A Dependently Typed Assembly Language

Hongwei Xi
Department of Computer Science and Engineering
Oregon Graduate Institute of Science and Technology

hongwei@cse.ogi.edu

Robert Harper
Department of Computer Science
Carnegie Mellon University

rwh@cs.cmu.edu

Abstract

We present a dependently typed assembly language (DTAL) in which the type system
supports the use of a restricted form of dependent types, reaping some benefits of dependent
types at assembly level. DTAL overcomes several significant limitations in recently proposed
low-level languages including Java bytecode language and a typed assembly language, which
prevent them from handling certain important compiler optimizations such as run-time array
bound check elimination. We also mention a compiler which can generate DTAL code from
compiling some high-level programs.

1 Introduction

A certifying compiler is one that generates object code that can be readily checked for compliance
with a specified safety policy that constrains its run-time behavior. By ensuring that compliance
is checkable, the code recipient need not be concerned with the origin of the code, only the (aug-
mented) code itself. Typical safety policies include type safety (which excludes, for examples,
programs that attempt to add an integer to a floating point number) and memory safety (which
excludes stray memory accesses). Examples of certifying compilers for this property include
various ones compiling Java into Java virtual machine language (JVML), Touchstone compiling
Safe C into a form of proof-carrying code (which we call TPCC) (Necula and Lee 1998), TIL
and its successor TILT compiling Standard ML (Milner, Tofte, Harper, and MacQueen 1997)
into a typed intermediate language (Tarditi, Morrisett, Cheng, Stone, Harper, and Lee 1996),
and ROML compiling a restricted set of ML into a portion of C that is type safe (Tolmach and
Oliva 1998).

Certifying compilers have a number of benefits, including facilitating safe exchange of code
in an untrusted environment and improving the robustness of a compiler (by thinking of each
transformation phase as a separate certifying compiler whose subsequent stages may check com-
pliance with some safety policy). Specific approaches to certification include proof-carrying code
(Necula 1997) (adopted in Touchstone), in which both type safety and memory safety are ex-
pressed by (first-order) logic assertions about program variables, is checked by a VC generator
and a theorem prover and code is certified by an explicit representation of the proof; and type
systems (adopted in TIL), in which type safety is expressed by type annotations and is checked

by a type checker and no additional certification is required. The Touchstone approach draws
on established results for verification of first-order imperative programs, but it is yet to be stud-
ied whether this approach can readily extend to higher-order languages. The TIL approach
draws on established methods for designing and implementing type systems, making it unclear
(a priori) that it can be extended to low-level languages or to account for memory safety.

A typed assembly language (TAL) is formed in (Morrisett, Walker, Crary, and Glew 1998),
where a form of type system is designed at assembly-level suitable for compiling functional
languages and a compilation from System F to TAL is given. TAL provides both type safety
and memory safety, but at the cost of making critical instructions such as array subscripting
atomic to ensure memory safety. For instance, each array subscripting instruction in TAL
involves checking whether a given array index is between the lower and upper bounds of the
array before fetching the data item.

The goal of this paper is to enrich TAL to allow for more fine-grained control over memory
safety so as to support array bound check elimination, hoisting bound checks out of loops, etc.
We draw on the formalism of dependent types to extend TAL with such a concept. However, we
cannot rely directly on standard systems of dependent types for languages with computational
effects. For instance, it is entirely unclear what it means to say that A is an array of length x for
some mutable variable z: if we update z with a different value, this changes the type of A but A
itself is unchanged! Drawing on our experience with a restricted form of dependent types in DML
(Xi and Pfenning 1999), we introduce a clear separation between ordinary run-time expressions
and a distinguished family of index expressions, linked by singleton types of form int(z): every
integer expression of type int(z) must have value equal to z. The index expressions are chosen
from an integer domain in this paper. Given an expression e (in DML), checking whether e has
type int(z) (written as e : int(z)) involves non-trivial equational reasoning about the run-time
behavior of e. For instance, e : int(3) means that e, when evaluated, must evaluates to 3. Clearly,
3 : int(3), and perhaps, 1 + 2 : int(3), but it is, in general, undecidable whether an arbitrary
(possibly effectful) e has type int(z). This is where theorem proving / constraint satisfaction
comes into the picture. A crucial feature in DML, which is to be adopted in this paper, is the
use of existential dependent types, which makes it possible to avoid difficult constraints and
type realistic programs.

We have formed a dependently typed assembly language (DTAL) that supports a limited
form of dependent type system capturing both type safety and memory safety. We have also
designed a language Xanadu with C-like syntax and prototyped a compiler that compiles Xanadu
into DTAL. This paper concentrates on DTAL, though we occasionally use programs in Xanadu
notation to facilitate the presentation of some notions in DTAL.

The Xanadu program in Figure 1 implements a copy function on arrays. Notice that the
simplicity of this example is solely for the sake of illustration purpose and should not be inter-
preted as the limitation of our approach. The function header in the program states that for all
natural numbers m and n satisfying m < n the function takes two integer arrays of sizes m and
n, respectively, and returns no value. Note {m:nat, n:nat | m <= n} is a universal quantifier
as is explained in (Xi and Pfenning 1998) and int src[m] (int dst[n]) means that src (dst)
is an integer array of size m (n). We use var: to start variable declaration, which ends with ; ;.
Also the function arraysize returns the size of an array.

The DTAL code in Figure 2 basically corresponds to the Xanadu program. A double slash //
starts a comment line. Note that r1,...,r5 are registers. The instruction arraysize r3, rlis
non-standard, which means that we store into r3 the size of the array to which r1 points. The
branch instruction bgte r5, finish jumps to the label finish if the integer in r5 is greater
than or equal to zero. Also load r5, r1(r4) means that we store into r5 the content of the ith

{m:nat, n:nat | m <= n} void copy(int src[m], int dst[n]) {
var: int i, length;;
length = arraysize(src);

for (i = 0; i < length; i =i + 1) {
dst[i] = src[il;
}
return;
}
Figure 1: A copy function in Xanadu
00. copy: {m:nat, n:nat | m <= n} [rl: int array(m), r2: int array(n)]
01. arraysize r3, ri // obtain the size of source array
02. mov r4, 0 // initialize the loop count to O
03. loop: {m:nat, n:nat | m <= n, i:nat}
[r1: int array(m), r2: int array(n), r3: int(m), r4: int(i)]
04. sub r5, rd, r3 // r5 <- rd4d - r3
05. bgte r5, finish // r4 >= r3
06. load r5, ri(r4) // safe load
07. store r2(rd4), r5 // safe store
08. add rd, r4, 1 // increase the count by 1
09. jmp loop // loop again
10. finish: []
11. halt // it can also return to the caller as shown later

Figure 2: A copy function implemented in DTAL

element in the array to which r1 points, where ¢ is the integer stored in r4. The store instruction
is interpreted similarly.

Every label in the code is associated with a dependent type. The dependent type associated
with the label 1oop basically means that there exist a natural number m and a natural number n
satisfying m < n and a natural number i such that r1, r2, r3, r4 are of types int array(m),
int array(n), int(m), int(i), respectively, that is, they are an integer array of size m, an
integer array of size n, an integer of value m and an integer of value i. This enables us to state, for
instance, that the type of r1 depends on the value in r3. The type system of DTAL guarantees
that these properties are satisfied when the code execution reaches the label loop.

The DTAL code is well-typed, which guarantees that the integer in r4 is always a natural
number and its value is always less than the size of the array to which r1 (r2) points when the
load (store) instruction is executed. In other words, it can be statically verified that there is no
need for run-time array bound checking in this case. Although this is a very simple example,
it is nonetheless impossible to infer that the store instruction is safe without the dependent
type associated with the label loop. In DTAL, array access is separated from array bound
checks and the type system of DTAL guarantees that the execution of well-typed DTAL can
never perform out-of-bounds array access. It is this separation that makes array bound check

elimination possible. In the case where it is impossible to prove in the type system of DTAL
whether an array access may be out-of-bounds, run-time array bound checks can be inserted to
ensure safety.

The main contribution of the paper is a formulation of a dependent type system for an
(imperative) assembly-level language that (a) is non-trivial for reasons outlined previously, (b)
generalizes TAL to allow for capturing significant loop-based optimizations, (c¢) yields an appli-
cation of dependent types to managing low-level representation of sum types, and (d) provides
an approach to certification based on type-checking. One trade-off is that we presume that the
constraint solver is part of trusted computing base in order for the recipient to verify the code it
receives. Future work might include some means of formally representing proofs of constraints
so that the constraint solver can be moved out of the trusted computing base.

We will also briefly mention certain aspects on a compilation from Xanadu into DTAL, which
allows us to construct a toy compiler for generating sample DTAL code. The details on Xanadu
can be found in (Xi 1999a) while the compilation from Xanadu or other higher-level languages
into DTAL is to be reported in future work.

We organize the paper as follows. The syntax of DTAL is given in Section 2. We then form
evaluation and typing rules so as to assign dynamic and static semantics to DTAL, respectively.
We, however, postpone until Section 3 the treatment of constraints, which are generated during
type-checking programs in DTAL. In Section 4, we give a detailed example explaining how
type-checking is performed in DTAL. The soundness of the type system of DTAL is stated and
proven in Section 5 and an extension of DTAL to handle sum types is given in Section 6. We
then in Section 7 mention a type-checker for DTAL and a compiler which compiles Xanadu, a
language resembling Safe C (Necula and Lee 1998) and Popcorn (Morrisett et al. 1999) with
C-like syntax, into DTAL. The rest of the paper discusses some closely related work and future
directions.

2 Dependently Typed Assembly Language

In this section we present a typed assembly language in which a restricted form of dependent
types is available. This closely relates to the typed assembly languages given in (Morrisett,
Walker, Crary, and Glew 1998; Morrisett, Crary, Glew, and Walker 1998), but there are also
many substantial differences which we will point out. We use the name DTAL for this depen-
dently typed assembly language.

2.1 Syntax

In this paper, we do not address the stack overflow issue. We assume that there are a fixed
number n, of registers and a stack of infinite depth. A type state ¥ consists of a pair (R, S),
where R is a finite mapping from the set {0,1,...,n, — 1} into types and S is a stack type.
The intention is to capture some type information on the register file and stack with R and S,
respectively. The syntax for DTAL is given in Figure 3.

Intuitively speaking, dependent types are types which depend on the values of language
expressions. For instance, we may form a type (int)array(x) to mean that every heap pointer
of this type points to an integer array of size xz, where x is the expression on which this type
depends. We use the name type index expression for such an expression. We restrict type index
expressions to an integer domain in this paper. The justification for this choice is that we have
previously used this domain to eliminate array bound checks effectively (Xi and Pfenning 1998).

type variables «

type states Y == (R,S)

state types o u= state(AANP.Y)

regfile types R == [ro:70,-.-yTn,—1: Tn,—1]

stack types variables P

stack types S u= [|plTS

types T u= alo|top]|int(z) | T array(x) |
prod(Ti,...,m) | Ja: .1

type erasures e == «a|top|int|earray | prod(ei,...,€,)

type variable contexts A = - | A p| A«

registers ron= Tg,...,Tp,—1

instructions ins u= aopry,rs,v|bopr,v|arraysize rq,rs |
mov r,v | load rq,7s(v) | store rq(v),vs |
newtuple[7| r | newarray|r] r
jmp v | pop 7 | push v | halt

constants c == ()|l

values v ou= c|r

instruction sequences I == jmpw|halt|ins;]

blocks B = MAX.(X,1)

arithmetic ops aop == add|sub|mul|div

branch ops bop := Dbeq|bne|blt|blte|bgt |bgte

labels l

label mappings A = {ly:o,.. 0, o0}

programs P == [1:By;...;l,: By

Figure 3: Syntax for DTAL

We present the syntax for type index expressions in Figure 4, where we use a to range over
type index variables and ¢ for fixed integers. Note that the language for type index expressions
is typed. We use sorts for the types in this language in order to avoid potential confusion. We
use - for the empty index context and omit the standard sorting rules for this language. We also
use certain transparent abbreviations, such as 0 < x < y which stands for 0 < 2 Az < y. The
subset sort {a : 7y | P} stands for the sort for those elements of sort vy satisfying the proposition
P. For example, we use nat as an abbreviation for {a : int | a > 0}.

