
A Dependently Typed Assembly Language

Hongwei Xi

Department of Computer Science and Engineering

Oregon Graduate Institute of Science and Technology

hongwei�cse�ogi�edu

Robert Harper

Department of Computer Science

Carnegie Mellon University

rwh�cs�cmu�edu

Abstract

We present a dependently typed assembly language �DTAL� in which the type system
supports the use of a restricted form of dependent types� reaping some bene�ts of dependent
types at assembly level� DTAL overcomes several signi�cant limitations in recently proposed
low�level languages including Java bytecode language and a typed assembly language� which
prevent them from handling certain important compiler optimizations such as run�time array
bound check elimination� We also mention a compiler which can generate DTAL code from
compiling some high�level programs�

� Introduction

A certifying compiler is one that generates object code that can be readily checked for compliance
with a speci�ed safety policy that constrains its run�time behavior� By ensuring that compliance
is checkable� the code recipient need not be concerned with the origin of the code� only the �aug�
mented� code itself� Typical safety policies include type safety �which excludes� for examples�
programs that attempt to add an integer to a �oating point number� and memory safety �which
excludes stray memory accesses�� Examples of certifying compilers for this property include
various ones compiling Java into Java virtual machine language �JVML�� Touchstone compiling
Safe C into a form of proof�carrying code �which we call TPCC� �Necula and Lee 	

��� TIL
and its successor TILT compiling Standard ML �Milner� Tofte� Harper� and MacQueen 	

��
into a typed intermediate language �Tarditi� Morrisett� Cheng� Stone� Harper� and Lee 	

��
and ROML compiling a restricted set of ML into a portion of C that is type safe �Tolmach and
Oliva 	

���
Certifying compilers have a number of bene�ts� including facilitating safe exchange of code

in an untrusted environment and improving the robustness of a compiler �by thinking of each
transformation phase as a separate certifying compiler whose subsequent stages may check com�
pliance with some safety policy�� Speci�c approaches to certi�cation include proof�carrying code
�Necula 	

�� �adopted in Touchstone�� in which both type safety and memory safety are ex�
pressed by ��rst�order� logic assertions about program variables� is checked by a VC generator
and a theorem prover and code is certi�ed by an explicit representation of the proof� and type
systems �adopted in TIL�� in which type safety is expressed by type annotations and is checked

	

by a type checker and no additional certi�cation is required� The Touchstone approach draws
on established results for veri�cation of �rst�order imperative programs� but it is yet to be stud�
ied whether this approach can readily extend to higher�order languages� The TIL approach
draws on established methods for designing and implementing type systems� making it unclear
�a priori� that it can be extended to low�level languages or to account for memory safety�
A typed assembly language �TAL� is formed in �Morrisett� Walker� Crary� and Glew 	

���

where a form of type system is designed at assembly�level suitable for compiling functional
languages and a compilation from System F to TAL is given� TAL provides both type safety
and memory safety� but at the cost of making critical instructions such as array subscripting
atomic to ensure memory safety� For instance� each array subscripting instruction in TAL
involves checking whether a given array index is between the lower and upper bounds of the
array before fetching the data item�
The goal of this paper is to enrich TAL to allow for more �ne�grained control over memory

safety so as to support array bound check elimination� hoisting bound checks out of loops� etc�
We draw on the formalism of dependent types to extend TAL with such a concept� However� we
cannot rely directly on standard systems of dependent types for languages with computational
e�ects� For instance� it is entirely unclear what it means to say that A is an array of length x for
some mutable variable x� if we update x with a di�erent value� this changes the type of A but A
itself is unchanged� Drawing on our experience with a restricted form of dependent types in DML
�Xi and Pfenning 	

�� we introduce a clear separation between ordinary run�time expressions
and a distinguished family of index expressions� linked by singleton types of form int�x�� every
integer expression of type int�x� must have value equal to x� The index expressions are chosen
from an integer domain in this paper� Given an expression e �in DML�� checking whether e has
type int�x� �written as e � int�x�� involves non�trivial equational reasoning about the run�time
behavior of e� For instance� e � int��� means that e� when evaluated� must evaluates to �� Clearly�
� � int���� and perhaps� 	 � � � int���� but it is� in general� undecidable whether an arbitrary
�possibly e�ectful� e has type int�x�� This is where theorem proving � constraint satisfaction
comes into the picture� A crucial feature in DML� which is to be adopted in this paper� is the
use of existential dependent types� which makes it possible to avoid di�cult constraints and
type realistic programs�
We have formed a dependently typed assembly language �DTAL� that supports a limited

form of dependent type system capturing both type safety and memory safety� We have also
designed a language Xanadu with C�like syntax and prototyped a compiler that compiles Xanadu
into DTAL� This paper concentrates on DTAL� though we occasionally use programs in Xanadu
notation to facilitate the presentation of some notions in DTAL�
The Xanadu program in Figure 	 implements a copy function on arrays� Notice that the

simplicity of this example is solely for the sake of illustration purpose and should not be inter�
preted as the limitation of our approach� The function header in the program states that for all
natural numbers m and n satisfying m � n the function takes two integer arrays of sizes m and
n� respectively� and returns no value� Note �m�nat� n�nat � m �� n� is a universal quanti�er
as is explained in �Xi and Pfenning 	

�� and int src�m	 �int dst�n	� means that src �dst�
is an integer array of size m �n�� We use var� to start variable declaration� which ends with

�
Also the function arraysize returns the size of an array�
The DTAL code in Figure � basically corresponds to the Xanadu program� A double slash ��

starts a comment line� Note that r�� � � � � r
 are registers� The instruction arraysize r�� r� is
non�standard� which means that we store into r� the size of the array to which r� points� The
branch instruction bgte r
� finish jumps to the label finish if the integer in r
 is greater
than or equal to zero� Also load r
� r��r�� means that we store into r
 the content of the ith

�

�m�nat� n�nat � m �� n� void copy�int src�m	� int dst�n	� �

var� int i� length

length � arraysize�src�

for �i � �
 i � length
 i � i � �� �

dst�i	 � src�i	

�

return

�

Figure 	� A copy function in Xanadu

��� copy� �m�nat� n�nat � m �� n� �r�� int array�m�� r�� int array�n�	

��� arraysize r�� r� �� obtain the size of source array

��� mov r�� � �� initialize the loop count to �

��� loop� �m�nat� n�nat � m �� n� i�nat�

�r�� int array�m�� r�� int array�n�� r�� int�m�� r�� int�i�	

��� sub r
� r�� r� �� r
 �� r� � r�

�
� bgte r
� finish �� r� �� r�

��� load r
� r��r�� �� safe load

��� store r��r��� r
 �� safe store

��� add r�� r�� � �� increase the count by �

��� jmp loop �� loop again

��� finish� �	

��� halt �� it can also return to the caller as shown later

Figure �� A copy function implemented in DTAL

element in the array to which r� points� where i is the integer stored in r�� The store instruction
is interpreted similarly�
Every label in the code is associated with a dependent type� The dependent type associated

with the label loop basically means that there exist a natural number m and a natural number n
satisfying m � n and a natural number i such that r�� r�� r�� r� are of types int array�m��

int array�n�� int�m�� int�i�� respectively� that is� they are an integer array of size m� an
integer array of size n� an integer of value m and an integer of value i� This enables us to state� for
instance� that the type of r� depends on the value in r�� The type system of DTAL guarantees
that these properties are satis�ed when the code execution reaches the label loop�
The DTAL code is well�typed� which guarantees that the integer in r� is always a natural

number and its value is always less than the size of the array to which r� �r�� points when the
load �store� instruction is executed� In other words� it can be statically veri�ed that there is no
need for run�time array bound checking in this case� Although this is a very simple example�
it is nonetheless impossible to infer that the store instruction is safe without the dependent
type associated with the label loop� In DTAL� array access is separated from array bound
checks and the type system of DTAL guarantees that the execution of well�typed DTAL can
never perform out�of�bounds array access� It is this separation that makes array bound check

�

elimination possible� In the case where it is impossible to prove in the type system of DTAL
whether an array access may be out�of�bounds� run�time array bound checks can be inserted to
ensure safety�
The main contribution of the paper is a formulation of a dependent type system for an

�imperative� assembly�level language that �a� is non�trivial for reasons outlined previously� �b�
generalizes TAL to allow for capturing signi�cant loop�based optimizations� �c� yields an appli�
cation of dependent types to managing low�level representation of sum types� and �d� provides
an approach to certi�cation based on type�checking� One trade�o� is that we presume that the
constraint solver is part of trusted computing base in order for the recipient to verify the code it
receives� Future work might include some means of formally representing proofs of constraints
so that the constraint solver can be moved out of the trusted computing base�
We will also brie�y mention certain aspects on a compilation from Xanadu into DTAL� which

allows us to construct a toy compiler for generating sample DTAL code� The details on Xanadu
can be found in �Xi 	

a� while the compilation from Xanadu or other higher�level languages
into DTAL is to be reported in future work�
We organize the paper as follows� The syntax of DTAL is given in Section �� We then form

evaluation and typing rules so as to assign dynamic and static semantics to DTAL� respectively�
We� however� postpone until Section � the treatment of constraints� which are generated during
type�checking programs in DTAL� In Section �� we give a detailed example explaining how
type�checking is performed in DTAL� The soundness of the type system of DTAL is stated and
proven in Section � and an extension of DTAL to handle sum types is given in Section
� We
then in Section � mention a type�checker for DTAL and a compiler which compiles Xanadu� a
language resembling Safe C �Necula and Lee 	

�� and Popcorn �Morrisett et al� 	

� with
C�like syntax� into DTAL� The rest of the paper discusses some closely related work and future
directions�

� Dependently Typed Assembly Language

In this section we present a typed assembly language in which a restricted form of dependent
types is available� This closely relates to the typed assembly languages given in �Morrisett�
Walker� Crary� and Glew 	

�� Morrisett� Crary� Glew� and Walker 	

��� but there are also
many substantial di�erences which we will point out� We use the name DTAL for this depen�
dently typed assembly language�

��� Syntax

In this paper� we do not address the stack over�ow issue� We assume that there are a �xed
number nr of registers and a stack of in�nite depth� A type state � consists of a pair �R�S��
where R is a �nite mapping from the set f�� 	� � � � � nr � 	g into types and S is a stack type�
The intention is to capture some type information on the register �le and stack with R and S�
respectively� The syntax for DTAL is given in Figure ��
Intuitively speaking� dependent types are types which depend on the values of language

expressions� For instance� we may form a type �int�array�x� to mean that every heap pointer
of this type points to an integer array of size x� where x is the expression on which this type
depends� We use the name type index expression for such an expression� We restrict type index
expressions to an integer domain in this paper� The justi�cation for this choice is that we have
previously used this domain to eliminate array bound checks e�ectively �Xi and Pfenning 	

