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Abstract. We introduce a technique to facilitate termination proofs for term rewriting systems. We
especially focus on innermost termination. The main features of this technique lie in its simplicity
and effectiveness in practice. This work can be regarded as an application of the general notion
termination through transformation to both termination and innermost termination proofs.

1 Introduction

It is a highly significant question to determine whether a term rewriting system (TRS) is terminating.
In theorem proving, TRSs are widely used for a variety of purposes. For instance, it is often desirable to
transform a set of equality rules into a TRS in order to reduce the search space. Also TRSs can be used
for proving the termination of both functional and logic programs.

Though termination is an undecidable property of TRSs in general, there have been many techniques
developed for facilitating termination proofs. Some surveys are given in [Der87,Ste95b]. As mentioned in
[MOZ96], techniques for termination proofs can be generally classified into two categories.

— Basic techniques such as various path orderings [Pla78,KL80,Der82], Knuth-Bendix ordering [KB70],
and polynomial interpretations [Lan79,BL87] that apply directly to a TRS.

— Transformational approaches which in general transform a TRS into another TRS such that the ter-
mination of the latter implies that of the former and the latter can be proven terminating more easily.
For instance, transformation orderings [BL90,Ste95a], semantic labelling [Zan95] and freezing [Xi98]
belong to this category. Also the dependency pair approach [AG97,AG98] can be loosely classified
into this category since it transforms a TRS into a set of dependency pairs.

There are also various results on modular termination, which basically give the sufficient conditions on
two terminating TRSs that imply the termination of their union. The importance of modularity results
is evident. It is often true that new TRSs are formed on top of existing TRSs. With modularity results,
it is possible to reduce the termination of new TRSs to that of the existing ones. In this paper, we
adopt a transformational approach for establishing some results on modular termination and innermost
termination. Given a TRS R, we intend to split R into the union of Ry and R», and then prove that the
(innermost) termination of R; implies that of R under some conditions.

We say that a TRS is innermost terminating if there is no infinite innermost rewriting sequence in
this TRS. Roughly speaking, innermost rewriting means that we can rewrite a term only if all of its
proper subterms are in normal form. To some extent, innermost rewriting can model the notion of call-
by-value evaluation in functional programming, though there are usually some special rules for handling
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conditionals. Also it is proven in [AZ95] that the innermost termination of the TRS transformed from a
logic program implies the termination of the logic program. Therefore, the study on innermost termination
is of significant relevance to the study of termination of functional and logic programs. Moreover, there
are also various results which relates innermost termination to termination [Gra95]. This allows us to
reduce termination to innermost termination for some TRSs, where the latter is often easier to prove.

We now present an example to illustrate the erasure technique before going into further details. It
is frequent to encounter hierarchical combination of TRSs when we transform functional programs into
TRSs. The simple reason is that defined functions are used to define new functions. For instance, the
following function purge defined in ML [MTHMO7] removes all duplicates from a given (integer) list while
the function remove deletes all the elements equal to some given value.

fun remove(x, nil) = nil
| remove(x, cons(y, ys)) =
if x = y then remove(x, ys) else cons(y, remove(x, ys))

fun purge(nil) = nil
| purge(cons(x, xs)) = cons(x, purge(remove(x, xs)))

When proving termination of such a functional program, the following aspect must be taken into consid-
eration:

Usually, the programmer applies a semantic argument such as a measure function in order to show
that the defined function is terminating. For example, the function purge is terminating because
the length of the list remove(x,ys) is not greater than that of ys. Note that it is in general an
exceedingly difficult task to synthesize such a measure function from the structure of a program.

The program can be transformed into the following TRS Rpg *.

(1) remove(z, nil) — nil

(2) remove(x, cons(y,ys)) — if (x =y, remove(x,ys), cons(y, remove(x,ys)))
(3) purge(nil) — nil

(4) purge(cons(x,xs)) — cons(x, purge(remove(x, xs)))

It seems difficult to prove the termination of this TRS with a syntactic approach. We can transform this
TRS into the following TRS R}, with the erasure technique (ET) 2.

(1" nil — nil
(2.1") cons(y,ys) = ys
(2.2") cons(y,ys) — cons(y,ys)
(3" purge(nil) — nil
(4") purge(cons(z,xs)) — cons(x, purge(xs))

In this case, we project a term beginning with remove to the second argument of remove and a term
beginning with if to either the second or the third argument of if. Under the recursive path ordering
RPO with the precedence purge = cons, the rules (2.1'), (3') and (4') can be strictly ordered and the rules
(1') and (2.2") can be ordered. We now informally argue that R is terminating. Suppose that there is
an infinite innermost Rpg-rewriting sequence. We will show that this sequence induces an infinite R},-
rewriting sequence. We then observe that this induced sequence cannot have infinitely many applications
of those strictly ordered rules. Therefore, there is an infinite Rég—rewriting sequence in which only applied
rules are either (1') or (2.2'). We will then prove this implies that there is an infinite innermost Rpg-
rewriting sequence in which the only applied rules are either (1) or (2). This is a contradiction since the
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TRS consisting of rules (1) and (2) is easily proven to be terminating. Therefore, we conclude that R is
innermost terminating. This argument will be substantiated in Section 3.

As already mentioned, most of the programmers use semantic arguments to prove termination. This
is a powerful and flexible approach but it is also too semantic to be largely automated. On the other
hand, the limited erasure technique is syntactic, and thus it is reasonable to expect that this approach
can be combined with other approaches such as the freezing technique to facilitate automatic innermost
termination proofs. However, we observe in practice [SX98] that it is even questionable to scale an
approach as simple as RPOS, not mentioning other more involved techniques. Therefore, we expect that
a more promising direction is to apply the erasure technique interactively. We shall make this point more
clear with concrete examples.

This paper is organized as follows. In Section 2, we briefly explain the notations and introduce some
basic concepts. We present the erasure technique (ET) for innermost termination proofs in Section 3 and
establish the correctness of ET. This section constitutes the main contribution of the paper. We then
mention some closely related work and conclude. We also present some examples in Appendix A, which
can be of some assistance for the reader to understand the presented work if necessary.

2 Preliminaries

In general, we stick to the notations in [DJ91] though some minor modifications may occur. We briefly
summarize the notations and develop some concepts needed later.

2.1 Basics

We fix a countably infinite set X of variables z,y,... and use F for a (finite) set of function symbols
f5g, ... Note that every function symbol f is of a fixed arity Ar(f) and f is a constant if Ar(f) = 0.
We assume that there is at least one constant in F. Let 7 (F, X)) denote the set of terms over F and X,
and T (F) for the set of ground terms over F. Given a term ¢, Var(t) is the set of variables that occur
in t. We use I — r for a rewrite rule, where we require Var(r) C Var(l). We use o for substitutions and
dom(o) for its (finite) domain. Also to stands for the result of applying o to ¢.

Definition 1. Contexts C' are defined as follows.

1. [] is a context, and
2. flt1,. . ti—1,C tir1, ..., ty) is a context if Ar(f) =n and C is a context.

Ct] is the term obtained from replacing the hole [] in C' with term ¢.

A TRS R over F is a set of rewrite rules over T (F,X). A function symbol f is an R-defined function
if f is the root symbol of I for some rewrite rule [ — r in R, and f is a R-constructor if it is not an
R-defined function. We often use ¢ for constructors.

