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ABSTRACT Both relational and object query languages allow nested queries (queries with sub-queries).
Nested queries are typically inefficient to execute in their original form [K82], and are difficult to optimize.
Most existing query unnesting techniques are based on source-to-source, query graph, or calculus
transformations; few are based on algebraic transformations. Algebraic unnesting is desirable for cost-based
algebraic optimization, because it allows such optimizers to be more readily extended with unnesting
capabilities. Also it facilitates more integrated unnesting, transformation, costing, and pruning during
optimization. However, the existing algebraic approaches [CM93, S95] apply to a limited subset of nested
queries. In many cases, they cannot unnest sub-queries that contain collection-valued attributes. In this paper,
we propose a sound and complete rule set and algorithm that unnest a significantly larger range of nested
queries than the existing algebraic approaches do. We demonstrate that Magic Decorrelation, which subsumes
most existing relational unnesting techniques [SPL98], can be implemented algebraically using the proposed
technique.

1. Introduction

Several relational query languages, in particular SQL, allow nested queries (queries containing sub-queries).
Evaluating nested queries using naive nested iteration can be very inefficient [AC75, K82]. Many unnesting
techniques have been proposed to transform nested queries into more efficient forms using relational algebra
or set-oriented operators [K82, GW87, D87, M92, SPL96, L96]. Kim [K82] transformed nested queries into
flat queries that use joins. Ganski and Wong [GW87] discovered two problems in Kim’s algorithm when
handling aggregation on sub-queries. When non-equality predicates appear in sub-queries or the aggregation
is COUNT, Kim’s algorithm can yield incorrect results. Ganski and Wong provided a more general algorithm
that uses outer-joins (instead of joins) to overcome the bugs in Kim’s algorithm. Dayal [D87] unified Kim’s,
and Ganski and Wong’s algorithms based on query-graph transformations. Also using query-graphs,
Muralikrishina [M92] provided an alternative approach to fix the COUNT bug, which can be considered an
extension to Ganski and Wong’s algorithm. Magic Decorrelation [SPL96] decorrelates queries and their sub-
queries using rewriting rules based on the QGM (Query Graph Model) of Starburst [PHH92], where magic
sets [BR91] are employed to minimize the evaluation cost of decorrelated sub-queries. Kim’s, Ganski and
Wong’s, and Dayal’s algorithms are all special cases of Magic Decorrelation [SPL98].

Compared to relational queries, object queries (queries that appear in object-relational and object databases)
have two new features that affect the unnesting process, namely, the occurrence of sub-queries in the Select
clause, and correlation via collection-valued attributes (CVAs). Consider Example 1 below. It contains a sub-
query in the Select clause, and the sub-query is correlated with the outer block via the CVA d.Courses. In
this paper, we base our example queries on an educational record database. The database contains several
types: HighSchool, College, University, Course, Department, Student, and Professor. The semantics of these
types and their attributes should be self-evident from context. Our convention is that collections and type
extents are named in plural form, for instance, Depts. Collection-valued attributes (CVAs) are named with the
first character capitalized. For instance, Faculty is a CVA in Department. Single-valued attributes are
named with lowercase characters, for instance, title and advisor. Note that example queries taken from
other papers will not conform to this schema.
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Example 1 Return the instructors and the textbooks of the courses offered in each department.

    Select (d.name, A: (Select c.instructor, b.title
                             From d.Courses as c, Books as b
                                      Where c.isbn = b.isbn))

    From Depts as d

To unnest object queries, Lin and Ozsoyoglu [LO96, L97] proposed a source-to-source approach that reduces
sub-queries into joins between the type extents of the correlated attributes and the collections mentioned in
the outer block. Wong [W94] and Fegaras [F98] employed monoid-comprehension calculus to transform
nested queries into flat algebraic expressions.

The techniques mentioned above, for both relational and object queries, can be categorized into source-to-
source [K82, GW87, L97], query-graph [D87, M92, SPL96], or calculus [W94, F98] approaches. Source-to-
source approaches are limited by the expressive power of query languages. Because of this limitation, they
cannot unnest certain queries, for instance, those involving nested quantifiers. Source-to-source and calculus
approaches cannot be readily interleaved with other transformations in algebraic optimization. One historical
reason that most existing techniques are not algebraic is that they were developed before the emergence of
rule-based optimizers. Another reason is that unnesting transformations cannot be easily expressed in the
relational algebra or existing object algebras. For algebraic optimizers, non-algebraic unnesting has two
shortcomings. First, adding unnesting functionality into an existing optimizer involves significant work, such
as implementing calculus transformations. Second, an algebraic optimizer needs a separate unnesting phase in
order to process nested queries, while interleaving unnesting and other transformation can often yield
promising plans more quickly, especially for queries involving CVAs. For instance, an optimizer that
performs unnesting between other transformations can achieve efficient expressions earlier than one that
performs unnesting as a preparatory step, as we shall see in Example 5.