We postpone the treatment of constraint satisfaction in this type index language until Sec-
tion 3 for simplicity of exposition. However, we informally explain the need for constraints
through the DTAL code in Figure 2. Notice that register r4 is assumed to be of type int(i1)

index expressions z,y == al|i|lz+y|lz—y|rz*xy|z+y
index propositions P = z<y|lz<ylz=ylz>ylz>y|-P|PLAN P,|PV P
index sorts 7y u= int|{a:v| P}
index contexts ¢ = |da:y| PP

Figure 4: Syntax for type index expressions

P = (copy: Bi,1loop: By, finish: Bj)
A(P) = {copy:oy,100p: oy, finish: o3}
J copy; I1;1oop; Ir; finish; halt

5
|

By = Xp).-A(m :nat,n : nat,m < n).((R1,p), [1)

By = Xp).X(m : nat,n : nat,m < n,i:nat).((Ra, p), I2)
Bs = Ap.((Rempty, p),halt)

o1 = state(A(p).A(m : nat,n : nat,m < n).(Ry,p))

P = state(A(p).A(m : nat,n : nat,m < n,i: nat).(Rz, p))
03 = state(A(p)-A()-(Rempty, p))

Figure 5: Some explanation on the program in Figure 2

for some natural number 4; when the execution reaches the label loop. The type of r4 changes
into int(i; + 1) after the execution of the instruction add r4, r4, 1. Then the execution jumps
back to the label loop. This jump requires it to be verified (among many other requirements)
that r4 is of type int(ig) for some natural number i5. Therefore, we need to prove that iy + 1 is
a natural number under the condition that 4; is a natural number. This is a constraint, though
it is trivial in this case. In general, type-checking in DTAL involves solving a great number of
constraints of this form.

We use prod(ry,...,T,) for the product of types 71,...,7,, which is usually written as 7| *
-+ % 7. This notation allows us to clearly distinguish 7 from prod (7). Also we use unit for the
empty product prod(). Nonetheless, we may use the notation 7y *- - - % 75, if it risks no confusion.
We use top for the type of uninitialized registers and assume that a register is initialized if it is
not of type top.!

A block B = MAX¢.(2, 1) roughly means that B is polymorphic on A and ¢. In order to
execute the block on an abstract machine, we need to find substitutions ©® and 8 for A and
6, respectively, such that the current machine state entails the state X[O][f] and then execute
I[©][0]. The entailment of a state ¥ basically means that the type assignment to registers and
stack in ¥ correctly reflects the types of registers and stack in the current abstract machine. For
instance, if 3 indicates that an integer is on top of the stack, then an integer must be stored on
top of the stack in the abstract machine.

A state type £(AA.A¢.X), when associated with a label, means that there are substitutions
© and 0 for A and ¢, respectively, such that the current abstract machine state entails %[O][6]
whenever the execution reaches the label. Note that state is a type constructor for constructing
state types.

We use J for a general instruction sequence in the following presentation, which consists
of a sequence of instructions or labels. Given a block B = AA.A\¢.(3,1), we write o(B) for
state(AA.X¢p.X) and I(B) for I. Also we define functions A and J on program P =1y : By;...;l, :
B,, as follows.

AP) = {l1:0(B1),...,ln:0(Bp)}
J(P) = 1 1(B1);-. .5l I(Bn)

We refer A(P) as the label mapping of P, in which we require that all labels be distinct. For a
valid program P, all labels in J(P) must be declared in A(P). In all the examples of DTAL code
that we present in this paper, we attach the state type o of a label [to the label explicitly in the

1We could not use the type unit for this purpose since we always represent a value of type unit as a null pointer
so that we can implement data structures such as linked list.

program, and the label mapping of the program can be immediately extracted from the code if
necessary. We explain these definitions in Figure 5, where the program P is given in Figure 2;
I; and I, are the sequences of instructions between the labels copy and loop and those between
labels 1oop and finish, respectively. The convention is that we may omit quantifying over stack
type variables in the concrete syntax; R is a mapping which maps 1 and 2 to (int)array (m) and
(int)array (n), respectively, and Ry (i) = top for i # 1,2; Ry maps 1,2,3 and 4 to (int)array(m),
(int)array(n), int(m) and int(i), respectively, and Ry (i) = top for i # 1,2,3,4; Rempy(i) = top
for 4 in its domain. Note that we write int for Ja : int.int(a), that is, int is the sum of all
singleton types int(a), where a ranges over integers.
The following erasure function ||-|| transforms types into type erasures, that is, non-dependent

types.

[top|| = top |lall = |lint(z)|| = int

ol = unit ||7 array(z)|| = ||7|| array

lprod (ry, ...,)| = prod (||l ..., ITall)

1Ba:y.7| ==

It can be readily verified after the presentation of DTAL that DTAL becomes a TAL-like language
if one erases all syntax related to type index expressions. In this TAL-like language, the erasure
of a program is well-typed if it is well-typed in DTAL. In this respect, DTAL generalizes TAL.

2.2 Dynamic Semantics

We use an abstract machine for assigning operational semantics to DTAL, which is a standard
approach. A machine state M is a triple (#,R,S), where H and R are finite mappings which
stand for heap and register file, respectively, and § is a list representing stack.

The domain dom(#) of H is a set of heap addresses, the domain dom(R) of R is {0, ..., n, —
1}. We do not specify how a heap address is represented, but the reader can simply assume
it to be a natural number. Given h € dom(H), H(h) is a tuple (hc,...,hc,—1) such that for
1=0,...,n—1, every hc; is either a constant or a heap address.

Given ¢ € dom(R), R(i) is either a heap address or a constant. Also S is always a list of
form heg :: ...t hey—y 2 [] for some heap addresses or constants hcy, ..., hcy—1, where we use ::
for the list constructor and [] for the empty list. We write sp for the stack pointer which always
points to the top of the stack. Given § = hcg :: ...t hep—p it [], we write sp(z) for he;, where
1=0,...,n—1.

Given a program P, A = A(P) associates every label in J = J(P) with a state type 0. We
use length(J) for the length of the sequence J, counting both instructions and labels. We use
J (i) for the ith item in J, which is either an instruction or a label. Also we write J~'(I) for i if /
is J(7). This is well-defined since all labels in a program are distinct. We define a P-snapshot Q
as either HALT or a pair (ic, M) such that 0 < ic < length(J). The relation (ic, M) —p (ic', M’)
means that the current machine state M transforms into M’ after executing the instruction
J(ic) and the instruction counter is set to i¢’. The evaluation rules for DTAL are presented
in Figure 6. We do not consider garbage collection in this abstract machine, and therefore the

heap can only be affected by two memory allocation instructions newtuple and newarray.
Given M = (H,R,S), we define the following.

() if vis ();

1 if v is integer ;

l if v is label [;

R(i) if v is the ith register r;.

M(v) =

I7|| = prod(e1,...,€e,) J(ic) = newtuple[r]| r
h & dom(H) H' =H[h— (hcy,..., hey)]
(ic,(H,R,hcy = ...t hey 2 8)) —p (ic+ 1, (H,R[r = h],S))
|7l = (e)array J(ic) = newarray[r]r n>0 h¢ dom(H)
(ic, (H,R,n = he:: S)) —p (ic+ 1, (H[h — (he, ..., he)], R[r = h],S))
J(ic) = arraysize rq,rs H(M(rs)) = (hco, ..., hcp—1)
(ic,(H,R,S)) —p (ic+1,(H,R[r =n],S))

(eval-newtuple)

(eval-newarray)

(eval-arraysize)

J(ic) =add rq,rs,v M(rs) =i M(v) =

(iec, M) —p (ic+ 1, M[rd +7]) (eval—add)
J(ic) = subrg,rs, v M(rs) = ./\/l(v)

(ic, M) —p (ic+ 1 M[rd —JD (eval-sub)
J(ic) =mul rg,rs,v M(rs) =1 M(v) (eval—mul)

(ic, M) —p (ic+ 1, M[rq =i *j])

J(ic) =divrg,rs,v M(rs) =i M(v)=j5 j#0
(ic, M) —p (ic+ 1, Mrq :i;j])
J(ic) =beqr,v M((r)=0 M(v)=

(ic, M) —=p (J7H1) + 1, M)
J(ic) =beqr,v M(r) #0

(ic, M) —=p (ic+ 1, M)
J(ic) =bner,v M(r)#0 M(v) =
(ic, M) —p (J7H1) + 1, M)
J(ic) =bner,v M(r)=0

(ic, M) —=p (ic+ 1, M)
J(ic) = jmpv M(v) =
ot e T
J(ic) =movr,v M(v) = he
(ic, M) — (ic+ 1, M[r = hc])
J(ic) = load rq,rs(v) H(M(rs)) = (heo, ..., hen—1) M) =i 0<i<n

(eval-div)

(eval beqg-true

(eval-beq-false)

(eval bne-true)

(eval-bne-false)

(eval-jmp)

(eval-mov)

(ic, M) — (ic + 1, M[rqy = hc;]) (eval-load)

J(ic) = store rq(v),rs M(rqg) =h M= (H,R,S)
H(h) = (hco, ..., hep—1) M) =i 0<i<n M(rs)=hc
(ic, M) = (ic+ 1, (H[h — (hco . .. hei—1, he, heip, - .. hep—1)], R, S))
J(ic) = pop T
(ic,(H,R,hc 2 S)) = (ic+ 1,(H,R[r = he],S))
J(ic) =pushv M(v) = hc

(ic,(H,R,S)) = (ic+ 1,(H,R,hc :: S))

J(ic) = halt
(¢c, M) — HALT

(eval-store)

(eval-pop)

(eval-push)

(eval-halt)

Figure 6: Evaluation rules

8

Given a finite mapping f and an element x in the domain of f, we use f(z) for the value to
which f maps z, and f[z — v] for the mapping such that

oo ={ 10 Ui

Clearly, f[z + v] is also meaningful when z is not already in the domain of f. In this case, we
simply extend the domain of f with z.

We use the notation R[r = hc| to mean that we update the content of register r with hc,
that is, R[r = hc| is R[i — hc], where 7 is the numbering of register r. Also we use M[r = hc]
for (H,R[r = he],S) given M = (H,R,S).