Given a TRS R, we write t; =g t2 if t1 = C[lo] and t2 = C[ro] and | — r is a rewrite rule in R, and
we may also write t1 =g t2/(C,l — r,0) to make this explicit. A term ¢ is in R-normal form if there
exists no ¢’ such that t =5 ¢’ holds. If | — r € R and all proper subterms of lo are in R-normal form, we

say t; = C[lo] rewrites to ty = C[ro] through innermost rewriting, and we use —»% for such a rewriting
relation. Also we use t =%/ ¢’ to mean that either ¢ = ' or t — t'.

We use —* for the transitive and reflexive closure of a relation —. R is (innermost) terminating if
there exists no infinite (innermost) R-rewriting sequence. Given a substitution o, o is R-normal if o(z)
is in R-normal form for every x € dom(o). The following definition is less standard.

Definition 2. Given a term t, t is skeleton R-normal if we always obtain terms in R-normal form by
replacing occurrences of variables in t with terms in R-normal form. Note that we do not have to replace
occurrences of the same variable with the same terms. Similarly, t is skeleton R-terminating if we always
obtain R-terminating terms by replacing occurrences of variables in t with R-terminating terms.



We have the following limited method to construct skeleton R-normal terms.
Proposition 1. Let R be a TRS.

1. FEvery variable is skeleton R-normal.

2. ¢(ty, ..., ty) is skeleton R-normal if ¢ is an R-constructor and t; are skeleton R-normal for i =
1,...,n.
Proof This is straightforward by the definition. ]

In other words, R-constructor terms, that is, terms constructed from R-constructors and variables, are
skeleton R-normal. Similarly, R-constructor terms are also R-terminating.

We use the notation > for a quasi ordering and > for the strict part of >. A reduction ordering is
an ordering > such that its strict part > is well-founded and both > and > are compatible with the
term structure and stable under substitutions. One of the most well-known and widely used reduction
orderings is the recursive path ordering RPOS with status [Der82,KL80]. Please see [Ste95b] for further
details.

Remark 1. We say that a rewrite rule [ — r is strictly ordered under > if [ = r, and [ — r is ordered if
I >=r.

2.2 Hierarchical Combination

Definition 3. Given two TRSs R1 and R2, we say R1 and Ro form a hierarchical combination Ry UR,
if no defined function symbols in Ry have appearances in Ry. Given a term t, a subterm of t is called an
Ro-subterm if the root symbol of the subterm is a Ro-defined function symbol.

Notice that hierarchical combination occurs naturally when we transform functional programs into TRSs:
defined functions are used to define new functions.
We omit the proof of the following lemma since it is really a bit of folklore in term rewriting.

Lemma 1. Suppose that two TRSs Ry and Ry form a hierarchical combination R. We have the following.

1. If all Ry-subterms of t are in R-normal form andt —x t', then all R -subterms of t' are in R-normal
form.

2. If Ry is terminating and all Ro-subterms of t are in R-normal form, then t is (innermost) R-
terminating, that is, there is no infinite (innermost) R-rewriting sequence from t.

In the following presentation, we may omit the prefix “R-” if it is irrelevant or it is clear from the
context which R we refer to.

2.3 Erasure

Generally speaking, t; is an erasure of ¢, if ¢; can be obtained from erasing some function symbols and
subterms in ¢,. In other words, ¢; embeds into t2. However, it will soon be clear that some embedding
may not be erasure.
For every function symbol f in F with arity n, we associate with it the following rewrite rules for
1=1,...,n.
(f—O-i) f(xly' . '7mn) - f(mla ceey L1, Ty - '7mn)
(f-p-i) flx1,...,0) = x;
An (f-0-i) rule is called an omitting rule and an (f-p-i) a projection rule. Both of these rules are called
erasure rules. Notice that an (f-o-7) rule changes the arity of f. Also we say that (f-p-i) is not argument-
dropping if Ar(f) = 1. All other erasure rules are argument-dropping.
Given a set S of erasure rules in which there is at most one rule associated with f for every f € F,
we call § an erasure TRS. The S-erasure of ¢ is the S-normal form of ¢, which is alternatively defined as
follows.



Definition 4. Given an erasure TRS S, we use |t|s for the S-erasure of t and e(t)s for the set of terms
erased from t. In general, we omit the subscript S if there is no risk of confusion.

t if t is a variable;
|t|: f(|t1|7---7|ti*1|>|ti+1|7---;|tn|) Zf t:f(tla---;tn) and (f—O-i)ES,’
|tz| Zf t= f(tla N )tn) and (f—p-l) € Sf'
W1 ) if t=f(t1,...,tn) and otherwise.
() if t is a variable;
(t) = {ti} Ve, np iy €25) if t=f(t1,...,ty) and (f—o—z:) €S;
{tl, o ticy tivr, - ,tn} @] G(ti) Zf t= f(tl, . ,tn) and (f—p—l) €S;
L UjE{l,...,n} e(t;) if t=f(t1,...,tn) and otherwise.

The erasure of rule I — r is |I| = |r|, and the erasure of R is defined analogously. Note that the erasure
of a rewrite rule may not always be a legal rewrite rule. For instance, the S-erasure of if (false,x,y) — y
is x — y for S = {(if-p-2)}, which is illegal. Similarly, the erasure of a TRS may not be a legal TRS.
The erasure |C| of a context C' can be defined in a straightforward manner. However, |C| may not be
a context since the hole [| in C' may be erased away. In this case, we write |C|[t] simply for |C|. Given

a substitution o, its erasure |o| is a substitution with the same domain and |o|(z) = |o(z)| for every
z € dom(o).

Proposition 2. Given a context C, a term t and a substitution o, we have |C[t]| = |C|[|t]] and |to| =
[tllo].

Proof This is straightforward from a structural induction on C' and ¢, respectively. ]

Lemma 2. Suppose that the erasure |R| of a TRS R is also a TRS. If t; —r to2, then |t1] —>?7/11| |t2].

Proof Assume t; = C[lo] and t2 = C[ro] for some o, where [ — r € R. If |C| is not a context, then
[t1] = |C| = |t2|- Otherwise, |t1| = |C|[|l||o]] and |t2] = |C][|r||e|] by Proposition 2. Since |I| — |r| € |R],
we have |t1| =z [t2|. Clearly, if |C| is a context, then [t;| — | |t2]. |

Note that for every f € F with arity n, we can introduce the following omitting rule, where 1 < i; <
< <.

(f—O'(il,--.,ik)) f(l'l,...,l’n) - f(mla"')xi1*1)xi1+1)"'>xik*17mik+17"'7mn)

In other words, this rule drops the subterms of f(¢,...,t,) at the positions iy,...,i;. This rule is
argument-dropping. Note that this is a single rule, which should not be regarded as a combination of
several omitting rules. Also it should be clear that all the previous results involving erasure still hold in
the presence of such omitting rules.

3 Erasure for Termination Proofs

The erasure technique (ET) is mainly to facilitate modular innermost termination proofs for TRSs.
Notice that innermost termination implies termination for overlay TRSs [Gra95], and therefore this can
also facilitate (classical) termination proofs. We also show that ET can be directly applied to (classical)
termination proofs. The essential idea behind ET is simulation as presented in [Xi98]. In general, ET can
be regarded as an application of the notion termination through transformation to both termination and
innermost termination proofs.