We remark here on the importance of finding good plans early in a cost-based algebraic optimizer framework
such as Cascades (the basis for the current Microsoft SQL Server optimizer) [G95]. Unlike bottom-up
optimizers, a top-down optimizer such as Cascades can use the cost of plans found so far to safely prune
partial plans and sub-plans during the search process [SMB98]. The sooner a related low-cost plan is
discovered, the more effective the pruning.

Cluet and Moerkotte [CM93] provided an algebraic unnesting technique for object queries. This technique,
however, requires the existence of the type extents for the CVA elements to handle sub-queries that contain
CVAs. Also the unnested results introduce predicates that contain set membership tests, which are typically
expensive to perform.

Steenhagen [S95] provided a set of algebraic rewriting rules for unnesting object queries, based on an object
algebra enhanced with some new operators, such as nestjoin and markjoin. Unnesting queries with complex
quantifiers is investigated thoroughly. In many cases, nested queries with CVAs cannot be unnested. For
instance, the query in Example 1 cannot be unnested using the rewriting rules provided by Steenhagen,
because no transformation is available to reduce map-like operators in the presence of CVAs. In order for
Steenhagen’s framework to handle nested queries with CVAs, some significant transformation rules, such as
those proposed in this paper, need to be introduced.

2. Algebra
We focus in this paper on the development of a sound and complete rule set and algorithm for unnesting a
significant subset of nested queries. Our algebra is based on existing nested and object algebras [M77, JS82,
V93, LMS93, L97]. In this section, we present the algebraic operators, and denote their semantics. Before
doing so, we introduce some useful notations. Expression L(R) denotes the list of attributes in collection R. In
the definition of an operator, symbol � binds a list of attribute values to a list of variables. A typical use of
this symbol is L(R)�R, which binds the attribute values of the output of expression R to the variables named
with the attribute labels. Symbol • is used to connect successive operators. Expression <s1,…,sn> denotes a
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tuple constructor. Item si could be li:vi, which assigns attribute labeled li with the value of variable vi; si could
also be vi, which assigns attribute labeled vi with the value of variable vi. List s1,…,sn is called projection list.

For two algebraic expressions A and B, A depends on B if A mentions some attributes of B, denoted as A B;

otherwise, A does not depend on B, denoted as A B. Now we turn to define the operators in our algebra.

Scan Rr = {<r: r> | r ∈ R}.

Selection σp • R = {L(R) | L(R) � R, p}, where p is a predicate.

Projection πf • R =  {f | L(R) � R}, where f is a projection list.

Join R p S = {<L(R), L(S)> | L(R) � R, L(S) � S, p}.

Semi-join R p S = {L(R) | L(R) � R, ∃L(S) � S, p}.

Anti-join R p S = {L(R) | L(R) � R, ¬∃L(S) � S, p}.

Outer-join R �p S = (R p S) ∪ {<L(R), L(S):Null> | L(R) � (R p S)},

where L(S):Null is a shorthand for s1:Null, …,sn:Null , assuming L(S) is {s1, …, sn}.

Unnest μA[a] • R  = { <L(R), a: a> | L(R) � R, a ∈ A }, where A ∈ L(R).

Nest Nest is similar to a relational group-by operator, except that the grouped elements can form new CVAs.

    νk1,…,kn
F= g ( f) • R = {<k1, …, kn,, F: g ({f | L(R)�R, ∀i=1…n, ki=ki′, ∃i=1…m, hI′≠Null})> | L(R′) � R′},

where k1,…, kn are the nesting key; h1, …, hm are the attributes mentioned by the projection list f; g is an
aggregation function such as sum. R′ is identical to R but with all the attributes renamed; ki′ and hi′ are the
renamed ki and hi. Unnest and nest are called restructuring operators. They flatten or construct nested data.

D-join R� �S = {<L(R), L(S)> | L(R)�R, L(S)�S, p}, where S R.

Map αA[g(S)] R = { <L(R)��A: g (S)> | L(R) � R}.

The map operator applies algebraic expression S and aggregation function g to every element from R. Note
that map is redundant in our algebra, and can be represented using outer-djoin and nest. However, it is
included to facilitate some transformations, as we shall see in Example 5.

The d-join ( ) operator is the same as join, except that the right-hand join operand (S) depends on the left-
hand one (R). Note that d-join can be reduced to regular join if the right-hand operand does not actually
depend on the left-hand one, and can be reduced to unnest if the right-hand operand is a scan operator on a

CVA. For instance, the expression Deptsd
Trued.Studentss can be reduced to μd.Students[s]•Deptsd.

