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Abstract� MetaML is a programming language that provides a good formalism for expressing
multi�stage computation� De�ning a reduction semantics for MetaML has been an illusive
challenge� This paper presents a sound and strikingly simple reduction semantics for CBN
MetaML that avoids the complexities and pitfalls of the previously proposed notion of 	level�
annotated terms
� The novelty of this reduction semantics is that it admits computation on
object �or 	future stage
� programs and is therefore 	non�trivial
 in the sense of Wand� The
reduction semantics also provides a formal basis for equational reasoning about untyped CBN
MetaML programs� and formal justi�cation for some optimisations considered desirable in
MetaML implementations�
We begin by presenting a �ne big�step semantics for CBN MetaML that re�nes previous
presentations of this semantics� This re�nement is crucial for the soundness of our reductions�
We de�ne a simple notion of observational equivalence for open� untyped terms based on
the �ne big�step semantics� where we only observe termination in level � contexts� Using
standard techniques� we show that this reduction semantics is con�uent and that it preserveses
observational equivalence�
We point out that� even at the level of untyped terms� adding deterministic intensional analysis
to MetaML can lead to incoherence�

� Introduction

Binding�time analysis �BTA� ���� ��	 can be viewed as a program transformation which� given a
program and information about when the inputs to this program will become available� generates
a multi�stage program
 A multi�stage program is one involving more than one distinct stage of exe�
cuting
 The word �multi�stage� itself seems to have been rst introduced by Jones et al� ���	
 Multi�
stage programming languages provide programmers with a formalism to express staging explicitly

MetaML ���� ��	 is a multi�stage� SML�like programming language that provides three high�level
staging constructs called Brackets h i� Escape � � and Run run 
 Intuitively� these three constructs
are analogous to LISP�s back�quote� comma� and eval� that allow constructing� combining� and exe�
cuting object�programs�
 For example� we can construct a representation of a program in MetaML

Let us consider a simple MetaML session
 We type in�
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Council for Engineering Sciences �TFR�� grant number �����������

� Two signi�cant di�erences between LISP�s and MetaML�s constructs are worth pointing out� First� the
former work on lists� and the latter work only on parse trees for programs� Second� MetaML avoids the
need for the use of a newname or gensym constructs to provide fresh names for bound variables�



�j val p � hfn x � fn y � �x����yi�

and the �CBV� MetaML implementation prints�

val p � hfn x � fn y � �x����yi
	 hint � int � inti


If the program p is fed to a partial evaluator� it must rst go through BTA
 At an implementation
level� BTA can be viewed as a source�to�source transformation
 Typically� BTA is given a specication
of which inputs are static and which inputs are dynamic
 For simplicity� let us assume that we are
only interested in programs that take two curried arguments� and the rst one is static� and the
second one is dynamic
 Although our MetaML implementation does not provide such a function
today� one can� in principle� add a constant BTA to MetaML with the following type��

�j BTA�
val BTA � �fn�

	 h�a � �b � �ci � h �a � h �b � �cii


Then� to perform BTA� we apply this constant to the source program�

�j val ap � BTA p�
val ap � hfn x � hfn y � ��lift �x�����yii

	 hint � hint � intii

yielding the �annotated program�
 The lift function is a secondary annotation that takes a ground
value and returns a code fragment containing that value ���	


The next step is specialization
 It involves running the program on the input term�

�j val p� � �run ap� ��
val p� � hfn y � �yi

	 hint � inti

yielding� in turn� the specialized program


In the illustration above� we have taken the view that the output of BTA is simply a two�stage
annotated program
 This view was rst suggested in the works of Nielson and Nielson ���	 and by
Gomard and Jones ��	� when two�level languages were introduced
 Gl�uck et al� ��� �� �� �	 generalized
two�stage o��line partial evaluation to multi�level o��line partial evaluation and introduced multi�
level languages


��� Contributions

In previous work� we have presented a big�step semantics for untyped MetaML ���� ��	
 A big�step
semantics is a partial function from expressions to values �or �answers��
 Another important kind
of semantics is the reduction semantics
 A reduction semantics is a set of directed rewrite rules

Intuitively� the rewrite rules capture the �notions of reduction� in MetaML
 In our experience� it
has also been the case that studying such a semantics has helped us in developing the rst type
system for MetaML ���	
 It is reasonable to expect that having a simple reduction semantics for
a given language can be helpful in developing type systems for that language
 For example� an
important property of a type system is that typability should remain invariant under reductions
��Subject Reduction��
 A simple reduction semantics helps language designers quickly eliminate
inappropriate type systems� hopefully leading to a better understanding of the design space for such
type systems


A previous attempt was also made to develope a reduction semantics for untyped MetaML ���	
 This
attempt had two shortcomings�

� BTA cannot be expressed using Brackets� Escape� and Run� In particular� an analysis such as BTA
requires intensional analysis� While will argue in this paper that adding intensional analysis to MetaML
is non�trivial �see Section ��� this does not mean that adding a BTA constant would be problematic�



� It used a notion of �level�annotated terms� where each term carried a natural number to indicate
its level
 Working with level annotations requires introducing auxilary notions of �promotion��
�demotion�� and the use of a non�standard notion of substitution� all in order to correctly
maintain the level�annotations during the execution of a program


� In certain instances� the left hand side of a reduction is dened� but the right hand side is not

Thus subtle �aw was partly a result of the fact that non�standard notion of substitution needed
to maintain level annotations was not a total function


In this paper� we show that these problems can be completely avoided� and that untyped CBN
MetaML has a sound reduction semantics
 We present

� A simple reduction semantics for CBN MetaML� The semantics works on terms that
have no explicit level annotations� and uses the standard notion of substitution
 Instead� we
show that it is su�cient to structure the sets of expressions and values as expressions families


� Con�uence for the reduction semantics� This result is an indicator of the well�behavedness
of our notions of reduction
 It states that the result of any two �possibly di�erent� sequences of
reduction can always be reduced to a common term


� Soundness of the reduction semantics� This result has two parts
 First� all what can be
achieved by the big�step semantics� can be achieved by the reductions
 Second� applying the
reductions to any sub�term of a program does not change the termination behavior of the big�
step semantics
 This result establishes that reductions semantics and the big�step semantics are
�essentially equivalent� formulations of the same language


��� Organization

Section � presents �both the coarse and� the ne big�step semantics for CBN ��M
 Section � ex�
plains the problem of nding an appropriate reduction semantics for MetaML
 Section � presents a
reduction semantics for a subset of MetaML that we call ��U�
 Section � gives a summary of our
technical results� namely� con�uence and soundness