We present the evaluation rules for most instructions and the rest can be readily constructed
from the closely related ones. Notice that the rules (eval-load) and (eval-store) imply that an
out-of-bounds array access stalls the abstract machine. These rules also indicate that the length
of the tuple #(h) can always be determined for every h € dom(H) at run-time. We will soon
design a type system for DTAL and prove that 0 <7 < n always holds when either (eval-load)
or (eval-store) is applied during the evaluation of a well-typed DTAL program. Therefore,
there is no need for determining the length of the tuple 7 (h) for every h € dom(#) if we only
evaluate well-typed DTAL programs. In the case where it cannot be determined in the type
system of DTAL whether a subscript is within the bounds of an array, the array subscripting
instruction is ill-typed and thus rejected. This sounds like a severe restriction, but it is not
because we can always insert run-time array bound checks to make the instruction typable in
DTAL (we give such an example at the end of Section 2.3). In order to perform array bound
checking efficiently, we can always group each array with its size after allocation.

It should be stressed that there is no interaction between the dynamic semantics of DTAL and
type index expressions. Therefore, erasing type index expressions in a program can not alter the
execution behavior of the program. We have omitted the evaluation rules for blt,blte, bgt, bgte,
which can be readily formulated by following the rules for beq and bne.

Notice that the instruction jmp v jumps to the instruction immediately following [, if v
evaluates to | under the current machine state. Also notice that the rules (eval-newtuple)

and (eval-newarray) are non-standard. If ||7|| is of form prod(ey,...,¢€,), then newtuple[r] r
allocates n new word memory on heap and stores a pointer in r which points to the allocated
memory. Then it moves the content in sp(7) into r(¢) for ¢ = 0,...,n — 1 and decrease sp by

n. For example, the follow code allocates a pair on heap and stores the pointer into r1, which
ends with type Ja : nat.prod(int(a),int(a)), that is, a pair of integers of the same value. Note
that we use {a:nat} as the concrete syntax for da : nat in DTAL code.

mov rl, O
push rl
push rl

newtuple[{a:int} (int(a) * int(a))] ri

Similarly, if ||7|| is of form (€)array, then newarray[r] r allocates n new word memory on heap,
where n is the value of the integer stored in sp[0], and stores a pointer in r which points to the
allocated memory. Then it copies the content in sp[1] into r(0),...,r(n — 1), and decrease sp
by 2. For example, the following code allocates an array of type (Ja : nat.int(a))array(1024),
that is, an array of size 1024 whose elements are natural numbers.

mov rl, 1024

push rl
mov ri, O
push rl

newarray[{a:nat}int(a)] ri

We emphasize that & must be new in both rules (eval-newtuple) and (eval-newarray), that
is, h is not already in the domain of . The typing consequences of these malloc instructions are
explained in the next section, where the typing rules (type-newtuple) and (type-newarray)
are introduced.

Definition 2.1 Given a program P, Q is defined as a P-snapshot if (0, M) =5 Q holds for
some machine state Mg, where —p is the reflexive and transitive closure of —p. We say
that a program P is well-structured if every P-snapshot which is not HALT evaluates to another
P-snapshot.

In other words, the evaluation of a well-structured program is never stuck. Notice that a well-
structured program is both type-safe and memory-safe according to the evaluation rules for
DTAL. Certainly it is undecidable to precisely determine whether a program is well-structured,
but this is also less relevant. We intend to find a conservative approach to examining whether
a program is well-structured. Such an approach must be sound, that is, it can only accept
well-structured programs. For instance, a straightforward approach is to adopt a method based
on TAL for type-safety and then insert run-time checks for all array operations. Unfortunately,
this approach seems too conservative, making it impossible to eliminate array bound checks.
Notice that this is essentially the case in all JVML verifiers.

In the next section, we present a less conservative approach based on a type system which
supports a restricted form of dependent types. This approach can accept highly optimized
programs such as the binary search example in Figure 17, where all array bound checks are
removed.

2.3 Static Semantics

We present the typing rules for DTAL in this section. Given a type state ¥ = (R, S), we use an
array representation for R and a list representation for .S, where the list for S always ends with
a stack variable p.

In the presence of dependent types, it is no longer trivial whether a type 7 is well-formed.
For instance, we must disallow the occurrence of a type like int array(—1) in the typing rules
for DTAL since it can readily lead to inconsistency of the type system. In other words, we must
prove that x is a natural number when forming the type int array(z).

We present type formation rules in Figure 7, where we write ¢; A - 7 : % to mean that 7 is a
well-formed type under context ¢; A. Similarly, we write ¢; A = X[well-formed] to mean that X
is well-formed under context ¢; A. The well-formedness of types and type states can be derived
through the application of these rules. From now on, we assume that all types and type states
are well-formed in the following presentation.

We use a judgment of form ¢; A; Y Fp v : 7 to mean that value v is assigned type 7 under
the context ¢; A;3 and the label mapping A. The label mapping A is always fixed when we
type-check a program, and therefore we will omit it if this causes no confusion. The rules in
Figure 8 are for typing unit, integers, labels and registers.

We present the typing rules for DTAL in Figure 9 and Figure 10. A judgment of form
¢; A; Y F I means that the instruction sequence I is well-typed under context ¢; A;X. The

10

¢t x:int G AFET ik e AR T,k ot x:nat; oA T %
d; A Fint(z) @ Oy A prod(ry, ..., Ty) % d; A F T oarray(x) : x
o, s A, A+ S[well-formed] boa:y AT %
;A F state(AA' AP .2) : % ;A FTa:y.T:x
pFxint ¢ AT % ¢y Al S[well-formed]
¢; A F p[well-formed] ¢; A F 7 12 S[well-formed]
;A R(i): % for 0 <i <, ¢; A+ R[well-formed] ¢; A F S[well-formed]
¢; A F R[well-formed] ¢; A+ (R, S)[well-formed|

Figure 7: Type formation rules for DTAL

(type-unit) (type-int)

o; A; (R, S) Fa () : unit
Al)=o0 0<1<ny
A (R, S)Fal:o ¢; A (R, S) Fa i 2 R(3)
O ANEbFAv:T G ARETI <7 _sub
G AT Fpv<iTy (type-sub)

d; A; (R, S) Fa i :int(7)

(type-label) (type-reg)

Figure 8: Typing rules for integers, labels, registers and stack cells.

notation R[r : 7] means that we update the type of register r to 7 in 3, that is, if r is the ith
register, then we update the content of R(i) with 7.

The rules (type-newtuple) and (type-newarray) are for typing tuples and arrays allo-
cated on heap, respectively. We have explained in the previous section how memory allocation
is performed.

We give some explanation on the rule (type-beq). Suppose that we type-check beq;r, v; I
under ¢; A;%; we first check that r has type int(z) for some z; we then type-check I under
o, # 0; A; % (x # 0 is added into ¢ since the jump is not taken in this case); we also verify
that v has a state type and ¢,z = 0; A; ¥ entails the state type (z = 0 is added to ¢ since the
jump is taken in this case). The typing rules for other conditional jumps are similar.

We sketch a case where a DTAL program that does not type-check can be modified to type-
check with the insertion of a run-time array bound check. Assume that we want to type-check
load rg,7s(v); I under ¢; A; ¥, and we have verified that rs; and v have types 7 array(z) and
int(y), respectively, and we can prove ¢ = 0 < z but not ¢ = y < z; we can then insert the
following (where subscript is the entry to some routine that handles errors) in front of the load
instruction, and this insertion guarantees that z —y > 0 is already added to ¢ when the load
instruction is type-checked, making sure that y < x is provable.

arraysize r,rg; subr,r,v; blte r, subscript;

A dual case is to remove a redundant array bound check, which is similar and thus omitted.
We use - Plwell-typed] to mean that a program P = (Iy : By,...,l, : By) is well-typed,

11

dya v, A (R[r:T],S)F 1 t |
&; A (R[r: Fa:vy.1],S) T ype-open-reg

¢3Aa (R[TT]’S)F[¢;A|:pr0d(7—03"'37—n—1) <7

(type-newtuple)

d; A5 (RyTo it ... it Ty 2 S) F newtuple[r| ;[
pEz>0 AR <T (ﬁ;A;(R[r:Tarmy(x)],S)l—I(t)
¢, A; (R, int(z) :: 7 =+ S) F newarray|r] r; ype-newarray

Oy A rs T array(z) ¢ Ay (R[rq :int(z)],S) I
¢; A; (R, S) F arraysize rq,rg; [
oA (R, S)Fov:iT ;A (R[r:7],5) F
&; Ay (R, S) Fmov vy I
b, Ay (R, S) Frs sint(z) ;A5 (R,S) Fo:int(y)
¢; A; (R[rq : int(z +y)], S) F T
¢; A; (R, S) Fadd rg,rs,v; 1
b, Ay (R, S) Frssint(z) ;A5 (R,S) Fo:int(y)
¢; A; (R[rq : int(z —y)], S) = I
o; A; (R, S) F sub rg,rs,v; 1 (type-sub)
d; A; (R, S) Frsint(z) ¢;A;(R,S) Fo:int(y)
d; A; (Rrq = int(z xy)],S) F I
¢; A; (R, S) Fmul rg,rs,v; 1 (type-mul)
d; A5 (R, S) Frs int(z) ¢; A5 (R,S) Fo:int(y)
pEy#0 ¢ A;(Rlrg :int(z/y)],S) F 1 .
o; A5 (R, S) Fdivrg,rs,u; 1 (type-div)

(type-arraysize)

I
(type-mov)

(type-add)

Figure 9: The typing rules for DTAL(T)

12

&, A (R,S) Frs:prod(ri,...,m) ¢EO0<i<n
¢ A; (Rlrg = 7], S) H 1
o; A; (R, S) F load ry,rs(i); I
d; A5 (R,S) Frs:7array(z) ¢;A;(R,S) Fo:int(y)
pEO<y<z ¢HGA;(R[rq:7],S)F1
»; Ay (R, S) F load rg,rs(v); I
O N rg T array(z) g AEFRviint(y) ¢EO0<y<z
OVANDIR NG N AN I |
d; Ay X F store rg(v),rs; [
oAy (R[r 7], S) 1T
¢; A; (RyT 2 S) Fpopr; I
oA (R, SYFv:iT ;A (R, S)HT
»; A; (R, S) Fpushv; I
¢y A; X v state(AA A3
brO @ HAFO:A AT, SO]]
¢; Ay ¥ jmp vy 1
;AN Erint(z) gz A0 AN ET §y A X v state(AA' A X)

(type-load-tuple)

(type-load-array)

(type-store-array)

(type-pop)

(type-push)

(type-jmp)

bpx=0F0:¢ ¢,x=0AF0O:A" ¢ z=0A7% . X[0O]0] b
o; A X Fbeqr, vy (type-beq)
;NN rint(z) gz =021 ¢; A3 v state(ANA' AP X)
bsAOF0:¢ G rAOGAROA §ok0 AT = O]
(type-bne)

¢; A; 3 bne r,v; 1

F AT Fhaty ((YPe-halt)

Figure 10: The typing rules for DTAL(II)

13

Judgment form Judgement meaning
¢ = P The proposition P holds under the context ¢ in the integer domain.
¢; A =1 =719 The types 71 and 75 are equivalent under the context ¢; A modulo con-
straint satisfaction.
¢; A =71 <19 The type 71 coerces into the type 7o under the context ¢; A modulo
constraint satisfaction.
$; A; 3 |=¢ R r;is of type R(i) under the context ¢; A; 3 for every ¢ € dom(R) modulo
constraint satisfaction.
G A;Y = S Given X = (R, 7y it ... 7y 2), S must be of form (7] ... 7, =)
and ¢; A; ¥ = 7 = 7/ is derivable for every 1 <i < n.
¢; A; 3 e (R,S) This means both ¢; A; ¥ =, R and ¢; A; ¥ =, S are derivable.
¢; A; Y |=c R The type of r; under the context ¢; A; % coerces into R(i) for every
i € dom(R) modulo constraint satisfaction.
oY =S Given ¥ = (R,1 ... Ty i), S must be of form (71 = ... 7) 2 ()
and ¢; A; Y = 7; < 7/ is derivable for every 1 <i < n.
¢; A; 3 |=¢ (R,S) This means both ¢; A;¥ =; R and ¢; A; ¥ =, S are derivable.
¢; A; X Fp v 1 The value v is of type 7 under the context ¢; A; 3 and the label map A.