���

�

type variables �
type states � ��� �R�S�
state types � ��� state���������
reg�le types R ��� �r� � ��� � � � � rnr�� � �nr���
stack types variables 	
stack types S ��� �� j 	 j � �� S
types � ��� � j � j top j int�x� j � array �x� j

prod ���� � � � � �n� j �a �
��
type erasures � ��� � j top j int j � array j prod ���� � � � � �n�
type variable contexts � ��� �tv j �� 	 j �� �
registers r ��� r�� � � � � rnr��
instructions ins ��� aop rd� rs� v j bop r� v j arraysize rd� rs j

mov r� v j load rd� rs�v� j store rd�v�� vs j
newtuple�� � r j newarray�� � r
jmp v j pop r j push v j halt

constants c ��� hi j i j l
values v ��� c j r
instruction sequences I ��� jmp v j halt j ins� I
blocks B ��� ��������� I�
arithmetic ops aop ��� add j sub j mul j div
branch ops bop ��� beq j bne j blt j blte j bgt j bgte
labels l
label mappings � ��� fl� � ��� � � � � ln � �ng
programs P ��� l� � B�� � � � � ln � Bn

Figure �� Syntax for DTAL

We present the syntax for type index expressions in Figure �� where we use a to range over
type index variables and i for �xed integers� Note that the language for type index expressions
is typed� We use sorts for the types in this language in order to avoid potential confusion� We
use � for the empty index context and omit the standard sorting rules for this language� We also
use certain transparent abbreviations� such as � � x � y which stands for � � x � x � y� The
subset sort fa �
 j Pg stands for the sort for those elements of sort
 satisfying the proposition
P � For example� we use nat as an abbreviation for fa � int j a � �g�
We postpone the treatment of constraint satisfaction in this type index language until Sec�

tion � for simplicity of exposition� However� we informally explain the need for constraints
through the DTAL code in Figure �� Notice that register r� is assumed to be of type int�i��

index expressions x� y ��� a j i j x� y j x� y j x � y j x� y
index propositions P ��� x � y j x � y j x � y j x � y j x
 y j 	P j P� � P� j P�
 P�

index sorts
 ��� int j fa �
 j Pg
index contexts � ��� � j �� a �
 j �� P

Figure �� Syntax for type index expressions

�

P � �copy � B�� loop � B�� finish � B��
��P � � fcopy � ��� loop � ��� finish � ��g
J�P � � copy� I�� loop� I�� finish� halt
B� � ��	����m � nat� n � nat�m � n����R�� 	�� I��
B� � ��	����m � nat� n � nat�m � n� i � nat����R�� 	�� I��
B� � �	���Rempty � 	�� halt�
�� � state���	����m � nat� n � nat�m � n���R�� 	��
�� � state���	����m � nat� n � nat�m � n� i � nat���R�� 	��
�� � state���	��������Rempty � 	��

Figure �� Some explanation on the program in Figure �

for some natural number i� when the execution reaches the label loop� The type of r� changes
into int�i��	� after the execution of the instruction add r�� r�� �� Then the execution jumps
back to the label loop� This jump requires it to be veri�ed �among many other requirements�
that r� is of type int�i�� for some natural number i�� Therefore� we need to prove that i� �	 is
a natural number under the condition that i� is a natural number� This is a constraint� though
it is trivial in this case� In general� type�checking in DTAL involves solving a great number of
constraints of this form�
We use prod ���� � � � � �n� for the product of types ��� � � � � �n� which is usually written as �� �

� � � � �n� This notation allows us to clearly distinguish � from prod ���� Also we use unit for the
empty product prod ��� Nonetheless� we may use the notation �� � � � � � �n if it risks no confusion�
We use top for the type of uninitialized registers and assume that a register is initialized if it is
not of type top��

A block B � �������� I� roughly means that B is polymorphic on � and �� In order to
execute the block on an abstract machine� we need to �nd substitutions and � for � and
�� respectively� such that the current machine state entails the state �� ���� and then execute
I� ����� The entailment of a state � basically means that the type assignment to registers and
stack in � correctly re�ects the types of registers and stack in the current abstract machine� For
instance� if � indicates that an integer is on top of the stack� then an integer must be stored on
top of the stack in the abstract machine�
A state type ����������� when associated with a label� means that there are substitutions

 and � for � and �� respectively� such that the current abstract machine state entails �� ����
whenever the execution reaches the label� Note that state is a type constructor for constructing
state types�
We use J for a general instruction sequence in the following presentation� which consists

of a sequence of instructions or labels� Given a block B � ��������� I�� we write ��B� for
state��������� and I�B� for I� Also we de�ne functions � and J on program P � l� � B�� � � � � ln �
Bn as follows�

��P � � fl� � ��B��� � � � � ln � ��Bn�g
J�P � � l�� I�B��� � � � � ln� I�Bn�

We refer ��P � as the label mapping of P � in which we require that all labels be distinct� For a
valid program P � all labels in J�P � must be declared in ��P �� In all the examples of DTAL code
that we present in this paper� we attach the state type � of a label l to the label explicitly in the

�We could not use the type unit for this purpose since we always represent a value of type unit as a null pointer
so that we can implement data structures such as linked list�

program� and the label mapping of the program can be immediately extracted from the code if
necessary� We explain these de�nitions in Figure �� where the program P is given in Figure ��
I� and I� are the sequences of instructions between the labels copy and loop and those between
labels loop and finish� respectively� The convention is that we may omit quantifying over stack
type variables in the concrete syntax� R� is a mapping which maps 	 and � to �int�array �m� and
�int�array �n�� respectively� and R��i� � top for i �� 	� �� R� maps 	� �� � and � to �int�array �m��
�int�array �n�� int�m� and int�i�� respectively� and R��i� � top for i �� 	� �� �� �� Rempty�i� � top

for i in its domain� Note that we write int for �a � int�int�a�� that is� int is the sum of all
singleton types int�a�� where a ranges over integers�
The following erasure function k�k transforms types into type erasures� that is� non�dependent

types�
ktopk � top k�k � � kint�x�k � int

k�k � unit k� array�x�k � k�k array
kprod ���� � � � � �n�k � prod �k��k� � � � � k�nk�

k�a �
��k � k�k

It can be readily veri�ed after the presentation of DTAL that DTAL becomes a TAL�like language
if one erases all syntax related to type index expressions� In this TAL�like language� the erasure
of a program is well�typed if it is well�typed in DTAL� In this respect� DTAL generalizes TAL�

��� Dynamic Semantics

We use an abstract machine for assigning operational semantics to DTAL� which is a standard
approach� A machine state M is a triple �H�R�S�� where H and R are �nite mappings which
stand for heap and register �le� respectively� and S is a list representing stack�
The domain dom�H� ofH is a set of heap addresses� the domain dom�R� ofR is f�� � � � � nr�

	g� We do not specify how a heap address is represented� but the reader can simply assume
it to be a natural number� Given h � dom�H�� H�h� is a tuple �hc�� � � � � hcn��� such that for
i � �� � � � � n� 	� every hci is either a constant or a heap address�
Given i � dom�R�� R�i� is either a heap address or a constant� Also S is always a list of

form hc� �� � � � �� hcn�� �� �� for some heap addresses or constants hc�� � � � � hcn��� where we use ��
for the list constructor and �� for the empty list� We write sp for the stack pointer which always
points to the top of the stack� Given S � hc� �� � � � �� hcn�� �� ��� we write sp�i� for hci� where
i � �� � � � � n� 	�
Given a program P � � � ��P � associates every label in J � J�P � with a state type �� We

use length�J� for the length of the sequence J � counting both instructions and labels� We use
J�i� for the ith item in J � which is either an instruction or a label� Also we write J���l� for i if l
is J�i�� This is well�de�ned since all labels in a program are distinct� We de�ne a P �snapshot Q
as either HALT or a pair �ic�M� such that � � ic � length�J�� The relation �ic�M�
P �ic

��M��
means that the current machine state M transforms into M� after executing the instruction
J�ic� and the instruction counter is set to ic�� The evaluation rules for DTAL are presented
in Figure
� We do not consider garbage collection in this abstract machine� and therefore the
heap can only be a�ected by two memory allocation instructions newtuple and newarray�
GivenM � �H�R�S�� we de�ne the following�

M�v� �

�����
����
hi if v is hi�
i if v is integer i�
l if v is label l�
R�i� if v is the ith register ri�

�

k�k � prod ���� � � � � �n� J�ic� � newtuple�� � r
h �� dom�H� H� � H�h �
 �hc�� � � � � hcn��

�ic� �H�R� hc� �� � � � �� hcn �� S��
P �ic� 	� �H
��R�r � h��S��

�eval�newtuple�

k�k � ���array J�ic� � newarray�� � r n � � h �� dom�H�

�ic� �H�R� n �� hc �� S��
P �ic� 	� �H�h �
 �hc� � � � � hc��� R�r � h��S��
�eval�newarray�

J�ic� � arraysize rd� rs H�M�rs�� � �hc�� � � � � hcn���

�ic� �H�R�S��
P �ic� 	� �H� R�r � n��S��
�eval�arraysize�

J�ic� � add rd� rs� v M�rs� � i M�v� � j

�ic�M�
P �ic� 	�M�rd � i� j��
�eval�add�

J�ic� � sub rd� rs� v M�rs� � i M�v� � j

�ic�M�
P �ic� 	�M�rd � i� j��
�eval�sub�

J�ic� � mul rd� rs� v M�rs� � i M�v� � j

�ic�M�
P �ic� 	�M�rd � i � j��
�eval�mul�

J�ic� � div rd� rs� v M�rs� � i M�v� � j j �� �

�ic�M�
P �ic� 	�M�rd � i� j��
�eval�div�

J�ic� � beq r� v M�r� � � M�v� � l

�ic�M�
P �J
���l� � 	�M�

�eval�beq�true

J�ic� � beq r� v M�r� �� �

�ic�M�
P �ic � 	�M�
�eval�beq�false�

J�ic� � bne r� v M�r� �� � M�v� � l

�ic�M�
P �J
���l� � 	�M�

�eval�bne�true�

J�ic� � bne r� v M�r� � �

�ic�M�
P �ic � 	�M�
�eval�bne�false�

J�ic� � jmp v M�v� � l

�ic�M�
P �J
���l� � 	�M�

�eval�jmp�

J�ic� � mov r� v M�v� � hc

�ic�M�
 �ic� 	�M�r � hc��
�eval�mov�

J�ic� � load rd� rs�v� H�M�rs�� � �hc�� � � � � hcn��� M�v� � i � � i � n

�ic�M�
 �ic � 	�M�rd � hci��
�eval�load�

J�ic� � store rd�v�� rs M�rd� � h M � �H�R�S�
H�h� � �hc�� � � � � hcn��� M�v� � i � � i � n M�rs� � hc

�ic�M�
 �ic� 	� �H�h �
 �hc� � � � � hci��� hc� hci��� � � � � hcn�����R�S��
�eval�store�

J�ic� � pop r

�ic� �H�R� hc �� S��
 �ic� 	� �H�R�r � hc��S��
�eval�pop�

J�ic� � push v M�v� � hc

�ic� �H�R�S��
 �ic� 	� �H�R� hc �� S��
�eval�push�

J�ic� � halt

�ic�M�
 HALT
�eval�halt�

Figure
� Evaluation rules

�

Given a �nite mapping f and an element x in the domain of f � we use f�x� for the value to
which f maps x� and f �x �
 v� for the mapping such that

f �x �
 v��y� �

�
f�y� if y is not x�
v if y is x�

Clearly� f �x �
 v� is also meaningful when x is not already in the domain of f � In this case� we
simply extend the domain of f with x�
We use the notation R�r � hc� to mean that we update the content of register r with hc�

that is� R�r � hc� is R�i �
 hc�� where i is the numbering of register r� Also we useM�r � hc�
for �H�R�r � hc��S� givenM � �H�R�S��
We present the evaluation rules for most instructions and the rest can be readily constructed

from the closely related ones� Notice that the rules �eval�load� and �eval�store� imply that an
out�of�bounds array access stalls the abstract machine� These rules also indicate that the length
of the tuple H�h� can always be determined for every h � dom�H� at run�time� We will soon
design a type system for DTAL and prove that � � i � n always holds when either �eval�load�
or �eval�store� is applied during the evaluation of a well�typed DTAL program� Therefore�
there is no need for determining the length of the tuple H�h� for every h � dom�H� if we only
evaluate well�typed DTAL programs� In the case where it cannot be determined in the type
system of DTAL whether a subscript is within the bounds of an array� the array subscripting
instruction is ill�typed and thus rejected� This sounds like a severe restriction� but it is not
because we can always insert run�time array bound checks to make the instruction typable in
DTAL �we give such an example at the end of Section ����� In order to perform array bound
checking e�ciently� we can always group each array with its size after allocation�
It should be stressed that there is no interaction between the dynamic semantics of DTAL and

type index expressions� Therefore� erasing type index expressions in a program can not alter the
execution behavior of the program� We have omitted the evaluation rules for blt� blte� bgt� bgte�
which can be readily formulated by following the rules for beq and bne�
Notice that the instruction jmp v jumps to the instruction immediately following l� if v

evaluates to l under the current machine state� Also notice that the rules �eval�newtuple�
and �eval�newarray� are non�standard� If k�k is of form prod ���� � � � � �n�� then newtuple�� � r
allocates n new word memory on heap and stores a pointer in r which points to the allocated
memory� Then it moves the content in sp�i� into r�i� for i � �� � � � � n � 	 and decrease sp by
n� For example� the follow code allocates a pair on heap and stores the pointer into r�� which
ends with type �a � nat�prod �int�a�� int�a��� that is� a pair of integers of the same value� Note
that we use �a�nat� as the concrete syntax for �a � nat in DTAL code�

mov r�� �

push r�

push r�

newtuple��a�int� �int�a� � int�a��	 r�

Similarly� if k�k is of form ���array � then newarray�� � r allocates n new word memory on heap�
where n is the value of the integer stored in sp���� and stores a pointer in r which points to the
allocated memory� Then it copies the content in sp�	� into r���� � � � � r�n � 	�� and decrease sp
by �� For example� the following code allocates an array of type ��a � nat�int�a��array �	�����
that is� an array of size 	��� whose elements are natural numbers�

mov r�� ����

push r�

mov r�� �

push r�

newarray��a�nat�int�a�	 r�

We emphasize that h must be new in both rules �eval�newtuple� and �eval�newarray�� that
is� h is not already in the domain of H� The typing consequences of these malloc instructions are
explained in the next section� where the typing rules �type�newtuple� and �type�newarray�
are introduced�

De�nition ��� Given a program P � Q is de�ned as a P �snapshot if ���M��

�

P Q holds for

some machine state M�� where
�

P is the re�exive and transitive closure of
P � We say

that a program P is well�structured if every P �snapshot which is not HALT evaluates to another

P �snapshot�

In other words� the evaluation of a well�structured program is never stuck� Notice that a well�
structured program is both type�safe and memory�safe according to the evaluation rules for
DTAL� Certainly it is undecidable to precisely determine whether a program is well�structured�
but this is also less relevant� We intend to �nd a conservative approach to examining whether
a program is well�structured� Such an approach must be sound� that is� it can only accept
well�structured programs� For instance� a straightforward approach is to adopt a method based
on TAL for type�safety and then insert run�time checks for all array operations� Unfortunately�
this approach seems too conservative� making it impossible to eliminate array bound checks�
Notice that this is essentially the case in all JVML veri�ers�
In the next section� we present a less conservative approach based on a type system which

supports a restricted form of dependent types� This approach can accept highly optimized
programs such as the binary search example in Figure 	�� where all array bound checks are
removed�

��� Static Semantics

We present the typing rules for DTAL in this section� Given a type state � � �R�S�� we use an
array representation for R and a list representation for S� where the list for S always ends with
a stack variable 	�
In the presence of dependent types� it is no longer trivial whether a type � is well�formed�

For instance� we must disallow the occurrence of a type like int array��	� in the typing rules
for DTAL since it can readily lead to inconsistency of the type system� In other words� we must
prove that x is a natural number when forming the type int array�x��
We present type formation rules in Figure �� where we write ��� � � � � to mean that � is a

well�formed type under context ���� Similarly� we write ��� � ��well�formed� to mean that �
is well�formed under context ���� The well�formedness of types and type states can be derived
through the application of these rules� From now on� we assume that all types and type states
are well�formed in the following presentation�
We use a judgment of form ����� �� v � � to mean that value v is assigned type � under

the context ����� and the label mapping �� The label mapping � is always �xed when we
type�check a program� and therefore we will omit it if this causes no confusion� The rules in
Figure � are for typing unit� integers� labels and registers�
We present the typing rules for DTAL in Figure
 and Figure 	�� A judgment of form

����� � I means that the instruction sequence I is well�typed under context ������ The

	�

� � x � int

��� � int�x� � �

��� � �� � � � � � ��� � �n � �

��� � prod ���� � � � � �n� � �

� � x � nat� ��� � � � �

��� � � array�x� � �

�� ������� � ��well�formed�

��� � state����������� � �

�� a �
�� � � � �

��� � �a �
�� � �

��� � 	�well�formed�

� � x � int ��� � � � � ��� � S�well�formed�

��� � � �� S�well�formed�

��� � R�i� � � for � � i � nr

��� � R�well�formed�

��� � R�well�formed� ��� � S�well�formed�

��� � �R�S��well�formed�

Figure �� Type formation rules for DTAL

���� �R�S� �� hi � unit
�type�unit�

���� �R�S� �� i � int�i�
�type�int�

��l� � �

���� �R�S� �� l � �
�type�label�

� � i � nr
���� �R�S� �� ri � R�i�

�type�reg�

����� �� v � �� ��� j� �� � ��
����� �� v �� ��

�type�sub�

Figure �� Typing rules for integers� labels� registers and stack cells�

notation R�r � � � means that we update the type of register r to � in �� that is� if r is the ith
register� then we update the content of R�i� with � �
The rules �type�newtuple� and �type�newarray� are for typing tuples and arrays allo�

cated on heap� respectively� We have explained in the previous section how memory allocation
is performed�
We give some explanation on the rule �type�beq�� Suppose that we type�check beq� r� v� I

under ������ we �rst check that r has type int�x� for some x� we then type�check I under
�� x �� ����� �x �� � is added into � since the jump is not taken in this case�� we also verify
that v has a state type and �� x � ����� entails the state type �x � � is added to � since the
jump is taken in this case�� The typing rules for other conditional jumps are similar�
We sketch a case where a DTAL program that does not type�check can be modi�ed to type�

check with the insertion of a run�time array bound check� Assume that we want to type�check
load rd� rs�v�� I under ������ and we have veri�ed that rs and v have types � array �x� and
int�y�� respectively� and we can prove � j� � � x but not � j� y � x� we can then insert the
following �where subscript is the entry to some routine that handles errors� in front of the load
instruction� and this insertion guarantees that x � y
 � is already added to � when the load
instruction is type�checked� making sure that y � x is provable�

arraysize r� rs� sub r� r� v� blte r� subscript�

A dual case is to remove a redundant array bound check� which is similar and thus omitted�
We use � P �well�typed� to mean that a program P � �l� � B�� � � � � ln � Bn� is well�typed�

		

�� a �
��� �R�r � � �� S� � I

���� �R�r � �a �
�� �� S� � I
�type�open�reg�

���� �R�r � � �� S� � I ��� j� prod ���� � � � � �n��� � �

���� �R� �� �� � � � �� �n�� �� S� � newtuple�� � r� I
�type�newtuple�

� j� x � � ��� � �� � � ���� �R�r � � array�x��� S� � I

���� �R� int�x� �� �� �� S� � newarray�� � r� I
�type�newarray�

��� � rs � � array�x� ���� �R�rd � int�x��� S� � I

���� �R�S� � arraysize rd� rs� I
�type�arraysize�

���� �R�S� � v � � ���� �R�r � � �� S� � I

���� �R�S� � mov r� v� I
�type�mov�

���� �R�S� � rs � int�x� ���� �R�S� � v � int�y�
���� �R�rd � int�x� y��� S� � I

���� �R�S� � add rd� rs� v� I
�type�add�

���� �R�S� � rs � int�x� ���� �R�S� � v � int�y�
���� �R�rd � int�x� y��� S� � I

���� �R�S� � sub rd� rs� v� I
�type�sub�

���� �R�S� � rs � int�x� ���� �R�S� � v � int�y�
���� �R�rd � int�x � y��� S� � I

���� �R�S� � mul rd� rs� v� I
�type�mul�

���� �R�S� � rs � int�x� ���� �R�S� � v � int�y�
� j� y �� � ���� �R�rd � int�x�y��� S� � I

���� �R�S� � div rd� rs� v� I
�type�div�

Figure
� The typing rules for DTAL�I�

	�

���� �R�S� � rs � prod ���� � � � � �n� � j� � � i � n
���� �R�rd � �i�� S� � I

���� �R�S� � load rd� rs�i�� I
�type�load�tuple�

���� �R�S� � rs � � array�x� ���� �R�S� � v � int�y�
� j� � � y � x ���� �R�rd � � �� S� � I

���� �R�S� � load rd� rs�v�� I
�type�load�array�

����� � rd � � array�x� ����� � v � int�y� � j� � � y � x
����� � rs �� � ����� � I

����� � store rd�v�� rs� I
�type�store�array�

���� �R�r � � �� S� � I

���� �R� � �� S� � pop r� I
�type�pop�

���� �R�S� � v � � ���� �R� � �� S� � I

���� �R�S� � push v� I
�type�push�

����� � v � state������������
� � � � �� ��� � � �� ����� j�c �

�� ����

����� � jmp v� I
�type�jmp�

����� � r � int�x� �� x �� ����� � I ����� � v � state������������
�� x � � � � � �� �� x � ��� � � �� �� x � ����� j�c �

�� ����

����� � beq r� v� I
�type�beq�

����� � r � int�x� �� x � ����� � I ����� � v � state������������
�� x �� � � � � �� �� x �� ��� � � �� �� x �� ����� j�c �

�� ����

����� � bne r� v� I
�type�bne�

����� � halt
�type�halt�

Figure 	�� The typing rules for DTAL�II�

	�

Judgment form Judgement meaning
� j� P The proposition P holds under the context � in the integer domain�

��� j� �� � �� The types �� and �� are equivalent under the context ��� modulo con�
straint satisfaction�

��� j� �� � �� The type �� coerces into the type �� under the context ��� modulo
constraint satisfaction�

����� j�e R ri is of type R�i� under the context ����� for every i � dom�R� modulo
constraint satisfaction�

����� j�e S Given � � �R� �� �� � � � �� �n �� ��� S must be of form �� �� �� � � � �� �
�

n �� ��
and ����� j� �i � � �i is derivable for every 	 � i � n�

����� j�e �R�S� This means both ����� j�e R and ����� j�e S are derivable�
����� j�c R The type of ri under the context ����� coerces into R�i� for every

i � dom�R� modulo constraint satisfaction�
����� j�c S Given � � �R� �� �� � � � �� �n �� ��� S must be of form �� �� �� � � � �� �

�

n �� ��
and ����� j� �i � � �i is derivable for every 	 � i � n�

����� j�c �R�S� This means both ����� j�c R and ����� j�c S are derivable�
����� �� v � � The value v is of type � under the context ����� and the label map ��

����� �� v �� � The value v is of some type �� under the context ����� and �� coerces
into � �

����� � I The instruction sequence I is typable�

Figure 		� A summary for various forms of judgments

which can be derived as follows� where � is the label mapping of P �

�� B��well�typed� � � � �� Bn�well�typed�

� P �well�typed�
�type�program�

Given a block B � ��������� I�� the rule for deriving �� B�well�typed� is given as follows�

����� �� I

�� B�well�typed�
�type�block�

We have so far introduced various forms of judgments� some of which have yet to be de�ned
later� In Figure 		� we summarize the meaning of these judgments informally�

� Type Equality and Coercion

As we have mentioned before� a novelty in DML is the separation between language expressions
and type index objects� This notion of separation seems indispensable when we intend to form a
dependent type system for an imperative language such as DTAL� For instance� it is completely
unclear at this moment how a register can be used as a type index object since it is mutable�
The separation allows us to simply avoid such a problematic issue� There is another advantage�
that is� the separation enables us to choose a relatively simple domain for type index objects
so that constraints �on type index objects� generated during type�checking can be e�ciently
solved� This is crucial to the design of a practical type�checking algorithm� In this section� we

	�

present rules for type equality and coercion� which exhibit clearly the involvement of constraints
in type�checking�
In the presence of dependent types� it is no longer trivial to check whether two types are

the same� For instance� we have to prove that the constraint 	 � 	 � � holds in order to claim
int�	�	� is equivalent to int���� In other words� type equality is modulo constraint satisfaction�
Similarly� type coercion also involves constraint satisfaction�
We present the syntax for constraints as follows�

index constraints ! ��� � j P j P � ! j �a �
�!
satis�ability relation � j� P

The satis�ability relation � j� P means that the formula ���P is satis�able in the domain of
integers� where ���P is de�ned below�

���! � ! ��� a � int�! � ����a � int�!
��� fa �
 j Pg�! � ��� a �
��P � !� ��� P �! � ����P � !�

For instance� the satis�ability relation a � nat� b � int� a�	 � b j� b � � holds since the following
formula is true in the integer domain�

�a � int�a � � � �b � int�a� 	 � b � b � �

We write ��� j� �� � �� to mean that types �� and �� are equal under context ���� Similarly�
we write ��� j� �� � �� to mean that type �� coerces into type �� under context ���� The rules
for type equality and coercion are presented in Figure 	� and Figure 	�� respectively� There are
some obvious restrictions on some of these rules� For instance� we require that index variable a
in the premise of the rule �type�eq�exi�ivar� have no free occurrences in the conclusion of this
rule�
Notice that we cannot replace the rule �coerce�array� with the following one�

��� j� � � � � � j� x � y

��� j� � array�x� � � � array�y�
�coerce�array��

This rule can readily make the type system unsound as demonstrated in the following example�
Note that �r�� int��� array���	 stands for a state type state���	����� where � � �R� 	�
and R��� � int��� array and R�i� � unit for all other i � dom�R��

start� �r�� int��� array���	

mov r�� r�

jmp next

next� �r�� int��� array� r�� int array���	

store r����� �

���

If the above "seemingly natural# rule is allowed� we can coerce type int��� array ��� into type
int array���� Therefore� we can type the above instruction sequence� Notice that r� points to
a pair of value �	� �� on heap after the store instruction is executed� but the type of r� is still
int��� array���� This leads to the unsoundness of the system� In summary� array types are not
covariant in DTAL� The plain reason is that arrays are mutable data structure allocated on heap
and pointers to arrays may be shared�
Notice that product types in DTAL are covariant� The reason is that a tuple on heap is

not mutable in DTAL� If we intend to support tuples in which some components are mutable�

	�

� � �
��� j� � � �

�type�eq�tvar�

� j� x � y

��� j� int�x� � int�y�
�type�eq�int�

��� j� �� � �� � j� x � y

��� j� �� array�x� � �� array�y�
�type�eq�array�

��� j� �� � � �� � � � ��� j� �n � � �n
��� j� prod ���� � � � � �n� � prod �� ��� � � � � �

�

n�
�type�eq�prod�

�� a �
�� j� �� � ��
��� j� �a �
��� � �a �
���

�type�eq�exi�ivar�

���� � j� �� � ��

��� j� ����� � �����
�type�eq�exi�tvar�

�� �������� �� j�e �� �� �������� �� j�e ��

��� j� state������������ � state������������
�type�eq�state�

����� j�e R ����� j�e S

����� j�e �R�S�
�type�eq�reg�stack�

����� � ri � �i ��� j� �i � R�i�

����� j�e R
�type�eq�reg�

���� �R� ��� j�e ��
�type�eq�stack�empty�

���� �R� �� j�e �
�type�eq�stack�var�

��� j� � � � � ����� j�e S

���� �R� � �� S� j�e �
� �� S�

�type�eq�stack�

Figure 	�� Type equality rules for DTAL

	

��� � � � �

��� j� � � top
�coerce�top�

��� j� unit � unit
�coerce�unit�

� � �
��� j� � � �

�coerce�type�var�

� j� x � y

��� j� int�x� � int�y�
�coerce�int�

��� j� �� � �� � j� x � y

��� j� �� array�x� � �� array�y�
�coerce�array�

��� j� �� � � �� � � � ��� j� �n � � �n��

��� j� prod ���� � � � � �n��� � prod �� ��� � � � � �
�

n���
�coerce�prod�

�� a �
�� j� �� � ��

��� j� �a �
��� � ��
�coerce�exi�ivar�l�

� � x �
 ��� j� �� � ��fa �� xg

��� j� �� � �a �
���
�coerce�exi�ivar�r�

���� � j� �� � ��

��� j� ����� � ��
�coerce�exi�tvar�l�

���� � j� �� � ��f� �� �g

��� j� �� � �����
�coerce�exi�tvar�r�

�� �� � � � �� �� ������� � � �� �� �������� �� j�c ��� ����

��� j� state������������ � state������������
�coerce�state�

����� j�c R ����� j�c S

����� j�c �R�S�
�coerce�reg�stack�

����� � ri � �i ��� j� �i � R�i�

����� j�c R
�coerce�reg�

���� �R� ��� j�c ��
�coerce�stack�empty�

���� �R� �� j�c �
�coerce�stack�var�

��� j� � � � � ���� �R�S� j�c S
�

���� �R� � �� S� j�c �
� �� S�

�coerce�stack�

Figure 	�� Type coercion rules for DTAL

	�

we must modify the rule �coerce�prod�� For instance� if we have a type constructor prod � for
forming types of pair whose �rst component is mutable but the second is not� then we need the
following coercion rule�

��� j� �� � � �� ��� j� �� � � ��
��� j� prod ����� ��� � prod ���

�

�� �
�

��

The need for type coercion is immediate� Foremost� we need type coercion to type jumps
as demonstrated in the rules �type�jmp�� �type�beq� and �type�bne�� Also we need type
coercion to type the following code sequence since we must show that the type int��� � int���
coerces into the type �a � nat�int�a� � int�a��

start� �r�� int��� � int���	

jmp next

next� �r�� �n�nat� �int�n� � int�n��	

���

The most noticeable coercion rule is �coerce�state�� Informally speaking� a state type is
"stronger# if a state is "weaker#� The intuitive explanation is that a state type roughly represents
the notion of code continuation� We will elaborate on this point when we establish the soundness
of the type system of DTAL in Section ��
We de�ne substitutions on both index and type variables as follows�

index variable substitutions � ��� �� j ��a �
 i�
type variable substitutions ��� �� j �	 �
 S� j �� �
 � �

We omit the details on how substitution is performed� which is standard� Given a term � such
as a type or a state� we use �� � ������ for the result from applying ��� to �� We introduce
two forms of judgments � � � � �� and ��� � � �� and present as follows the rules for deriving
such judgments�

� � �� � �
�subst�iempty�

� � � � �� � � i �

� � ��a �
 i� � ��� a �

�subst�ivar�

� � � � �� � j� P ���

� � � � ��� P
�subst�prop�

� � �� � �tv
�subst�tempty�

��� � � �� ��� � S�well�formed�

��� � �	 �
 S� � ��� 	
�subst�svar�

��� � � �� ��� � � � �

� � �� �
 � � � ��� �
�subst�tvar�

The following lemmas establish some expected properties on both type equality and coercion�

Lemma 	�� We have the following�

�� If ��� � � � � is derivable� then ��� j� � � � is also derivable�

�� If ��� j� �� � �� is derivable� then ��� j� �� � �� is also derivable�

	� If both ��� j� �� � �� and ��� j� �� � �� are derivable� then ��� j� �� � �� is also

derivable�

Proof This follows an inspection of the rules in Figure 	��

	�

��� subscript� ��r��a��s� nat� i� int�

�sp� int�i� �� �a array�s� �� �sp� �a �� �r	 �� �r	

��� pop r� �� r� �� sp��	

��� blt r�� ERROR �� i is negative

��� pop r� �� r� �� sp��	

��� arraysize r�� r� �� obtain the array size

�
� sub r�� r�� r� �� r� �� r� � r�

��� blte r�� ERROR �� if i �� s

��� load r�� r��r�� �� r� �� r��r��� this is a safe load

��� pop r� �� r� �� sp��	

��� push r� �� push r� onto the stack

��� jmp r� �� done

Figure 	�� DTAL for array subscript function

Lemma 	�� We have the following�

�� If ��� j� �� � �� is derivable� then ��� j� �� � �� is also derivable�

�� If both ��� j� �� � �� and ��� j� �� � �� are derivable� then ��� j� �� � �� is also

derivable�

Proof This follows an inspection of the rules in Figure 	� and Figure 	��

Lemma 	�	 Assume that both � � � � �� and ��� � � �� are derivable�

�� If ����� � �� � �� is derivable� then ��� � ��� ���� � ��� ���� is also derivable�

�� If ����� � �� � �� is derivable� then ��� � ��� ���� � ��� ���� is also derivable�

Proof By structural induction on the derivations of ����� � �� � �� and ����� � �� � ���
respectively�

We have so far �nished the presentation of the type system of DTAL� which is rather involved�
We will present some concrete examples in the next section and provide some explanation on
type�checking before proceeding to establish the soundness of the type system�

� Examples

It is simply too overwhelming to formally explain how type�checking in DTAL is performed
through even a tiny example because of the involvedness of the type system� Instead� we
present in an informal manner how to type�check the DTAL code in Figure 	� so as to facilitate
comprehension�
This code sketches an implementation of array subscript function in which run�time array

bound checks are performed� We use

��r��a��s�nat�i�int��sp� int�i� �� �a array�s� �� �sp� �a �� �r	 �� �r	

for state���	� �����s � nat� i � int����� where

� � �R� int�i� �� ���array �s� �� � �� 	�

	