Appendix A presents the details of the proofs reported in the paper� and Appendix B gives an
informal introduction to the notions of big�step and reduction semantics in the context of a CBN
lambda calculus


� Big�Step Semantics for CBN ��M

Because �evaluation under lambda� is explicit in the big�step semantics of MetaML� it is a good�
instructive model of multi�stage computation
 This semantics also illustrates how MetaML violates
one of the basic assumptions of many works on programming language semantics� namely� that we
are dealing only with closed terms
 Furthermore� by simply using the standard notion of substitution
�see for example Barendregt ��	�� this semantics captures the essence of static scoping� and there is
no need for using �additional� machinery for performing renaming at run�time


The raw terms of ��M are�

e � E �� x j �x�e j e e j hei j �e j run e�

The CBN big�step semantics for ��M is specied by a partial function
n
�� � En � En
 We proceed

by reviewing the coarse function
n
�� � E � E� and then show that we can restrict the type of this

function to arrive at the �ne function
n
�� � En � En


Figure � summarizes the coarse CBN big�step semantics for ��M ���	
 Taking n to be �� we can
see that the rst two rules correspond to the rules of a CBN lambda calculus
 The rule for Run at

� The letter U is simply the last in the sequence R� S� T� U� Our �rst attempt at a calculus was called ��R�
where R stood for 	Run
 ����� We call this reduction semantics ��U to avoid asserting a priori that it is
equivalent to the big�step semantics ���M�� The letter M stood for 	MetaML
�
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Fig� �� The Coarse CBN Big�Step Semantics for ��M

level � says that an expression is Run by rst evaluating it to get a Bracketed expression� and then
evaluating the Bracketed expression
 The rule for Brackets at level � says that they are evaluated
by rebuilding the expression they surround at level �� Rebuilding� or �evaluating at levels higher
than ��� is intended to eliminate level � Escapes
 Rebuilding is performed by traversing expressions
while correctly keeping track of level
 Thus rebuilding simply traverses a term until a level � Escape
is encountered� at which point normal �level �� evaluation function is invoked in the Esc rule
 The
Escaped expression must yield a Bracketed expression� and then the expression itself is returned


Next we establish some basic but important properties of the coarse big�step semantics


��� Fine Big�Step Semantics

To dene the ne big�step semantics� we employ a ner classication of expressions
 For example�
the evaluation of a term �e does not interest us because Escapes should not occur at top level
 Thus�
we introduce expression families��

e� � E� �� x j �x�e� j e� e� j he�i j run e�

en� � En� �� x j �x�en� j en� en� j hen��i j �en j run en��

Lemma � �Basic Properties of Expressions Families	� �n � N�

�� En � E
�� En � En�

�� �e� � En� e� � E�� e��x �� e�	 � En

Values are a subset of terms that denote the results of computations
 Again� because of the relative
nature of Brackets and Escapes� we must use expression families for values� indexed by the level of
the term� rather than just one set
 Thus� values are dened as follows�

v� � V � �� �x�e� j hv�i

v� � V � �� x j v� v� j �x�v� j hv�i j run v�

vn�� � V n�� �� x j vn�� vn�� j �x�vn�� j hvn���i j �vn� j run vn��

� This presentation of the sets of expressions and values is 	essentially BNF
 in that it de�nes a set of
terms by simple induction� Technically� this set is de�ned by induction on the height of a set membership
judgment e � En de�ned by induction over e� This notation is especially convenient for de�ning the sets
of workable and stuck terms presented in the Appendix�



Intuitively� level � values are what we get as a result of evaluating a term at level �� and level n�
values are what we get from rebuilding a term at level n�
 Thus� the set of values has three important
properties� First� a value at level � can be a lambda�abstraction or a Bracketed value� re�ecting the
fact that lambda�abstractions and terms representing code are both considered acceptable results
from a computation
 Second� values at level n� can contain applications such as h��y�y� ��x�x�i�
re�ecting the fact that computations at these levels can be deferred
 Finally� there are no level �
Escapes in level � values� re�ecting the fact that having such an Escape in a term would mean that
evaluating the term has not yet been completed
 Evaluation is not complete� for example� in terms
like h��f x�i


The following lemma establishes a simple yet important property of ��M�

Lemma � �Strong Value Re�ection for Untyped Terms	� �n � N�

V n� � En�

The lemma has two parts� One saying that every element of in a set of �code� values is also an element
of a set of expressions� and the other� saying the converse
 Both of these properties can be interpreted
as positive qualities of a multi�level language
 The rst part tells us that every object�program �value�
can be viewed as a meta�program� and the second part tells us that every meta�program can viewed
as an object�program �value�
 Having established Strong Value Re�ection� it is easy to verify that

if the big�step semantics at level n �e
n
�� v� returns an expression� this expression is a value v � V n

at level n �

Lemma 
 �Basic Properties of Big�Step Semantics	� �n � N�

�� V n � V n��

�� �e� e� � En� e
n
�� e� �� e� � V n�

Noting also that V � � E� and V n� � En � En�� the previous lemma implies level�preservation� in
the sense that� �n � N��e� � En��e� � E�

e�
n
�� e� �� e� � En�

Remark � 	Fine Big�Step Function
� In the rest of the paper� we will only be concerned with the

ne big�step semantic function
n
�� � En � En for ��M
 We will also refer to it simply as the

big�step semantics


The Closedness Assumption Violated The semantics is standard in its structure� but note
it has the unusual feature that it manipulates open terms
 In particular� rebuilding goes �under
lambda� in the rule Lam�� and Escape at level � re�invokes evaluation during rebuilding
 Thus�

even though a closed term such as h�x��hxii evaluates to h�x�xi �that is h�x��hxii
�
�� h�x�xi� the

derivation of this evaluation involves the sub�derivation hxi
�
�� hxi which itself is the evaluation of

the open term hxi
 While it is common that such a semantics is restricted a posteriori to closed
terms �for example� in Plotkin ���	�� there is nothing that necessitates this restriction


� The Problem of MetaML Reductions

A direct attempt at extending the set of expressions and values of basic CBN lambda calculus to
incorporate the staging constructs of MetaML yields the following set of expressions and values�

e � E �� x j �x�e j e e j hei j �e j run e�

and we add the following two rules to the � rule�

�hei ��E e

run hei ��R e�

There are several reasons why this naive approach is unsatisfactory
 In the rest of the paper� we will
explain the problems with this approach� and explore the space of possible improvements to this
semantics





�� Intensional Analysis Con�icts with � on Raw MetaML Terms

Our rst observation is that there is a con�ict between the � rule and supporting intensional analysis