¢; A; Y Fp v <: 7 The value v is of some type 71 under the context ¢; A; X and 71 coerces
into 7.
¢; A; X F 1 The instruction sequence I is typable.

Figure 11: A summary for various forms of judgments

which can be derived as follows, where A is the label mapping of P.

Fa Bi[well-typed] --- Fjp By[well-typed]
F Plwell-typed]

(type-program)

Given a block B = AA.\¢.(X, I), the rule for deriving -5 Blwell-typed] is given as follows.

o AN AT
Fa Blwell-typed]

(type-block)

We have so far introduced various forms of judgments, some of which have yet to be defined
later. In Figure 11, we summarize the meaning of these judgments informally.

3 Type Equality and Coercion

As we have mentioned before, a novelty in DML is the separation between language expressions
and type index objects. This notion of separation seems indispensable when we intend to form a
dependent type system for an imperative language such as DTAL. For instance, it is completely
unclear at this moment how a register can be used as a type index object since it is mutable.
The separation allows us to simply avoid such a problematic issue. There is another advantage,
that is, the separation enables us to choose a relatively simple domain for type index objects
so that constraints (on type index objects) generated during type-checking can be efficiently
solved. This is crucial to the design of a practical type-checking algorithm. In this section, we

14

present rules for type equality and coercion, which exhibit clearly the involvement of constraints
in type-checking.

In the presence of dependent types, it is no longer trivial to check whether two types are
the same. For instance, we have to prove that the constraint 1 + 1 = 2 holds in order to claim
int(1+1) is equivalent to in¢(2). In other words, type equality is modulo constraint satisfaction.
Similarly, type coercion also involves constraint satisfaction.

We present the syntax for constraints as follows.

index constraints ® == T |P|PD>®|Va:vy.®
satisfiability relation pE=P

The satisfiability relation ¢ = P means that the formula (¢)P is satisfiable in the domain of
integers, where (¢)P is defined below.

(=2 (p,a:int)® = (p)Va : int.®
(@ {a:7 [P})® = (,a:7)(PDO) (¢, P)2=()(P D2

For instance, the satisfiability relation a : nat, b : int,a+1 = b = b > 0 holds since the following
formula is true in the integer domain.

Va:int.a>0DVb:int.a+1=56Db>0

We write ¢; A |= 11 = 75 to mean that types 71 and 7 are equal under context ¢; A. Similarly,
we write ¢; A = 71 < 79 to mean that type 71 coerces into type 7 under context ¢; A. The rules
for type equality and coercion are presented in Figure 12 and Figure 13, respectively. There are
some obvious restrictions on some of these rules. For instance, we require that index variable a
in the premise of the rule (type-eq-exi-ivar) have no free occurrences in the conclusion of this
rule.

Notice that we cannot replace the rule (coerce-array) with the following one.

GAETST dFz=y
&; A E 1 oarray(z) < 7 array(y)

(coerce-array’)

This rule can readily make the type system unsound as demonstrated in the following example.
Note that [r0: int(0) array(2)] stands for a state type state(A(p).X), where ¥ = (R, p)
and R(0) = int(0) array and R(i) = unit for all other ¢ € dom(R).

start: [r0: int(0) array(2)]
mov rl, r0
jmp next

next: [r0: int(0) array, rl: int array(2)]
store r1(0), 1

If the above “seemingly natural” rule is allowed, we can coerce type int(0) array(2) into type
int array(2). Therefore, we can type the above instruction sequence. Notice that r¢ points to
a pair of value (1,0) on heap after the store instruction is executed, but the type of ry is still
int(0) array(2). This leads to the unsoundness of the system. In summary, array types are not
covariant in DTAL. The plain reason is that arrays are mutable data structure allocated on heap
and pointers to arrays may be shared.

Notice that product types in DTAL are covariant. The reason is that a tuple on heap is
not mutable in DTAL. If we intend to support tuples in which some components are mutable,

15

€A
m (type-eqg-tvar)

oy A = int(z) = int(y)
GbAETI=ETR dET=y

o; A =11 array(z) = 12 array(y)
GAET =T - GAET,=T),
& A prod(Ty,...,7y) = prod(ri,..., T,
d,a:v;AlET =1

(type-eq-int)

(type-eq-array)

) (type-eq-prod)

type-eq-exi-iva
¢;A|:3a:7_7—153a:7.7_2 (yp g-€ex1-1v I‘)

A aET =17
d; A E Jar = Jam
¢, ¢ AN S e Bo ¢ AA S e By
;A = state(AA' AP .X1) = state(AA AP . 25)
$ AT =R gAY ES

$; A% = (R, S)
O NN oA ET = R(>)
;A D Ee R

FA R e [(WPeedstackempty)

¢ A5 (R, B) e B

hBAET=T HASES
;A (Rym 0 S) = 7't S

(type-eq-exi-tvar)

(type-eqg-state)

(type-eq-reg-stack)

(type-eq-reg)

(type-eq-stack-var)

(type-eq-stack)

Figure 12: Type equality rules for DTAL

16

oy AT
¢; A =1 < top

(coerce-top)

—unit
5 A & unit < unit (coerce-unit)

a €A
hAEa<a
pEz=y
5 A = int(2) < int(y)
GAETI=ET dFET=yY
A array(s) < m array(y)
pAETST - GAETRST
& A E prod(1o, ..., Tno1) < prod (7, ..., Th_1)
d,a:7;AET <79
;A FETa:ym <1
pFz:y pAET <nla=1}
oA ET <3Ja:vym
¢; A a1 <™
O A E Jar <1
oA al=1 <nfa:=71}
oA =7 <3Jam
G201 o A A2 O AL P A Ag; By e E4[O][0]
o; A |= state(AA1.Ap1.31) < state(AA2.Ap2.32)
¢ AN =R g AN ES
A Y e (R, S)
G N8 gy AE T < R(i)
g AsS = R
AR = (coerce-stack-empty)
;A (R, B) e B

G AETST ¢ A(R,S) =S
& A (R, S) o 2 S

(coerce-type-var)

(coerce-int)

(coerce-array)

(coerce-prod)

(coerce-exi-ivar-1)

(coerce-exi-ivar-r)

(coerce-exi-tvar-1)

(coerce-exi-tvar-r)

(coerce-state)

(coerce-reg-stack)

(coerce-reg)

(coerce-stack-var)

(coerce-stack)

Figure 13: Type coercion rules for DTAL

17

we must modify the rule (coerce-prod). For instance, if we have a type constructor prod, for
forming types of pair whose first component is mutable but the second is not, then we need the
following coercion rule.
bAET=T) O, AET <T]
¢, A | prody(To, 1) < prody(h, 1)

The need for type coercion is immediate. Foremost, we need type coercion to type jumps
as demonstrated in the rules (type-jmp), (type-beq) and (type-bne). Also we need type
coercion to type the following code sequence since we must show that the type int(0) * int(0)
coerces into the type Ja : nat.int(a) x int(a).

start: [r0: int(0) * int(0)]
jmp next
next: [r0: {n:nat} (int(n) * int(n))]

The most noticeable coercion rule is (coerce-state). Informally speaking, a state type is
“stronger” if a state is “weaker”. The intuitive explanation is that a state type roughly represents
the notion of code continuation. We will elaborate on this point when we establish the soundness
of the type system of DTAL in Section 5.

We define substitutions on both index and type variables as follows.

index variable substitutions 6 = []|6[a >]
type variable substitutions © = [||O[p— S]|Ola — 7]

We omit the details on how substitution is performed, which is standard. Given a term e such
as a type or a state, we use o[O] (e[f]) for the result from applying © (#) to e. We introduce
two forms of judgments ¢ - 60 : ¢/ and ¢; A+ © : A" and present as follows the rules for deriving
such judgments.

pEO:¢ Py
pFOBla—i:¢da:y
p-0:9" ¢ Pl

prO:¢, P
d;AFO: A" ¢ A S[well-formed]

7(#'_[]:“ (subst-tempty) AL S]: Ay

O AFO A AT

pFEOlarT1]: Al

— (subst-iempty) (subst-ivar)

¢]

(subst-prop)

(subst-svar)

(subst-tvar)

The following lemmas establish some expected properties on both type equality and coercion.
Lemma 3.1 We have the following.

1. If ¢; A& 72 x is derivable, then ¢; A |= 1 =7 is also derivable.

2. If ¢; A =11 = 1o is derivable, then ¢; A |= 190 = 11 is also derivable.

3. If both ¢; A =11 = 70 and ¢; A = 19 = 13 are derivable, then ¢;A = 7 = 13 is also
derivable.

Proof This follows an inspection of the rules in Figure 12.]

18

00. subscript: (°r,’a){s: nat, i: int}

[sp: int(i) :: ’a array(s) :: [sp: ’a :: ’r] :: ’rl
01. pop r0 // r0 <- sp[1]
02. blt r0, ERROR // i is negative
03. pop rl // rl <- spl[1l]
04. arraysize r2, ri // obtain the array size
05. sub r2, r0, r2 // r2 <- r0 - r2
06. blte r2, ERROR // if 1 >= s
07. load r0, ri(r0) // rO <- r1(r0): this is a safe load
08. pop rl // rl <- spl[1l]
09. push r0 // push r0 onto the stack
10. jmp rl // done

Figure 14: DTAL for array subscript function

Lemma 3.2 We have the following.
1. If ;A =1 = 19 is derivable, then ¢; A |= 11 < 19 is also derivable.
2. If both ¢; A =1 < 1o and ¢; A = 19 < 713 are derivable, then ¢;A = 7 < 73 is also

derivable.

Proof This follows an inspection of the rules in Figure 12 and Figure 13. |

Lemma 3.3 Assume that both ¢ =60 : ¢ and ¢; A+ O : A" are derivable.
1. If ¢'; A'F 1y = 19 is derivable, then ¢; A+ 11[O][0] = 12[O][0] is also derivable.
2. If ¢'; A" =1 < 1y is derivable, then ¢; A F 11[0][0] < 12[O][0] is also derivable.
Proof By structural induction on the derivations of ¢; A’ = 71 = 7 and ¢; A" F 71 < 7,

respectively. |

We have so far finished the presentation of the type system of DTAL, which is rather involved.
We will present some concrete examples in the next section and provide some explanation on
type-checking before proceeding to establish the soundness of the type system.

4 Examples

It is simply too overwhelming to formally explain how type-checking in DTAL is performed
through even a tiny example because of the involvedness of the type system. Instead, we
present in an informal manner how to type-check the DTAL code in Figure 14 so as to facilitate
comprehension.