         Courses Courses
Name

Instructor isbn isbn Title
Name

Instructor isbn
 Instructor Title

Smith 11Smith 11 12 Database CS
White 12 White Database
Campbell 13CS

White 12 14 Algebra MATH
Cooper 14 Cooper Algebra

Campbell 13Campbell 13 11 Compiler MATH
Cooper 14 Campbell Calculus
Smith 11MATH

Cooper 14 13 Calculus CS
White 12 Smith Compiler

Table 1. Depts Table 2. Books                            Table 3. The output of R
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Besides d-join ( ), our algebra also includes semi-djoin( ), anti-djoin( ), and outer-djoin( �). For
instance, using outer-djoin, the query in Example 1 can be expressed as

    πd.name, A • νd
A=c.instructor, b.title R, where R is (Deptsd ��(πc.instructor, b.title • (d.Coursesc� c.isbn=b.isbn Booksb))).

Tables 1 and 2 illustrate the contents of Depts and Books. Table 3 illustrates the corresponding result R, a
collection that contains the department name, the courses offered in the department, the instructor and
textbook for each course.

3. Algebraic Unnesting

D-join was first introduced to represent sub-queries in From clauses [CM93]. We put d-join into a more
important use in representing, transforming and eventually unnesting nested queries. To represent nested
queries, most object and object-relational algebras use map-like operators. Example of such operators are the
extended selection and projection in the nested algebra used in the DASDBS project [JS82], and the apply
operator in the AQUA object algebra [LMS93]. Map-like operators do not support flexible transformations,
because they do not commute with other operators such as join, projection, and selection. We use d-join to
overcome this problem. D-join is higher-ordered, thus is more expressive than relational operators, and
furthermore permits more transformations than map-like operators. The idea of our unnesting approach is to
first represent a query using an expression that consists of d-join, relational, and restructuring operators, then
push down d-joins to the bottom of the expression tree. When the right-hand operand of a d-join becomes a
scan operator, the d-join can be reduced to a join or unnest. Below, we describe the steps taken to unnest a
given expression.

Step One: Normalization

The unnesting process can start with any expression expressible in the algebra. First, the anti-djoin, semi-
djoin, and outer-djoin operators in the expression are rewritten into d-joins using normalization rules, which

are given in Appendix B. Normalization produces expressions that consist of d-join��relational, and
restructuring operators. Such expressions allow extensive transformations. Below are several example
normalization rules. Note that, in the following rules, R and S could be expressions, or scan operators over
base collections or CVAs.

Rule 1 (map elimination) αA [g(S)] R ≡ νL(R)
A=g(L(S)) • ( R �True�S),

where g denotes an aggregation function.

Rule 2 (outer-djoin elimination) R �p S ≡ R p S.

The condition for Rule 2 is that reducing outer-djoin to d-join will not affect the correctness of the succeeding
operators. Such condition can be captured by an inherited property propagated down from the top of an
expression. For instance, in the expression

    σa>0 • νd
 a=count(s) • (Deptsd �s.age>18 d.Studentss),

the outer-djoin ( �) can be safely reduced to d-join ( ), since ruling out the departments with no old
students does not affect the result of the succeeding selection (σ). In case the outer-djoin can not be reduced
by Rule 2, it will be rewritten into d-join and regular outer-join using Rule 3.

Rule 3 (outer-djoin elimination) R �p S ≡ πL(R):L(R′), L(S) • (R′ �L(R′)=L(R) (R p S)),

where R′ is identical to R but with all the attributes renamed. Let L(R) be {r1, …, rn}, and L(R′) be {r1′, …,
rn′}. Then L(R):L(R′) is a shorthand for r1:r1′,…, rn:rn′, and L(R)=L(R) is a shorthand for (r1=r1′)∧…∧(rn=rn′).
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Step Two: Operand Reduction

The second step is to push down the d-join operators systematically using operand reduction rules as well as
join reordering rules [JK84]. The operand reduction rules are listed in Appendix B. Here, we give some
example rules. In the definition of a rule, p(A1, …, Ai) denotes a predicate p over the attributes in collections
A1,…, and Ai. Items p, q, and r represent the predicates before transformation. Items x, y, and z represent the
predicates after transformation; x, y, and z are derived from p, q, and r such that x∧y∧z is equivalent to p∧q∧r.

Rule 4 (right-hand operand reduction) (R p(R,S) S) q(R,S,T) T ≡ R x(R,S,T) (S y(S,T) T), where T R.

Rule 5 (left-hand operand reduction) R p(R,S,T) (S q(S,T) T) ≡ (R x(R,S) S) y(R,S,T) T, where T R.

Rule 6 (both operand reduction)

    (R p(R, S) S) q(R,S,U,V) (U r(U,V) V) ≡ (R x(R,U) U)� y(R,S,U,V) (S z(S,V) V), where U S and V R.

Rules 4, 5, and 6 reduce the number of operators in the operands of d-joins: Rule 4 reduces left-hand
operands; Rule 5 reduces right-hand operands; Rule 6 reduces both operands. Evidently, in order to fire these
rules, join reordering rules have to be first applied to either operand or both operands. Operands are reduced
by pushing down d-join through joins. Other operand reduction rules can push down d-join through various
operators such as unary operators, restructuring operators, semi-joins, anti-joins, and outer-joins.

Step Three: D-join Reduction

When a d-join is pushed down to the bottom of the algebraic tree, its right-hand operand will be a scan
operator. It will be reduced to join or select and unnest operators, using d-join reduction rules, Rule 7. After
all d-joins are reduced, an unnested expression will result.

Rule 7 (d-join reduction)

7.1. R p S ≡ (R p S), where S R.

7.2. R p Aa ≡ σp • μA[a] • R, where A∈L(R).

Example 2 Return student and program pairs; in each pair, the student must have successfully taken more
than five core courses required by the program.

     Select s, p
     From Students as s, Programs as p
     Where 5 < Count (Select c
                             From s.Transcript as t, p.Core as c

        Where (t.title = c.title) and (t.grade <‘F’))

The query is initially represented as (Figure 1a):

    πs,p  • σ5<a  • αa [count ((σ t.grade <‘F’ • s.Transcriptt ) 
t.title=c.title  Corec)] (Studentss 

True Programsp).
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Figure 1. Unnesting Procedure for Example 2.
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Figure 1 illustrates the algebraic tree representation of the unnesting process, where the leaf nodes (S’s)
represent the scan operators over base collections or CVAs. The figure demonstrates how d-joins are pushed
down and eventually reduced. To unnest the expression above, the map operator (α) is first rewritten into

outer-djoin ( �), which is then reduced to d-join ( ) by the normalization rules, as demonstrated by
Figure 1b:

    πs,p • σ5<a • νs,pa=count(t,c) • ((Studentss 
True Programsp) 

True ((σ t.grade <‘F’ • s.Transcriptt ) 
t.title=c.title p.Corec)).

Second, Rule 6 is applied to reduce both operands of the d-join operator, then the left d-join operator ( ) is
pushed down and combined with the selection, as demonstrated by Figures 1c and 1d:

    πs,p  • σ5<a  •  νs,pa=count(t,c) • ((Studentss 
True (σ t.grade <‘F’ • s.Transcriptt ) 

t.title=c.title (Programsp
True p.Corec))

   �πs,p  • σ5<a  •  νs,pa=count(t,c) • (Studentss 
 t.grade <‘F’ s.Transcriptt) 

t.title=c.title (Programsp
True p.Corec)).

Third, Rule 7 is applied to reduce d-joins, as demonstrated by Figure 1e:

    πs,p  • σ5<a  •  νs,pa=count(t,c) • ((σ t.grade <‘F’ • μs.Transcript[t] • Studentss) 
t.title=c.title (μp.Core[c] • Programsp)).

Our unnesting algorithm employs many transformation rules, because the algorithm has to deal with a large
variety of operators. Despite the relatively large rule set, the number of rules applicable to a given pattern or
expression during unnesting is quite limited. Also these rules can be applied in a deterministic manner.
Therefore, the complexity of rule control and the search space is moderate.

Theorem The unnesting rule set and algorithm described above are sound and complete for the nested queries
that are expressible in the algebra defined in Section 2.

Sketch of the proof

The soundness of the rules can be demonstrated with straightforward set-theoretic reasoning. An example
proof is given in Appendix A. The completeness is proved by showing that the unnesting algorithm will
unnest any expression expressible in the algebra. For a given expression, Step One generates a normalized

expression where d-joins ( ) are the only higher-ordered operators.

Step Two reduces the operands of all the d-join operators, such that the only operators left in their right-hand
operands are scan operators. Step Two starts with an expression obtained from Step One. If the expression
contain d-joins, there is at least one d-join operator that does not contain d-joins in its operands. For such an
operator, the operand reduction and join-reordering rules are applied repeatedly. Once join-reordering rules
are applied, at least one operand reduction rule will apply to the d-join, because the operand reduction rules
cover all the possibilities. The right-hand operand of the d-join will be eventually reduced to a scan operator.

Step Three transforms the d-joins with only scan operators in their right-hand operands into join or unnest
operators. Repeating Steps Two and Three will eventually eliminate all the d-joins in a normalized expression
produced by Step One. 