Support for intensional analysis means adding constructs to MetaML that would allow a program
to inspect a piece of code� and possibly change its execution based on either the structure or content
of that piece of code
 This con�ict is an example of a high�level insight that resulted from studying
the formal semantics of MetaML
 In particular� MetaML was developed as a meta�programming
language� and while multi�stage programming does not need to concern itself with how the code
type is represented� the long�term goals of the MetaML project have at one time included support
for intensional analysis
 The idea is that intensional analysis could be used� for example� to allow
programers to write their own optimizers for code


It turns out that such intensional analysis is in direct contention with allowing the ��rule on object�
code �that is� at levels higher than ��
 To illustrate the interaction between the � rule and intensional
analysis� assume that we have a minimal extension to core MetaML that tests a piece of code to see
if it is an application
 This extension can be achieved using a simple hypothetical construct with the
following semantics�

�j IsApp h�fn x � x� �fn y � y�i�
val it � true 	 bool


Allowing � on object�code then means that h�fn x � x� �fn y � y�i can be replaced by hfn y
� yi
 Such a reduction could be performed by an optimizing compiler� and could be justiable�
because it eliminates a function call in the object�program
 But such an �optimization� would have
a devastating e�ect on the semantics of MetaML
 In particular� it would also allow our language to
behave as follows�

�j IsApp h�fn x � x� �fn y � y�i�
val it � false 	 bool


When the reduction is performed� the argument to IsApp is no longer an application� but simply
the lambda term hfn y � yi
 In other words� allowing both intensional analysis and object�program
optimization implies that we can get the result false just as well as we can get the result true
 This
example illustrates a problem of coherence of MetaML�s semantics with the presence of � reduction
at higher levels� and code inspection
 While this issue is what rst drew our attention to the care
needed in specifying what equalities should hold in MetaML� there are more subtle concerns that
are of direct relevance to multi�stage programming� even in the absence of intensional analysis



�� Level�Annotated MetaML Terms and Expression Families

In order to control the applicability of the � at various levels� we developed the notion of level�
annotated terms
 Level�annotated terms carry around a natural number at the leaves to re�ect the
level of the term
 Such terms keep track of meta�level information �the level of a sub�term� in the
terms themselves� so as to give us ner control over where di�erent reductions are applicable


Level�annotated terms induce an innite family of sets E�� E�� E�� ��� where each annotated term
lives
 The family of level�annotated expressions and values is dened as follows�

e� � E� �� x� j �x�e� j e�e� j he�i j run e�

en� � En� �� xn� j �x�en� j en�en� j hen��i j �en j run en�

v� � V � �� �x�e� j hv�i
v� � V � �� x� j �x�v� j v�v� j hv�i j run v�

vn�� � V n�� �� xn�� j �x�vn�� j vn��vn�� j �x�vn�� j hvn���i j �vn� j run vn���

The key di�erence between level�annotated terms and raw terms is in the �leaves�� namely� the vari�
ables�
 In level�annotated terms� variables explicitly carry around a natural number that represents

� The original de�nition of level�annotated terms ���� had every construct carrying level annotations� There
is a one�to�one corresponds between that de�nition and the simpler de�nition we use here�



their level
 For all other constructs� we can simply infer the level of the whole term by looking at
the sub�term
 For Brackets and Escapes� the obvious �correction� to levels is performed


Note that whenever we �go inside� a Bracket or an Escape� the index of the expression set is changed
in accordance with the way the level changes when we �go inside� a Bracket or an Escape



�
 Escapes Con�ict with � on Annotated MetaML terms

There is a problematic interaction between the � rule at higher levels and Escape
 In particular� �
does not preserve the syntactic categories of level annotated terms
 Consider the following term�

h�fn x � �x�� �h��ii


The level of the whole term is �
 If we allow the � rule at higher levels� this term can be reduced to�

h��h��ii


This result contains two nested Escapes
 Thus� the level of the whole term can no longer be �

The outer Escape corresponds to the Bracket� but what about the inner Escape� Originally� it
corresponded to the same Bracket� but after the � reduction� what we get is an expression that
cannot be read in the same manner as the original term



�� Substitution Con�icts with � on Level � Annotated Terms

One possibility for avoiding the problem above is to limit � to level � terms�

��x�e��� e
�
� ��� e

�
��x �� e��	�

At rst� this approach is appealing because it makes the extension of MetaML with code inspection
operations less problematic
 But consider the following term�

�fn x � hx�i� �fn y � �fn x � x�� ���


There are two possible � reductions at level � in this term
 The rst is the outermost application�
and the second is the application inside the argument
 If we do the rst application� we get the
following result�

hfn y � �fn x � x�� ��i


The level annotations need to be adjusted after substitution �See ���	
� But rst note that there are
no � reductions at level � left in this term
 If we do the second application rst� we get

�fn x � hx�i� �fn y � ���


and then we can still go back and perform the outermost application to get�

hfn y � ��i


Again� in the presence of code inspection� this example illustrates an incoherence problem
 But even
in the absence of code inspection� we still lose the con�uence of our reductions� despite the fact
that we have sacriced � reductions at higher�levels
 Intuitively� the example above illustrates that
cross�stage persistence ���	� that is� the possibility of binding a variable level and using it at a higher
level� arises naturally in untyped MetaML terms� and that cross�stage persistence makes it hard to
limit � to level � in a consistent �that is� con�uent� way
 In the example above� applying the lift�like
term fn x � hxi to a function causes all the redices in the body of that function to be frozen




� Reduction Semantics for CBN ��U

The syntax of ��U consists of the set of raw expressions and values dened as follows�

e� � E� �� v j x j e� e� j he�i j run e�

en� � En� �� x j en� en� j �x�en� j hen��i j �en j run en�

v � V �� �x�e� j he�i�

The essential subtlety in this denition is in the last production in the set of values� Inside the
Brackets of a code value� what is needed is simply an expression of level �


Denition � �CBN ��U	� The CBN notions of reduction of ��U are simply

��x�e��� e
�
� ���U

e���x �� e��	
�he�i ��EU

e�

run he�i ��RU
e��

Just like the rules for a CBN lambda calculus� these rules are intended to be applied in any context

This calculus allows us to apply the � rule to any expression that looks like a level � application

By restricting the body of the lambda term and its argument to be in E�� the ��U language avoids
the con�ict between Escapes and � that we discussed earlier on� because level � terms are free of
top�level Escapes


Remark � 	The Coarse Big�Step Semantics is not Enough
� It is necessary to stratify the set of
expressions into expression families
 In particular� our notions of reduction are certainly not sound
if we do not explicitly forbid the application of the coarse big�step semantic function on terms that
are manifestly not at the right level
 In particular� consider the term � hii � E�
 If this term is
subjected to the coarse big�step semantic function at level �� the result is undened
 However� if
we �optimize� this term using the Escape reduction of ��U� we get back the term i� for which the
big�step semantics is dened
 Applying a reduction to a sub�term of a program should not change
its termination behavior
 As such� the stratication of the expressions is crucial to the correctness
of our notions of reduction