3.1 Elementary Versions of ET
In this section, we establish some elementary versions of the erasure technique.

Definition 5. Given a TRS R, we say that l — r € R has a conservative erasure if |I| — |r| is a legal
rewrite rule and t is skeleton R-normal for every t € €(r), that is, all subterms erased from r are skeleton
R-normal. If all the rules in R have conservative erasures, then we say R has a conservative erasure |R|.

The next theorem is the most elementary one among those for ET which we will formulate and prove.
Nonetheless, this theorem has largely captured the essential idea behind ET.

Theorem 1. Assume that R = Ri U Ry has an erasure R' = Ry URY, where R} are the conservative
erasures of R; for i = 1,2. Also assume that under some reduction ordering, every rule in R} can
be ordered and every rule in R} can be strictly ordered, then the innermost termination of Ry implies
the innermost termination of R. In the case where all erasure rules are not argument-dropping, the
termination of R1 implies that of R.

Proof Suppose that there exists an infinite innermost R-rewriting sequence as follows:
o Sr by R DRt SR

where t; = t;11/(Cs,l; = 14, 0;) for some context C;, rule [; — r; € R and substitution ;. We show that
there is an infinite innermost R4-rewriting sequence.

Obviously, we can require that all proper subterms of ¢; be in R-normal form since we are handling
innermost rewriting. This implies that all terms in €(#1) are in R-normal form. We now show inductively
that this is true for all ¢; (i = 1,2,...) by analyzing the difference between €(t;) and €(t;41). Let t € €(t;i11)
and we have the following.

— tisin €(¢;). Then t is in R-normal form by induction hypothesis.

— tis not in €(t;). Note t; = C;i[l;05] and t;41 = C;[r;o;]. If t contains r;o;, then there must be some s
in €(t;) such that s — t. This is impossible since all terms in €(¢;) are in R-normal form. Otherwise,
t is dropped from r;o;. This means that t either equals so; for some s € €(r) or t is a subterm of
o;(x) for some x € dom(a;). In the latter case, t is obviously in R-normal form since this is innermost
rewriting. In the former case, ¢ is in R-normal form since s is skeleton R-normal (note that R’ is a
conservative erasure of R) and ¢ is an R-normal substitution.

Therefore, for i = 1,2, ..., all terms in €(¢;) are in R-normal form. By Lemma 2, we have the following.

0/1 0/1 0/1
It:] 1/“ Ita| ﬂ/u . ﬂ/u

We now show that every —>?7/11| step in this sequence is actually a — | step. It suffices to show that |C| is
always a context for ¢ = 1,2,.... Suppose that |C;| is not a context. Then [;0; is a subterm of some term
in €(t;). This is impossible since all terms in €(¢;) are in R-normal form. This implies that we actually
have the following.

lt1] ==y [t2] = |R| - 2R |l =Ry

Since all rules in R{ are ordered and all rules in R are strictly ordered, there must be an n such that
all the rules applied after |¢,| are in R). This implies that all the rules applied in the infinite innermost
R-rewriting sequence after ¢, are in Rq, that is, we have an infinite innermost R;-rewriting sequence.
Therefore, the innermost termination of Ry implies that of R.

We now prove the second part of the theorem. Suppose that all the erasure rules are not argument-
dropping. Then |C| is a context for every context C'. Therefore, t; —x ts implies |t;| — | |t2] for every
pair of terms t; and t2. With the same argument as before, we can show that an infinite R-rewriting
sequence induces an infinite R;-rewriting sequence. Therefore, the termination of R; implies that of R. m



Notice that we assume no relation between R; and Rs in Theorem 1. This is an attractive feature in
practice. Suppose that we intend to prove the termination of R. We proceed to find a conservative erasure
R' of R such that all rules in R' can be ordered under some reduction ordering. If there are rules in R’
which can be strictly ordered, we remove them and use R} for the set of remaining rules. We can then
find Ry C R such that R/ is the conservative erasure of R;. In this way, we have reduced the innermost
termination of R to that of Ry. If Ry is empty, then we have proven that R is innermost terminating.
Clearly, there is no need for splitting R before applying Theorem 1.

The following TRS Ry is taken from [AG98]. Note that m,n are variables, :: is the infix operator for
cons, [| for nil and [n] for cons(n nil). The function weight computes a weighted sum of natural numbers:
weight(ng ::ny =2 -+ iy, i nil) = ng + DE i xn;.

(1) sum(s(m) :: y) = sum(m ::x,s(n) = y)

(2) sum( :U,y) — sum( ,Y)

(3) sum([]y)

(1) weight([n]) -

(5) weight(m = n ) — wezght(sum(m n:x,0:x))

The last rule is self-embedding, and therefore the TRS cannot be proven terminating with a simplification
ordering. Intuitively, R+ is terminating because the length of sum(m :: n :: 2,0 :: x) is less than that of
m ::n : x. We can use the erasure TRS § = {(sum-p-2),(s-p-1)} to capture this. The following TRS R/,
is the S-erasure of Ry.

(1 niy—-snny

(2) y—=y

(3" y—y

4" weight([n]) — n

(5") weight(m = n :: &) — weight(0 :: x)

Notice that this is a conservative erasure. For instance, let r be the right-hand side of rule (5), then e(r)s
is {m :: n :: }, in which the term is skeleton Ry¢-normal. Clearly, R/, can be ordered under a RPO.
Since the rules (4') and (5') are strictly ordered, we delete them. Therefore, the innermost termination
of Rsum, which consists of the rules (1), (2) and (3), implies that of Ry by Theorem 1. The termination
of Rsum is readily proven with a RPOS, and thus Ry is innermost terminating. In this case Ry is
terminating since it is an overlay (actually non-overlapping) TRS.

On the other hand, if we can split a TRS into some hierarchical combination, then we can take
advantage of Theorem 2 below, which is a generalized version of Theorem 1. We first present a definition
very close to Definition 5.

Definition 6. Let R be the hierarchical combination of Ry and Ro. We say that | — r € R has an
Ra-conservative erasure if |l| — |r| is a legal rewrite rule and t is skeleton Ra-normal for every t € €(r).
If all rules in R have Ra-conservative erasures, then we say R has an Ro-conservative erasure |R|.

Theorem 2. Let S be an erasure TRS and R be the hierarchical combination of R1 and Ro = R21 UR2s
such that |Rq| and |Rz| are Ra-conservative. Assume that under some reduction ordering, the erasure of
every rule in Ry and Roy can be ordered and the erasure of every rule in Raz can be strictly ordered,
then the innermost termination of Ry U Ry implies the innermost termination of R. In the case where

all erasure rules in S are not argument-dropping, the termination of Ry URo1 implies the termination of
R.

Proof This is very similar to the proof of Theorem 1. Suppose that there exists an infinite innermost
R-rewriting sequence as follows:

A R S S



where t; — t;11/(Ci,l; — ri,0;) for some context C;, rule [; — r; € R and substitution o;. We show that
there is an infinite innermost R4-rewriting sequence.

