��� �� �a�� The percentage sign ��� indicates that
the free variable a and the operator � are bound in the code�s local environment�
The � is printed by the display mechanism� The variable a has been bound dur�
ing the �rst stage to the constant �� In fact� in MetaML �a is not a variable� but
rather� a new constant� The name �a is only a hint to the user about where this
constant originated� When �a is evaluated in a later stage� it will return � inde�
pendently of the binding for the variable a in the new context since it is bound in
the value�s local environment� Arbitrary values �including functions� can be de�
layed using this hygienic binding mechanism� Formally specifying this behavior
in a big�step semantics turns out to be non�trivial� In an interpreter for a multi�
stage language� this behaviour manifests itself as complex variable�binding rules�
the use of closures� or capture�free substitutions� Our implementation semantics
addresses cross�stage persistence in a novel way �Section �
����



Cross�Platform Portability For high�level program generation� cross�stage
persistence comes at a price� In particular� being able to inject any value into
the code type means that some parts of this code fragment may not be printable�
So� if the �rst stage is performed on one computer� and the second on another�
we must �port the local environments from the �rst machine to the second�
Since arbitrary objects� such as functions and closures� can be bound in these
local environments this can become a portability problem� Currently� MetaML
assumes that the computing environment does not change between stages� This is
part of what we mean by having an integrated system� Thus� MetaML currently
lacks cross�platform portability� The loss of this property is the price paid for
cross�stage persistence�
Cross�platformportability is usually not an issue for run�time code generation

systems� and hence� cross�stage persistence might in fact be more appropriate
for such systems� On the other hand� the problem of cross�platform portability is
similar to that of lifting functional values in partial evaluation� and type�directed
partial evaluation may provide a solution to this problem ��� ����

��� Cross�Stage Safety

Not every staged form of a typable expression should be typable in MetaML�
When a variable is used at a level less than the level of the lambda abstraction in
which it is bound� we say the use violates cross�stage safety� Cross�stage safety
prevents us from staging programs in unreasonable ways� as is the case in the
expression

fn a �� �fn b �� ��a�b��

Operationally� the annotations require computing a�b in the �rst stage� while
the value of b will be available only in the second stage� Therefore� MetaML�s
type system was designed to ensure that �well�typed programs won�t go wrong�
where going wrong now includes the violation of the cross�stage safety condition�
as well as the standard notions of going wrong ���� in statically�typed languages�
In our experience with MetaML� having a type system to screen out programs

containing this kind of error is a signi�cant aid in hand�staging programs�

� Hand�Staging A Short Example

Using MetaML� the programer can stage programs by inserting the proper an�
notations at the right places in the program� The programmer uses these anno�
tations to modify the default �strict� evaluation order of the program�
In our experience� starting with the type of the function to be hand�staged

makes the number of di�erent ways in which it can be annotated quite tractable�
This leads us to believe that the location of the annotations in a staged version
of a program is signi�cantly constrained by its type� For example� consider the
function member de�ned as follows��
� Function ��� has type �int � int� �� bool which forces v and l to have types int
and int list� respectively�



�� member � int 	� int list 	� bool ��

fun member v l �

if �null l�

then false

else if v��hd l�

then true

else member v �tl l��

The function member has type int 	� int list 	� bool� A good strategy
for hand annotating a program is to �rst determine the target type of the desired
annotated program� Suppose the list parameter l is available in the �rst stage�
and the element searched for will be available later� One target type for the
hand�staged function is �int� 	� int list 	� �bool��
Now we can begin annotating� starting with the whole expression� and work�

ing inwards until all sub�expressions are covered� At each step� we consider what
annotations will ��x the type of the expression so that the whole function has
a type closer to the target type� The following function realizes this type�

�� member � �int� 	� int list 	� �bool� ��

fun member v l �

if �null l�

then �false�

else �if �v���lift hd l�

then true

else ��member v �tl l����

But not all annotations are explicitly dictated by the type� The annotation
��lift hd l� has the same type as �and replaces� hd l in order to ensure
that hd is performed during the �rst stage� Otherwise� all selections of the head
element of the list would have been delayed until the code constructed was Run
in a later stage�
The Brackets around the branches of the outermost if�expression ensure that

the return value of member will be a code type �� ��� The �rst branch �false�
needs no further annotations� and makes the return value precisely a �bool��
Moving inwards in the else branch� the condition of the inner if�expression �in
particular �v� forces the type of the v parameter to have type �int� as planned�
Just like the �rst branch of the outer if�statement� the whole of the inner

if�statement must return bool� So� the �rst branch �true� is �ne� But because
the recursive call to member has type �bool�� it must be Escaped� Inserting this
Escape also implies that the recursion will be performed in the �rst stage� which
is exactly the desired behavior� Thus� the result of the staged member function
is a recursively�constructed piece of code with type bool�
Evaluating �fn x �� ��member �x� ��������� yields�

�fn d� ��

if d� �� �

then true



else if d� �� �

then true

else if d� �� �

then true

else false�

� Isomorphisms of Code Types Back and Forth

While staging programs� we found an interesting pair of functions to be useful�

�� back� ��A� 	� ��B� 	� ���A 	� �B�� ��

fun back f � �fn x �� ��f �x����

�� forth� ���A 	� �B�� 	� ���A� 	� ��B�� ��

fun forth f x � ��f �x��

We used a similar construction to stage the member function of type �int�
	� int list 	� �bool�� within the term �fn x �� ��member �x� ���������

which has type �int 	� bool� �
In our experience annotating a function to have type �A� 	� �B� requires

less annotations than annotating it to have type �A 	� B� and is often easier to
think about� Because we are more used to reasoning about functions� this leads
us to avoid creating functions of the latter kind except when we need to inspect
the code� This can also be seen in programs with more than two stages� Consider
the function�

�� back� � ���A� 	� ���B�� 	� ���C���

	� ��A 	� ��B 	� �C�� ��

fun back� f � �fn x �� �fn y �� ���f �x� ��y������

This allows us to write a program which takes a �a� and a ��b�� as arguments
and which produces a ��c��� and stage it into a three�stage function� Our expe�
rience is that such functions have considerably fewer annotations� and are easier
to think about� This is illustrated in the following section�
Finally� we should mention that there is another reason for our interest in

back and forth� they are similar to two�level ��expansion ���� In MetaML� how�
ever� back and forth are not only meta�level concepts or optimizations� but
rather� �rst class functions in the language� and the user can apply them di�
rectly to values of the appropriate type�

�� A Multi�Stage Example

When information arrives in multiple phases it is possible to take advantage of
this fact to get better performance� Consider a generic function for computing
the inner product of two vectors� In the �rst stage the arrival of the size of the
vectors o�ers an opportunity to specialize the inner product function on that size�



removing the overhead of looping over the body of the computation n times� The
arrival of the �rst vector a�ords a second opportunity for specialization� If the
inner product of that vector is to be taken many times with other vectors it can
be specialized by removing the overhead of looking up the elements of the �rst
vector each time� This is exactly the case when computing the multiplication
of � matrixes� For each row in the �rst matrix� the dot product of that row
will be taken with each column of the second� This example has appeared in
several other works ��� ��� and we give our version below� We give three versions
of the inner product function� One �iprod� with no staging annotations� the
second �iprod�� with two levels of annotations� and the third �iprod�� with
two levels of annotations but constructed with the back� function� In MetaML
we quote relational operators involving less�than � and greater�than � because
of the possible confusion with Brackets�

�� iprod � int 	� Vector 	� Vector 	� int ��

fun iprod n v w �

if n ��� �

then ��nth v n� � �nth w n�� � �iprod �n	�� v w�

else ��

�� iprod� � int 	� �Vector 	� �Vector 	� int�� ��

fun iprod� n � �fn v �� �fn w ��

���if n ��� �

then �� ���lift nth v n� � �nth w n�� �

�����iprod� �n	��� v� w�

��

else ������ ���

�� p� � int 	� �Vector� 	� ��Vector�� 	� ��int�� ��

fun p� n v w �

if n ��� �

then �� ���lift nth �v n� � �nth ��w n�� �

���p� �n	�� v w� ��

else ������

fun iprod� n � back� �p� n��

Notice that the staged versions are remarkably similar to the unstaged version�
and that the version written with back� has fewer annotations� The type infer�
ence mechanism was a great help in placing the annotations correctly�
An important feature of MetaML is the visualization help that the system

a�ords� By testing iprod� on some inputs we can see what the results are im�
mediately�

val f� � iprod� ��

f� � �Vector 	� �Vector 	� int�� �

�fn d� ��



�fn d� ��

���lift �nth d� �� � ��nth d� ��� �

���lift �nth d� �� � ��nth d� ��� �

���lift �nth d� �� � ��nth d� ��� �

� ��

When this piece of code is Run it will return a function� which when applied to
a vector builds another piece of code� This building process includes looking up
each element in the �rst vector and splicing in the actual value using the Lift
operator� Using Lift is especially valuable if we wish to inspect the result of the
next phase� To do that we evaluate the code by Running it� and apply the result
to a vector�

val f� � �run f�� �������

f�� �Vector 	� int� �

�fn d� �� � � ��nth d� ��� �

�� � ��nth d� ��� �

�� � ��nth d� ��� � � �

Note how the actual values of the �rst array appear in the code� and how the
access function nth appears as a constant expression applied to the second vector
d��
While this code is good� it does not take full advantage of all the information

known in the second stage� In particular� note that we generate code for the
third stage which may contain multiplication by � or �� These multiplications
can be optimized� To do this we write a second stage function add which given
an index into a vector i� an actual value from the �rst vector x� and a piece of
code which names the second vector y� constructs a piece of code which adds
the result of the x and y multiplication to the code valued fourth argument e�
When x is � or � special cases are possible�

�� add � int 	� int 	� �Vector� 	� �int� ��

fun add i x y e �

if x��

then e

else if x��

then ��nth �y ��lift i�� � �e�

else ����lift x� � �nth �y ��lift i��� � �e��

This specialized function is now used to build the second stage computation�

�� p� � int 	� �Vector� 	� ��Vector�� 	� ��int�� ��

fun p� n v w �

if n � �

then �� ��add n �nth �v n� �w ���� ��

else �� ��add n �nth �v n� �w

� ���p� �n	�� v w� �� ���

fun iprod� n � back� �p� n��



Now let us observe the result of the �rst stage computation�

val f� � iprod� ��

f�� �Vector 	� �Vector 	� int�� �

�fn d� ��

�fn d� ��

���add � ��nth d� �� �d��

� ���add � ��nth d� �� �d��

� ���add � ��nth d� �� �d��

�������� ��

This code is linear in the size of the vector� if we had actually in�lined the calls
to add it would be exponential� This is another reason why having cross�stage
persistent constants �such as add� in code is indispensable� Now let us observe
the result of the second stage computation�

val f � �run f�� �������

f� �Vector 	� int� � �fn d� �� � � ��nth d� ��� � ��nth d� �� � ��

Note that now only the multiplications that contribute to the answer are evident
in the third stage program� If the vector is sparse then this sort of optimization
can have dramatic e�ects�

�� Formal Semantics and Development of MetaML

The study of the formal semantics of MetaML is still ongoing research� In this
section� we will present the type system of MetaML ����� and outline a proof of
its soundness using a simpli�ed adaptation of the proofs appearing in ����� The
reader is encourage to consult these sources for more detailed treatment of how
these results where achieved�

���� Big�step Semantics

The syntax of the core subset of MetaML is as follows�

e � i j x j e e j �x�e j �e� j �e j run e

Values� Values are a subset of terms� which denote the results of computations�
Because of the relative nature of Brackets and Escapes� it is important to use a
family of sets for values� indexed by the level of the term� rather than just one
set� Values are de�ned inductively as follows�

v� � V� � i j x j �x�e j �v��
v� � V� � i j x j v� v� j �x�v� j �v�� j run v�

vn�� � Vn�� � i j x j vn�� vn�� j �x�vn�� j �vn��� j �vn�� j run vn��



The set of values has three notable points� First� values can be Bracketed ex�
pressions� This means that computations can return pieces of code representing
other programs� Second� values can contain applications �inside Brackets� such
as ��y�y� ��x�x� � V�� Third� there are no level � Escapes in values�
The de�nition of substitution is standard and is denoted by� e�x � v� for

the substitution of v for x in e� The core subset of MetaML can be assigned a
big�step semantics as follows �����

e�
�
�� �x�e e�

�
�� v� e�x � v��

�
�� v�

e� e�
�
�� v�

i
n
�� i x

n��
�� x

e�
n��
�� v� e�

n��
�� v�

e� e�
n��
�� v� v�

�x�e
�
�� �x�e

e
n��
�� v

�x�e
n��
�� �x�v

e
�
�� �v�� v�

�
�� v

run e
�
�� v

e
�
�� �v�

�e
�
�� v

e
n��
�� v

run e
n��
�� run v

e
n��
�� v

�e
n��
�� �v

e
n��
�� v

�e�
n
�� �v�

���� Type System

The judgement �
n

� e � �� r is read �under the type environment �� at level n
and syntactically surrounded by r occurrences of Run� the term e has type � 	�
The type assignment � maps variables to a triple� This triple consists of the
type� the level� and the number of surrounding Run�occurrences at the point
where this variable was bound �See Abs rule��

Going Wrong There are three main kinds of errors related to staging annota�
tions that can occur at run�time�

��� A variable is used at a level less than the level of the lambda abstraction in
which it is bound� or

��� Run or Escape are passed values having a non�code type� or
�
� Run alters the level of its argument� and can therefore lead to a type ���

error�

The �rst kind of error is checked by the Var rules� Let us assume that our
program contains no Run annotations� then r is always zero� Having a rule for
n� � n allows cross�stage persistence� Variables available in the current stage
�n�� can be used in all future stages �n�� The second kind of error is checked
by the Run n and Esc n�� rules� Detecting the third kind of error is more
di�cult problem� and is accomplished by keeping track of surrounding Runs and
comparing it to surrounding �uncancelled� Brackets� In essence� assuming the



Domains and Relations

Levels n� r �� � j n� �
Types � �� int j � � � j ���

Type Environments � �� � 	 j x �� 
�� r�n ��
where 
x �� 
�� r�n ���y � if x � y then 
�� r�n else � y

Inference Rules

Int n� �
n

� i � int� r Var n �
� x � 
�� r��n

�
n� � r � n� r�

�
n

� x � �� r

Br n�
�

n��

� e � �� r

�
n

� �e� � ���� r

Esc n���
�

n

� e � ���� r

�
n��

� �e � �� r

Abs n�
x �� 
��� r�

n ��
n

� e � �� � r

�
n

� �x � e � �� � ��� r

App n�

�
n

� e� � �� � �� r

�
n

� e� � ��� r

�
n

� e� e� � �� r

Run n�
�

n

� e � ���� r � �

�
n

� run e � �� r

Fig� �� Type System

type is correct� we only allow Run� where it removes explicitly manifest Brackets�
This is incorporated into the variable rule using the condition n� ! r � n ! r�

which ensures that every occurrence of a variable has strictly more surrounding
Brackets than Runs� Without this condition we would wrongly allow the program

�fn x �� ��run �x���

which reduces to the term �fn x �� �x� which is neither a value nor can be
reduced any further� In general� this means that we have to be careful with open
pieces of code� Speci�cally� we have to make sure that if Run is applied to an
open piece of code� the level of the free variables used in this piece of code will
not drop below the level at which they are bound�
For the standard part of the language� code is a normal type constructor

that needs no special treatment� and the level n is never changed by the other
language constructs�

���� Type Preservation

As is common in type preservation proofs� one must prove a Substitution lemma�
In addition� because our semantics is also expected to respect the notion of level�
we also prove so called Promotion and Demotion lemmas�

Lemma � 	Level Properties
� The type system has the following three im�

portant properties




� Promotion
 �����

n

� e � �� r implies ����
�
c�d�c�
�

n�c�d

� e � �� r ! c

� Flex
 x �� �� �� r� ! ��n
������

n

� e � �� r implies x �� �� �� r��n
�

���

n

� e � �� r

� Demotion
 v � Vn�� and �
n��
� v � �� r ! � implies �

n

� v � �� r

where ��
c�d� x  ��� r ! d�
n�c� whenever � x  ��� r�n	

Proof	 All three properties are proved by straight forward induction over the �rst
typing derivation� The proof of Demotion uses Flex in the case of Abstraction�
and takes advantage of the de�nition of values in the case of Escape to show
that Escape at level � is not relevant�

Lemma � 	Substitution
� Let r� � r	 Then� ��
n�

� e� � � �� r� and x ��

�� �� r��n
�

��
n

� e � �� r implies ����
n

� e�x � e�� � �� r

Proof	 By straight forward induction over the height of the second typing deriva�
tion� The �non�trivial� Variable case uses promotion and takes advantage of the
condition that r� � r�

and we can now prove our main theorem�

Theorem � 	Type Preservation
� If ��
����
n

� e � �� r and e
n
�� v then

v � Vn and ��
����
n

� v � �� r	

Proof	 By straight forward induction over the height of the evaluation derivation�
Application at level � uses substitution� and Run at level � uses demotion�

���� Cross�Stage Persistence

Monolithic Variables Cross�stage persistence can be relaxed by allowing vari�
ables to be available at exactly one stage� This seems to be the case in all multi�
stage languages known to us to date �
���� �
� �� ��� 	�� Intuitively� they use the
following monolithic rule for variables �assume r  ���

Var �Monolithic��

� x  �n
�

�
n

� x � �
when n�  n

We allow the more general condition n� � n� so an expression like

val lift like � fn x �� �x�

is accepted� because inside the Brackets� n  �� and � x  ��� This expression is
not accepted by the monolithic variable rule� Note that while the whole function
has type �� ��� it does not provide us with the functionality of Lift� because
the result of applying lift like to any value always returns the constant ��x��
not a literal expression denoting the value� This distinction can only be seen at



the level of the implementation semantics �discussed below� but not the big�step
semantics �discussed above��
The type system rejects the expression

fn a �� �fn b �� ��a�b��

because� inside the Escape� n  �� and �� b�  ��� but � �� ��

�� Limitations to the Expressivity of Run

The type system presented above does not admit the lambda�abstraction of Run�
This was� to a large extent� a design choice and a compromise� In particular� if
a Run function is introduced into the language as a constant� it breaks the
safety of the type system� In this section� we discuss two expressivity problems
that arise from this design choice� and how they are addressed in the current
implementation�

���� Typing Top�Level Bindings

Problem� A MetaML program consists of a sequence of top�level declarations
binding variables to terms� followed by a term�

program � e j val x  e � program

If we interpret a top�level declaration val a e� � e� as ��a�e��e�� then we are
in the inconvenient situation were we cannot bind a value at top�level that we
will eventually want to Run� even if it might otherwise be safe to Run it� This
is because �a�run a is not typable in the type system presented in this paper�
Thus� this interpretation of val a � ���� run a would be untypable�

Observations� Top�level bindings have a number of important properties which
other ���bound� bindings may not� First� every top�level binding is at level ��
Second� all top�level bindings are only within the scope of other top�level bind�
ings� In particular no top�level binding is in the scope of a ��bound variable
which is bound at a level greater than �� This is important because no top�level
binding will ever be in the scope of a piece of code with free variables that can
have problems interacting with Run� One of the purposes of the type system
was to throw away programs where Run was applied to code with free variables
that can cause the computation to get stuck �type �
� errors�� Because syntactic
restrictions guarantee this at top�level we use a di�erent type rule for top�level
bindings� allowing more safe terms to be typable�

A Solution� The current implementation avoids this problem in MetaML by
using the following rule for top�level bindings in the interactive loop�



Top�
a �� ���� r! h����

�
� e� � �� r �

�
� e� � ��� r ! h

�
�
� val a e� � e� � �� r

For top�level declarations� the system prints the type of binding as it is en�
tered by the user� Note� however� that h is not printed� In theory� h is existentially
quanti�ed in the rule above� In practice� a large number is used� Intuitively� the
large h corresponds to the ability to Run values declared at top�level as many
times as we want�

Soundness of Top Rule� A let�expression let a e� in e� is usually inter�
preted as having the same operational semantics as ��a�e��e�� This interpreta�
tion is often used as a basis for deriving a type rule for let�

a �� ���� r�n��
n

� e � �� r

�
n

� �a�e� � �� � �� r
�Lam� �

n

� e� � ��� r

�
n

� ��a�e��e� � �� r

�
n

� let a e� in e� � �� r
�By def��

�App�

�

a �� ���� r�n��
n

� e � �� r �
n

� e� � ��� r

�
n

� let a e� in e� � �� r
�Let�

The Top rule is based on an equivalent but non�standard operational interpre�
tation of the declaration val a e� � e�� namely� run
h� ���a��
h�e���e�� where
h is the number of repeated occurrences of the construct that it appears as a
superscript of� This interpretation is motivated by the fact that if this term is ty�

pable� and e�
�
�� v�� then all the terms in the relation run
h� ���a��
h�e���e��

�
��

e��v�	a� are typable whenever the derivation exists� Thus� we don�t perform the
substitution during type�checking� but rather� using the following derivation�

a �� ���� r! h�n��
n

� e� � �� r

a �� ���� r ! h�n��
n�h

� e� � �� r ! h

�Promotion Lemma�

a �� ���� r! h�n��
n

� �
h�e�� � �
h���� r! h
�Bra h�

�
n

� �a��
h�e�� � �� � �
h���� r! h
�Lam�

�
n

� e� � ��� r! h

�
n

� ���a��
h�e���e�� � �
h���� r! h
�App�

�
n

� run
h� ���a��
h�e���e�� � �� r
�Run h�

We arrive at the rule for Top� by collecting the assumptions at the top of the
tree of this derivation� and setting n to ��



Picking a large h works because the Promotion Lemma tells us that if there
is an n for which type�checking the top�level let�binding is possible� then it will
also be possible for all n� 
 n� In practice� this strategy has worked well�

���� Use of Run inside Functions

It would be useful if the type system allowed us to express functions such as the
following�

val f � fn x � int list �� run �gen x��

This is a function that takes a list of integers� generates an intermediate program
based on list� and then executes the generated program� The type system for the
core language does not admit this term �for any previously declared variable
gen�� In our experience� most such functions where quite small� and we could
often achieve the same e�ect as f e by taking advantage of the power of the
let�rule described above�

val a � gen e�

val r � run a�

This trick is useful� but is not satisfactory from the point of view of the modu�
larity of the code� as it forces us to do a kind of �inlining of f to get around the
type system� We conjecture that it is possible to relax the type system somewhat
using rules such as the following�

Run n�
xi �� �bi� ri ! �����

n

� e � ���� r ! �

xi �� �bi� ri�
���

n

� run e � �� r

where b is a base�type �such as int or int list�� Intuitively� this typing rule
assures us that whenever a basic value �that is� not involving code� is available at
level �� it will can be used in a context with as many surrounding occurrences of
Run as needed� This rule would allow us to type the expression above� However�
it is still ad hoc� and we hope to formulate a more systematic basis for such rules
in future work�

�� Implementation Semantics

The purpose of staging a program is to give the user control over the order
of evaluation� The big�step semantics presented above does not capture all the
relevant operational details addressed in the implementation of MetaML� The
three main exceptions are the need for �� distinguishing between real and sym�
bolic bindings� �� run�time generation of names �gensym�� and 
� cross�stage
persistent constants� In this section we present a semantics which describes our
implementation� While we have worked hard to keep our implementation both
e�cient and faithful to the big�step semantics� the formal proof of their relation
is still ongoing work�



Domains and Relations

Judgments J �� � � e �� e j � � e
n��
�� e

Rules

Int �� � � i �� i Int n��� � � i
n��
�� i

Abs ��
��x �� Sym
x�� � e

�
�� e�

� � �x � e �� �x� � e�

Abs n���
�� x �� Sym
x�� � e�

n��
�� e�

� � � x � e�
n��
�� �x� � e�

App ��

� � e� �� � x � e

� � e� �� v�
�� x �� Real
v�� � e �� v

� � e� e� �� v

App n���
� � e�

n��
�� e� � � e�

n��
�� e�

� � e� e�
n��
�� e� e�

Var ��
� x � Real
v�

� � x �� v
SVar n���

� x � Sym
x��

� � x
n��
�� x�

RVar n���
� x � Real
v�

� � x
n��
�� � v

Bracket ��
� � e�

�
�� e�

� � �e�� �� �e��
Bracket n���

� � e�
n��
�� e�

� � �e��
n

�� �e��

Escape ��
� � e� �� �e��

� � �e�
�
�� e�

Escape n���
� � e�

n��
�� e�

� � �e�
n��
�� �e�

Run ��
� � e �� �e�� � � e� �� v�

� � run e �� v�
Run n���

� � e�
n��
�� e�

� � run e�
n��
�� run e�

Constant ��
� � v �� v�

� � � v �� v�
Constant n���

� � v
n��
�� v�

� � � v
n��
�� � v�

Fig� �� Implementation Semantics

���� Real and Symbolic Binds� gensym� and Cross�Stage Constants

The implementation semantics consists of rules for reduction � � e �� v� es�

sentially applying the Application and Run rules� and rebuilding � � e
n��
�� e�

indexed by a level n ! �� essentially evaluating Escaped computations inside
Brackets� where the environment � binds a variable to a value� Reduction is
standard for the most part� A subtlety relating to variable binding causes a
problem that makes environments somewhat complicated� In particular� some
variables are not yet bound when rebuilding is taking place� For example� re�
building the term �fn x �� ��id �x��� requires reducing the application id

�x�� But while reducing this application� the variable x is not yet bound to a



value� In the intended semantics of MetaML� we really want this variable to be
simply a name that is not susceptible to accidental name capture at run�time�
To solve this problem� bindings in environments come in two �avors� real

�Real�v�� and symbolic �Sym�x��� The extension of the environment with real
values occurs only in the rule App �� Such values are returned �Var �� under
reduction � or injected into constant 	 terms �RVar n��� under rebuilding� In
essence� the three tags Real� Sym and 	 work together to provide us with the
set of coercions needed to deal with free variables and to implement cross�stage
persistence�
Another feature of the implementation semantics is that it is self�contained� in

that it does not use a substitution operation� Instead� substitution is performed
by the rebuilding operation� Thus� altogether rebuilding has three distinct roles�

�� To replace all known variables with a constant expression �	 v� where the v
comes from Real�v� bindings in � �rule RVar n����

�� To rename all bound variables� Symbolic Sym�x�� bindings occur in rules
Abs � and Abs n�� where a term is rebuilt� and new names are introduced
to avoid potential variable capture� These new names are projected from the
environment �rule SVar n����


� To execute Escaped expressions to obtain code to �splice into the context
where the Escaped term occurs �rule Escape ���

Intuitively� without the staging annotations� rebuilding is simply capture�free
substitution of symbolic variables bound in � � Rebuilding is used in two rules�
Abs � where it is used for capture�free substitution� and Bracket � where it is
applied to terms inside Brackets and it describes how the delayed computations
inside a value are constructed�
The type system ensures that in rule Abs �� there are no embedded Escapes

at level � that will be encountered by the rebuilding process� so the use of
rebuilding in this rule implements nothing more than capture�free substitution�
The rules Escape �� Run �� and Bracket � are at the heart of the dynamic

semantics� In the rebuilding rule Escape �� an Escaped expression at level �
indicates a computation must produce a code�valued result �e��� and rebuilding
returns the term e�� The role of n in the judgement is to keep track of the level of
the expression being built� The level of a subexpression is the number of uncan�
celled surrounding Brackets� One surrounding Escape cancels one surrounding
Bracket� Hence� n is incremented for an expression inside Brackets �Bracket��
and decremented for one inside an Escape �Escape�� Note that there is no rule
for Escape at level �� Escape must appear inside uncancelled Brackets�
The reduction rule Bracket � describes how a code value is constructed from

a Bracketed term �e��� The embedded expression is stripped from its Brack�
ets� rebuilt at level �� and the result of this rebuilding is then rewrapped with
Brackets�
The reduction rule Run � describes how a code�valued term is executed� The

term is reduced to a code�valued term� and the embedded term is then reduced
in the empty environment to produce the answer� The empty environment is



su�cient because all free variables in the original code�valued term have been
replaced by constant expressions �	 v��

���� The Notion of a Stage

In the introduction� we gave the intuitive explanation for a stage� After pre�
senting the semantics for MetaML� we can now provide a reasonable formal
de�nition� We de�ne �the trace of� a stage as the derivation tree generated by

the invocation of the derivation 
 � e� �� v� �cf� Run  rule�� Note that
while the notion of a level is de�ned with respect to syntax� the notion of a stage
is de�ned with respect to a trace of an operational semantics� Although quite
intuitive� this distinction was not always clear to us� especially that there does
not seem to be any comparable de�nition in the literature with respect to an
operational semantics�
The levels of subterms in a program� and the stages involved in the execution

of a program can be quite unrelated� A program ��� run ����� has expressions
at levels �� �� and �� If we de�ne the �level of a program as the maximum
level of any of its subexpressions� then this is a ��level program� The evaluation
of this expression �which just involves rebuilding it�� involves no derivations

 � e� �� v�� On the other hand� the evaluation of slightly modi�ed ��level
program run �� � run ����� involves two stages�
To further illustrate the distinction between levels and stages� let us de�ne

the �number of stages of a program as the number of times the 
 � e� �� v�
is used in the derivation involved in its evaluation� Consider�

�fn x �� if P then x else lift �run x�� �����

where P is an arbitrary problem� The number of stages in this program is not
statically decidable� Furthermore� we cannot say� in general� which occurrence of
Run will be ultimately responsible for triggering the computation of the addition
in expression ������
Recognizing this mismatch was a key step towards �nding a type�system for

MetaML� which� intuitively� employs the static notion of level to approximate
the dynamic notion of stage�

���� Why is ��Abstraction not Enough�

It may appear that staging requires only ��abstraction� and its dual operation�
application� While this may be true for certain applications� for the domain
of program generation there are two additional capabilities that are needed�
First� a delayed computation must be observable� so that users can inspect the
code produced by their generators� and so that it can be printed and fed into
compilers� In a compiled implementation� ��abstractions lose their high�level
intensional representation� and neither of these is possible�
Second� generators often need to perform �reductions under Lambda�s� This

is necessary for almost any staged application that performs some kind of unfold�
ing� and is used in functions like back� Although we cannot prove it� the e�ect of



Escape �under lambda� cannot be imitated in the call�by�value ��calculus with�
out extending it with additional constructs� To further explain this point� we
will show an example of the result of encoding of the operational semantics of
MetaML in SML"NJ�
The essential ingredients of a program that requires more than lambda and

application for staging are Brackets� dynamic �non�level �� abstractions� and
Escapes� Lambda�abstraction over unit can be used to encode Bracket� and ap�
plication to unit to encode Run� However� Escape is considerably more di�cult�
In particular� the expression inside an Escape has to be executed before the sur�
rounding delayed computation �closure� is constructed� This becomes a problem
when variables introduced inside the delayed expression occur in the Escaped
expression� For example� �fn x �� ��f �x����
One way to imitate this behavior uses two non�pure SML features� References

allow reductions under lambda� and exceptions allow the creation of uninitialized
reference cells� Consider the following sequence of MetaML declarations�

fun G f � �fn x �� ��f �x���

val pc � G �fn xc �� ���xc��xc���

val p� � �run pc� �

The corresponding imitation in SML would be�

exception not�yet�defined

val undefined � �fn �� �� �raise not�yet�defined��

fun G f �

let val xh � ref undefined val xc � fn �� �� �xh ��

val nc � f xc

in

fn �� �� fn x �� �xh���fn �� �� x��nc ���

end�

val pc � G �fn xc �� fn �� �� �xc���xc����

val p� � �pc ��� �

In this translation� values of type ��� are encoded by delayed computations
of type unit� �� We begin by assigning a lifted unde�ned value to undefined�
Now we are ready to write the analog of the function G� Given a function f�
the function G �rst creates an uninitialized reference cell xh� This reference cell
corresponds to the occurrences of x in the application f �x� in the MetaML
de�nition of G� Intuitively� the fact that xh is uninitialized corresponds to the
fact that x will not yet be bound to a �xed value when the application f �x� is
to be performed� This facility is very important in MetaML� as it allows us to
unfold functions like f on �dummy variables like x� The expression fn �� ��

�xh �� is a delayed lookup of xh� This corresponds to the Brackets surrounding x
in the expression f �x�� Now� we simply perform the application of the function
f to this delayed construction� It is important to note here that we are applying
f as it is passed to the function G� before we know what value x is bound to�



Finally� the body of the function G returns a delayed lambda�abstraction� which
�rst assigns a delayed version of x to xh� and then simply includes an applied
��Escaped� version of nc in the body of this abstraction�
The transliteration illustrates the advantage of using MetaML rather than

trying to encode multi�stage programs using lambda�abstractions� references�
and exceptions� The MetaML version is shorter� more concise� looks like the
unstaged version� and is easier to understand�
One might consider an implementation of MetaML based on this approach�

hidden under some syntactic sugar to alleviate the disadvantages listed above�
The lambda�delaymethod has the advantage of being simply a machine�independent
manipulation of lambda�terms� Unfortunately it fails to meet the observabil�
ity criterion� and also incurs some overhead not �necessarily� incurred in the
MetaML version� In particular� the last assignment to the reference xh is de�
layed� and must be repeated every time the function returned by G is used� The
same happens with the application ��Escaping� of nc� Neither of these expenses
would be incurred by the MetaML version of G� Intuitively� these operations are
being used to connect the meta�level variable x to its corresponding object�level
xh� In MetaML� these overheads would be incurred exactly once during the eval�
uation of run pc as opposed to every time the function resulting from pc �� is
applied�

�� Optimization of Generated Code

While the semantics presented above is su�cient for executing MetaML pro�
grams� code generated by such programs would contain some super�uous com�
putations� Not only can these super�uous computations make it more costly to
execute the generated programs� but it can also make the code larger� and hence
harder for humans to understand� In what follows� we discuss two such kinds of
computations� and how we deal with these problems in the implementation of
MetaML�

���� Safe Beta Reduction

Consider the following example�

val g � �fn x �� x � ���

val h � �fn x �� ��g x� 	 ���

If we use the big�step semantics presented above� the variable h evaluates to �fn
d� �� ��fn d� �� d� � �� d�� 	 ��� MetaML actually returns �fn d� ��

�d� � �� 	 �� because it attempts to perform a safe beta reduction whenever
a piece is code is Escaped into another one� A beta reduction is safe if it does not
a�ect termination properties� There is one safe case which is particularly easy to
recognize� An application of a lambda abstraction to a constant or a variable can
always be symbolically reduced without a�ecting termination� This is justi�ed
because the � rule is expected to hold at all levels� Performing a safe beta step



does not change the termination or the order of evaluation of the program so it
is performed once when the code is built rather than repeatedly when the code
is Run�

���� Nested Escapes

Consider the case where a deeply Bracketed term e at level n is Escaped all the
way to level �� In order to execute this term �which Escapes to level �� it must
be rebuilt n times� Consider the reduction sequence sketched below for the term
run �run �� ��e ���� where e is bound in � to ���� of which we show only
the innermost Run�

e �� �����

�e
�
�� ���

��e
�
�� ����

���e�
�
�� ������

����e�� �� ��������

�
�
�� �

��� �� ���

����
�
�� �

������ �� ���
run ����e�� �� ���

The term ��� is rebuilt two times� A simple re�nement can prevent this from
happening� We change the rebuilding of Escaped expressions at levels greater
than � by adding the rule Escape Opt n�� in addition to the rule Escape n���

Escape Opt n���
� � e�

n��
�� �e��

� � �e�
n��
�� e�

Escape n���
� � e�

n��
�� e�

� � �e�
n��
�� �e�

Thus a long sequence of Escapes surrounded by an equal number of Brackets
gets rebuilt exactly once� This optimization is justi�ed because rebuilding more
than once performs no useful work�
Note that these optimization eliminate some redexes that the user might ex�

pect to see in the generated code� and hence make it hard to understand why a
particular program was generated� In our experience� the resulting smaller� sim�
pler programs� are easier to understand and seemed to make the optimizations
worthwhile�

�� Discussion and Related Works

Nielson and Nielson pioneered the investigation of multi�level languages with
their work on two�level functional languages �
�� 
�� 
�� 
��� They have devel�
oped an extensive theory for the denotational semantics of two�level languages�



including a framework for abstract interpretation �

�� The framework developed
is for a general ��B�level� language� where B is an arbitrary� possibly partially�
ordered set� Recently� Nielson and Nielson proposed an algebraic framework for
the speci�cation of multi�level type systems �
�� 
	��

Gomard and Jones ���� use a statically�typed two�level language for partial
evaluation of the untyped ��calculus� This language is the basis for many BTAs�
The language allows the treatment of expressions containing monolithic free
variables� They use a �const construct only for constants of ground type� Our
treatment of variables in the implementation semantics is inspired by their work�

Gl�uck and J�rgensen ��� present the novel idea of multi�level BTA �MBTA��
as an e�cient and e�ective alternate to multiple self�application� An untyped
multi�level language based on Scheme is used for the presentation� MetaML has
fewer primitives than this language� and our focus is more on program generation
issues rather than those of BTA� It is also worth noting that all intermediate
results in their work are printable� that is� have a high�level intensional represen�
tation� In MetaML� cross�stage persistence allows us to have intermediate results
�between stages� that contain constants for which no intentional representation
is available� While this is very convenient for run�time code generation� it made
the proper speci�cation of MetaML more di�cult� For example� we can�t use
their �Generic Code Generation functions to de�ne the language� A second
paper by Gl�uck and J�rgensen ���� demonstrates the impressive e�ciency of
MBTA� and the use of constraint�solving methods to perform the analysis� The
MBTA is type�based� but underlying language is not statically typed�

Thiemann ���� studies a two�level language with eval� apply� and call�cc in
the context of the partial evaluation of a larger subset of scheme than had been
previously studied� A BTA based on constraint�solving is presented� Although
the problems with eval and call�cc are highlighted� a di�erent notion of types
is used� and the complexity of introducing eval into a multi�stage language does
not manifest itself� Thiemann also deals with the issue of variable�arity functions�
a practical problem when dealing with eval in Scheme�

Hatcli� and Gl�uck studied a multi�stage �ow�chart language called S�Graph�
n� and thoroughly investigated the issues involved in the implementation of such
a language ��
�� The syntax of S�Graph�n explicitly captures all the information
necessary for specifying the staging of a computation� each construct is anno�
tated with a number indicating the stage during which it is to be executed� and
all variables are annotated with a number indicating the stage of their availabil�
ity� S�Graph�n is not statically typed� and the syntax and formal semantics of
the language are quite sizable� Programming in S�Graph�n requires the user to
annotate every construct and variable with stage annotations� and ensuring the
consistency of the annotations is the user�s responsibility� In their work� Hat�
cli� and Gl�uck identi�ed language�independence of the internal representation of
�code as an important characteristic of any multi�stage language�

Sheard and Nelson investigate a two�stage language for the purpose of pro�
gram generation ��
�� The base language was statically typed� and dependent
types were used to generate a wider class of programs than is possible by MetaML
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Fig� �� Comparative feature set

restricted to two stages� Sheard and Shields ���� investigate a dynamic type sys�
tems for multi�staged programs where some type obligations of staged compu�
tations can be put o� till run�time�

Davies and Pfenning present a statically�typedmulti�stage languageMini�ML��
motivated by constructive modal logic �	�� A formal proof is presented for the
equivalence of binding�time correctness and modal correctness� MetaML type�
system was motivated primarily by operational considerations� Their language
has two constructs� box and let�box� which correspond roughly to Brackets and
Run� Mini�ML��s � type constructor is similar to code� Mini�ML� can simulate
Lift� but a stage�zero function� for example� cannot be made persistent� Finally�
functions like back are not expressible in Mini�ML��

The multi�stage language Mini�ML	 �	� is motivated by a linear�time con�
structive modal logic� The language allows staged expressions to contain mono�
lithic free variables� The two constructs of Mini�ML	� next and prev� correspond
quite closely to MetaML�s Brackets and Escape� The type constructor � also
corresponds roughly to code� Unfortunately� eval is no longer expressible in the
language�

Moggi advocates a categoric approach to two�level languages ����� He also
points out that the use of stateful functions such as gensym or newname in
the semantics makes their use for formal reasoning hard� The implementation
semantics presented in this paper uses a gensym� but the big�step semantics does
not�

Figure 
 is a summary of the distinguishing characteristics of some of the
languages discussed here� For Levels� �� mean it is a two�level language� and
�! means multi�level� For static typing� �� means only �rst level is checked�

�� Ongoing Work and Open Questions

The work reported in this paper has directed our attention to many impor�
tant questions relating to multi�stage computation in general� and MetaML in
particular� We are currently investigating a number of aspects of MetaML�



�� A denotational semantics assigns an abstract meaning to a language� We
expect that the works of Nielson and Nielson� and Moggi� will serve as a
good basis for assigning such a semantics to MetaML�

�� Reduction �axiomatic� semantics and equational theory� to serve as a practi�
cal basis for formal reasoning about program optimizations and the equiva�
lence of programs� A reduction semantics is investigated in ����� but is limited
due to a subtlety with the non�standard de�nition of substitution�


� MetaML admits the analog of polyvariant specialization ���� by annotating
di�erently copies of the same program� It is not yet clear how to make this
task easier for the programmer�

�� Validating the implementation with respect to more abstract formulations
of the semantics of MetaML�

�� Extending to e�ects� The extension of the current type system with e�ects is
not obvious� For example� adding references and sequencing a la SML allows
the following unsafe program�

val r � ref ����

val c � �fn x �� ��r �� �x�� ����

val i � run ��r��

	� Providing a more general solution to the let�binding problem�While we have
proposed one solution to the let�binding problem at top�level� this solution
does not carry over the let�bindings at higher levels�

�� Simplifying the type system� The Flex property suggests that it may be
su�cient to keep track only of the di�erence between n and r in the typing
environment� Also� our remedies for the limitation in the expressivity of Run
were ad hoc�

�
 Conclusion

We have described a multi�stage programming language which we call MetaML�
MetaML was designed as a programming language� Our primary purpose was to
support the writing of multi�stage programs� Because of this our design choices
where di�erent from those of other multi�stage systems� We believe that MetaML
helps us in understanding and communicating ideas about multi�stage programs�
partial evaluation� and the complex process of BTA in much the same way that
the boxed"unboxed�#� distinction provides a language for understanding boxing
optimizations as source�to�source transformations �����
This paper identi�es a number of language features that we have found to

be essential when writing multi�stage programs�

� Cross�stage persistence�The ability to use variables fromany past stage is
crucial to writing staged programs in the manner to which programmers are
accustomed� Cross�stage persistence provides a solution to hygienic macros
in a typed language� that is macros which bind identi�ers in the environment
of de�nition� which are �captured in the environment of use�



� Multi�stage aware type system� The type checker reports phase errors
as well as type errors� This is crucial when debugging multi�stage programs�

� Display of code� When debugging� it is important for users to observe the
code produced by their programs� This implies a display mechanism �pretty�
printer� for values of type code�

� Display of Constants� Constants originating from persistent variables are
hard to identify� The named � tags provide an approximation of where these
constants came from� While these tags can sometimes be misleading� they
are often quite useful�

� The connection between �A� 	� �B� and �A 	� B�� Having these me�
diating functions reduces� sometimes drastically� the number of annotations
needed to stage multi�stage programs�

� Lift� The Lift annotation makes it possible to force computation in a early
stage and Lift this value into a program to be incorporated at a later stage�
While cross�stage persistence makes it unnecessary� Lift helps produce code
which is easier to understand� because constants become explicit�

� Safe beta� and Escape�reduction�These optimizations improve the gen�
erated code� and can often make it more readable�

We have built an implementation which was used to program the examples
in this paper and other larger examples �cf� ������ Currently� the implementation
supports polymorphic type�inference� We are also extending this implementation
to include all the features SML�
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