� Summary of Technical Results

This section presents the statement and gives an overview of our two main technical results on CBN
��U� namely� con�uence and soundness with respect to the ne big�step semantics of CBN ��M
 The
details of the two results are presented in Appendix A


��� Con�uence

Establishing the con�uence property in the presence of the � rule can be involved� largely because
substitution can duplicate redices� and establishing that these redices are not a�ected by substitution
can be non�trivial
 Barendregt presents a number of di�erent ways for proving con�uence� and
discusses their relative merits ��	
 Recently� Takahashi has produced a concise yet highly rigorous
technique for proving con�uence� and demonstrated its application in a variety of settings� including
proving some subtle properties of reduction systems such as standardization ���	
 The basic idea that
Takahashi promotes is the use of an explicit notion of a parallel reduction
 While the idea goes back
to the original and classic �yet unpublished� works of Tait and Martin�L�of� Takahashi emphasizes
that the rather verbose notion of residuals �see Barendregt ��	� for example�� can be completely
avoided


The CBN reductions of ��U do not introduce any notable complications to the proof� and it is
as simple� concise� and rigorous as the one presented by Takahashi
 Our proof follows closely the
development in the introduction to Takahashi�s paper


Theorem � �CBN ��U is Con�uent	� �e�� e� e� � E�

e� ��
� e ��� e� �� �	e� � E� e� ��

� e� ��� e���



��� Soundness of CBN ��U under Fine CBN ��M

CBN ��U reductions preserve observational equivalence� where our notion of observation is simply
the termination behavior of the level � ��M big�step evaluation
 A reduction semantics for a lambda
calculus is generally not �equal� to a big�step semantics
 For example� the reduction semantics for
the lambda calculus can do �reductions under lambda�� and the big�step semantics generally does
not ���� ��	


Denition � �Level � Termination	� �e � E��

e

�
� �	v � V �� e

�
�� v��

Denition 
 �Observational Equivalence	�We de�ne �n� En�En as follows �n � N��e� � e� �
En�

e� �n e�
�
� �C � C � C�e� 	� C�e�	 � E� �� �C�e�	
 � C�e�	
 ��

Remark �� The denition says that two terms are observationally equivalent exactly when they can
be interchanged in every level � term without a�ecting the level � termination behavior of the term


Notation � We will drop the U subscript from ��U in the rest of presentation�

Theorem 
 �CBN ��U Reduction is Sound under ��M Big�Steps	� �n � N��e� � e� � En�

e� �� e� �� e� �n e��

� Related Works

The author�s dissertation reports on the results of scrutinizing the design and implementation of
the multi�stage programming language MetaML
 Our approach to studying MetaML has been to
formalize its semantics and type system� and the properties we expect them to enjoy
 In doing so�
we have identied a variety of subtleties related to multi�stage programming� and provided solutions
to a number of them
 The results presented in this paper are based directly on Chapters � and � of
the author�s dissertation


Muller ���	 studies the reduction semantics of quote and eval in the context of LISP
 Muller observes
that his formulation of these constructs breaks con�uence
 The reason for this seems to be that his
calculus distinguishes between s�expressions and representations of s�expressions
 Muller proposes a
closedness restriction in the notion of reduction for eval and shows that this restores con�uence


Muller ���	 also studies the reduction semantics of the lambda�calculus extended with representations
of lambda terms� and with a notion of � reduction on these representations
 Muller observes that
this calculus lacks con�uence� and uses a type system to restore con�uence


In both of Muller�s studies� the language can express taking object�code apart �intensional analysis�


Wand ���	 has studies the equational theory for LISP meta�programming construct fexpr and found
that �The Theory of fexprs is Trivial� in the sense that the ��rule �or �semantic equality�� is not
valid on fexprs
 Wand predicted that there are other meta�programming languages with a more
interesting �non�trivial� equational theory
 As we have demonstrated in this paper� MetaML is an
example of such a language


Moggi ���	 points out that two�level languages generally have not been presented along with an
equational calculus
 Our reduction semantics has eliminated this problem for CBN MetaML� and to
our knowledge� is the rst correct presentation of a multi�stage language using a reduction semantics

Unfortunately� an earlier attempt to devise such a reduction semantics ���	 is �awed �although the
type system presented in that work is correct ���	�
 The earlier attempt was based on level�annotated
terms� and therefore su�ers from the complications discussed in Section �
�


Bawden ��	 gives a detailed historical review of the history of quasi�quotations in LISP




� Future Work	 CBV ��M and ��U

Corresponding results on the con�uence and soundness of CBV ��U have not been established yet

We chose to start with CBN for two reasons�

�
 To avoid developing accidental dependency on a particular strategy �CBV�� and
�
 To avoid a technical inconvenience relating to the mismatch between the notion of value in the
reduction semantics and in the big�step semantics for a CBV language


The di�erence between the CBV and the CBN big�step semantics for MetaML ���M� is only in the
evaluation rule for application at level �
 For CBV� this rule becomes

e�
�
�� �x�e e�

�
�� v� e�x �� v�	

�
�� v

e� e�
�
�� v

App�CBV�

The di�erence between CBV and the CBN reduction semantics for MetaML ���U� is also only in
the rule for application�

��x�e� v ���v
e�x �� v	�

where the argument is restricted to be a CBV value� thus forcing it be evaluated before it is passed
to the function
 An additional degree of care is needed in the treatment of CBV ��U
 In particular�
the notion of value induced by the big�step semantics for a call�by�value lambda language is not
the same as the notion of value used in the reduction semantics for call�by�value languages
 The
latter typically contains variables
 This subtle di�erence will require distinguishing between the two
notions throughout the soundness proof



 Conclusions

In this paper� we presented big�step semantics ���M� for a subset of CBN MetaML and explained
why the naive approach to a reduction semantics for MetaML does not work
 We presented a
reduction semantics ���U� that we have shown to be con�uent and sound with respect to our notion
of observational equivalence based on the level � termination behavior big�step semantics on open
terms