Obviously, we can require that all proper subterms of ¢; be in R-normal form since we are handling
innermost rewriting. This implies that all terms in €(¢;) are in Ro-normal form. We now show inductively
that this is true for all ¢; (i = 1,2,...) by analyzing the difference between €(t;) and €(t;41). Let t € €(ti41)
and we have the following.

— tisin €(¢;). Then t is in Ro-normal form by induction hypothesis.

— tisnot in €(t;). Note t; = C;[l;04] and t;41 = C;[r;o;]. If t contains r;o;, then there must be some s in
€(t;) such that s — t. Note l; — r; cannot be in Ry since s must be in Ry-normal form. Thus, ¢ is in
Ro-normal form by Lemma 1. Otherwise, ¢ is dropped from r;o;. This means that ¢ either equals so;
for some s € €(r) or t is a subterm of o;(z) for some = € dom(o;). In the latter case, ¢ is obviously in
Ro-normal form since this is innermost rewriting. In the former case, ¢ is in Ro-normal form since s is
skeleton Ro-normal (note that R’ is a Ro-conservative erasure of R) and o is an Ro-normal (actually
R-normal) substitution.

Therefore, for i = 1,2,..., all terms in €(t;) are in Ro-normal form. If I[; — r; € Ry, then |C;| must be
a context since [;0; Would be a subterm of some ¢ € €(t;) otherwise, which contradicts that all terms in
€(t;) are Rp-normal. Thus, if t; =%, t2 then [t;| =g, [t2|. Since all rules in |Ras| are strictly ordered
under some reduction ordering and all rules in |R1| U |R21]| are ordered, there must be a n such that for
all i > n, l; = r; € Roz. This implies that we have an infinite innermost R-rewriting sequence in which
all applied rules are either from R; or Rs;. Contrapositively, the innermost termination of Ry U Ra
implies that of R.

The second part of this theorem is really the same as that of Theorem 1. We thus omit the details. m

We now present an application of Theorem 2. The following example is taken from the technical report
version of [AG97].
Let R; be a TRS consisting of the following rules,

le(0,y) — true pred(s(z)) —
le(s(x),0) — false minus(z,0) —
le(s(z),s(y)) — le(z,y) minus(z,s(y)) — pred(mmus(a: y))

and R be a TRS consisting of the following rules.

(1) gcd (0,
(2) ged(s(z),
(3) ged(s(z), s(y)
(4) ifged(true, s(x), s(y)
(5) ifged(false, s(x), s(y)

Let R = R1 UR>. R is clearly a hierarchical combination of R and Rs. We form a S-erasure R' of R
as follows for S = {(pred—p — 1), (minus—p — 1), (ifged—0 — 1)}. R' = R} UR), where R} consists of the
following rules

y
0

— ged(minus(z,y), s(y)

) =

) =

; - lfgcd(le(y, z),s(x ,8(%))
) = ged(minus(y, x), s(x))

le(0,y) — true s(z) = x
le(s(z),0) — false r— T
le(s(x),s(y)) — le(z,y) x =

and R, consists of the following rules.



It can be readily verified that R’ is a Re-conservative erasure of R. Under the RPO with the precedence
relation ged = ifged and le - true, false, all the rules in R} and the rule (3') can be ordered, and the rules
(1",(2'),(4") and (5") can be strictly ordered. By Theorem 2, the innermost termination of Ry U {(3)}
implies that of R. Since Ry U {(3)} can be easily proven terminating with a RPOS, R is innermost
termination. Note that R is a non-overlapping TRS and thus R is terminating.

In practice, we may encounter the case where R; = () when we apply Theorem 1, or R2; = () when we
apply Theorem 2. Let use consider a concrete example. The TRS R consist of the following single rule.

flg(@)) = g(f(f(2)))
If we form the S-erasure of R for S = {(f-p-1)}, we obtain the following TRS |R|,

9(x) = g(x)

which cannot be strictly ordered under any reduction ordering. Therefore, if we apply Theorem 1, we
make no progress. However, we can argue that R is terminating as follows. Suppose that there is an
infinite R-rewriting sequence:

tl _)RtZ..._)Rtn —SR

We can choose t; such that all proper subterms of ¢; are R-terminating and ¢ is R-terminating for every ¢
if |t| is a subterm of ¢;. Then ¢; must be of form f(s). Since s is R-terminating, there is some ¢, = f(g(s"))
such that s =% g¢(s') and t,4+1 = g(f(f(s"))). It is clear that |t1| = |tn+1| = g(]s'|). Given the property
of t1, we know that s’ is R-terminating. This implies that ¢,11 is R-terminating, contradicting that the
above R-rewriting sequence is infinite. Therefore, there exists no infinite R-rewriting sequence, that is,
R is terminating. We present a formalization of this idea as follows.

Definition 7. Let S be an erasure TRS. Given a simplification ordering =1 on terms and a quasi prece-
dence relation = on a finite set of function symbols, we can define a (strict) ordering =2 as follows. Given
s and t, s »o t if either |s| =1 [t|, or |s| =1 |t| and s and t are of form f(s1,...,sm) andt = g(t1,...,tpn),
respectively, and f >~ g and

— there is no erasure rule in S is associated with g, or
— the erasure rule in S associated with g is an omitting rule, or
— (g-p-i) € S and s >2 t;.

Lemma 3. The ordering =2 defined in Definition 7 is well-founded and stable under substitutions.

Proof This is straightforward since =; is well-founded and stable under substitutions and > is well-
founded.
[

Theorem 3. Let S be an erasure TRS and R be the hierarchical combination of Ri1 and Rs such that
|R1| and |R2| are Ra-conservative, and the erasure of every rule in Ry and R can be ordered under some
simplification ordering >=1. Let > be a quasi precedence relation on a finite set of function symbols, and
we form an ordering o as described in Definition 7. Assume that for every rule | — r € R, either r is
skeleton Ro-normal orl =5 r. Then the innermost termination of R1 implies that of Rx. If all the erasure
rules in S are not argument-dropping and for every rule [ — r € Ra, either r is skeleton Ra-terminating
or l =9 r, then the termination of R, implies that of Ra.

Proof Assume that R, is innermost terminating but R is not. Let P(s) be a property on terms stating
that s is not R-terminating but all proper subterms of ¢ are R-terminating. Since =5 is well-founded by
Lemma 3, we can choose a term s such that P(s) holds but P(t) fails for every ¢ satisfying s »=o t. We
can prove by a structural induction the claim that ¢ is R-terminating for every ¢ such that all terms in



€(t) are in Ry normal form and s > t. Please see the proof of Theorem 4 for details. Since P(s) holds,
there exists an infinite innermost R-rewriting sequence of the following form,

$=f(S1,.-.y8m) =5 f(sh,...,80,) =8 5r s =g -

where s; =% s} and s} are in R-normal form for i = 1,...,m and s’ =lo and s =ro and I = r € R.
[ — r must be a rule in Ry by Lemma 1 (2) and r clearly cannot be skeleton Rs-normal. Therefore,
s’ =9 s". It can be readily proven that s =5 s” since all rules in R are ordered under >;. Now let us
assume that s’ is of form g(ty,...,t,). We do a case analysis on the form of |s"|.