Most nested relational and object queries are expressible in our algebra. Therefore, the proposed unnesting
technique is complete for a rather large subset of nested queries. However, our algebra does not include all the
operators required for processing query languages such as OQL [C97]. Language features such as method
invocation, union, intersection, and multiple collection types are not yet supported. Many of these features can
be handled by adding new operators into the algebra, and have no significant impact on the query unnesting
algorithm presented here.
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4. Evaluation
4.1 Magic Decorrelation as an Application

Magic Decorrelation [SPL96] considers correlated sub-queries as parametric queries, and decorrelates these
sub-queries by joining them with a magic set (the set of values for a parameter). The decorrelation rewriting is
based on query graphs (QGM). Other unnesting techniques such as Kim’s, Ganski and Wong’s, and Dayal’s
are special cases of Magic Decorrelation [SPL98]. Magic Decorrelation is implemented in the optimizer of
IBM’s DB2 Universal Database system. Due to incompatibility with the DB2 optimizer framework, Magic
Decorrelation has to be implemented as an independent rewriting component. Below, we illustrate Magic
Decorrelation using Example 3, an example drawn from the original Magic Decorrelation paper [SPL96].

Example 3 Find young employees who are paid more than the average salary in their department.

     Select *
     From Emps e
     Where  (e.age < 30) and (e.sal > Avg  (Select e1.sal

                                           From Emps e1

                                                                                 Where e1.dept = e.dept))

Using Kim’s (or Cluet and Moerkotte’s) approach, the query will be unnested into

    πe • ((σ e.age<30 • Empe) 
e.sal>a ∧ e1.dept=e.dept (νe1.dept

a=avg(e1.sal)  • Empe1)).           (3.1)

Observing that the sub-expression (νe1.dept
a=avg(e1.sal) • Empe1) may compute average salary for departments that

do not even have young employees, the Magic Decorrelation approach will unnest the query into a more
efficient form:

   πe • ((σ e.age<30 • Empe) 
e.sal>a∧e.dept=e1.dept (νe1.dept

a=avg(e1.sal)  • (Empe1 
e1.dept=e.dept (πe.dept • σe.age<30 • Empe)))).       (3.2)

The result of the sub-expression (πe.dept • σe.age<30 • Empe) is the magic set [BR91] used for decorrelation,
representing the set of departments with young employees. The advantage of Expression (3.2) is that it
computes the average salary for a department only when necessary. The fewer departments that have young
employees, the more efficient Expression (3.2) is compared to Expression (3.1).

We observe that Magic Decorrelation is an application of our unnesting approach. Implementing Magic
Decorrelation in an algebraic fashion, rather than as a separate module, will allow it to participate in extensive
costing and search space exploration in a cost-based algebraic optimizer. To realize Magic Decorrelation, we
introduce a new transformation rule called the magic rule:

Rule 8 (magic) R p S ≡ πL(R):L(R′), L(S) • (R′ a′=a ((πa • R) p S)),

where a is the attribute via which S depends on R; R′ is identical to R but with all the attributes renamed; a′ is
the renamed a. This rule generates the magic-set (πa • R). Further transformations will relocate the magic-set
to the most beneficial place. Consider Example 3. The query is initially represented as

   πe • ((σ e.age<30 • Empe) 
e.sal>a (νe1.dept

a=avg(e1.sal)  • σ e1.dept=e.dept • Empe1)).

Applying the magic rule will give

    πe • πe:e′ •
        ((σ e′.age<30 • Empe′) 

e′.dept=e.dept ((π e.dept • σ e.age<30 • Empe)�
e.sal>a (νe1.dept

a=avg(e1.sal)  • σ e1.dept=e.dept • Empe1))).

Combine the two projection operators, and reducing the right-hand operand of the d-join yields

    πe:e′ • (σ e′.age<30 • Empe′) 
e′.dept=e1.dept (νe.dept, e1.dept

a=avg(e1.sal)  • ((π e.dept • σ e.age<30 • Empe)�
e.sal>a ∧e1.dept=e.dept Empe1)).

Reducing the d-join operator gives an expression that is essentially Expression (3.2).
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4.2 Comparison to Other Unnesting Techniques

We contrast our unnesting approach with the existing ones in two aspects. Table 4 compares the range of
queries that our approach and the other two algebraic approaches can handle. Table 5 and 6 indicates the
number of transformation steps that our approach and other approaches take to derive the same unnested
expressions.