This code sketches an implementation of array subscript function in which run-time array
bound checks are performed. We use

(°r,’a){s:nat,i:int}[sp: int(i) :: ’a array(s) :: [sp: ’a :: ’r] :: ’r]
for state(A(p, @).A(s : nat,i : int).X), where
Y= (R,int(i) :: (a)array(s) :: o :: p)

19

No. ¢ A X
01 7:int p,a ([],int(7) = (a)array(s) :: o :: p)
02 i:int p,a ([ro :int(7)], (a)array(s) :: o :: p)
03 i:int,i >0 p,a ([ro :int(7)], (a)array(s) :: o :: p)
04 i:int,i>0 p,a ([ro :int(i),r1 : (a)array(s)],o :: p)
05 i:int,i >0 p,a ([ro :int(i),r1 : (a)array(s), re :int(s)], o 2 p)
06 7:int,i>0 p,a ([ro :int(i),r1 : (a)array(s),re int(i — s)], 0 :: p)
07 ¢:int,i>0,i—s<0 p,a ([ro:int(i),r: (@)array(s),re int(i — s)],0 2 p)
08 i:int,i>0,i—s<0 p,a ([ro:a,r:(a)array(s),re :int(i — s)],0 :: p)
09 ¢:int,i>0,i—s<0 p,a ([ro:a,r:0o,ry:int(i —s)],p)
10 i:int,i >0,i—s<0 p,a ([ro:a,r:o,re:int(i —s)],a:: p)

Figure 15: Contexts ¢;; A;;3; fori=1,...,10

such that R(7) = unit for all i € dom(R), and o is the state type state(¥;) such that ¥; =
state(R, o :: p).

Notice that numbers are inserted into the code so that we can readily identify each instruction
in the code. We use the label ERROR for the entry to some code reporting bound violations. Also
we use arraysize r2, rl for an instruction which stores in r2 the size of the array to which r1
points. Intuitively speaking, when the code execution reaches the label subscript, sp points to
a stack whose top three cells store an integer, a pointer to some array and a label, respectively.
The type of the label states that the sp must be of type « :: p when the execution jumps to
the label. The type system of DTAL guarantees that the part of stack that is typed by p can
neither be read nor be written during the subsequent code execution. The simple reason is that
neither pop nor push, the only two instructions involving stack, can be applied when the type
of a stack is a stack type variable.

Let ins; be the ith instruction and I; be ins;;...;insip;halt for 1 < i < 10. We argue that
there is a derivation D with the following conclusion.

isint; o (Ryint(i) = ()array(s) o = p) b Iy

Then we need to derive derivations D; with conclusions of form ¢;; Ay; ¥, = I; for i =1,...,10.
We list these contexts ¢;; A;; %, in Figure 15. Note that 319 = (R, « :: p) for some R. Therefore,

$10; A10; 210 e i p

is derivable. This implies that ¢19; A19; X190 F I10 is derivable. It is straightforward to verify that
¢i; Aj; X F I; are derivable for i = 1,...,9. Notice that we need to prove that ¢7 0 <17 < s
when deriving ¢7; A7; 37 Iz, but this is trivial since ¢ > 0 and ¢ — s < 0 are assume in the
context ¢7.

We now present a more sophisticated example. In Figure 16, the Xanadu program imple-
ments a binary search function on an integer array. The type system of Xanadu guarantees that
this implementation is memory safe and it is unnecessary to perform array bounds checking at
run-time. The syntax following the keyword invariant is basically a state type stating that
there exist integers 7 and j satisfying 0 <i <mn and 0 < 7+ 1 < n such that variables low and
high have types int(i) and int(j), respectively, at this program point. This is treated as a loop
invariant for the while loop that follows. Some further explanation can be found in (Xi 1999a).
The DTAL code in Figure 17 (loosely) corresponds to the Xanadu implementation of the binary

20

{n:nat} int bsearch(key: int, vec: <int> array(n)) {

var:
int low, mid, high, x;;

low = 0;
high = arraysize(vec) - 1;

invariant:

[i:int, j:int | O <= 1 <= n, 0 <= j+1 <= n] (low: int(i), high: int(j))
while (low <= high) {

mid = (low + high) / 2;

x = vec[mid];

if (key == x) { return mid; }

else if (key < x) { high = mid - 1; }

else { low = mid + 1; }

return -1;

Figure 16: An implementation of binary search in Xanadu

search. It can be verified that the DTAL code is also memory safe. We give an intuitive but
informal explanation as follows.
When the code execution reaches the label loop, the integers ¢ and j are stored in r2 and
r3 such that
0<i<n and 0<j7+1<n,

where n is the size of the array to which rO points. It can be readily inferred that the integer
in r4 equals | (i +7)/2] and ¢ < j holds when the load instruction is executed. Clearly, we have
the following

0<i<|(E+4)/2] <j<n-—1,

and therefore the load instruction is memory safe. This guarantees the memory safety of the
code since the load instruction is the only memory operation in the code.

Notice that the types attached to the labels in this example seem intractable to synthesize
in practice. This supports the view that, in order to generate memory safety proofs for large
programs, it is necessary to have a high level source language such as Xanadu in which the
programmer can supply type annotations. We are currently investigating how to compile these
annotations into a low level language such as DTAL.

5 Soundness

We recall that a machine state M is a triple (H,R,S), where H and R are finite mappings
representing heap and register file, respectively, and § is a list which stands stack. Given a heap
address h, H(h) is a tuple (hcy,...,hc,—1) such that every hc; is either a constant or a heap
address. We use a judgment of form H =5 hc: 7 to mean that the heap address or constant hc

21

bsearch: A{n: nat} [rO: int array(n), rl: int(n), r5: int]
// r5 stores the key value we are trying to find

mov r2, 0 // r2 stores the lower bound
sub r3, rl, 1 // r3 stores the upper bound
jmp loop

loop: {n: nat, i: int, j: int |

0 <=1i<=mn /\ 0 <= j+1l <= n} // this is the loop invariant
[r0: int array(n), r2: int(i), r3: int(j), r5: int]

sub r6, r2, r3
bgt r6, notfound // if r2 > r3
add rd, r2, r3 // rd <- (r2 + r3)
div rd, r4, 2 // r4d <- (r2 + r3)/2
load rl, rO(r4) // rl <- r0(r4)
sub r6, r5, ri
blt r6, less // if r5 < ril
bgt ré, greater // if r5 > rl
mov r31, r4 // r5 = rl: key found
jmp finish
less: {n: nat, i: int, j: int, k: nat |

0<=i<=n/\0<=j+l<=n/\Ni<=3j/\k=(@G+j)/ 212

[r0: int array(n), r2: int(i), r3: int(j), r4: int(k), r5: int]
sub r3, r4, 1

jmp loop

greater: {n: nat, i: int, j: int, k: nat |
0<=i<=n/\0<=j+l <=n/\i<=3j/\k=(@G+j)/ 2}%
[r0: int array(n), r2: int(i), r3: int(j), r4: int(k), r5: intl
add r2, r4, 1
jmp loop

notfound: []
mov r31, -1

jmp finish

finish: [r31: int] // r31 contains the index of the key or -1(not found)
halt // the program halts

Figure 17: DTAL code for binary search on an integer array

22

v + A(l) <
HEAL:0
(heap-unit)

(heap-int) ? (heap-label)

H =iz int(i)
H [=a he s unit
HENhe:T{a:=14} -Fi:

H=a he:3a:y.T

7 (heap-exists)

h) = (hcy, ..., hc,— heg : hep 1 The
H() (o, , NC 1) H):A Co :T0 H):A C 1:Tn—1 (heap_prod)
H A h:prod(to, ..., Th-1)
H(h’) = (hC[), v 7hcn71) H |:A hCO T - H):A hcn,1 :

U (heap-array)

H E=a b (1)array(n)
HEAR®GE) : R(E) forall 0 <i<n,
(H,R) =a R

(M, [) Eall
HErNhe:T (H,S)F=A S
(H,he : S) Ea 7 S
(HvR) |:A R (7‘[,8)):A S
(H,R,S) Ea (R,S)

(heap-register)

(heap-stack-empty)

(heap-stack)

(heap-state)

Figure 18: Rules for modeling states

is of type 7 under the heap H and the label map A. For M = (H,R,S) and X = (R, S), the
judgment M = ¥ means that the machine state M entails or models the state 3.

We use the judgment M |= ¢; A; ¥ to mean the context ¢; A; ¥ is satisfied under the machine
state M, which can be derived with the following rule.

FO:¢p v FO:A M X[O]F]
ME ¢ A8

Lemma 5.1 (Substitution) If ;A5 + I, -+ 6 : ¢ and 5+ & O : A is derivable, then
5 otv; 5[O][0] F I is also derivable.

Proof This follows from a careful inspection of type equality rules, type coercion rules and
typing types for DTAL. [

Lemma 5.2 Let M = (H,R,S). Assume H |= hc : 1 is derivable. If ;v E 11 < T2 is
derivable, then H = hc : 12 is also derivable.

Proof We proceed by a structural induction on the derivation Dy of H = hc : 71 and the
derivation D of -5+, =1 < 79. If 71 is a state type o, then D; is of the following form.

5ty + A(l) <

HEAL: 0o

? (heap-label)

By Lemma 3.2, ;- = A(l) < 72 is derivable. Thus H =5 [: 72 is derivable. We now assume
that 71 is not a state type and present some interesting cases.

23

Dy = SwETIET cFEr=y

v = 71 oarray (z) < 1o array(y) Since H = he : 1 array(x) is derivable, the deriva-
tion Dy 1s of the following form, where n =z = y.

H(h) = (hCO, e ,hcn_l) H |:A hCO R H |:A hcn_l VA
H [=a he : 11 array(n)

(heap-array)
By Lemma 3.2 (1), we can derive -; -y = 71 < 72. By induction hypothesis, we can derive
H A he; o o for 0 <4 < n. This leads to the following, and we conclude the case.

H(h) = (hco, ..., hen—1) HEAhcy:T2 -+ HEANhep—1 T
H [=a he : 1o array(n)

(heap-array)

D, — a: Y ET ST

Sy Eda iy <1 Note that 71 = da : 7.7. Thus, Dy is of the following form.

HENhe:{a:=1} -Fi
H = he:Ja:y.T

il (heap-exists)

By Lemma 3.3 (1), we can derive -; -, F 7{a := i} < 7. By induction hypothesis on (1),
H | he: 12 is derivable.

sw ET<71{a:=1i} -Fi:y
sv E < Jacyr Note that 7o = Ja : v.7. Then H |= hc: 7{a := i} is
derivable by induction hypothesis on (1), and this leads to the following.

Do =

H A he:m{a:=1} -Fi:

v .
h - t
HE=A he: Ja:y.r (heap-exists)

The rest of the cases can be treated similarly. |

Lemma 5.3 Assume M |= ¢1;A1;51 is derivable. If ¢1;A1;51 . $2[0O][0] is derivable for
some 0 and © such that both ¢1 & 0 : ¢o and ¢1; A1 F O : Ay are also derivable, then M |= ¢y :
Ao; Yo is derivable.

Proof The lemma follows from a straightforward application of Lemma 5.2 to the derivation of
$15 A3 X1 = 2o[O][6].
Notice that the derivation of M |= ¢1; A1; 51 must be of the following form.

FO i1 i FOL AL M E 31[04][64]
M E 154158

Let (R, S) = 31[61][©1]. By Lemma 3.3, we can find #’ and ©' such that - F €' : ¢, -+t F 0" : Ag
and -; v; (R, S) | X2[0'][¢'] are derivable. Let (R',S’) = X2[0'][0'].