— There exists no rule in S associated with g. This case is the same as the next one.
— (g-0-(i1,...,ix)) € S. Then we have

|S”| = g(|t1|, vey |ti1*1|) |ti1+1|7 vey |tik*1|7 |tik+1|; ey |tn|)

Note that all terms in e(s”) are in Rp-normal form since |R| are Ry-conservative. We have |s| >
|s"| =1 |t;] for j € {1,...,n} \ {i1,...,ix} since >, is a simplification ordering. Hence, s > t;. With
the above claim, these t; are R-terminating since €(t;) C €(s"). Clearly, t;,, ..., t;, are R-terminating
and this implies that all proper subterms of s” are R-terminating. Hence s” is R-terminating since
P(s") holds and s > s”. We have thus reached a contradiction.

— (g-p-i) € S. Then |s"| = |t;|. We have s’ >, ¢; by the definition of >2, and this can lead to s >3 ;.
With the above claim, ¢; is R-terminating since e(t;) C €(s”). Clearly, t; are R-terminating for all
je{l,...,i—1,i+1,n}. Again, this implies that s” is R terminating since P(s") holds and s =5 s".
This is a contradiction. terminating.

Therefore, R must be terminating. It should be straightforward to prove the second part of the theorem.
]

We present an application of Theorem 3. The following TRS R is due to Dershowitz.

(1) (=) =@
(2) =z Ay) = (=) V=(=(=()))
3) ~(zVy) = (=) A=(=(=())

The following is the S-erasure |R| of R for § = {(—-p-1)}.

T =T
ANy —zxzVy
VY —=>TAy

Clearly, all rules in |R| are ordered in the RPO with the precedence A = V. Let >; denote this RPO. We
can form an ordering »5 with the precedence relation = > A,V as described in Definition 7. Notice that
the right side of (1) is R-skeleton terminating and both rules (2) and (3) can be ordered under >5. By
Theorem 3, R is terminating since the rule in S is not argument-dropping.

Please see Example 6 for a more sophisticated application of Theorem 3

3.2 Nondeterministic Erasure Rules

For those who are familiar with the dependency pair approach (DPA) [AG97,AG98], it should be clear that
the erasure technique presented so far can be regarded as a closely related idea recast into the framework
of termination through transformation. However, the following development significantly separates ET
from DPA.

Let us now take a look at a limitation of the erasure technique developed so far before proceeding to
formulate more sophisticated versions of ET. The rules associated with if are the following.

if (true,x,y) > x if (false,z,y) =y

10



For the example Re, we would like to use the erasure TRS S = {(remove-p-2), (if-p-3)} so that we can
erase the following rule into cons(y,ys) — cons(y,ys).

remove(x, cons(y,ys)) — if (x = y, remove(x, ys), cons(x, remove(y, ys))

Unfortunately, we also obtain the erasure y — z for the rule if (¢rue,z,y) — =z, which is not a legal
rewrite rule. This is a severe limitation in practice since if is widely used in defining TRSs. We extend
the definition of erasure to resolve this problem.

Definition 8. Given a function symbol f with arity n and 1 < i; < - - < iy < n, the following nonde-
terministic rule is also an erasure rule.

(f'p'(ily"wik)) f(mla"'amn) - {xin"')xik}

This means that f(x1,...,x,) can rewrite to x;, for each 1 < j < k. This rule is not argument-dropping

if{il,...,ik}: {1,...,n}.

With this extension, the erasure |t| of a term ¢ is a multiset of terms, which can be defined as follows.

{t} if tis a variable;
FUtal b=l i ls - a1 | (a1l - - [En])

t] = if t=f(t1,...,tn) and (f-0-(i1,...,ix)) € S;
|tZ1|UU|tlk| if t:f(tla"')tn) and (f'p'(ila"'aik)) € Sa
f(tal, .-, |tal) if t=f(t1,...,t,) and otherwise.

We use the notation f(|t1],...,|ts|) for the multiset

{f(s1,--.,8n) | si € |ti] for 1 <i < n},

that is, the multiset of terms f(s1,...,s,), where s; range over [t;| for 1 < i < n. We also present the
definition for €(t), which is the set of terms erased from ¢.

0 if tis a variable;
{til"' tlk}UUJe{l NI ( i)
(1) = if t=f(t1,...,ts) and (f-0-(i1,...,ir)) € S;
{tl,... i1— 1;t11+1;---;tik71;tzk+1; ..,tn}U ( )U Ue(tlk)
if t=f(t1,...,tn) and (f-p-(i1,...,ix)) € S;
Ujeqr,....ny €(5) ift = f(t1,...,ts) and otherwise.

In addition, the erasure |C| of context C' is a multiset, in which every element is either a context or a
term. The erasure |o| of substitution o with a finite domain is defined below.

n

|o| = {7 | dom(7) = dom(o) and 7(z) € |o(x)| for every = € dom(7)}

Definition 9. Let > be an ordering on terms. We extend this ordering to the (nonempty) multisets of
terms as follows: S =™ (=™%2) T 4f and only if for everyt € T there is an s € S such that s = (=) t,
where S and T stand for the multisets of terms.

Please notice the difference between =™ and t@ For instance, we have {c(z)} =™ {z,c(x)} but
{c(z)} i® {z,c(x)}. Also we observe that >=™%" is well-founded on the multisets of terms if > is well-
founded on terms.

Given a rule I — r, the erasure of this rule is |[| — |r|. The erasure of a TRS is defined similarly.
Note that we no longer consider the erasure of a rule (TRS) as a rule (TRS), but refer it as a rule (TRS)
erasure. Given a reduction ordering > on terms, we say that the rule erasure |[| — |r| is strictly ordered
under = if |I| =™ |r|, and it is ordered if |I| =™ |r|.

11



For instance, for S = {(remove-p-2), (if-p-(2,3))}, the S-erasure of R, is the following. We write a
term for the singleton set consisting of the term to support transparent syntax.

(1" nil — nil (2" cons(y,ys) — {ys,cons(y,ys)}
(3") purge(nil) — nil (4') purge(cons(z,xs)) — cons(x, purge(xs))

Under the RPO with the precedence purge > cons, the top two rule erasures are ordered and the rest are
strictly ordered.

Definition 10. An ordering = is a weak reduction ordering if its strict part = is well-founded and stable
under substitutions and > is compatible wrt. term structure and stable under substitutions. Notice that
a weak reduction ordering > may not be a reduction ordering since it is not required that - be also
compatible wrt. term structure.

Lemma 4. Let = be a weak reduction ordering which is total on ground terms. Given a ground substi-
tution o, that is, o(x) is a ground term for every x € dom(c), we have the following for every erasure

TRS S.

1. There exists a substitution omqx € |o|s such that for every T € |o|s, Omae(x) = 7(x) hold for all
x € dom(o).

2. If t is a term such that Var(t) C dom(o), then for every so € |to|s there exists s; € |t|s such that
$10mazx t 52.

Proof For every x € dom(o), we can choose a term ¢, € |o(z)| such that t, = t for all ¢ € |o(x)]| since
> is total on ground terms. Let 0,4, be the substitution with domain dom(c) and 0,4, (x) = ¢, for all
x € dom(o). By the definition of |o|, we obtain (1). (2) can be readily proven by a structural induction
on t. |

Notice that we actually only require that the weak reduction ordering > be extendable to a total ordering
on ground terms. For example, reduction orderings based on RPOS or polynomial interpretations satisfy
the requirement.