In Table 4, WMS represents our approach; CM represents Cluet and Moerkotte’s approach; Steen represents
Steenhagen’s approach. Four types of queries are considered: Types J, JA, J-CVA, and JA-CVA. Types J and
JA [CM93] are nested queries that have an inner block depending on the outer block. In Type J, the inner
block returns a set. In Type JA, the inner block returns a single element. Type J-CVA (Type JA-CVA) is the
same as Type J (Type JA) except that the inner block mentions some CVAs of the collections that belong to
the outer block. For Types J-CVA and JA-CVA, as mentioned in Section 1, Cluet and Moerkotte’s approach
cannot unnest queries of both types, when appropriate type extents are not available. Steenhagen’s approach
cannot handle these types either, for lack of appropriate transformation rules.

WMS CM Steen WMS Magic WMS Fegaras

J Yes Yes Yes Example 3 4 9 Example 1 3 3

JA Yes Yes Yes Query (1) 7 17 Example 2 3 5

J-CVA Yes No No Query (2) 4 9 Example 3 3 3

JA-CVA Yes No No Query (3) 7 10 Example 4 5 8

Table 4. Contrast the algebraic
unnesting techniques

Table 5. Our technique vs.
Magic Decorrelation

Table 6. Our technique vs.
Fegaras’s

Table 5 demonstrates the number of transformation steps that our approach and Magic Decorrelation take to
unnest a query. Example 3 is the previous example. Queries (1), (2) and (3) are drawn from the original paper
on Magic Decorrelation [SPL96]. In general, Magic Decorrelation takes more transformation steps than our
approach, especially when the inner blocks have aggregations. Each aggregation block in a QGM graph
requires at least three transformation steps to decorrelate, while in algebraic unnesting, a nest operator can be
decorrelated with one transformation (pushing down d-join through nest).

Table 6 contrasts the number of transformation steps that our approach and Fegaras’s approach take to derive
the same unnested expressions. The first three queries are from the previous examples. The fourth one is from
Example 4 below. The two approaches yield the same unnested results for some queries, for instance,
Example 1 and 3. However, the unnested results could be different, for instance, for queries in Examples 2
and 4. We notice that our approach often yields more efficient expressions, especially, for queries that contain
multiple CVAs in the sub-queries. Therefore, to derive the same efficient unnested expressions for such
queries, Fegaras’s approach requires more steps. We illustrate using Example 4.

Example 4 For each department, find the professors who are not advising old students.

    Select (d, F: (Select f
                        From d.Faculty as f

            Where not exists s in d.Students: (s.advisor=f.name) and (s.age>30)))
    From Depts as d

Fegaras’s algorithm takes five steps to unnest this query into

    πd,F  • Γd
 F=∪/k=False • Γ k=∨/ (s.advisor=f.name ∧ s.age>30) • μd.Students[s] • μd.Faculty[f] • Deptsd,                                  (4.1)
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where operator Γ, defined in Fegaras’s original paper [F98] is a generalized relational grouping operator that
allows comprehension accumulators such as disjunction (∧), and set union (∪) to be applied to grouped
elements. Our unnesting algorithm takes five steps to unnest the query into an different expression

    πd,F  • νd
F=f • ((μd.Faculty[f] • Deptsd) 

d=d′ ∧ f.name=s.advisor  (σs.age>30 • μd′.Students[s] • Deptsd′)).                           (4.2)

Expression (4.2) is likely to be more efficient than (4.1), due to smaller intermediate results. It would take

Fegaras’s approach three steps to rewrite (4.2) into (4.1): transform Deptsd into Deptsd  Deptsd′; push down

the two unnest operators; combine Γ and �into� �

4.3 Transformation Advantage

A particular advantage of algebraic unnesting is to allow the unnesting rules to be applied among other
transformations during algebraic optimization. Sophisticated techniques such as region-based optimization
[AMP93, MDZ93, ONP95] can utilize this capability to search optimal expressions more effectively. We use
Example 5 to illustrate that a simple strategy, performing unnesting between other transformations, can help
generate good expressions earlier than performing unnesting as a preparatory step.

Example 5 The following query returns triples of a high school, a college, and a university, where the high
school has graduates who entered the college, and the college has graduates who entered the university.