Note that (#,R) = R is derivable since M |= ¥ is derivable. In other words, we can
derive H | R(i) : R(i) for 0 < i < n,. Also notice ;- = R(i) < R/(7) are derivable for
0 < i < n, since - -v; (R, S) Ec (R',S’) is derivable. By Lemma 5.2, H = R(i) : R'(7) for

24

0 <i < n,. Hence, (H,R) |= R’ is derivable. Similarly, we can derive (H,S) = S’. A derivation
of M = (R',S’) is thus obtained as follows.

(H,R) Fa B' (H,S) A &

(heap-state)

(Ha Ra S) |:A ¥
This yields a derivation of M = ¢2; Ag; Xo. [
Assume that D is a derivation of F B[well-typed] for a block B = AA.X¢.(2,I), where I is
a list of instructions insg,...,ins,_1. We use (i) for ins; and I[i] for ins;,...,ins,_1, that

is, the suffix of I beginning at I(7). Then there are the greatest subderivations D(i) of D for
0 < i < n with conclusions of form ¢;; A;;3; F I;. Notice that for a given i, there may exists
several subderivations of D with a conclusion where the righthand side of - is I; because the
application of (type-open-reg) does not alter the righthand side of . This is the reason why
we need the word greatest in the above definition.

Assume that D is a derivation of F Plwell-typed] for a program P = (Iy : By,...,l, : By),
where B; = AAA¢;.(2;,1;), and D; are the derivations of - B;[well-typed] for i = 1,...,n. Let
A = A(P) and J = J(P). Notice that for every 0 < ic < length(J), if J(ic) is not a label, then
it is an instruction from some block By, that is, it is I;(7) for some k and i. We write D(ic) for
Dy(7), J(ic) for I(i) and J[ic] for I;[i] in the following presentation.

Lemma 5.4 Let M be a machine state. If M = ¢,a : v; A;(R[r : 7],S) is derivable, then
M = ¢; A; (R]r - Ja1], S) is also derivable.

Proof This follow from a structural induction on the derivation of
M ¢,a:v; A5 (Rl : 7], 5)

In order to establish the soundness of the type system of DTAL, we need to prove that
M Ep ¢ A3 holds if M Ep ¢; A; S and (ie, M) — (ic’, M) are derivable, where D(ic) and
D(id) are ¢; A; X F Jlic] and ¢'; A'; X' F J[ic/], respectively. In other words, we should justify
the typing rules in Figure 9 and Figure 10 with respect to the effects on machine states resulted
from the execution of instructions. Unfortunately, this cannot succeed unless we impose some
regularity condition on the derivation of M =5 D(ic). We present the main reason for this as
follows.

Suppose that there are two pointers stored in registers 1 and ry which point to the same
address on heap in which integer 0 is stored. It is possible that r; and ro at this moment have type
(int)array (1) and (int(0))array (1), respectively. If we update the address with integer 1 through
the pointer in r1, the update cannot be seen by 9. Therefore, the update leads to inconsistency
since the type of ry is still (int(0))array (1). A more formal description can be given as follows.
Let ¥ = (R, S) be a state, where we have R(1) = (int)array(1), R(2) = (int(0))array(1) and
S =1[]. Alsolet M = (H,R,S) such that H(h) = 0 for some heap address and R(1) = R(2) = h
and S is empty. It can be readily verified that M |= 3 is derivable. According to the typing
rules, We are now allowed to execute the instruction store r1(0), 1 since the type of rl is
(int)array(1). This changes the M into M' = (H',R,S) where H'(h) = 1. Obviously, we
cannot derive H' |= ro : (int(0))array(l) (we actually have H' = ro : (int(1))array(1l)), and
therefore, M’ =3 does not hold.

25

Definition 5.5 (Regularity) Let H be a heap mapping. For every h € dom(H) such that H(h)
is a tuple (heg, ..., hcp—1), we use h[i] to represent the heap address in which he; is stored, where
1 ranges over 0,...,n — 1.

Let T be a partial mapping from heap addresses to closed types and D be a derivation of
M E 3. If for all applications of the following rules in D,

H(h) = (hcoy ... hen—1) HEAhcy:T -+ HEAhC,1:T
H = b (T)array(n)

(heap-array)

oty =7 = T (h[i]) is derivable for every 0 < i < n, then D is T -regular. We say D is regular
if D is T -regular for some T. We call T a regularity mapping.

Let us now argue that the above M = R cannot have a regular derivation. Note that we must
have a derivation of the following form in order for H = 7 : (int) array(l) to be derivable,
where 4 is some integer.
H(h) = (i) HEi:int
H = h:int array(1)

Similarly, we must have a derivation of the following form for deriving H |= ry : (int(0)) array(1).

H(h) = (i) H Ei:int(0)
H | h:int(0) array(1)

We cannot find a regularity mapping 7 such that both -; -, = int = T'(h[1]) and -; - = int(0) =
T'(h[1]) are derivable since this would imply a derivation of -; -, |= int = int(0), which is clearly
impossible.

We can now inspect the proof of Lemma 5.3 and observe that the derivation of M = ¢ :
Ag; Y9 is also T-regular if the given derivation of M = ¢1; Aq; X is T-regular.

Lemma 5.6 (Main Lemma) Assume that P is a program. Let A = A(P) and J = J(P) and
D be a derivation of - P[well-typed]. Also let ic be an instruction count such that D(ic) is a
derivation of ¢; A; 3 = Jlic]. We have the following.

1. If M | ¢;A;% is derivable for some machine state M, then (M,ic) —p (M',ic) is
derivable for some M’ and ic', or (M,ic) — HALT is derivable.

2. If (ic, M) —p (id, M) is derivable and D(ic') is a derivation of ¢'; A'; ¥ + J[ic'], then
M = ¢y A5 has a regular derivation if the derivation of M = ¢; A; X is regular.

Proof The proof follows from an inspection of the typing rules in Figure 9 and Figure 10 and the
evaluation rules in Figure 6. By Lemma 5.4, we can assume that the last applied rule in D(ic)
is neither (type-open-reg) nor (type-open-stack) when we prove (2). Let M = (H,R,S),
and we present a few cases below.

e The derivation D(ic) is of the following form.

& A (R,S) Frscint(z) ¢;4;(R,S) Fo:int(y)
¢EY#0 ¢ A (Rrq :int(x/y)],S) -1
¢; A5 (R, S) Fdivrg,rg,v; 1

(type-div)

26

Since M = ¢; A; X is available, M(rs) = i and M(v) = j for some integers i and j, and
j # 0 holds. With the evaluation rule (eval-div), we have the following.

(’iC, (Ha R, S)) —P (ZC +1, (Ha R[’rd = Z/]]a S))
Clearly, (H,R[rq =1/7],S) = ¢; A; (R[rq = x/y], S) is derivable.
e The derivation D(ic) is of the following form, where the applied rule is (type-beq).

O AN rrint(z) gz A0 AT ET ¢y AY o state(AMA' MG .Y)
px=0F0:¢" ¢z=0AFO:A" ¢ z=0;A;% . X[O][0]
o; A X Fbeqr,v;

Since M = ¢; A; ¥ is available, R[ry] is some integer i. We now have two cases.

— 1 # 0 holds. The evaluation rule (eval-beq-false) yields the following.
(ic,(H,R,S)) —p (ic+1,(H,R,S))

It is trivial that (H,R,S) = ¢,z # 0; A; X is derivable.

— ¢ = 0 holds. Note that we know M (v) is some label | since M |= v : o is derivable
for some state type o. This means .J1(I) is well-defined. Let ic’ be J'(I), we derive
the following with the evaluation rule (eval-beq-true) when 7 = 0 holds.

(ic, (H,R,S)) —p (ic +1,(H,R,S))

Note that M [= 1 : state(AA’.A¢’.X'). This implies that A(l) = o for some state type
o such that -, F o < state(AA' @' X'). Assume o = state(AA".\¢".2"). Then the
following is derivable for some # and © such that both ¢/ -6 : ¢" and ¢'; A’ © : A”
are derivable.

¢ ALY = 27 [O][]
By Lemma 5.3, we can readily derive (H,R,S) E ¢"; A”; %",
e The derivation D(ic) is of the following form.

Oy N; N g T array(x) ;A3 o :int(y)
pEO<y<cz ;NN bErs<iT AT
d; A; Y F store rg(v),rs; I

(type-store-array)

Since M [¢; A; X is available, there exist n and i such that 0 < i < n, M(v) = i,
M(rq) = h for some heap address h and H(h) = (hco, ..., hc,—1) for some hcy, ..., hep_1.
Therefore, we have the following by the evaluation rule (eval-store), where hc = M(rs).

(ic,(H,R,S)) — (ic+ 1, (H[h — (hcg, ..., hci—1, he,heipr, ... hep—1)], R, S))

The derivation of (H[h — (hcg,. .., hci—1, he, hcip1, ..., hen—1)], R, S) |= ¢; A; ¥ is straight-
forward as it can be readily proven that M = hc: 7 (this is the place where we need the
regularity condition).

27

e The derivation D(ic) is of the following form.

& A (R[r:7],S) 1T

G5 i (Ryr 8) Fpopri1 (WPOPOP)
Since M |= ¢; A; ¥ is available for ¥ = (R, 7 :: §), S must be of form hcg ... 2 hep_q i []
for some n > 1. With the evaluation rule (eval-pop), we have the following.
(ic,(H,R,hcy =2 ...t hep—y 2 [])) = (ic+ 1, (H, R[r = heol, heq i:.o. it hep—q 2 []))
The derivation of (H,R[r = hcol,hey 2 ... it hep—y 2 []) = ¢ A (R[r : 7], S) is straightfor-
ward.

e D(ic) is of the following form.

F AT F naly (YPe-halt)

Obviously, we can derive (ic, (H,R,S)) — p HALT with the evaluation rules (eval-halt).

The rest of the cases can be handled in a similar manner. [

Theorem 5.7 (Progress) Let P = (I; : B;...;l, : By) be a program and A = A(P) and J =
J(P). Assume b Plwell-typed] is derivable and A(l1) = 3p(Rempty,). If (0, Mo) —=* (ic, M)
then either (ic, M) — HALT , or (ic, M) — (id', M) for some ic’ and M'. In other words, the
execution of a well-typed program in DTAL either halts normally or runs forever.

Proof Let D be the derivation of P. Then D(0) is a derivation of -; p; (Rempty,p) = J[0].
Clearly, there is a regular derivation of Mg = -; p; (Rempty, p)- The theorem then follows from
Lemma 5.6.]

6 Extension with Sum Types

The programmer can declare in Xanadu a polymorphic union type as in Figure 19 for repre-
senting lists and then implement the length function. The concrete syntax <’a> list is for the
type of lists in which all elements are of type ’a (we use ’a for a type variable). Note that
the union types in Xanadu correspond to datatypes in ML and the values of union types are
decomposed through pattern matching. For instance, we informally explain the meaning of the
switch statement in Figure 19; if xs matches the pattern Nil, the value of x is returned; if xs
matches the pattern Cons(_, xs) (_ is a wildcard), then we update xs with its tail and increase
x by 1. A union type is internally represented as a sum type. In the case above, a tag is used
to indicate whether the outmost constructor of a list is Nil or Cons.

We can compile this function essentially in the following manner; we initialize £ with 0 and
start the following loop; given a list s, we perform a tag check to see whether it is Nil; if it
is, we return z; otherwise, we know that the outmost constructor of zs must be Cons and it
is unnecessary to perform another tag check; we can simply update zs with its tail, increase
z by 1 and loop again. Unfortunately, it cannot be inferred in the type system of TAL that a
tag which does not indicate Nil must indicate Cons in this case, and this makes it difficult in
TAL to handle some optimization in pattern compilation.? In general, the type system of TAL
contains some limitations on handling sum or union types.