In reviewing the failure of the naive approach to the reduction semantics� we saw that it is hard to
limit � reduction to level � in MetaML� that is� it is hard to stop semantic equality at the meta�level
from �leaking� into the object�level
 The alternative interpretation of our observations is that it is
more natural to allow semantic equality at all levels in MetaML
 The essential reason is that the
level of a raw MetaML terms is not �local� information that can be determined just by looking at
the term
 Rather� the level of a term is determined from the context
 Because of substitution �in
general� and cross�stage persistence �in particular�� we are forced to allow � to �leak� into higher
levels
 This �leakage� of the ��rule could be interpreted as a desirable phenomenon because it would
allow implementations of MetaML to perform a wider range of semantics�preserving optimizations
on programs
 If we accept this interpretation and therefore accept allowing � at all levels� we need
to be careful about introducing intensional analysis
 In particular� the direct� deterministic� way of
introducing intensional analysis on code would lead to an incoherent reduction semantics and an
unsound equational theory
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A Proofs and Auxilary De�nitions

A�� Basic Properties of Big�Step Semantics

Proof 	Lemma �
� All parts of this lemma are proven by easy inductions


We illustrate the proof of the rst part of this lemma
 We prove that

�n � N��e � En� e � E�

The proof proceeds by induction on the derivation of e � En
 If e � x then x � E by denition
of � E
 If e � e� e� then by the denition of � En we know that e�� e� � En
 By the induction
hypothesis� we have e�� e� � E
 By the denition of � E we have e� e� � E
 The treatment of the
rest cases proceeds in the same manner


The second and the third parts are similar
 The third part is by induction on the derivation of
e� � En
 ut

Proof 	Lemma �
� By simple induction
 ut

Proof 	Lemma �
� Part � is by a simple induction on the derivation of v � V n to prove that�

�n � N��v � V n� v � V n��

Part � is also a simple induction on the derivation of e
n
�� e�
 Re�ection �Lemma �� is needed in the

case of Run
 ut

A�� Proof of Con�uence

Denition � �Context	� A Context is an expression with exactly one hole �	�

C � C �� �	 j �x�C j C e j eC j hCi j �C j run C�

We write C�e	 for the expression resulting from replacing 	��lling�
 the hole �	 in the context C with
the expression e�

Lemma � �Basic Property of Contexts	� �C � C ��e � E�

C�e	 � E�

Proof� By an induction on the derivation of C � C 
 ut

Remark �� Filling a hole in a context can involve variable capture� in the sense that given C � �x��	�
C�x	 � �x�x� and the binding occurrence of x in C is not renamed


Denition � �Parallel Reduction	� The parallel reduction relation � � E �E is de�ned as
follows

x� x

e� � e�

�x�e� � �x�e�

e� � e� e� � e�

e�e� � e�e�

e�� � e� e�� � e��

��x�e���e
�
� � e��x �� e��	

e� � e�

he�i � he�i

e� � e�

�e� � �e�

e�� � e��

�he��i � e��

e� � e�

run e� � run e�

e�� � e��

run he��i � e��
�

Remark � 	Idempotence
� It is easy to see that e� e


Lemma � �Parallel Reduction Properties	� �e� � E�

�� �e� � E� e� �� e� �� e� � e�
�� �e� � E� e� � e� �� e� ��

� e�



�� �e� � E� e�� e� � E�� e� � e�� e
�
� � e�� �� e��y �� e��	� e��y �� e��	�

Proof� The rst is proved by induction on the context of the redex� and the second and third by
induction on e�
 ut

Remark �� From � and � above we can see that that ������


The Church�Rosser theorem ��	 for �� follows from Takahashi�s property ���	
 The statement of
Takahashi�s property uses the following notion


Denition � �Star Reduction	� The star reduction function � � E � E is de�ned as follows

x� � x

��x�e��
� � �x�e��

�e�e��
� � e��e

�

� if e�e� �� ��x�e
�
��e

�
�

���x�e���e
�
��
� � �e���

��x �� �e���
�	

he�i
�

� he��i
��e��

� � ��e��� if �e� �� �he��i
�he��i

� � �e���
�

�run e��
� � run �e��� if run e� �� run he��i

�run he��i�
� � �e���

��

Remark �� By a simple induction on e� we can see that e� e�


Theorem � �Takahashi�s Property	� �e�� e� � E�

e� � e� �� e� � e���

Proof� By induction on e�
 ut

The following two results then follow in sequence�

Notation � �Relation Composition	 For any two relations � and �� we write a � b � c as a
shorthand for �a� b� � �b� c��

Lemma � �Parallel Reduction is Diamond	� �e�� e� e� � E�

e� � e� e� �� �	e� � E� e� � e� � e���

Proof� Take e� � e� and use Takahashi�s property
 ut

Main Con�uence Result

Proof 	Theorem �
� Follows directly from the above lemma
 ut

A�
 Proof of Soundness of Reduction Semantics

Proof 	Theorem �
� By the denition of �n� to prove our goal

�n � N��e� � e� � En� e� �� e� �� e� �n e�

is to prove

�n � N� C � C � �e� � e� � En� e� �� e� � C�e�	� C�e�	 � E� �� �C�e�	
 � C�e�	
 ��

Noting that by the compatibility of ��� we know that �n � N� C � C ��e� � e� � En� e� �� e� ��
C�e�	 �� C�e�	� it is su�cient to prove a stronger statement�

�n � N� C � C ��e� � e� � En� C�e�	 �� C�e�	 � C�e�	� C�e�	 � E� �� �C�e�	
 � C�e�	
 ��



Noting further that �n � N� C � C ��a� b � En� a � C�b	 � E� �� a � E�� it is su�cient to prove an
even stronger statement�

�e�� e� � E�� e� �� e� �� �e�
 � e�
 ��

This goal can be broken down into two parts�

S�

�e�� e� � E�� e� �� e� �� �e�
 �� e�
 ��

and
S�

�e�� e� � E�� e� �� e� �� �e�
 �� e�
 ��

Let us consider S�
 By denition of termination� it says�

�e�� e� � E�� e� �� e� �� ��	v � V �� e�
�
�� v� �� �	v � V �� e�

�
�� v���

We will show that big�step evaluation is included in reduction �Lemma ��
 Thus� to prove S� it is
enough to prove�

�e�� e� � E�� e� �� e� �� ��	v � V �� e� ��
� v� �� �	v � V �� e�

�
�� v���

Con�uence �Theorem �� tell us that any two reduction paths are joinable� so we can weaken our
goal as follows�

�e�� e� � E�� e� �� e� �� ��	v � V �� e� � E� e� ��
� v ��� e� � e� ��

� e�� �� �	v � V �� e�
�
�� v��

We will show �Lemmas �� and Remark �� that any reduction that starts from a value can only lead
to a value �at the same level�
 Thus we can weaken further�

�e�� e� � E�� e� �� e� �� ��	v� v� � V �� e� ��
� v ��� v� � e� ��

� v�� �� �	v � V �� e�
�
�� v��

In other words� we already know that e� reduces to a value� and the question is really whether it
evaluates to a value
 Formally�

�e�� e� � E�� e� �� e� �� ��	v� � V �� e� ��
� v�� �� �	v � V �� e�

�
�� v���

In fact� the original assumption is no longer necessary� and we will prove�

T�

�e� � E�� ��	v� � V �� e� ��
� v�� �� �	v � V �� e�

�
�� v���

Now consider S�
 By denition of termination� it says�

�e�� e� � E�� e� �� e� �� ��	v � V �� e�
�
�� v� �� �	v � V �� e�

�
�� v���

Again� by the inclusion of evaluation in reduction� we can weaken�

�e�� e� � E�� e� �� e� �� ��	v � V �� e� ��
� v� �� �	v � V �� e�

�
�� v���

Given the rst assumption in this statement we can also say�

�e�� e� � E�� e� �� e� �� ��	v � V �� e� ��
� v� �� �	v � V �� e�

�
�� v���

and we no longer need the assumption as it is su�cient to show�



T�

�e� � E�� ��	v � V �� e� ��
� v� �� �	v � V �� e�

�
�� v���

But note that T� and T� are identical goals
 They state�

T

�e � E�� ��	v � V �� e ��� v� �� �	v � V �� e
�
�� v���

This statement is a direct consequence of Lemma �
 ut

It is easy to show that e�
�
�� v �� e� ��� v� as it follows directly from the following result�

Lemma � �CBN ��M is in CBN ��U	� �n � N��e � En� v � V n�

e
n
�� v �� e ��� v�

Proof� By a straightforward induction on the height of the judgement e
n
�� v
 ut

What is harder to show is the �converse�� that is� that e� ��� v �� �	v� � V ��e�
�
�� v��
 It is a

consequence of the following stronger result�

Lemma � �CBN ��U is in CBN ��M	� �e � E�� v� � V ��

e ��� v� �� �	v� � V �� e
�
�� v� ��

� v���

Proof� We arrive at this result by an adaptation of Plotkin�s proof for a similar result for the CBV
and CBN lambda calculi ���	
 The main steps in the development are�

�
 We strengthen our goal to become�

e ��� v� �� �	v� � V �� e
�
�� v� ��

� v���

�
 We dene a left reduction function
n
��� �Denition �� such that �Lemma ���� �e � E�� v � V ��

e
�
���

�

v � e
�
�� v

and �e�� e� � E�� e�
�
��� e� �� e� �� e� �Lemma ���
 Thus� big�step evaluation �or simply

evaluation� is exactly a chain of left reductions that ends in a value

�
 Our goal is restated as�

e ��� v� �� �	v� � V �� e
�
���

�

v� ��
� v���

�
 For technical reasons� the proofs are simpler if we use a parallel reduction relation � �Deni�
tion �� similar to the one introduced in the last section
 Our goal is once again restated as�

e�
�

v� �� �	v� � V �� e
�
���

�

v� �
�

v���

�
 The left reduction function induces a very ne classication on terms �Denition ��
 In particular�
any term e � En must be exactly one of the following three �Lemma ���
�a� a value e � V n�
�b� a workable e �Wn� or
�c� a stuck e � Sn�
where membership in each of these three sets is dened inductively over the structure of the
term
 We write vn� wn and sn to refer to a member of one of the three sets above� respectively

Left reduction at level n is a total function exactly on the members of the set Wn �Lemma ���

Thus� left reduction is strictly undened on non�workables� that is� it is undened on values and
on stuck terms
 Furthermore� if the result of any parallel reduction is a value� the source must
have been either a value or a workable �Lemma ���
 We will refer to this property of parallel
reduction as monotonicity




�
 Using the above classication� we break our goal into two cases� depending on whether the
starting point is a value or a workable�

G� �v�� v � V ��

v �
�

v� �� �	v� � V �� v � v� �
�

v���

G� �w � W �� v � V ��

w �
�

v� �� �	v� � V �� w
�
���

�
v� �

�

v���

It is obvious that G� is true
 Thus� G� becomes the current goal


�
 By the monotonicity of parallel reduction� it is clear that all the intermediate terms in the
reduction chain w� �

�

v�� are either workables or values
 Furthermore� workables and values do
not interleave� and there is exactly one transition from workables to values in the chain
 Thus�
this chain can be visualized as follows�

w�
� � w�

� � ���w�
k�� � w�

k � v� �
�

v�� �

We prove that the transition w�
k � v� can be replaced by an evaluation �Lemma ����

R� �w � W �� v � V ��

w � v �� �	v� � V �� w
�
���

�
v� � v��

With this lemma� we know that we can replace the chain above by one where the evaluation
involved in going from the last workable to the rst value is explicit�

w�
� � w�

� � ���w�
k�� � w�

k

�
���

�
v�� �

�

v�� �

What is left is then to �push back� this information about the last workable in the chain to the
very rst workable in the chain
 This is achieved by a straightforward iteration �by induction
over the number of k of workables in the chain� of a result that we prove �Lemma ����

R� �w�� w� �W �� v� � V ��

w� � w�
�
���

�
v� �� �	v� � V �� w�

�
���

�
v� � v���

With this result� we are able to move the predicate
�
���

�
v�� �

�

v� all the way back to the
rst workable in the chain
 This step can be visualized as follows
 With one application of R�
we have the chain�

w�
� � w�

� � ���w�
k��

�
���

�
v�� �

�

v�� �

and with k � � applications of R� we have�

w�
�

�
���

�
v�k�� �

�

v�� �

thus completing the proof


ut

In the rest of this section� we present the denitions and lemmas mentioned above
 It should be
noted that proving most of the lemmas mentioned above require generalizing the level from � to n

In the rest of the development� we present the generalized forms� which can be trivially instantiated
to the statements mentioned above




A Basic Classication of Terms

Denition � �Classes	� We de�ne three judgements on raw 	that is� type�free
 classes Values V n�
Workables Wn� and Stuck terms Sn� The four sets are de�ned as follows

v� � V � �� �x�e� j hv�i
v� � V � �� x j �x�v� j v�v� j hv�i j run v�

vn�� � V n�� �� x j �x�vn�� j vn��vn�� j hvn���i j �vn� j run vn��

w� � W � �� ��x�e�� e� j w� e� j run he�i j run w� j hw�i
w� � W � �� �x�w� j w� e� j v� w� j hw�i j �w� j �he�i
wn�� � Wn�� �� �x�wn�� j wn�� en�� j vn�� wn�� j hwn���i j �wn�

s� � S� �� x j s� e� j hv�i e� j hs�i j run �x�e� j run s�

s� � S� �� �x�s� j s� e� j v� s� j hs�i j �s� j ��x�e� j run s�

sn�� � Sn�� �� �x�sn�� j sn�� en�� j vn�� sn�� j hsn���i j �sn� j run sn���

Lemma � �Basic Properties of Classes	� �n � N�

�� V n�Wn� Sn � En

�� V n�Wn� Sn partition En�

Proof� All these properties are easy to prove by straightforward induction


�
 We verify the claim for each case separately� by induction on e � V n� e � Wn� and e � Sn�
respectively