Select s, c, u
From Schools as s, Colleges as c, Universities as u
   Select *  Select *

             Where Exists      From s.Graduates as g1,    and Exists  From c.Graduates as g2,
                                                   c.Students as s1            u.Students as s2

                 Where g1.ssn = s1.ssn  Where g2.ssn = s2.ssn

Using our algebra, this query is represented as
    (Schoolss �Collegesc  Universitiesu)�  (s.Graduatesg1 

g1.ssn=s1.ssn c.Studentss1)

��� ����������  (c.Graduatesg2 
g2.ssn=s2.ssn u.Studentss2).                      (5.1)

Before our unnesting transformation is applied, the two semi-djoins could be reordered using the
communitivity rule (R S) T≡(R T) S:

    (Schoolss �Collegesc  Universitiesu)  g2.ssn=s2.ssn (c.Graduatesg2  u.Studentss2)
g1.ssn=s1.ssn (s.Graduatesg1 c.Studentss1).           (5.2)

The purpose of this transformation is to push down the more restrictive semi-djoin. The query can then be
unnested using the proposed unnesting algorithm into:
    πh,c,s • ((μc.Students[s1] • ((μc.Graduates[g2] • Collegesc)

g2.ssn=s2.ssn (μu.Students[s2] • Universitiesu)))
g1.ssn=s1.ssn �μs.Graduates[g1] • Schoolss)).           (5.3)

Expression (5.3) is optimal, assuming that, in the original expression, the second semi-djoin is more
restrictive than the first one. Without interleaving unnesting with other transformations, a traditional
optimizer will probably first unnest [F98] the query into

    πh,c,s • σg2.ssn = s2.ssn • μc.Graduates[g2] • μu.Students[s2] •�σg1.ssn = s1.ssn • μc.Students[s1] • μs.Graduates[g1] •
                                                                                       (Schoolss �Collegesc  Universitiesu),          (5.4)

then perform further transformations and planning. The preferred expression (5.3) can be derived eventually,
but with much more effort. Here is a possible transformation process: all the unnest (μ) operators are pushed
down to the bottom of the expression tree; both selections are pushed down and merged into joins; joins are
reordered; the unnest operator, μc.Students[s1], is pulled up.
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The example suggests that, to derive the same unnested expressions for a given nested query, an optimizer
that does not interleave unnesting and other transformations may need more steps than one that does.

5. Conclusion

For a cost-based algebraic optimizer, algebraic unnesting techniques have several advantages. First, adding
unnesting capacity to the optimizer can be easily achieved by adding some unnesting rules. Second,
interleaving unnesting and other transformations often helps generate good expressions early. Since a cost-
based optimizer relies on the costs of available expressions to prune expensive expressions, generating good
expressions earlier will make the optimization more effective. However, most existing unnesting techniques
[K82, GW87, D87, M92, L96, SPL96, F98] are not algebraic. In general, the existing algebraic approaches
[CM93, S95] cannot handle nested queries with collection-valued attributes. To overcome this problem, we
provide a sound and complete rule set and algorithm that unnest a significantly larger subset of object queries
than the existing algebraic approaches do. In addition, we show that Magic Decorrelation, a query graph-
based technique that generalizes many other unnesting techniques, can be realized algebraically with the
proposed technique. Hence, our technique subsumes existing relational unnesting techniques.

One might wonder why there is no algebraic technique for relational queries, since our technique can handle
them. The answer is that our technique uses non-relational (higher-ordered) operators to unnest relational
expressions – it is not expressible using just relational operators. Hence, the proposed technique is also
interesting to plain relational systems.

Currently, we are implementing unnesting as part of a cost-based algebraic optimizer for CVA queries, in the
Columbia optimizer framework [SMB98]. In the future, we will investigate the interaction between unnesting
and particular search strategies. For instance, in the Cascade optimization framework [G95], upon which the
Columbia framework is based, the “promise” property of a transformation rule guides the optimizer to choose
the best rule to fire when several rules are applicable to a given pattern. It would be interesting to see how the
“promise” mechanism works for nested object query optimization. Note that two unnesting rules can have
different promises. For instance, Rule 6 (Section 3) should be assigned higher promise than Rule 5, because it
reduces the operands more aggressively (reduces both operands). Eventually, we will develop and validate
experimentally a search engine powered by seamless integration of unnesting and cost-based optimization.
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Appendix A. Correctness of the Unnesting Rules

The correctness of the unnesting rules is proved using set theoretic reasoning. For illustration, we sketch the
proof for Rule 3 of Section 3 below.

πL(R):L(R′), L(S)   • (R′ � L(R′)=L(R) (R p S))

≡ πL(R):L(R′), L(S)  • (R′ L(R′)=L(R) (R p S)) ∪
   πL(R):L(R′), L(S)  • {<L(R′), L(R): Null, L(S): Null> | L(R′) L�(R′ L(R′)=L(R) (R p S))}

≡ πL(R):L(R′), L(S)  • {<L(R′),�L(R),�L(S)>

                                     | L(R′)�R′, (L(R), L(S))�{ <(L(R), L(S)� | L(R)�R, L(S)�S, p}, L(R′)=L(R)}  ∪
   π L(R):L(R′), L(S) • {<L(R′), L(R): Null, L(S): Null>
                                     | L(R′)�R′, ¬∃(L(R), L(S))�{ <L(R), L(S)> | L(R)�R, L(S)�S, p}, L(R′) = L(R)}