2Though it is possible in TAL to use some macros for handling the case where there are only two constructors,
it seems difficult to handle a general case involving more than two constructors.

28

(’a) union list =
{ Nil; ’a * <’a> list Coms 1}

(’a) int length (xs: <’a> 1list) {
var: int x;;
x = 0;
while (true) {
switch(xs) {
case Nil: return x;
case Cons(_, xs8): x =x + 1;
}
}
}

Figure 19: A length function on lists in Xanadu

GAET=T dlET=i
¢; A = choose(x, g, ..., Th—1) =
GAET=ET dEFETz=1

(type-eq-choose-1)
-

(type-eq-choose-r)

d; A |= T = choose(x, o, ..., Trn—1)
pEz=y GAET=T 0 HAET=T, (type-eq-choose)
¢; A |= choose(x, 70, ..., Th—1) = choose(y, T}, ..., Th_1) ype-ed
bxr=0AFET<1T - dpxr=n—1AFE71_1<T

(coerce-choose-1)

;A = choose(z, 1o,y ..., Th—1) < T
GAETST ¢Ez=i

¢; A =1 < choose(z, 10, ...,Tn—1)

(coerce-choose-r)

Figure 20: Additional type equality and coercion rules

We now extend the system of DTAL to handle sum types. In an implementation, we can use

a pair on heap to represent a sum type sum(7g, ..., T,—;), which is often written as 7o+ - -+7,_1
in the literature. The first element of the pair is an integer ¢ such that 0 <4 < n and the second
element is of type 7;. We can use choose(x, Tg,...,T,—1) to stand for a type which must be one
of 19,...,7h—1, determined by the value of z: the type is 7; if x = ¢. Also we present some

additional rules in Figure 20 for handling type coercion involving sum types (rules for type
equality are omitted). Note naty, is the sort {a : int | 0 < a < n} for every natural number n.

Now we can define sum/(7g,...,T,—1) as:
Ja : nat,.int(a) * choose(a, Ty, ..., Th—1),
that is, a value of type sum(7y,...,7,—1) is represented as a pair in which the first part is a tag

determining the type of the second part. We need the following typing rule for choose.

d,a=0;0%r:m|FIT - da=n—1A%r:7m 41

t -ch
¢y A; Br : choose(a, o, ..., Tn—1)] F T (type-choose)

29

length: (°r, ’a) [sp: ’a list :: [sp: int :: ’r] :: ’r]
// [sp: int :: ’r] represents the state type of the return address
// (label) which is pushed on the stack by the caller.
// Note that ’a list is represented as a dependent type internally
// and the program would not type-check in TAL

pop rl // store the list argument into ril
mov r2, 0 // initialize r2

loop: (°r, ’a) [r2: int, rl: ’a list, sp: [sp: int :: ’r] :: ’r]
unfold ril // rl: unit + ’a * ’a list
load r3, r1(0) // load list tag into r3 (r3 = 0 or 1)
beq r3, finish // goto finish if rl is empty (r3 = 0)

load rl, r1(1) // rl: ’a * ’a list (r3 = 1 since r3 is not 0)
load rl, r1(1) // move list tail into ril

add r2, r2, 1 // increase r2 by 1
jmp loop // loop again

finish: (°r) [r2: int, sp: [sp: int :: ’r] :: ’r]
pop rl // return address pops into ril
push r2 // result pushes onto the stack
jmp rl // return

Figure 21: An implementation of the length function on lists in DTAL

We now present an example to illustrate the use of sum types. The usual list type constructor
can be represented as Ac.ut.unit + « * t, where A abstracts over types and p is the fixed point
operator on types. Note that we use ¢ for a type variable here. As usual, the following rules are
needed for handling p operator.

oy AFwv:T{t:= pt.r}
O; A Fwv:utt
O; A Fwv:utt
oAb wv:T{t:=pt.r}

(type-fold)

(type-unfold)

We provide two auxiliary instructions fold[r] r and unfold r to indicate the need for folding
the type of r into 7 and unfolding the type of r, respectively.

The DTAL code in Figure 21 corresponds to the Xanadu program in Figure 19. The state
type following the label length indicates that the top element on the stack a list and the second
one is a label; the list is the argument of the function and the label is the return address (pushed
onto the stack by the caller); the type of the label states that the top element of the stack is an
integer, which is to be the return value of the function, and the rest of the stack is the same as
the current stack excluding the top two elements. Note that the code would not type-check if
translated into TAL.

The DTAL code in Figure 22 is unsatisfactory for the following reason. In practice, the list
constructors are usually represented without tags for both efficiency and memory concern. In
other words, we can interpret («)list as Ja : nats.choose(a, unit, a x (a)list). The reason is that
it can be readily tested in practice whether a value equals () (which is commonly represented
as a null pointer), and therefore there is no need for a tag. For instance, we can introduce

30

<int> list upto(int n) {
var: <int> list xs;;

xs = Nil;
while (n >= 0) {
xs = Cons(n, xs); n=n - 1;

}
return xs;
}
upto: Cr){i:int} [sp:int(i) :: ’r]
pop rl
push <>
push 0
newtuple[int list] r2 // r2 <- []
Jjmp loop

loop: Cr){i:int} [rl:int(i), r2: int list, sp: ’r]

blt rl, finish

push r2

push rl

newtuple[int * int list] r2 // r2 <- (rl, r2)
push r2

push 1

newtuple[int list] r2 // r2: int list
sub rl, ri, 1

jmp loop

finish: [r2: int list]
halt

Figure 22: Implementations of the upto function in Standard ML and DTAL

31

G NERriT AE|T|Zunit o AEET
¢; A; X bnu r,v; 1
¢; A2 F v state(AA @'Y
bEOY pFO:A HAS O]
¢; A ¥ Fbnur, vy 1

(type-bnu-false)

(type-bnu-true)

Figure 23: Typing rules for the instruction bnu

upto: (’r){i:nat} [sp: int(i) :: ’r]
pop rl
mov r2, <>
jmp loop

loop: Cr){i:nat} [rl: int(i), r2: int list, sp: ’rl]

blt rl, finish

push r2

push rl

newtuple[int * int list] r2 // r2 <- (rl, r2)
sub ri, ri1, 1

jmp loop

finish: [r2: int list]
halt

Figure 24: Another Implementation of the upto function in DTAL

the branch instruction bnu r, v, which branches to the label in v if the value in r equals ().
The typing rules for bnu are listed in Figure 23. This leads to the more concise DTAL code in
Figure 24.

The example in Figure 25 is adopted from (Necula and Lee 1996), which is clearly more
involved. Given a list in which every element is either an integer or a pair of integers, the following
code sum up all the integers in such a list. For instance, if the given list is (1,2) :: 3 :: [, then
the answer is 14243 = 6. We declare a datatype single_or_pair to make this a homogeneous
list in ML. We use the optimized list representation in the DTAL code.

The treatment of sum types extends the one in (Harper and Stone 1998). There indexed
sums 71 +;72 (4 = 1,2) are introduced for types 7y and 75 in addition to the standard sum 71 +7o.
The typing rules for indexed sums essentially state that for i = 1,2, in;(e) : 7 +; 72 is derivable
if e : 7; is, where in; is used to indicate which rule is applied. To relate indexed sums to sum,
there are subtyping rules for making 7 +; 7o a subtype of 7y + 75 for i = 1,2. In DTAL, 71 +; 7»
can be interpreted as int(i — 1) x choose(i — 1,71, 72) and the subtyping relation can be derived
with the use of type coercion rules.

32

union single_or_pair = {
int Single; int * int Pair

}

int sum (1: <single_or_pair> list) {
var:
int s, i, i1, 1i2;
single_or_pair Xx;;

s = 0;
while (true) {
switch (1) {
case Nil: return s;
case Cons(x, 1):
switch (x) {
case Single (i): s =i + s;
case Pair(il, i2): s = il + i2 + s;

}
}
}
return s;
}
start: [r0: (int + (int * int)) list]
mov rl, O
loop: [rO: (int + (int * int)) list, ril: int]
bnu finish // r0 is empty
load r2, r0(0) // r2: int + (int * int)
load r3, r2(0) // load tag into r3
bne r3, pair //
load r2, r2(1) // r2: sum(0, int, int * int)
add rl, rl, r2
load r0, rO(1) // load the tail: r0: (int + (int * int)) list
jmp loop
pair: [rO: (int + (int * int)) list, rl: int, r2: sum(l, int, int * int)]
load r2, r2(1) // r2: sum(1, int, int * int)
load r3, r2(0) // r2: int * int
add rl, r1, r3
load r3, r2(1) // r2: int * int
add rl, r1, r3
load r0, rO(1) // load the tail into rO
jmp loop

finish: [rl: int]
halt

Figure 25: Tallying up numbers appearing in a list

33

7 Implementation
7.1 Type-checker for DTAL

We have prototyped a type-checker and an interpreter for DTAL and verified many exam-
ples. The implementation and examples are available on-line (Xi 1999b). There is certain
amount of non-determinism in the the typing rules for DTAL. In the implementation, we im-
pose some restriction to eliminate the non-determinism. For instance, when both of the rules
(coerce-exi-ivar-1) and (coerce-exi-ivar-r) are applicable, we choose the former over the
latter. For the rule (type-open-reg), we currently apply it whenever it is applicable. An
alternative is provide an auxiliary instruction open r to indicate the need of an application of
this rule to register r.

Notice that we have not explained how to obtain the type index expressions Z in the premise
of the rule (type-jmp). In practice, if we impose certain syntactic restriction on forming state
types, these type index expressions can always be inferred through unification.? This subject is
studied in Chapter 4 (Xi 1998). This strategy is adopted in the current implementation. From
the point of view of type-checking, it also seems reasonable to require that a DTAL program
be annotated with these type index expressions. For instance, we can use the following form of
instruction

jmp v[zy, ..., Tp]
to indicate that ¥ = z1,...,x, are the type index expressions needed for typing jmp v as
is presented in the rule (type-jmp). The conditional branching instructions can be given a
similar form.

We currently only accept linear constraints on integers and solve them with a method based
on Fourier-Motzkin variable elimination (Dantzig and Eaves 1973). Though the linear integer
programming problem is NP-complete in general, the typical constraints generated from type-
checking DTAL code are simple and can be effectively solved. Relevant experience can be found
in (Xi and Pfenning 1998). We have verified many DTAL examples (including all the ones in
this paper) with the type-checker, some of which are available on-line (Xi 1999b).

7.2 Compilation into DTAL

We briefly mention a compiler which produces DTAL code from source programs in Xanadu,
a language with C-like syntax in which only top level functions are supported and no pointers
are allowed. Xanadu shares many common features with languages like Safe C (Necula and Lee
1998) and Popcorn (Morrisett et al. 1999). The most significant feature of Xanadu is its type
system, which supports a restricted form of dependent types. Please see (Xi 1999a) for details.
The compilation is essentially like compiling C into a typical untyped assembly language except
that we need to construct state types for labels this time. We have compiled all the examples
in this paper.4

We currently do not perform register allocation when compiling Xanadu into DTAL and
execute the generated DTAL code with an interpreter. The typability of DTAL code is unaffected
by register allocation and spill. The argument is the same as the one for arguing that the
certifiability of proof-carrying code is unaffected by register allocation and spill (Necula 1998).