�
 We prove that� e � En is in exactly one of the three sets V n�Wn or Sn
 The proof is by induction
on the judgement e � Wn
 This proof is direct albeit tedious


ut

Left Reduction The notion of left reduction is intended to capture precisely the reductions per�
formed by the big�step semantics� in a small�step manner
 Note that the simplicity of the denition
depends on the fact that the partial function being dened is not dened on values
 That is� we
expect that there is no e such that vn

n
��� e


Denition � �Left Reduction	� Left reduction is a partial function
n
��� � En � En de�ned as

follows

��x�v��� v
�
�

�
��� v�� �x �� v�� 	 run hv�i

�
��� v� �hv�i

�
��� v�

e
n�
��� e�

�x�e
n�
��� �x�e�

e�
n
��� e��

e� e�
n
��� e�� e�

e�
n�
��� e��

vn�� e�
n�
��� vn�� e��

e
n�
��� e�

hei
n
��� he�i

e
n
��� e�

�e
n�
��� �e�

e
n
��� e�

run e
n
��� run e�

�

The following lemma says that the set of workables characterizes exactly the set of terms that can
be advanced by left reduction


Lemma �� �Left Reduction and Classes	� �n � N�

�� �w � Wn� �	e� � En� w
n
��� e��

�� �e � En� �	e� � En� e
n
��� e�� �� e �Wn

�� �v � V n���	e� � En� v
n
��� e��

�� �s � Sn���	e� � En� s
n
��� e���

Proof� We only need to prove the rst two� and the second two follow
 The rst one is by straight�
forward induction on the judgement e � Wn
 The second is also by straightforward induction on
the derivation en

n
��� e�
 ut



Lemma �� �Left Reduction and CBN ��U	� �n � N��e� � e� � En�

e�
n
��� e� �� e� �� e��

Proof� By straightforward induction on the rst judgement
 ut

Lemma �� �Left Reduction and ��M	� �n � N��e � En� v � V n�

e
n
���

�

v � en
n
�� vn�

Proof� The forward direction is by induction on the length of the derivation� and then over the size
of e
 The second ordering is not needed in the lambda calculus� but is needed for evaluation at higher
levels
 The proof proceeds by a case analysis on the rst left reduction in the left reduction chain


The backward direction is by straightforward induction on the height of the derivation of e
n
�� v
 ut

Parallel Reduction with Complexity In order to prove the two key lemmas presented in this
section� we will need to reason by induction on the �complexity� of parallel reduction
 Thus� we will
use the following denition of parallel reduction with an associated complexity measure�

Denition � �Parallel Reduction with Complexity	� Parallel reduction
M
� � E � E de�ned

as follows

x
�
� x

e��
M
� e�� e��

N
� e��

��x�e��� e
�
�

M��	x�e�
�

N��

� e���x �� e��	

e��
M
� e��

run he��i
M��
� e��

e��
M
� e��

�he��i
M��
� e��

e�
M
� e��

�x�e�
M
� �x�e��

e�
M
� e��

he�i
M
� he��i

e�
M
� e��

�e�
M
� �e��

e�
M
� e��

run e�
M
� run e��

e�
M
� e�� e�

N
� e��

e� e�
M�N
� e�� e

�

�

�

where  �x� e� is the number of occurrences of the variable x in the term e


There is a sense in which parallel reduction should respect the classes
 The following lemma explicates
these properties


Lemma �
 �Parallel Reduction and Classes	� �n � N�

�� �e� � En� e� � E� e�
M
� e� �� e� � En

�� �e � En� v � V n� v
M
� e �� e � V n

�� �e � En� s � Sn� s
M
� e �� e � Sn

�� �e � En� w � Wn� e
M
� w �� e �Wn�

Proof� The rst part of this lemma is proved by straightforward induction on the height of the
reduction derivation
 It is then enough to establish the second two parts of this lemma� and then
the fourth part follows immediately
 The proof of the rst two is also by a straightforward induction
on the derivations of e � V n and e � Sn� respectively
 ut

Remark �� We have already shown that parallel reduction without complexity is equivalent �in many
steps� to normal reduction �in many steps�
 The same result applies to this annotated denition


Lemma �� �Substitution for Parallel Reduction with Complexity	� �e�� e�� e�� e� � E�
X�Y � N�

e�
X
� e� � e��

Y
� e� �� �	Z � N� e� �x �� e��	

Z
� e��x �� e�	 � Z � X � �x� e��Y ��

Proof� By induction on the height of the derivation e�
X
� e�
 �A direct extension of the proof for

Lemma � on page ��� of Plotkin ���	
� ut



Lemma �� �Transition	� �n�X � N��w � Wn� v � V n�

w
X
� v �� �	v� � En� Y � N� w

n
���

�
v�

Y
� v� � Y � X�

Proof� By induction on the complexity X and then on the size of w
 �A direct combination and
extension of proofs for Lemmas � and � of Plotkin ���	
� ut

Lemma �� �Permutation	� �n�X � N��w� � w� �Wn� e� � En�

w�

X
� w�

n
��� e� �� �	e� � En� w�

n
���

�
e� � e���

Proof� By induction on the complexity X � and by a case analysis on the last case of the derivation

of w�
X
� w�
 �A direct extension of Lemmas � of the previous reference
� ut

Lemma �� �Push Back	� �X � N� w� � w� �W �� v� � V ��

w�
X
� w�

�
���

�
v� �� �	v� � V �� w�

�
���

�
v� � v���

Proof� The assumption corresponds to a chain of reductions�

w� � w�
�
��� w�

�
��� ���wk��

�
��� wk

�
��� v��

Applying Permutation to w� � w�
�
��� w� gives us �	e�� � En� w�

�
���

�
e�� � w��
 By the

monotonicity of parallel reduction� we know that only a workable can reduce to a workable� that is�

�	w�� �Wn� w�
�
���

�
w�� � w��
 Now we have the chain�

w�
�
���

�
w�� � w�

�
��� ���wk��

�
��� wk

�
��� v��

Repeating this step k � � times we have�

w�
�
���

�
w��

�
���

�
w��

�
���

�
���wk��� � wk

�
��� v��

Applying Permutation to wk��� � wk
�
��� v� give us �	ek� � En� wk���

�
���

�
ek� � v��
 By the

monotonicity of parallel reduction� we know that ek� can only be a value or a workable
 If it is a
value then we have the chain�

w�
�
���

�
w��

�
���

�
w��

�
���

�
���wk���

�
���

�
vk� � v�

and we are done
 If it is a workable� then applying Transition to wk� � v� gives us �	v� �

V n� wk�

�
���

�
v� � v��
 This means that we now have the chain�

w�
�
���

�
w��

�
���

�
w��

�
���

�
���wk���

�
���

�
wk�

�
���

�
v� � v�

and we are done
 ut

A�� Remarks on Proofs

Remark � 	Classes
� Plotkin ���	 only names the set of values explicitly
 The notions of workables
and stuck terms employed in this present work� helped us adapt Plotkin�s technique to MetaML� and
in some cases� to shorten the development
 For example� we have combined Plotkin�s Lemmas � and
� into one �Lemma ���
 We expect that our organization of expressions into values� workables� and
stuck terms may also be suitable for applying Plotkin�s technique to other programming languages


� Such a classi�cation has also been employed in a work by Hatcli� and Danvy ���� where values and stuck
terms are named� At the time of writing these results� we had not found a name for 	workables
 in the
literature�



Remark �� 	Standardization
� We have not found need for a Standardization Theorem� or for an
explicit notion of standard reduction
 Also� our development has avoided Lemma � of Plotkin ���	�
and the non�trivial lexicographic ordering needed for proving that lemma


Remark �� 	Non�left or �Internal� Reductions
� Many standardization proofs �such as those de�
scribed by Barendregt ��	 and Takahashi ���	� employ �complementary� notions of reduction� such
as internal reduction �dened simply as non�head�
 The development presented in Plotkin �and here��
does not require the introduction of such notions
 While they do posses interesting properties in our
setting �such as the preservation of all classes�� they are not needed for the proofs
 Machkasova and
Turbak ���	 also point out that complementary reductions preserve all classes
 Using such comple�
mentary notions� it may be possible to avoid the use of Plotkin�s notion of complexity� although the
rest of the proof remains essentially the same
 We plan to further investigate this point in future
work


B Basics of Big�Step and Reduction Semantics

In this section� we review the notions of big�step and and reduction semantics in a simple CBN
lambda calclus �


B�� Big�Step Semantics for �

Formalizing a big�step semantics �see for example Gunter ��	� allows us to specify the semantics as
a function that goes directly from expressions to values
 A big�step semantics is a partial function�
and therefore resembles an interpreter for our language


The syntax for the � language is as follows�

e � E �� i j x j �x�e j e e�

The CBN big�step semantics for � is specied by a partial function �� � E � E� where E is the
set of � expressions�

i �� i
Int

�x�e �� �x�e
Lam

e� �� �x�e e�x �� e�	 �� e�

e� e� �� e�
App


Note that there are terms for which none of the rules in this semantics can apply �either because
they get �stuck� or the semantics �goes into an innite loop��


The rule for integers says that they evaluate to themselves
 The rule for lambda�abstractions says that
they too evaluate to themselves
 The rule for applications says that they are evaluated by evaluating
the operator to get a lambda�abstraction� substituting the result of evaluating the operand into
the body of the lambda�abstraction� and evaluating the result of the substitution
 The denition of
substitution is standard and is denoted by e��x �� e�	 for the capture�free substitution of e� for the
free occurrences of x in e�
 This semantics is a partial function associating at most one unique value
to any expression in its domain


Note that there is no need for an environment that keeps track of bindings of variables� whenever
a value is available for a variable� we immediately substitute the value for the variable
 This substi�
tution is performed in the rule for applications
 It is possible to implement the � language directly
by mimicking the big�step semantics
 We should point out� however� that a direct implementation
based on this big�step semantics would be somewhat ine�cient� as every application would require
a traversal of the body of the lambda�abstraction
 Most realistic implementations �including the
MetaML implementation ���� ��	� do not perform substitution by traversing terms at run�time


B�� Reduction Semantics for �

A formal semantics� in general� provides us with a means for going from arbitrary expressions to
values� with the provision that certain expressions may not have a corresponding value
 An important



conceptual tool for the study of a programming language is a reduction semantics
 A reduction
semantics is a set of rewrite rules that formalize the �notions of reduction� for a given language

Having such a semantics can be useful in developing an equational theory
 We will rst review how
this semantics can be specied for a simple language we call �


Recall that the set of expressions and the set of values for the � language can be dened as follows�

e � E �� i j x j �x�e j e e
v � V �� i j �x�e�

In order� the productions for expressions are for integers� lambda abstractions� and applications

Values for this language are integers and lambda�abstractions


Intuitively� expressions are �commands� or �computations�� and values are the �answers�� �accept�
able results� or simply �expressions that require no further evaluation�
 Note that we allow any
value to be used as an expression with no computational content
 In order to build a mechanism for
going from expressions to values� we need to specify a formal rule for eliminating both variables and
applications from a program
 In a reduction semantics� �see for example Barendregt ��	� this elimina�
tion process is specied by introducing rewrite rules called �notions of reduction�
 The well�known
� rule helps us eliminate both applications and variables at the same time�

��x�e�� e� ��� e��x �� e�	�

This rule says that the application of a lambda�abstraction to an expression can be simplied to the
substitution the expression into the body of the lambda�abstraction
 The CBN semantics is based
on this rule


Using the � rule� we build a new relation �� �with no subscript� that allows us to perform this
rewrite on any subexpressions
 More formally� for any two expressions C�e	 and C�e�	 which are
identical everywhere but in exactly one hole lled with e and e�� respectively� we can say�

e ��� e
� �� C�e	 �� C�e�	�

When there is more than one rule in our reduction semantics� the left hand side of this condition is
the disjunction of the rewrites from e to e� using any of the rules in our rewrite system
 Thus the
relation �� holds between any two terms if exactly one of their sub�terms is rewritten using any of
the rules in our reduction semantics


B�
 Coherence and Con�uence

Two important concepts central to this paper are coherence and con�uence �For con�uence� see
Barendregt ��	�
 A reduction semantics is non�deterministic
 Therefore� depending on the order in
which we apply the rules� we might get di�erent results
 When this is the case� our semantics could
reduce a program e to either � or �
 We say a reduction semantics is coherent when any path that
leads to a ground value leads to the same ground value
 A semantics that lacks coherence is not
satisfactory for a deterministic programming language


Intuitively� knowing that a rewriting system is con�uent tells us that the reductions can be applied in
any order� without a�ecting the set of results that we can reach by applying more reductions
 Thus�
con�uence of a reduction semantics is a way of ensuring coherence
 Conversely� if we lose coherence�
we lose con�uence