≡ {<�L(R): L(R′),�L(S)> | L(R′)� R′, L(R)�R, L(S)�S, p, L(R′) = L(R) } ∪
   {� L(R): L(R′),�L(S): Null>  | L(R′)� R′, L(R)�R, ¬∃L(S)�{ L(S) |L(S)�S, p}, L(R′) = L(R)}

≡ {<L(R),�L(S)> | L(R)� R, L(S)�S, p} ∪ {{� L(R),�L(S): Null> | L(R)�R, ¬∃L(S)�S, p}

≡ R �p S.
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Appendix B. Unnesting Transformation Rules

There are three kinds of transformation rules involved in query unnesting: the normalization rules, the
operand reduction rules, and the d-join reduction rules. Note that the appendix includes the rules appear in
Section 3 and 4. However, the rule numbers assigned here are irrelevant to those in Section 3 and 4.

B.1. The Normalization Rules

Rule 1 (map elimination) αA [ g(S) ] R ≡ νA=g(L(S))
L(R) • ( R �True�S).

Rule 2 (semi-djoin elimination) R p S ≡ πL(R) • (R p S).

Rule 3 (anti-djoin elimination) R p S ≡ πL(R):L(R′) • (R′ L(R′)=L(R) • (R p S)).

Rule 4 (outer-djoin elimination) 

    4.1. R �p S ≡ R p S, where S R.

    4.2. R �p S ≡ πL(R):L(R′), L(S) • (R′ �L(R′)=L(R) (R p S)).

B.2. The Operand Reduction Rules

Rule 5 (d-join through join)

    5.1. (R p(R,S) S) q(R,S,T) T ≡ R x(R,S,T) (S y(S,T) T), where T R.

    5.2. R p(R,S,T) (S q(S,T) T) ≡ (R x(R,S) S) y(R,S,T) T, where T R.

    5.3. R p(R,S,T) (S q(S,T) T) ≡ (R x(R,S) S) y(R,S,T) T, where S R and T R.,

    5.4. (R p(R, S) S) q(R,S,U,V) (U r(U,V) V) ≡ (R x(R,U) U)� y(R,S,U,V) (S z(S,V) V), where U S and V R.

Rule 6 (d-join through semi-join)

    6.1. R p (S q T) ≡ (R p S) q T, where T R.

    6.2. R p(R,S,T) (S q(R,S,T) T) ≡ (R x(R,S) S) y(R,S,T′)∧(L(R)=L(R′)) (R′ z(R′,T′) T′).

    6.3. (R p S)� q T ≡ (R q T) q S.

In Rule 6.2, R′ is identical to R but with all the attributes renamed; T′ is identical T except that the attributes of
R that appear in T are renamed according to the change made in R′.
Rule 7 (d-join through anti-join) The rules for pushing d-join down through anti-join are similar to Rule 6.

Rule 8 (d-join through outer-join)

    8.1. R p (S �q T) ≡ (R p S) �q T, where T R.

    8.2. R p(R,S,T) (S �q(R,S,T) T) ≡ πL(R),L(S), L(T):L(T′) • ((R x(R,S) S) �y(R,S,T′)∧(L(R)=L(R′)) (R′ z(R′,T′) T′)).

In Rule 8.2, R′ is identical to R but with all the attributes renamed; T′ is identical T except that the attributes of
R that appear in T are renamed according to the change made in R′.
Rule 9 (d-join through unary operators)

    9.1. R p (πf • S) ≡ πL(R), f • (R p S).

    9.2. (πf • R) p S ≡ πf, L(s) • (R p S).

    9.3. R p (σq • S) ≡ R p∧q S.
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    9.4. (σp • R) q S ≡ R  p∧q S.

Rule 10 (d-join through restructuring operators) The following rules push down d-join through the
restructuring operator in its right-hand operand. The rules for pushing down d-join to its left-hand operand
can be similarly derived.

    10.1. R p(R,S) (μA[a] • S) ≡ μA[a] • (R p(R,S) S).

    10.2. R p(R,S,A) (μA[a] • S) ≡ σx(R,S,A) • μA[a] • (R y(R,S) S).

    10.3. R p(R,S) (νa
A • S) ≡ νa,L(R)

A • (R p(R,S) S).

    10.4. R p(R,S,A) (νa
A • S) ≡ σx(R,S,A) • νa,L(R)

A • (R y(R,S) S).

B.3. The D-join Reduction Rules

Rule 11 (d-join reduction)

    11.1. R p S ≡ R p S, where S R;

    11.2. R p Aa ≡ σp • μA[a] • R, where A∈L(R).