Definition 11. Let S be an erasure TRS. For every weak reduction ordering = which is total on ground
terms, we can define an ordering ='¢** as follows.

t1 tg.”ax to if and only if |t1|s -maz |t2|S
The next proposition states a crucial property of »¢**.

Proposition 3. Given a weak reduction ordering > and an erasure TRS S, the ordering =" on terms
is also a weak reduction ordering.

Proof By Lemma 4, it is straightforward to prove that both >™% and »** are stable under substitu-
tions. The compatibility of »&** with term structure follows from the definition of the erasure function
| ls- o
In general, it does not hold that ¢; =2 t, implies C[t1] =" C[t2] for every context C even if > is a

reduction ordering. Therefore, we cannot infer that »'&?* is a reduction ordering under the assumption
that > is.

Theorem 4. Let TRS R be the hierarchical combination of R1 and R2 and |R1|s and |Ra|s are Ro-
conservative TRS erasures for some erasure TRS S. Assume that = is a weak reduction ordering which
is total on ground terms and | >3 r for every rulel — r € Ry and | -3°" r for every rule | = r € Rs.
Then the innermost termination of Ry implies that of R.

12



Proof Assume that R, is innermost terminating but R is not. Let P(¢) be a property on terms stating
that ¢ is not innermost R-terminating and every proper subterm of ¢ is innermost terminating. We can
choose a ground term ¢ such that P(t) holds and P(s) fails for every term s satisfying ¢ >3 s since
=2 is well-founded. We now prove by a structural induction on s that s is innermost terminating if
t > s and all terms in €(s)s are innermost terminating. Assume that s is of form f(s1,...,s,). We
do a case analysis on the form of |s|.

— No erasure rule in § is associated with f. This case is the same as the next one.
— The erasure rule (f-o-(i1,...,it)) is in S. Then

|5| = f(|51|7 vey |si1*1|) |5i1+1|; teey |Sik*1|) |5ik+1|> ey |5n|)

> must be a simplification ordering on ground terms since it is total on them. Therefore, for every
jge{l,...,nP\{é1,... i}, t =2 s =2 s;, and thus s; is innermost terminating since e(s;) C €(s)
implies that all terms in €(s;) are innermost terminating. Also s;; are innermost terminating for
1 < j < k since they are in €(s). Therefore, all proper subterms of s are innermost terminating. Given
the property of ¢, s is innermost R-terminating.

— The erasure rule (f-p-(i1,...,4x)) is in S. This is similar to the previous case.

Thus we have proven the claim that s is innermost R-terminating if ¢ =2°" s and all terms in €(s) are

innermost terminating.

Assume that t is of form f(¢y,...,t,). Since ¢ is not innermost R-terminating and all proper terms
of ¢t are innermost R-terminating, there is an infinite innermost rewriting sequence beginning with the
following form,

i .
i

t=ftry... tn) =" f(t,...,t,) =t =>r t"

where t; ;*R t; and t; are in R-normal form for 1 <4 < n, and t' = lo and ¢ = ro for some [ — r € R.
Note that f cannot be a defined function symbol in R; by Lemma 1 (2). Hence, | — r € R», and this
implies [ >'2%* r. Therefore, we have t >='2 t' 2% " Note that all terms in €(t") are Ro-normal since
all terms in ¢(r) are skeleton Ry-normal. Therefore, all terms in €(#"') are innermost R-terminating by
Lemma 1 (2). This implies that ¢’ is R-innermost terminating by the above proven claim, contradicting
the assumption that t is not innermost R-terminating. Therefore R is innermost terminating. [ ]

For instance, Rpg can be readily proven innermost terminating with Theorem 4. We will present in
Appendix A more realistic examples which can be proven (innermost) terminating with the applications
of Theorem 1, 2 and 4. We regard these theorems as the major contribution of this paper.

We now present a theorem to demonstrate that the erasure technique can also be directly applied to
termination proofs. We first establish a lemma needed later.

Lemma 5. Let > be an ordering on terms. For multisets S, Ty and Ty of terms, if Ty =" Ty, then

SUT, ~@suT,.

Proof The lemma immediately follows from the definition of =% and >—®. [

Theorem 5. Let S be an erasure TRS in which all the rules are not argument-dropping and > be a
reduction ordering which is total on ground terms. Assume R = Ry U Ro such that

— |l| = |r| for all rulesl — r € Ry, and
— 1|\ |r] =™ |r| \ |I| for all rulesl — r € Rs.

Then the termination of R1 implies that of Ra.

13



Proof (sketch) Assume that t; =% t2/(C,l — r,o). It suffices to prove that |t;]| §® [to] if Il = r € Ry
and |t1| >® |t2| ifl - r € Rs.

If | - r € Ry, then |I| = |r|, which implies that |t;| = |t2]. We now assume that [ — r € Ra. Let
|C| = {C1,...,Ck}. Since all rules in S are not argument-dropping, every Cj is a context for 1 < i < k.
Let us define multisets S, Ty, T» of terms as follows.

S = Ulgigk{ci[s] | s € |to| and t € |I| N |r|}
T = Usrn{Cils] | 5 € lto] and ¢ € JI]\ |}
Ty = U <i<x{Cils] | s € [to| and t € |r[ \ [I[}

It can be readily proven with Lemma 4 that T} >"%" T, holds. Therefore, Also we can show |t;| = SUT}
and |t2| = SUT». By Lemma 5, we have |t1] ~© |t2]. ]

Theorem 5 immediately strengthens Theorem 12 (1) in [Zan94], where it is required that f does not occur
in [ for every [ — r € R if the erasure rule (f-p-(1,...,n)) is included in S 2. Applications of Theorem 5
can be found in Appendix A.

4 Related Work

There is a large number of results in the literature concerning termination proofs for various modular
combinations of TRSs. We refer the reader to [Der95] for some clean explanation on many significant
results in this area. The general scenario is to prove the termination of R; U Rs for terminating TRSs
R1 and Rs under some assumption on the relation between R, and Ry. We have found that most of the
results such as the ones mentioned in [Der95], though interesting, make assumptions about R; and R,
which are too strong for the purpose of verifying the termination of hierarchical combination of R, and
Ro, sometimes.

We are most interested in the case of hierarchical combination of R; and R» where the defined
function symbols in Ry are used in R» in an essential way since this closely resembles the structure of a
functional or logic program. This almost forces us to know the semantics of R; to certain extent in order
to prove the termination of the combined system. ET is proposed to address the issue in a (very) restricted
manner. For instance, the use of the projection rule (remove-p-2) in the Ry, example is simply to test
that remove(z,ys) can never return a list of length greater than that of ys. This test succeeds because
the generated erasure of Rpg can be ordered. Let R}, be R, in which the rule remove(z, nil) — nil is
replaced with another rule remove(z,nil) — cons(x,nil), then the test will fail on R, since we cannot
order nil — cons(z,nil). Notice that R, is not terminating. This immediately implies that none of the
results mentioned in [Der95] can give modular termination proofs for Rp,. If they could, they would also
prove this for Riag since Rpg and R;g exhibit the very same characteristics to them.