No� � � �
�	 i � int 	� � ���� int�i� �� ���array �s� �� � �� 	�
�� i � int 	� � ��r� � int�i��� ���array �s� �� � �� 	�
�� i � int� i � � 	� � ��r� � int�i��� ���array �s� �� � �� 	�
�� i � int� i � � 	� � ��r� � int�i�� r� � ���array �s��� � �� 	�
�� i � int� i � � 	� � ��r� � int�i�� r� � ���array �s�� r� � int�s��� � �� 	�
�
 i � int� i � � 	� � ��r� � int�i�� r� � ���array �s�� r� � int�i� s��� � �� 	�
�� i � int� i � �� i� s � � 	� � ��r� � int�i�� r� � ���array �s�� r� � int�i� s��� � �� 	�
�� i � int� i � �� i� s � � 	� � ��r� � �� r� � ���array �s�� r� � int�i� s��� � �� 	�
�
 i � int� i � �� i� s � � 	� � ��r� � �� r� � �� r� � int�i� s��� 	�
	� i � int� i � �� i� s � � 	� � ��r� � �� r� � �� r� � int�i� s��� � �� 	�

Figure 	�� Contexts �i��i� �i for i � 	� � � � � 	�

such that R�i� � unit for all i � dom�R�� and � is the state type state���� such that �� �
state�R�� �� 	��
Notice that numbers are inserted into the code so that we can readily identify each instruction

in the code� We use the label ERROR for the entry to some code reporting bound violations� Also
we use arraysize r�� r� for an instruction which stores in r� the size of the array to which r�
points� Intuitively speaking� when the code execution reaches the label subscript� sp points to
a stack whose top three cells store an integer� a pointer to some array and a label� respectively�
The type of the label states that the sp must be of type � �� 	 when the execution jumps to
the label� The type system of DTAL guarantees that the part of stack that is typed by 	 can
neither be read nor be written during the subsequent code execution� The simple reason is that
neither pop nor push� the only two instructions involving stack� can be applied when the type
of a stack is a stack type variable�
Let insi be the ith instruction and Ii be insi� � � � � ins��� halt for 	 � i � 	�� We argue that

there is a derivation D with the following conclusion�

i � int��� �R� int�i� �� ���array �s� �� � �� 	� � I�

Then we need to derive derivations Di with conclusions of form �i��i� �i � Ii for i � 	� � � � � 	��
We list these contexts �i��i� �i in Figure 	�� Note that ��� � �R�� �� 	� for some R� Therefore�

�������� ��� j�c � �� 	

is derivable� This implies that �������� ��� � I�� is derivable� It is straightforward to verify that
�i��i� �i � Ii are derivable for i � 	� � � � �
� Notice that we need to prove that �� j� � � i � s
when deriving ������ �� � I�� but this is trivial since i � � and i � s � � are assume in the
context ���
We now present a more sophisticated example� In Figure 	
� the Xanadu program imple�

ments a binary search function on an integer array� The type system of Xanadu guarantees that
this implementation is memory safe and it is unnecessary to perform array bounds checking at
run�time� The syntax following the keyword invariant is basically a state type stating that
there exist integers i and j satisfying � � i � n and � � j � 	 � n such that variables low and
high have types int�i� and int�j�� respectively� at this program point� This is treated as a loop
invariant for the while loop that follows� Some further explanation can be found in �Xi 	

a��
The DTAL code in Figure 	� �loosely� corresponds to the Xanadu implementation of the binary

��

�n�nat� int bsearch�key� int� vec� �int� array�n�� �

var�

int low� mid� high� x

low � �

high � arraysize�vec� � �

invariant�

�i�int� j�int � � �� i �� n� � �� j�� �� n	 �low� int�i�� high� int�j��

while �low �� high� �

mid � �low � high� � �

x � vec�mid	

if �key �� x� � return mid
 �

else if �key � x� � high � mid � �
 �

else � low � mid � �
 �

�

return ��

�

Figure 	
� An implementation of binary search in Xanadu

search� It can be veri�ed that the DTAL code is also memory safe� We give an intuitive but
informal explanation as follows�
When the code execution reaches the label loop� the integers i and j are stored in r� and

r� such that
� � i � n and � � j � 	 � n�

where n is the size of the array to which r� points� It can be readily inferred that the integer
in r� equals b�i� j���c and i � j holds when the load instruction is executed� Clearly� we have
the following

� � i � b�i� j���c � j � n� 	�

and therefore the load instruction is memory safe� This guarantees the memory safety of the
code since the load instruction is the only memory operation in the code�
Notice that the types attached to the labels in this example seem intractable to synthesize

in practice� This supports the view that� in order to generate memory safety proofs for large
programs� it is necessary to have a high level source language such as Xanadu in which the
programmer can supply type annotations� We are currently investigating how to compile these
annotations into a low level language such as DTAL�

� Soundness

We recall that a machine state M is a triple �H�R�S�� where H and R are �nite mappings
representing heap and register �le� respectively� and S is a list which stands stack� Given a heap
address h� H�h� is a tuple �hc�� � � � � hcn��� such that every hci is either a constant or a heap
address� We use a judgment of form H j�� hc � � to mean that the heap address or constant hc

�	

bsearch� �n� nat� �r�� int array�n�� r�� int�n�� r
� int	

�� r
 stores the key value we are trying to find

mov r�� � �� r� stores the lower bound

sub r�� r�� � �� r� stores the upper bound

jmp loop

loop� �n� nat� i� int� j� int �

� �� i �� n �� � �� j�� �� n� �� this is the loop invariant

�r�� int array�n�� r�� int�i�� r�� int�j�� r
� int	

sub r�� r�� r�

bgt r�� notfound �� if r� � r�

add r�� r�� r� �� r� �� �r� � r��

div r�� r�� � �� r� �� �r� � r����

load r�� r��r�� �� r� �� r��r��

sub r�� r
� r�

blt r�� less �� if r
 � r�

bgt r�� greater �� if r
 � r�

mov r��� r� �� r
 � r�� key found

jmp finish

less� �n� nat� i� int� j� int� k� nat �

� �� i �� n �� � �� j�� �� n �� i �� j �� k � �i�j� � � �

�r�� int array�n�� r�� int�i�� r�� int�j�� r�� int�k�� r
� int	

sub r�� r�� �

jmp loop

greater� �n� nat� i� int� j� int� k� nat �

� �� i �� n �� � �� j�� �� n �� i �� j �� k � �i�j� � � �

�r�� int array�n�� r�� int�i�� r�� int�j�� r�� int�k�� r
� int	

add r�� r�� �

jmp loop

notfound� �	

mov r��� ��

jmp finish

finish� �r��� int	 �� r�� contains the index of the key or ���not found�

halt �� the program halts

Figure 	�� DTAL code for binary search on an integer array

��

H j�� i � int�i�
�heap�int�

�� �tv � ��l� � �

H j�� l � �
�heap�label�

H j�� hc � unit
�heap�unit�

H j�� hc � �fa �� ig � � i �

H j�� hc � �a �
��
�heap�exists�

H�h� � �hc�� � � � � hcn��� H j�� hc� � �� � � � H j�� hcn�� � �n��
H j�� h � prod ���� � � � � �n���

�heap�prod�

H�h� � �hc�� � � � � hcn��� H j�� hc� � � � � � H j�� hcn�� � �

H j�� h � ���array �n�
�heap�array�

H j�� R�i� � R�i� for all � � i � nr

�H�R� j�� R
�heap�register�

�H� ��� j�� ��
�heap�stack�empty�

H j�� hc � � �H�S� j�� S

�H� hc �� S� j�� � �� S
�heap�stack�

�H�R� j�� R �H�S� j�� S

�H�R�S� j�� �R�S�
�heap�state�

Figure 	�� Rules for modeling states

is of type � under the heap H and the label map �� For M � �H�R�S� and � � �R�S�� the
judgmentM j� � means that the machine stateM entails or models the state ��
We use the judgmentM j� ����� to mean the context ����� is satis�ed under the machine

stateM� which can be derived with the following rule�

� � � � � �� �tv � � � M j� �� ����

M j� �����

Lemma
��
Substitution� If ����� � I� � � � � � and �� �tv � � � is derivable� then

�� �tv� �� ���� � I is also derivable�

Proof This follows from a careful inspection of type equality rules� type coercion rules and
typing types for DTAL�

Lemma
�� Let M � �H�R�S�� Assume H j� hc � �� is derivable� If �� �tv j� �� � �� is

derivable� then H j� hc � �� is also derivable�

Proof We proceed by a structural induction on the derivation D� of H j� hc � �� and the
derivation D of �� �tv j� �� � ��� If �� is a state type �� then D� is of the following form�

�� �tv � ��l� � �

H j�� l � �
�heap�label�

By Lemma ���� �� �tv j� ��l� � �� is derivable� Thus H j�� l � �� is derivable� We now assume
that �� is not a state type and present some interesting cases�

��

�� �tv j� �� � �� � j� x � y
D� �

�� �tv j� �� array �x� � �� array�y� Since H j� hc � �� array�x� is derivable� the deriva�

tion D� is of the following form� where n � x � y�

H�h� � �hc�� � � � � hcn��� H j�� hc� � �� � � � H j�� hcn�� � ��

H j�� hc � �� array�n�
�heap�array�

By Lemma ��� �	�� we can derive �� �tv j� �� � ��� By induction hypothesis� we can derive
H j�� hci � �� for � � i � n� This leads to the following� and we conclude the case�

H�h� � �hc�� � � � � hcn��� H j�� hc� � �� � � � H j�� hcn�� � ��

H j�� hc � �� array�n�
�heap�array�

a �
� �tv j� � � ��
D� �

�� �tv j� �a �
�� � �� Note that �� � �a �
�� � Thus� D� is of the following form�

H j�� hc � �fa �� ig � � i �

H j�� hc � �a �
��
�heap�exists�

By Lemma ��� �	�� we can derive �� �tv � �fa �� ig � ��� By induction hypothesis on �	��
H j� hc � �� is derivable�

�� �tv j� � � �fa �� ig � � i �

D� �

�� �tv j� �� � �a �
�� Note that �� � �a �
�� � Then H j� hc � �fa �� ig is

derivable by induction hypothesis on �	�� and this leads to the following�

H j�� hc � �fa �� ig � � i �

H j�� hc � �a �
��
�heap�exists�

The rest of the cases can be treated similarly�

Lemma
�	 Assume M j� ������ �� is derivable� If ������ �� j�c ��� ���� is derivable for

some � and such that both �� � � � �� and ����� � � �� are also derivable� then M j� �� �
��� �� is derivable�

Proof The lemma follows from a straightforward application of Lemma ��� to the derivation of
������ �� j�c ��� �����
Notice that the derivation ofM j� ������ �� must be of the following form�

� � �� � �� �� �tv � � � �� M j� ��� ������

M j� ������ ��

Let �R�S� � ������� ��� By Lemma ���� we can �nd �
� and � such that � � �� � ��� �� �tv �

� � ��

and �� �tv� �R�S� j� ���
������ are derivable� Let �R�� S�� � ���

�������
Note that �H�R� j� R is derivable since M j� � is derivable� In other words� we can

derive H j� R�i� � R�i� for � � i � nr� Also notice �� �tv j� R�i� � R��i� are derivable for
� � i � nr since �� �tv� �R�S� j�c �R