3The restriction is that for every state type state(AA.\p.X), every variable declared in ¢ should be used at
least once as a single type index expression to index a type in 3.

“We currently do not have a pretty printer for the generated DTAL code, and therefore we took the liberty to
prettify the DTAL code presented in this paper while leaving the raw versions at (Xi 1999b).

34

7.2.1 Synthesis

One approach to generating DTAL code is to synthesize state types for labels. For the function
copy in Figure 1, we map variables src, dst, length and i to rl, r2, r3 and r4 respectively,
and readily generate the code in Figure 2 excluding the state types for labels copy, loop and
finish (this is ezactly like a compilation from C into a typical assembly language).

We briefly explain how to form these state types. The state type for copy is a directly
translation from the type of the function copy. We synthesize the state type for loop with
some informal reasoning. When the execution first reaches the label loop, we know that
for some natural numbers m and n satisfying m < n the types of rl, r2, r3 and r4 are
(int)array (m), (int)array(n), int(m) and int(0), respectively. It can be readily verified by ana-
lyzing the loop body that the values in r1, r2 and r3 stay the same and the integer value in r4
can only increase. Since the initial value in r4 is 0, the value in r4 is always a natural number
during the execution of the loop. This yields the state type for loop. The state type for finish
is trivial.

In general, we identify those integer variables in a loop whose values can only increase or
decrease during the execution of the loop and name them monotonic variables. Suppose that the
initial value of a monotonic variable z is ¢y and x is mapped to register . We then assume in the
state type attached to the loop that r is of type int(:) for some integer i > iy or i < i¢ according
whether z is increasing or decreasing. This is a simple and widely applicable heuristic. Actually,
this is the heuristic used in the Touchstone compiler for array bound check elimination. However,
it is also clear that this heuristic is too limited to handle other more sophisticated cases such as
binary search where there is a non-monotonic array index (this heuristic is even ineffective for
the trivial program in Figure 26).

7.2.2 Annotation

In Xanadu, we allow the programmer to provide loop invariants in the form of dependent types
so that significantly more array bound checks can be handled in practice. In Figure 26, the top
part is a program in Xanadu, which initializes an array with zeros, and the rest is the DTAL
code compiled from the program. Various larger examples, which are too unwieldy to present,
can be found at (Xi 1999b). The function header:

{n:nat} unit initialize(int vec[n])

indicates that for every natural number n, initialize takes an integer array of size n and
returns no value. The type following the keyword invariant essentially states that i and 1 are
of types int(a) and int(b), respectively, where a and b are natural numbers satisfying a + b = n.
Note that n is the size of array vec. Xanadu has a sound type system as proven in (Xi 1999a),
but we do not have to rely on this fact in this paper. We merely assume that the type annotations
in Xanadu are hints to a compiler.

The Xanadu program can be compiled into the DTAL code excluding the state types for
labels in a standard manner. This part is exactly like compiling a corresponding C program.
We briefly mention the construction of the state types in Figure 26. Notice that the state type
attached to loop is essentially translated from the type annotation in the source program. We
simply modify the annotation to include the types of variables not mentioned and then replace
the variables with the registers to which these variables are mapped. If we compile a well-
type program in Xanadu, we expect that the generated DTAL code is guaranteed to type-check
(assuming the compiler is implemented correctly) but this is yet to be rigorously proven. In
the case where the source program in Xanadu may not be well-typed, we can always ignore

35

{n:nat} unit initialize(int vec[n]) {
var: int i, 1;;
i = 0; 1 = arraysize(vec);
invariant: [a:nat, b:nat | a + b = n] (i: int(a), 1: int(b))
while (1 > 0) { vec[il = 0; i =i+ 1; 1=1-1; }

}
init: (’r) {n:nat} [sp: int array(n) :: [sp: ’r] :: ’r]
pop rl
mov r2, O
arraysize 13, rl
loop: (’r) {n:nat, a:nat, b:nat | a + b = n}
[r1: int array(n), r2: int(a), r3: int(b), sp: [sp: ’rl
blte r3, finish
store ri(r2), O
add r2, r2, 1
sub r3, r3, 1
jmp loop

finish: (’r) [sp: [sp: ’r] :: ’r]

pop ri
jmp ri

Figure 26: Implementations of an initialization functions in Xanadu and DTAL

36

)r]

type annotations and compile with the synthesis approach if the generated DTAL code does not
type-check (though we have not experimented with this option).

8 Related Work

DTAL is designed on top of TAL with a dependent type system to overcome some limitations.
While inheriting most features from TAL, DTAL also alters some. For instance, a type in TAL
can be annotated with a flag to indicate the initialization status of a value with this type, but
we adopt a different strategy in DTAL to handle initialization. We simply use top to represent
the type of all uninitialized values. This strategy works because every tuple (array) is initialized
upon allocation. DTAL can be readily transformed into a TAL-like language if one erases all
syntax related to type index expressions. In this respect, DTAL generalizes TAL.

The notion of proof-carrying code introduced in (Necula 1997) can address the memory safety
issue in mobile code as follows. The essential idea is to generate a proof asserting the memory
safety property of code and then attach it to the code. The proof carried by the code can then
be verified before execution. This is an attractive approach but a challenging question remains,
that is, how to generate a proof to assert memory safety property of a (large and complex)
program. The Touchstone compiler (Necula and Lee 1998), which compiles programs written
in a type-safe subset of C into proof-carrying code (TPCC for Touchstone’s PCC), handles this
question through a general VC generator (Floyd 1967), generating verification conditions for
both type safety and memory safety. TPCC also performs some loop invariant synthesis for
eliminating array bound checks. TPCC seems a bit heavy-handed for handling type safety when
compared to TAL and it needs to be studied whether TPCC can readily handle higher-order
functions since TPCC uses essentially a first-order logic to capture invariants. For instance, it
may be desirable to express something like the following: this function call can only be made
if the called function takes an integer and returns a natural number. This property, which can
be readily expressed with dependent types, seems to require higher-order logic if expressed with
predicates.

DML is a functional programming language that enriches ML with a restricted form of
dependent types (Xi and Pfenning 1999), allowing the programmer to capture more program
invariants through types and thus detect more program errors at compile-time. In particular, the
programmer can refine datatypes with type index expressions in DML, capturing more invariants
in various data structures. For instance, one can form a datatype in DML that is precisely for
all red/black trees and program with such a type. The type system of DML is also studied for
array bound check elimination (Xi and Pfenning 1998).

DTAL stands as an alternative design choice to TPCC, extending TAL with a form of
dependent types that is largely adopted from DML. The design of DTAL is partly motivated by
an attempt to build a certifying compiler for DML. Unlike TPCC, there are no proofs attached
to DTAL code. The verifier for DTAL code is a dependent type-checker consisting of a constraint
generator and a constraint solver. In general, proof verification is easier than proof search, and
therefore the TPCC startup overhead should be less than that for DTAL code, though it seems
too difficult at this stage to perform a meaningful comparison.

We view DTAL as a type-theoretic approach to reasoning about memory safety at assembly
level. With a stronger type system than that of TAL, DTAL is expected to capture program
errors that can slip through the type system of TAL. This is supported by the fact that DML
can capture program errors in practice which eludes the type system of ML.

37

9 Conclusion

TAL is a typed assembly language with a type system at assembly level. The type system of
TAL contains some limitations that prevent certain important loop-based optimizations such
as array bound check elimination and tag check elimination. We have enriched TAL with a
restricted form of dependent types and the enrichment leads to a dependently typed assembly
language (DTAL) that overcomes these limitations. This includes establishing the soundness
of the type system of DTAL and implementing a type-checking algorithm. We have also con-
structed a prototype compiler which compiles Xanadu programs into DTAL, where Xanadu is
a programming language with C-like syntax that supports a dependent type system similar to
that of DTAL but significantly more involved.

In future work, we intend to continue the study on compiling Xanadu into DTAL, which
we expect to be mostly straightforward. A similar but more challenging task is to construct
a compiler from DML into DTAL. On a larger scale, we are interested in both using types to
capture more program properties in high-level languages and constructing certifying compilers
to translate these properties into low-level languages.

10 Acknowledgment

We gratefully acknowledge some discussion with Jim Hook on the subject of the paper and
thank Chad Brown for proofreading a draft of this paper and providing us with many valuable
comments.

References

Dantzig, G. and B. Eaves (1973). Fourier-Motzkin elimination and its dual. Journal of Com-
binatorial Theory (A) 1/, 288-297.

Floyd, R. W. (1967). Assigning meanings to programs. In J. T. Schwartz (Ed.), Mathematical
Aspects of Computer Science, Volume 19 of Proceedings of Symposia in Applied Mathe-
matics, Providence, Rhode Island, pp. 19-32. American Mathematical Society.

Harper, R. and C. Stone (1998). A type-theoretic interpretation of Standard ML. In
G. Plotkin, C. Stirling, and M. Tofte (Eds.), Robin Milner Festschrifft. MIT Press. (To
appear).

Milner, R., M. Tofte, R. W. Harper, and D. MacQueen (1997). The Definition of Standard
ML. Cambridge, Massachusetts: MIT Press.

Morrisett, G. et al. (1999). Talx86: A realistic typed assembly language. In Proceedings of
Workshop on Compiler Support for System Software.

Morrisett, G., K. Crary, N. Glew, and D. Walker (1998, March). Stack-based typed assembly
language. In Proceedings of Workshop on Types in Compilation.

Morrisett, G., D. Walker, K. Crary, and N. Glew (1998, January). From system F to typed
assembly language. In Proceedings of ACM Symposium on Principles of Programming
Languages, pp. 85-97.

Necula, G. (1997). Proof-carrying code. In Conference Record of 24th Annual ACM Sympo-
stum on Principles of Programming Languages, pp. 106-119. ACM press.

Necula, G. (1998, September). Compiling with Proofs. Ph. D. thesis, Carnegie Mellon Univer-
sity. Also available as technical report No. CMU-CS-98-154.

38

Necula, G. and P. Lee (1996). Proof-carrying code. Technical Report CMU-CS-96-165,
Carnegie Mellon University.

Necula, G. and P. Lee (1998, June). The design and implementation of a certifying compiler. In
ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation,
pp- 333-344. ACM press.

Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee (1996, June). A type-
directed optimizing compiler for ML. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 181-192.

Tolmach, A. and D. P. Oliva (1998, July). From ML to Ada(!?!): Strongly-typed language
interoperability via source translation. Journal of Functional Programming 8(4), 367-412.

Xi, H. (1998). Dependent Types in Practical Programming. Ph. D. thesis, Carnegie Mellon
University. pp. viii+189. Available as
http://www.cs.cmu.edu/ hwxi/DML/thesis.ps.

Xi, H. (1999a). Dependent Types in Imperative Programming. Current version at
http://www.cse.ogi.edu/ hongwei/academic/papers/Xanadu.ps.

Xi, H. (1999b). Implementations and Examples for Xanadu and DTAL. Available at
http://www.cse.ogi.edu/ hongwei/Xanadu-DTAL.

Xi, H. and F. Pfenning (1998, June). Eliminating array bound checking through dependent
types. In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, Montreal, pp. 249-257.

Xi, H. and F. Pfenning (1999, January). Dependent types in practical programming. In Pro-
ceedings of ACM SIGPLAN Symposium on Principles of Programming Languages, San
Antonio, pp. 214-227.

39