The dependency pair approach (DPA) [AG97,AG98], which inspired our work on erasure, deserves
special mentioning. We regard ET as a similar idea cast into the general framework of termination
through transformation. The technical explanation is that, to a large extent, erasure amounts to the use
of weak reduction orderings, which are referred as weakly monotonic orderings stable under substitutions
in papers on DPA. In general, DPA seems more powerful than ET but it is also (in our opinion) more
involved. For instance, DPA uses unification to detect circles of dependency pairs and the set of usable
rules, but this is currently unavailable in ET. However, this seems to be a less significant issue so far
in our experiment, especially, after we combine ET with the freezing technique [Xi98]. We also plan to
incorporate similar ideas into ET if the needs appear. We feel that the most significant advantage of ET
over DPA is the availability of nondeterministic erasure rules. Because of the lack of a similar feature,

3 A strengthened version of this theorem is proven in [MOZ96] which does allow the occurrences of f on the

left-hand sides of the rules, but it is nonetheless essentially different from Theorem 5. Please see Example 4 in
Appendix A.
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DPA is often awkward in handling conditional if. For instance, we must order the following rule
remove(z, cons(y,ys)) — if (x = y, remove(x, ys), cons(x, remove(y, ys)))

with a weakly monotone ordering if R, is to be proven terminating using DPA. Suppose that we
use RPOS as the underlying approach to ordering the rule. We cannot assume remove > cons in
the precedence relation since this prevents us from strictly ordering the following generated depen-
dency pair PURGE (cons(x,xs)) > PURGE (remove(x,zs)). If we map if (b, z,y) to x (y), then the rule
if (false,z,y) — y (if (true,z,y) — z) cannot be ordered. As a consequence, the if function often needs
to be “preprocessed” away when DPA is applied because it is difficult to synthesize a weakly monotone
ordering based on RPOS or polynomial interpretations in the presence of if to order the generated de-
pendency pairs. For instance, the following rules are introduced in the technical report version of [AG97]
for handling the purge function example.

remove(z, cons(y,ys)) — ifremove(x =y, x, cons(y, ys))
ifremove(true, x, cons(y,ys)) — remove(x,ys)
ifremove(false, x, cons(y,ys)) — cons(y, remove(z,ys))

Though the argument is that the introduction of these rules is to forbid rewriting terms under if-branches
until the condition is resolved, we feel that this is also a bit unnatural at least since realistic TRSs are
seldom formed in such a manner. Notice that the termination of R is independent of whether we rewrite
terms under if-branches or not. It seems straightforward to make use of the weak reduction ordering »™%*
in DPA for handling if , and this can elegantly resolve the above issue. We will use some concrete examples
to further compare ET or ET plus the freezing technique with DPA in Appendix A.

The use of projection erasure rules bears some resemblance to distribution elimination [Zan94], but
there are also many significant differences. Although it is clearly possible, there seems no attempt in
[Zan94] to construct the ordering =™ from a given weak reduction ordering >, which we regard as a
significant contribution of the paper. Also we mention that the use of an omitting rule (f-o-(1,...,n)) in
case Ar(f) = n casually relates to dummy elimination [Fer96].

5 Conclusion

We have presented a technique named erasure to facilitate the termination and innermost termination
proofs, and this technique is inspired by the dependency pair approach in the literature. The erasure
technique (ET) is simple to apply and effective in practice, and therefore is reasonable to expect that
ET can be combined with other automated approaches to termination proofs for TRS such as freezing
[Xi98]. However, we observe in practice that it is even difficult to scale an approach as simple as RPOS.
This makes us believe that a more promising direction is to apply ET interactively. In this respect, we
have tried ET extensively on various TRSs and the results are encouraging. We present some examples
in Appendix A to substantiate this claim.

In general, we are highly motivated to look for approaches to termination proofs for TRSs which are
simple and effective. We intend to integrate these approaches into an interactive termination prover for
TRSs. The user may be required to interact when applying these approaches but the needed interaction
should not be overwhelming. We view this as promising direction to pursue so as to address the following
dilemma: too much automation can severely hinder the scalability of a termination proof procedure for
TRSs while too little can easily lead to an amount of required interaction which is simply overwhelming
for the user. This should be especially clear to those who have used interactive theorem provers such as
PVS [ORR™96] or Isabelle [Law94] for proving the termination of recursively defined functions.
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A Examples

Ezample 1. We often combine ET with the freezing technique [Xi98] in practice. Let React be the following
TRS [KL&0].

p(s(0)) = 0 fact(0) — s(0)
p(s(s(z))) — s(p(s(z))) fact(s(x)) — s(x) * fact(p(s(z)))

The following R}, is a (p, s, ps, 1)-frozen version of Rgact, and therefore the termination of Riae implies
that of React-

(1) p(s(0)) = (4)  ps(s(@)) = s(ps())
(2) ps(0) — (5) fact(0) = s(0)
(3) pls(s ( ) = S(ps( ) (6) fact(s(x)) — s(x)  fact(ps(x))
The following R{, ., is the S-erasure of Rf, ., for S = {ps-p-1}.
(1) p(s(0)) =0 (4) s(z) = s()
(2) 00 (5" fact(0) = s(0)
(3 p(s(s(x))) = s(x) (6") fact(s(x)) = s(z) * fact(z)

Under the RPO with the precedence fact > *, rules (2') and (4') can be ordered and the rest of the
rules can be strictly ordered. Since the TRS consisting of rules (2) and (4) is obviously terminating, the
termination of R}act follows from Theorem 1. Therefore, Rgact is terminating by a theorem on the freezing
technique.

If we apply DPA to React, the following dependency pair is generated.

FACT (s(z)) > FACT (p(s(z)))

It is unclear how this can be strictly ordered since we cannot project away the argument of p because of
the existence of the rule p(s(s(z))) — s(p(s(x))). If one argues that this example is too contrived, then
the following example exhibits the same characteristics.

Example 2. In the following TRS Riog, h(n) = [n/2] for every natural number n, and log(n) = 1+log, (n)
for n > 0.

h(0) =0 log(0) — 0
h(s(0)) =0 log(s(z)) — s(log(h(s(x))))
h(s(s(z))) = s(h(z))

The last rule is self-embedding, and therefore the termination of this TRS cannot be proven with a
simplification ordering. We form an (h, s, 1, hs)-frozen version R110g of Riog as follows.

(1) h(0) — (5)  hs(s(x)) — s(h(z))

(2) ( (0)) = (6)  log(0) =0

(3) hs(0) — (7) log(s(z)) — s(log(hs(z)))
(4) R(s(s(z))) = ( (z))

We can prove the termination of R110g by forming its S-erasure for & = {h-p-1, hs-p-1}. This then implies
the termination of Rio,g. We omit the details that are straightforward to fill in. Notice that this example
can not handled by DPA for the same reason as explained in the previous example.

In general, we intend to apply various transformations for proving the (innermost) termination of a
TRS R. We generate a chain of TRSs R = R1,Ra2,..., R, such that the (innermost) termination of
Rit1 implies that of R; for 1 < i < n and the (innermost) termination of R,, can be proven with some
basic approach such as RPOS or polynomial interpretations. The problem with DPA is that it generates
a set of dependency pairs rather than a TRS, and therefore it is difficult to be combined with other
transformational approaches.

17



Ezample 3. The following TRS R defines a quicksort function on lists. Let R; consist of all these rules
except the last 2, and R, consist of the last 2 rules. Then R is the hierarchical combination of R; and
Ro.

(1) if (true,z,y) = x

(2) if (false, x,y) =y

(3) 0 <z — true

(4) s(x) <0 — false

() s@)<sy) sr<y

(6) gte(z,[]) =[]

(7) gte(z,y :: ys) = if (v < y,y == gte(x,ys), gte(x, ys))
®) It(2,) > |

9) It(x,y = ys) — if (x <y, lt(x,ys),y : lt(x,ys))
10) [[@Qys —ys

11) (z::2s) Qys — x:: (vs Q ys)

12) quicksort([]) — ]

13) quicksort(x :: xs) — quicksort(lt(z,xzs)) Q [x] Q quicksort(gte(z,xs))

The following is the S-erasure of R for S = {(if-p-(2,3)), (gte-p-2), (It-p-2)}.

(1) {z,y} 2

(2) {z.y} =y

(3" 0 <z — true

4" s(z) <0 — false

(5) s(z) <s(y) >z <y

(6) =1

(7) yys = {y ys,ys}
(8") =1

(9 yys — {ys,y = ys}
10") [[@ys — ys

11") (z::2s) Qys — x :: (vs Q ys)
12") quicksort([]) = []

13") quicksort(x :: xs) — quicksort(xs) Q [z] Q quicksort(zs)

Under the RPO with precedence quicksort = @, < = true, false, all rule erasures in Ry can be ordered
and all rule erasures in Ry can be strictly ordered. By Theorem 4, the innermost termination of R
follows from that of R;. It can be readily proven with a RPO that R, is (innermost) terminating, and
therefore Rqs is innermost terminating. This implies that R is terminating since it is non-overlapping.

A similar example also appears in the technical report version of [AG97], but if is “preprocessed”
away. The termination of that example can be readily proven with Theorem 2.

Example 4. Let R1 be the following TRS.

f(branch((
f(branch(branch(z,y)

)— 0

) = branch(d, £(x))

) = f(branch(z,branch(y, z)))
)= 0
) —= b
) —

f(0
)
%)
9(®

g(branch(z, D)
g(branch(z,branch(y, z))

ranch(), 9())
g(branch(branch(z,y), z))
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The following is the S-erasure of R, for S = {branch-p-(1,2)}.

(1) f@) =0

(2) {£@), f(=)} = {0, f(=)}

(3) {f(2),f(W),f(2)} = {f(2), f(y), f(2)}
(4) g(@) — 0

(5 {9(2),9(0)} — {0,9(2)}

(6") {9(x),9(y),9(2)} = {g9(2),9(v),9(2)}

By Theorem 5, the termination of Ry follows from the termination of Ry = {(3), (6)}. We now construct
a TRS R3 below, which is an (f, branch, 1, foranch)-frozen version of R..

foranch(branch(z,y),z) — foranch(z,branch(y, z))
g(branch(x, branch(y, z))) — g(branch(branch(x,y), z))

The termination of R3 is easily proven with a RPOS, and therefore, R is terminating. We point out that
it would be greatly involved (though possible) if we applied the freezing technique to R, directly.

Notice that Theorem 12 [Zan94] cannot be applied to this example since f has occurrences on the left-
hand sides of the rules. The strengthened version of this theorem in [MOZ96] cannot handle this example,
either.

Ezample 5. The termination of the following TRS oy describes the process of substitution in combinatory
logic, and the proof for the termination of oy in [CHR92] is involved. Some simplified proofs have been
given in [Zan94,Zan95].

(1) AMz)oy = AMzo(l-(yot))) (5) loid—1
(2) (z-y)oz—(zo2) (yoz) (6) lo(z-y)—uw
(3) (zoy)oz—uzo(yoz) (7) to(z-y)—y
(4) idox = x

(1) Az) oy = {A(z o 1), Mz o (y o))} (5) loid—1
(2) {zozyozt— {zozyoz} () {loz,loy}—>a
(3)  (woy)oz—rzo(yes) (7) {tomtoy}l—y
4" idox = x

As shown in [Zan94], all the rule erasures except the second one can be strictly ordered under a total
ordering. By Theorem 5, the termination of oo follows from the termination of the TRS consisting of the
rule (z -y) oz — (zo2)- (yoz), which is obvious. Notice that the distribution elimination technique
[Zan94] cannot be directly applied to this example because of the occurrences of - on the left-hand sides
of some rules. If we replace the last rule in gy with 1 o (z - y) — y - z, then the strategy used in [Zan94]
would no longer work but Theorem 5 could still be applied.

Ezample 6. The following example is adopted from the technical report version of [AG97], where it is
formed as a variation of an algorithm in [?]. The purpose of the function rename(z,y,t) is to replace
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every free occurrence of the variable z in the term ¢ with the variable y.

(1) true Ny =y

(2) false Ny — false

(3) [ =[ - true

(4) (z ::zs) =[] — false

(5) ] = (y :: ys) — false

(6) (z 2 ws) = (y = ys) = (x = y) A (s = ys)

(7) var(ms) =var(ys) = s = ys

(8) var(zs) = apply(s,t) — false

(9) var(zs) = lambda(z, s) — false
(10) apply(s,t) = var(ys) — false
(11) apply(s,t) = apply(u,v) = (s = u) A (t =v)
(12) apply(s,t) = lambda(x,u) — false
(13) lambda(z,s) = var(ys) — false

(14) lambda(z, s) = apply(u,v) — false

(15) lambda(z, s) = lambda(y,t) = (x =y) A (s = t)

(16) if (true, var(xs),var(ys)) — var(xs)

(17) if (false,var(xzs),var(ys)) — var(ys)

(18) rename(var(zs),var(ys),var(zs)) — if (zs = zs,var(ys),var(zs))

(19) rename(z,y,apply(s,t)) — apply(rename(z,y, s), rename(x,y,t))
(20) rename(z,y,lambda(z,t)) — lambda(e, rename(z, y, rename(z, o,t)))

Note that e in rule (20) stands for var([z,y,lambda(z,t)]). Let Ry consist of the first 17 rules and R,
consist of the rest of rules. Then R = R; U Rs is a hierachical combination of R; and R,. Clearly,
R1 can be proven terminating with some RPO. We form the following S-erasure |R| of R for § =
{(A-p-2), (=-0-(1,2)), (var-o-1), (if-0-(1,2,3)), (rename-p-3), (lambda-o-1)}.

~—

y—y
y — false
= — true
= — false
= — false
= 5 =
= 5 =
= — false
= — false
= — false
= 3 =
= — false
= — false
= — false
= 3 =
if — var
if — wvar
var — if
apply(s,t) = apply(s,t)
"y lambda(t) — lambda(t)

S S TS TS 'S X% <
N e N e e e e e N e e N e e N N e

<

LY R TG WN QOO R WN -

It can be readily verified that |R| is Ra-conservative. Under the RPO with the precedence relation
true ~ false ~ = ~ var = if, all the rules can be ordered. Note that rule (2') is ordered because we can
require that false be a constant with the lowest precedence. Let >; denote this RPO. We can then form
an ordering >- with the precedence rename > apply, lambda as described in Definition 7. Then the right
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side of rule (18) is Ra-skeleton normal, and both rules (19) and (20) can be ordered under »». Therefore,
R is terminating by Theorem 3.
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