�� S�� is derivable� By Lemma ���� H j� R�i� � R��i� for

��

� � i � nr� Hence� �H�R� j� R� is derivable� Similarly� we can derive �H�S� j� S�� A derivation
ofM j� �R�� S�� is thus obtained as follows�

�H�R� j�� R� �H�S� j�� S�

�H�R�S� j�� �
�

�heap�state�

This yields a derivation ofM j� ������ ���

Assume that D is a derivation of � B�well�typed� for a block B � ��������� I�� where I is
a list of instructions ins�� � � � � insn��� We use I�i� for insi and I�i� for insi� � � � � insn��� that
is� the su�x of I beginning at I�i�� Then there are the greatest subderivations D�i� of D for
� � i � n with conclusions of form �i��i� �i � Ii� Notice that for a given i� there may exists
several subderivations of D with a conclusion where the righthand side of � is Ii because the
application of �type�open�reg� does not alter the righthand side of �� This is the reason why
we need the word greatest in the above de�nition�
Assume that D is a derivation of � P �well�typed� for a program P � �l� � B�� � � � � ln � Bn��

where Bi � ��i��i���i� Ii�� and Di are the derivations of � Bi�well�typed� for i � 	� � � � � n� Let
� � ��P � and J � J�P �� Notice that for every � � ic � length�J�� if J�ic� is not a label� then
it is an instruction from some block Bk� that is� it is Ik�i� for some k and i� We write D�ic� for
Dk�i�� J�ic� for Ik�i� and J �ic� for Ik�i� in the following presentation�

Lemma
�� Let M be a machine state� If M j� �� a �
��� �R�r � � �� S� is derivable� then

M j� ���� �R�r � ���� �� S� is also derivable�

Proof This follow from a structural induction on the derivation of

M j� �� a �
��� �R�r � � �� S�

In order to establish the soundness of the type system of DTAL� we need to prove that
M� j�� ������ �� holds ifM j�� ����� and �ic�M�
 �ic��M�� are derivable� where D�ic� and
D�ic�� are ����� � J �ic� and ������ �� � J �ic��� respectively� In other words� we should justify
the typing rules in Figure
 and Figure 	� with respect to the e�ects on machine states resulted
from the execution of instructions� Unfortunately� this cannot succeed unless we impose some
regularity condition on the derivation of M j�� D�ic�� We present the main reason for this as
follows�
Suppose that there are two pointers stored in registers r� and r� which point to the same

address on heap in which integer � is stored� It is possible that r� and r� at this moment have type
�int�array �	� and �int����array �	�� respectively� If we update the address with integer 	 through
the pointer in r�� the update cannot be seen by r�� Therefore� the update leads to inconsistency
since the type of r� is still �int����array �	�� A more formal description can be given as follows�
Let � � �R�S� be a state� where we have R�	� � �int�array�	�� R��� � �int����array �	� and
S � ��� Also letM � �H�R�S� such that H�h� � � for some heap address and R�	� � R��� � h
and S is empty� It can be readily veri�ed that M j� � is derivable� According to the typing
rules� We are now allowed to execute the instruction store r����� � since the type of r� is
�int�array �	�� This changes the M into M� � �H��R�S� where H��h� � 	� Obviously� we
cannot derive H� j� r� � �int����array �	� �we actually have H

� j� r� � �int�	��array �	��� and
therefore�M� j� � does not hold�

��

De�nition
�

Regularity� Let H be a heap mapping� For every h � dom�H� such that H�h�
is a tuple �hc�� � � � � hcn���� we use h�i� to represent the heap address in which hci is stored� where
i ranges over �� � � � � n� 	�

Let T be a partial mapping from heap addresses to closed types and D be a derivation of

M j� �� If for all applications of the following rules in D�

H�h� � �hc�� � � � � hcn��� H j�� hc� � � � � � H j�� hcn�� � �

H j�� h � ���array �n�
�heap�array�

�� �tv j� � � T �h�i�� is derivable for every � � i � n� then D is T �regular� We say D is regular

if D is T �regular for some T � We call T a regularity mapping�

Let us now argue that the aboveM j� R cannot have a regular derivation� Note that we must
have a derivation of the following form in order for H j� r� � �int� array �	� to be derivable�
where i is some integer�

H�h� � �i� H j� i � int

H j� h � int array�	�

Similarly� we must have a derivation of the following form for derivingH j� r� � �int���� array�	��

H�h� � �i� H j� i � int���

H j� h � int��� array �	�

We cannot �nd a regularity mapping T such that both �� �tv j� int � T �h�	�� and �� �tv j� int��� �
T �h�	�� are derivable since this would imply a derivation of �� �tv j� int � int���� which is clearly
impossible�
We can now inspect the proof of Lemma ��� and observe that the derivation of M j� �� �

��� �� is also T �regular if the given derivation ofM j� ������ �� is T �regular�

Lemma
��
Main Lemma� Assume that P is a program� Let � � ��P � and J � J�P � and
D be a derivation of � P �well�typed�� Also let ic be an instruction count such that D�ic� is a

derivation of ����� � J �ic�� We have the following�

�� If M j� ����� is derivable for some machine state M� then �M� ic�
P �M�� ic�� is
derivable for some M� and ic�� or �M� ic�
 HALT is derivable�

�� If �ic�M�
P �ic
��M�� is derivable and D�ic�� is a derivation of ������ �� � J �ic��� then

M� j� ������ �� has a regular derivation if the derivation of M j� ����� is regular�

Proof The proof follows from an inspection of the typing rules in Figure
 and Figure 	� and the
evaluation rules in Figure
� By Lemma ���� we can assume that the last applied rule in D�ic��
is neither �type�open�reg� nor �type�open�stack� when we prove ���� Let M � �H�R�S��
and we present a few cases below�

� The derivation D�ic� is of the following form�

���� �R�S� � rs � int�x� ���� �R�S� � v � int�y�
� j� y �� � ���� �R�rd � int�x�y��� S� � I

���� �R�S� � div rd� rs� v� I
�type�div�

�

SinceM j� ����� is available� M�rs� � i andM�v� � j for some integers i and j� and
j �� � holds� With the evaluation rule �eval�div�� we have the following�

�ic� �H�R�S��
P �ic� 	� �H�R�rd � i�j��S��

Clearly� �H�R�rd � i�j��S� j� ���� �R�rd � x�y�� S� is derivable�

� The derivation D�ic� is of the following form� where the applied rule is �type�beq��

����� � r � int�x� �� x �� ����� � I ����� � v � state�����������
�� x � � � � � �� �� x � ��� � � �� �� x � ����� j�c �

�� ����

����� � beq r� v� I

SinceM j� ����� is available� R�rd� is some integer i� We now have two cases�

 i �� � holds� The evaluation rule �eval�beq�false� yields the following�

�ic� �H�R�S��
P �ic� 	� �H�R�S��

It is trivial that �H�R�S� j� �� x �� ����� is derivable�

 i � � holds� Note that we know M�v� is some label l since M j� v � � is derivable
for some state type �� This means J���l� is well�de�ned� Let ic� be J���l�� we derive
the following with the evaluation rule �eval�beq�true� when i � � holds�

�ic� �H�R�S��
P �ic
� � 	� �H�R�S��

Note thatM j� l � state������������� This implies that ��l� � � for some state type
� such that �� �tv � � � state������������� Assume � � state���������������� Then the
following is derivable for some � and such that both �� � � � ��� and ����� � � ���

are derivable�
������ �� j�c �

��� ����

By Lemma ���� we can readily derive �H�R�S� j� �������� ����

� The derivation D�ic� is of the following form�

����� � rd � � array�x� ����� � v � int�y�
� j� � � y � x ����� � rs �� � ����� � I

����� � store rd�v�� rs� I
�type�store�array�

Since M j� ����� is available� there exist n and i such that � � i � n� M�v� � i�
M�rd� � h for some heap address h and H�h� � �hc�� � � � � hcn��� for some hc�� � � � � hcn���
Therefore� we have the following by the evaluation rule �eval�store�� where hc �M�rs��

�ic� �H�R�S��
 �ic� 	� �H�h �
 �hc�� � � � � hci��� hc� hci��� � � � � hcn�����R�S��

The derivation of �H�h �
 �hc�� � � � � hci��� hc� hci��� � � � � hcn�����R�S� j� ����� is straight�
forward as it can be readily proven thatM j� hc � � �this is the place where we need the
regularity condition��

��

� The derivation D�ic� is of the following form�

���� �R�r � � �� S� � I

���� �R� � �� S� � pop r� I
�type�pop�

SinceM j� ����� is available for � � �R� � �� S�� S must be of form hc� �� � � � �� hcn�� �� ��
for some n � 	� With the evaluation rule �eval�pop�� we have the following�

�ic� �H�R� hc� �� � � � �� hcn�� �� ����
 �ic� 	� �H�R�r � hc��� hc� �� � � � �� hcn�� �� ����

The derivation of �H�R�r � hc��� hc� �� � � � �� hcn�� �� ��� j� ���� �R�r � � �� S� is straightfor�
ward�

� D�ic� is of the following form�

����� � halt
�type�halt�

Obviously� we can derive �ic� �H�R�S��
P HALT with the evaluation rules �eval�halt��

The rest of the cases can be handled in a similar manner�

Theorem
��
Progress� Let P � �l� � B� � � � � ln � Bn� be a program and � � ��P � and J �
J�P �� Assume � P �well�typed� is derivable and ��l�� � �	�Rempty� 	�� If
��M��

� �ic�M�
then either �ic�M�
 HALT � or �ic�M�
 �ic��M�� for some ic� and M�� In other words� the
execution of a well�typed program in DTAL either halts normally or runs forever�

Proof Let D be the derivation of P � Then D��� is a derivation of �� 	� �Rempty � 	� � J ����
Clearly� there is a regular derivation of M� j� �� 	� �Rempty � 	�� The theorem then follows from
Lemma ��
�

� Extension with Sum Types

The programmer can declare in Xanadu a polymorphic union type as in Figure 	
 for repre�
senting lists and then implement the length function� The concrete syntax ��a� list is for the
type of lists in which all elements are of type �a �we use �a for a type variable�� Note that
the union types in Xanadu correspond to datatypes in ML and the values of union types are
decomposed through pattern matching� For instance� we informally explain the meaning of the
switch statement in Figure 	
� if xs matches the pattern Nil� the value of x is returned� if xs
matches the pattern Cons��� xs� �� is a wildcard�� then we update xs with its tail and increase
x by 	� A union type is internally represented as a sum type� In the case above� a tag is used
to indicate whether the outmost constructor of a list is Nil or Cons�
We can compile this function essentially in the following manner� we initialize x with � and

start the following loop� given a list xs� we perform a tag check to see whether it is Nil� if it
is� we return x� otherwise� we know that the outmost constructor of xs must be Cons and it
is unnecessary to perform another tag check� we can simply update xs with its tail� increase
x by 	 and loop again� Unfortunately� it cannot be inferred in the type system of TAL that a
tag which does not indicate Nil must indicate Cons in this case� and this makes it di�cult in
TAL to handle some optimization in pattern compilation�� In general� the type system of TAL
contains some limitations on handling sum or union types�

�Though it is possible in TAL to use some macros for handling the case where there are only two constructors�
it seems di�cult to handle a general case involving more than two constructors�

��

��a� union list �

� Nil
 �a � ��a� list Cons �

��a� int length �xs� ��a� list� �

var� int x

x � �

while �true� �

switch�xs� �

case Nil� return x

case Cons��� xs�� x � x � �

�

�

�

Figure 	
� A length function on lists in Xanadu

��� j� �i � � � j� x � i

��� j� choose�x� ��� � � � � �n��� � �
�type�eq�choose�l�

��� j� � � �i � j� x � i

��� j� � � choose�x� ��� � � � � �n���
�type�eq�choose�r�

� j� x � y ��� j� �� � � �� � � � ��� j� �n�� � � �n��

��� j� choose�x� ��� � � � � �n��� � choose�y� � ��� � � � � �
�

n���
�type�eq�choose�

�� x � ��� j� �� � � � � � �� x � n� 	�� j� �n�� � �

��� j� choose�x� ��� � � � � �n��� � �
�coerce�choose�l�

��� j� � � �i � j� x � i

��� j� � � choose�x� ��� � � � � �n���
�coerce�choose�r�

Figure ��� Additional type equality and coercion rules

We now extend the system of DTAL to handle sum types� In an implementation� we can use
a pair on heap to represent a sum type sum��� � � � � � �n�� �� which is often written as ���� � ���n��
in the literature� The �rst element of the pair is an integer i such that � � i � n and the second
element is of type �i� We can use choose�x� ��� � � � � �n��� to stand for a type which must be one
of ��� � � � � �n��� determined by the value of x� the type is �i if x � i� Also we present some
additional rules in Figure �� for handling type coercion involving sum types �rules for type
equality are omitted�� Note natn is the sort fa � int j � � a � ng for every natural number n�
Now we can de�ne sum��� � � � � � �n�� � as�

�a � natn�int�a� � choose�a� ��� � � � � �n����

that is� a value of type sum��� � � � � � �n�� � is represented as a pair in which the �rst part is a tag
determining the type of the second part� We need the following typing rule for choose �

�� a � ������r � ��� � I � � � �� a � n� 	�����r � �n��� � I

������r � choose�a� ��� � � � � �n���� � I
�type�choose�

�

length� ��r� �a� �sp� �a list �� �sp� int �� �r	 �� �r	

�� �sp� int �� �r	 represents the state type of the return address

�� �label� which is pushed on the stack by the caller�

�� Note that �a list is represented as a dependent type internally

�� and the program would not type�check in TAL

pop r� �� store the list argument into r�

mov r�� � �� initialize r�

loop� ��r� �a� �r�� int� r�� �a list� sp� �sp� int �� �r	 �� �r	

unfold r� �� r�� unit � �a � �a list

load r�� r���� �� load list tag into r� �r� � � or ��

beq r�� finish �� goto finish if r� is empty �r� � ��

load r�� r���� �� r�� �a � �a list �r� � � since r� is not ��

load r�� r���� �� move list tail into r�

add r�� r�� � �� increase r� by �

jmp loop �� loop again

finish� ��r� �r�� int� sp� �sp� int �� �r	 �� �r	

pop r� �� return address pops into r�

push r� �� result pushes onto the stack

jmp r� �� return

Figure �	� An implementation of the length function on lists in DTAL

We now present an example to illustrate the use of sum types� The usual list type constructor

can be represented as ����t�unit � � � t� where � abstracts over types and � is the �xed point
operator on types� Note that we use t for a type variable here� As usual� the following rules are
needed for handling � operator�

��� � v � �ft �� �t��g

��� � v � �t��
�type�fold�

��� � v � �t��

��� � v � �ft �� �t��g
�type�unfold�

We provide two auxiliary instructions fold�� � r and unfold r to indicate the need for folding
the type of r into � and unfolding the type of r� respectively�
The DTAL code in Figure �	 corresponds to the Xanadu program in Figure 	
� The state

type following the label length indicates that the top element on the stack a list and the second
one is a label� the list is the argument of the function and the label is the return address �pushed
onto the stack by the caller�� the type of the label states that the top element of the stack is an
integer� which is to be the return value of the function� and the rest of the stack is the same as
the current stack excluding the top two elements� Note that the code would not type�check if
translated into TAL�
The DTAL code in Figure �� is unsatisfactory for the following reason� In practice� the list

constructors are usually represented without tags for both e�ciency and memory concern� In
other words� we can interpret ���list as �a � nat��choose�a� unit � � � ���list�� The reason is that
it can be readily tested in practice whether a value equals hi �which is commonly represented
as a null pointer�� and therefore there is no need for a tag� For instance� we can introduce

��

�int� list upto�int n� �

var� �int� list xs

xs � Nil

while �n �� �� �

xs � Cons�n� xs�
 n � n � �

�

return xs

�

upto� ��r��i�int� �sp�int�i� �� �r	

pop r�

push ��

push �

newtuple�int list	 r� �� r� �� �	

jmp loop

loop� ��r��i�int� �r��int�i�� r�� int list� sp� �r	

blt r�� finish

push r�

push r�

newtuple�int � int list	 r� �� r� �� �r�� r��

push r�

push �

newtuple�int list	 r� �� r�� int list

sub r�� r�� �

jmp loop

finish� �r�� int list	

halt

Figure ��� Implementations of the upto function in Standard ML and DTAL

�	

����� � r � � � j� k�k �� unit ����� � I

����� � bnu r� v� I
�type�bnu�false�

����� � v � state������������
� � � � �� � � � �� ����� j�c �

�� ����

����� � bnu r� v� I
�type�bnu�true�

Figure ��� Typing rules for the instruction bnu

upto� ��r��i�nat� �sp� int�i� �� �r	

pop r�

mov r�� ��

jmp loop

loop� ��r��i�nat� �r�� int�i�� r�� int list� sp� �r	

blt r�� finish

push r�

push r�

newtuple�int � int list	 r� �� r� �� �r�� r��

sub r�� r�� �

jmp loop

finish� �r�� int list	

halt

Figure ��� Another Implementation of the upto function in DTAL

the branch instruction bnu r� v � which branches to the label in v if the value in r equals hi�
The typing rules for bnu are listed in Figure ��� This leads to the more concise DTAL code in
Figure ���
The example in Figure �� is adopted from �Necula and Lee 	

�� which is clearly more

involved� Given a list in which every element is either an integer or a pair of integers� the following
code sum up all the integers in such a list� For instance� if the given list is �	� �� �� � �� ��� then
the answer is 	���� �
� We declare a datatype single�or�pair to make this a homogeneous
list in ML� We use the optimized list representation in the DTAL code�
The treatment of sum types extends the one in �Harper and Stone 	

��� There indexed

sums ���i�� �i � 	� �� are introduced for types �� and �� in addition to the standard sum ������
The typing rules for indexed sums essentially state that for i � 	� �� ini�e� � �� �i �� is derivable
if e � �i is� where ini is used to indicate which rule is applied� To relate indexed sums to sum�
there are subtyping rules for making ���i �� a subtype of ��� �� for i � 	� �� In DTAL� ���i ��
can be interpreted as int�i� 	� � choose�i� 	� ��� ��� and the subtyping relation can be derived
with the use of type coercion rules�

��

union single�or�pair � �

int Single
 int � int Pair

�

int sum �l� �single�or�pair� list� �

var�

int s� i� i�� i�

single�or�pair x

s � �

while �true� �

switch �l� �

case Nil� return s

case Cons�x� l��

switch �x� �

case Single �i�� s � i � s

case Pair�i�� i��� s � i� � i� � s

�

�

�

return s

�

start� �r�� �int � �int � int�� list	

mov r�� �

loop� �r�� �int � �int � int�� list� r�� int	

bnu finish �� r� is empty

load r�� r���� �� r�� int � �int � int�

load r�� r���� �� load tag into r�

bne r�� pair ��

load r�� r���� �� r�� sum��� int� int � int�

add r�� r�� r�

load r�� r���� �� load the tail� r�� �int � �int � int�� list

jmp loop

pair� �r�� �int � �int � int�� list� r�� int� r�� sum��� int� int � int�	

load r�� r���� �� r�� sum��� int� int � int�

load r�� r���� �� r�� int � int

add r�� r�� r�

load r�� r���� �� r�� int � int

add r�� r�� r�

load r�� r���� �� load the tail into r�

jmp loop

finish� �r�� int	

halt

Figure ��� Tallying up numbers appearing in a list

��

� Implementation

��� Type�checker for DTAL

We have prototyped a type�checker and an interpreter for DTAL and veri�ed many exam�
ples� The implementation and examples are available on�line �Xi 	

b�� There is certain
amount of non�determinism in the the typing rules for DTAL� In the implementation� we im�
pose some restriction to eliminate the non�determinism� For instance� when both of the rules
�coerce�exi�ivar�l� and �coerce�exi�ivar�r� are applicable� we choose the former over the
latter� For the rule �type�open�reg�� we currently apply it whenever it is applicable� An
alternative is provide an auxiliary instruction open r to indicate the need of an application of
this rule to register r�
Notice that we have not explained how to obtain the type index expressions �x in the premise

of the rule �type�jmp�� In practice� if we impose certain syntactic restriction on forming state
types� these type index expressions can always be inferred through uni�cation�� This subject is
studied in Chapter � �Xi 	

��� This strategy is adopted in the current implementation� From
the point of view of type�checking� it also seems reasonable to require that a DTAL program
be annotated with these type index expressions� For instance� we can use the following form of
instruction

jmp v�x�� � � � � xn�

to indicate that �x � x�� � � � � xn are the type index expressions needed for typing jmp v as
is presented in the rule �type�jmp�� The conditional branching instructions can be given a
similar form�
We currently only accept linear constraints on integers and solve them with a method based

on Fourier�Motzkin variable elimination �Dantzig and Eaves 	
���� Though the linear integer
programming problem is NP�complete in general� the typical constraints generated from type�
checking DTAL code are simple and can be e�ectively solved� Relevant experience can be found
in �Xi and Pfenning 	

��� We have veri�ed many DTAL examples �including all the ones in
this paper� with the type�checker� some of which are available on�line �Xi 	

b��

��� Compilation into DTAL

We brie�y mention a compiler which produces DTAL code from source programs in Xanadu�
a language with C�like syntax in which only top level functions are supported and no pointers
are allowed� Xanadu shares many common features with languages like Safe C �Necula and Lee
	

�� and Popcorn �Morrisett et al� 	

�� The most signi�cant feature of Xanadu is its type
system� which supports a restricted form of dependent types� Please see �Xi 	

a� for details�
The compilation is essentially like compiling C into a typical untyped assembly language except
that we need to construct state types for labels this time� We have compiled all the examples
in this paper��

We currently do not perform register allocation when compiling Xanadu into DTAL and
execute the generated DTAL code with an interpreter� The typability of DTAL code is una�ected
by register allocation and spill� The argument is the same as the one for arguing that the
certi�ability of proof�carrying code is una�ected by register allocation and spill �Necula 	

���

�The restriction is that for every state type state���������� every variable declared in � should be used at
least once as a single type index expression to index a type in ��

�We currently do not have a pretty printer for the generated DTAL code� and therefore we took the liberty to
prettify the DTAL code presented in this paper while leaving the raw versions at �Xi 	

b��

��

����� Synthesis

One approach to generating DTAL code is to synthesize state types for labels� For the function
copy in Figure 	� we map variables src� dst� length and i to r�� r�� r� and r� respectively�
and readily generate the code in Figure � excluding the state types for labels copy� loop and
finish �this is exactly like a compilation from C into a typical assembly language��
We brie�y explain how to form these state types� The state type for copy is a directly

translation from the type of the function copy� We synthesize the state type for loop with
some informal reasoning� When the execution �rst reaches the label loop� we know that
for some natural numbers m and n satisfying m � n the types of r�� r�� r� and r� are
�int�array �m�� �int�array�n�� int�m� and int���� respectively� It can be readily veri�ed by ana�
lyzing the loop body that the values in r�� r� and r� stay the same and the integer value in r�

can only increase� Since the initial value in r� is �� the value in r� is always a natural number
during the execution of the loop� This yields the state type for loop� The state type for finish
is trivial�
In general� we identify those integer variables in a loop whose values can only increase or

decrease during the execution of the loop and name them monotonic variables� Suppose that the
initial value of a monotonic variable x is i� and x is mapped to register r� We then assume in the
state type attached to the loop that r is of type int�i� for some integer i � i� or i � i� according
whether x is increasing or decreasing� This is a simple and widely applicable heuristic� Actually�
this is the heuristic used in the Touchstone compiler for array bound check elimination� However�
it is also clear that this heuristic is too limited to handle other more sophisticated cases such as
binary search where there is a non�monotonic array index �this heuristic is even ine�ective for
the trivial program in Figure �
��

����� Annotation

In Xanadu� we allow the programmer to provide loop invariants in the form of dependent types
so that signi�cantly more array bound checks can be handled in practice� In Figure �
� the top
part is a program in Xanadu� which initializes an array with zeros� and the rest is the DTAL
code compiled from the program� Various larger examples� which are too unwieldy to present�
can be found at �Xi 	

b�� The function header�

fn�natg unit initialize�int vec�n	�

indicates that for every natural number n� initialize takes an integer array of size n and
returns no value� The type following the keyword invariant essentially states that i and l are
of types int�a� and int�b�� respectively� where a and b are natural numbers satisfying a� b � n�
Note that n is the size of array vec� Xanadu has a sound type system as proven in �Xi 	

a��
but we do not have to rely on this fact in this paper� We merely assume that the type annotations
in Xanadu are hints to a compiler�
The Xanadu program can be compiled into the DTAL code excluding the state types for

labels in a standard manner� This part is exactly like compiling a corresponding C program�
We brie�y mention the construction of the state types in Figure �
� Notice that the state type
attached to loop is essentially translated from the type annotation in the source program� We
simply modify the annotation to include the types of variables not mentioned and then replace
the variables with the registers to which these variables are mapped� If we compile a well�
type program in Xanadu� we expect that the generated DTAL code is guaranteed to type�check
�assuming the compiler is implemented correctly� but this is yet to be rigorously proven� In
the case where the source program in Xanadu may not be well�typed� we can always ignore

��

�n�nat� unit initialize�int vec�n	� �

var� int i� l

i � �
 l � arraysize�vec�

invariant� �a�nat� b�nat � a � b � n	 �i� int�a�� l� int�b��

while �l � �� � vec�i	 � �
 i � i � �
 l � l � �
 �

�

init� ��r� �n�nat� �sp� int array�n� �� �sp� �r	 �� �r	

pop r�

mov r�� �

arraysize r�� r�

loop� ��r� �n�nat� a�nat� b�nat � a � b � n�

�r�� int array�n�� r�� int�a�� r�� int�b�� sp� �sp� �r	 �� �r	

blte r�� finish

store r��r��� �

add r�� r�� �

sub r�� r�� �

jmp loop

finish� ��r� �sp� �sp� �r	 �� �r	

pop r�

jmp r�

Figure �
� Implementations of an initialization functions in Xanadu and DTAL

�

type annotations and compile with the synthesis approach if the generated DTAL code does not
type�check �though we have not experimented with this option��

� Related Work

DTAL is designed on top of TAL with a dependent type system to overcome some limitations�
While inheriting most features from TAL� DTAL also alters some� For instance� a type in TAL
can be annotated with a �ag to indicate the initialization status of a value with this type� but
we adopt a di�erent strategy in DTAL to handle initialization� We simply use top to represent
the type of all uninitialized values� This strategy works because every tuple �array� is initialized
upon allocation� DTAL can be readily transformed into a TAL�like language if one erases all
syntax related to type index expressions� In this respect� DTAL generalizes TAL�
The notion of proof�carrying code introduced in �Necula 	

�� can address the memory safety

issue in mobile code as follows� The essential idea is to generate a proof asserting the memory
safety property of code and then attach it to the code� The proof carried by the code can then
be veri�ed before execution� This is an attractive approach but a challenging question remains�
that is� how to generate a proof to assert memory safety property of a �large and complex�
program� The Touchstone compiler �Necula and Lee 	

��� which compiles programs written
in a type�safe subset of C into proof�carrying code �TPCC for Touchstone$s PCC�� handles this
question through a general VC generator �Floyd 	

��� generating veri�cation conditions for
both type safety and memory safety� TPCC also performs some loop invariant synthesis for
eliminating array bound checks� TPCC seems a bit heavy�handed for handling type safety when
compared to TAL and it needs to be studied whether TPCC can readily handle higher�order
functions since TPCC uses essentially a �rst�order logic to capture invariants� For instance� it
may be desirable to express something like the following� this function call can only be made
if the called function takes an integer and returns a natural number� This property� which can
be readily expressed with dependent types� seems to require higher�order logic if expressed with
predicates�
DML is a functional programming language that enriches ML with a restricted form of

dependent types �Xi and Pfenning 	

�� allowing the programmer to capture more program
invariants through types and thus detect more program errors at compile�time� In particular� the
programmer can re�ne datatypes with type index expressions in DML� capturing more invariants
in various data structures� For instance� one can form a datatype in DML that is precisely for
all red�black trees and program with such a type� The type system of DML is also studied for
array bound check elimination �Xi and Pfenning 	

���
DTAL stands as an alternative design choice to TPCC� extending TAL with a form of

dependent types that is largely adopted from DML� The design of DTAL is partly motivated by
an attempt to build a certifying compiler for DML� Unlike TPCC� there are no proofs attached
to DTAL code� The veri�er for DTAL code is a dependent type�checker consisting of a constraint
generator and a constraint solver� In general� proof veri�cation is easier than proof search� and
therefore the TPCC startup overhead should be less than that for DTAL code� though it seems
too di�cult at this stage to perform a meaningful comparison�
We view DTAL as a type�theoretic approach to reasoning about memory safety at assembly

level� With a stronger type system than that of TAL� DTAL is expected to capture program
errors that can slip through the type system of TAL� This is supported by the fact that DML
can capture program errors in practice which eludes the type system of ML�

��

	 Conclusion

TAL is a typed assembly language with a type system at assembly level� The type system of
TAL contains some limitations that prevent certain important loop�based optimizations such
as array bound check elimination and tag check elimination� We have enriched TAL with a
restricted form of dependent types and the enrichment leads to a dependently typed assembly
language �DTAL� that overcomes these limitations� This includes establishing the soundness
of the type system of DTAL and implementing a type�checking algorithm� We have also con�
structed a prototype compiler which compiles Xanadu programs into DTAL� where Xanadu is
a programming language with C�like syntax that supports a dependent type system similar to
that of DTAL but signi�cantly more involved�
In future work� we intend to continue the study on compiling Xanadu into DTAL� which

we expect to be mostly straightforward� A similar but more challenging task is to construct
a compiler from DML into DTAL� On a larger scale� we are interested in both using types to
capture more program properties in high�level languages and constructing certifying compilers
to translate these properties into low�level languages�

�
 Acknowledgment

We gratefully acknowledge some discussion with Jim Hook on the subject of the paper and
thank Chad Brown for proofreading a draft of this paper and providing us with many valuable
comments�

References

Dantzig� G� and B� Eaves �	
���� Fourier�Motzkin elimination and its dual� Journal of Com�

binatorial Theory
A� ��� ���%�
��

Floyd� R� W� �	

��� Assigning meanings to programs� In J� T� Schwartz �Ed��� Mathematical

Aspects of Computer Science� Volume 	
 of Proceedings of Symposia in Applied Mathe�
matics� Providence� Rhode Island� pp� 	
%��� American Mathematical Society�

Harper� R� and C� Stone �	

��� A type�theoretic interpretation of Standard ML� In
G� Plotkin� C� Stirling� and M� Tofte �Eds��� Robin Milner Festschri
t� MIT Press� �To
appear��

Milner� R�� M� Tofte� R� W� Harper� and D� MacQueen �	

��� The De�nition of Standard

ML� Cambridge� Massachusetts� MIT Press�

Morrisett� G� et al� �	

�� Talx�
� A realistic typed assembly language� In Proceedings of

Workshop on Compiler Support for System Software�

Morrisett� G�� K� Crary� N� Glew� and D� Walker �	

�� March�� Stack�based typed assembly
language� In Proceedings of Workshop on Types in Compilation�

Morrisett� G�� D� Walker� K� Crary� and N� Glew �	

�� January�� From system F to typed
assembly language� In Proceedings of ACM Symposium on Principles of Programming

Languages� pp� ��%
��

Necula� G� �	

��� Proof�carrying code� In Conference Record of ��th Annual ACM Sympo�

sium on Principles of Programming Languages� pp� 	�
%		
� ACM press�

Necula� G� �	

�� September�� Compiling with Proofs� Ph� D� thesis� Carnegie Mellon Univer�
sity� Also available as technical report No� CMU�CS�
��	���

��

Necula� G� and P� Lee �	

�� Proof�carrying code� Technical Report CMU�CS�

�	
��
Carnegie Mellon University�

Necula� G� and P� Lee �	

�� June�� The design and implementation of a certifying compiler� In
ACM SIGPLAN ��� Conference on Programming Language Design and Implementation�
pp� ���%���� ACM press�

Tarditi� D�� G� Morrisett� P� Cheng� C� Stone� R� Harper� and P� Lee �	

� June�� A type�
directed optimizing compiler for ML� In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation� pp� 	�	%	
��

Tolmach� A� and D� P� Oliva �	

�� July�� From ML to Ada��&��� Strongly�typed language
interoperability via source translation� Journal of Functional Programming � ���� �
�%�	��

Xi� H� �	

��� Dependent Types in Practical Programming� Ph� D� thesis� Carnegie Mellon
University� pp� viii�	�
� Available as
http���www�cs�cmu�edu� hwxi�DML�thesis�ps�

Xi� H� �	

a�� Dependent Types in Imperative Programming� Current version at
http���www�cse�ogi�edu� hongwei�academic�papers�Xanadu�ps�

Xi� H� �	

b�� Implementations and Examples for Xanadu and DTAL� Available at
http���www�cse�ogi�edu� hongwei�Xanadu�DTAL�

Xi� H� and F� Pfenning �	

�� June�� Eliminating array bound checking through dependent
types� In Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation� Montreal� pp� ��
%����

Xi� H� and F� Pfenning �	

� January�� Dependent types in practical programming� In Pro�

ceedings of ACM SIGPLAN Symposium on Principles of Programming Languages� San
Antonio� pp� �	�%����

�

