
Revisiting Catamorphisms over Datatypes with Embedded

Functions

OGI Technical Report ������

Leonidas Fegaras Tim Sheard

Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology

����� N�W� Walker Road P�O� Box �����

Portland� OR �	���
����
ffegaras�sheardg	cse
ogi
edu

Keywords� functional programming� lambda calculus� type systems� in�nite lists� functional graphs� para�
metricity theorem�

� Introduction

Writing functional programs based upon catamorphisms �folds�� or other control mechanisms that are gen�
erated from algebraic type de�nitions� leads to bene�ts ranging from the ability to calculate programs from
speci�cations ��	 to encoding a good intermediate representation that supports optimization �
� �� �	�

Recently Paterson �	 and Meijer � Hutton ��	 extended the use of such control structures to datatypes
that include embedded functions� While theoretically sound� their approach su�ers from the disadvantage
that to express a function� f � as a catamorphism it is necessary to express another function� g� as an
anamorphism �unfold�� such that the composition of f and g� f �g� is the identity function� If f has no right
inverse then it cannot be expressed as a catamorphism� This places severe restrictions on which functions can
be expressed as catamorphisms over datatypes with embedded functions� These authors call for increased
experimentation to discover uses for these generalized operators since in their experience the number of
examples for which useful catamorphisms can be expressed is quite limited�

In this paper we give numerous examples of why it is truly important to be able to de�ne catamorphisms
over datatypes with embedded functions and show how to de�ne functions as catamorphisms even when no
right inverse exists by using a trick that invents an approximate inverse instead� In order to ensure soundness
of this trick we replace the restriction of the existence of a right inverse with another less demanding
restriction and show how the type system can be used to statically enforce this restriction�

� Structures with Functionals are Useful

This section presents several examples of data structures with embedded functions� We de�ne catamorphisms
over these structures and give numerous examples of their use� We informally introduce our trick and explain
how it works� The �rst example is an evaluation function over a datatype that represents closed terms in a
simple lambda calculus� This representation is quite interesting since the evaluation function does not need
an environment mapping variables to values� The second example is the expression and manipulation of
circular lists in a functional language� Another example� presented in Appendix A��� is the expression of the
the parametricity theorem for any polymorphic function� The �nal example� presented in Appendix A��� is
the expression and manipulation of graphs� Both appendices are given to support our claim that structures
with functionals are useful� They need not be read to understand our ideas�

�



��� Lambda Calculus

Our �rst example is an evaluation function for a datatype that represents closed terms in a simple lambda
calculus� In contrast to other approaches� we represent terms as structures with functionals� �all our examples
are written in Standard ML �SML� ��	�

datatype Term � Const of int j Succ j Appl of Term � Term j Abs of Term�Term

For example� the lambda term ��x�� � x� � is represented by the Term construction

Appl�Abs�fn x � Appl�Succ�x���Const ��

In most lambda term representations� lambda�abstractions are constructed by value constructors of type
variable�Term�Term and also include constructors like Var of type variable�Term� Under such representa�
tions� an operation over lambda terms needs to handle variables explicitly� For example� a lambda�calculus
evaluator typically needs to build and manipulate an environment to bind variables to values� In our rep�
resentation we use the abstraction mechanism of the meta�language �SML� to represent abstraction in the
object language of lambda terms� This completely �nesses the bound�variable naming problem�

Thus� our evaluator has no variables or associated complexity� All the necessary variable plumbing� when
handling beta reduction� etc� is handled implicitly by the evaluation engine of SML in which our evaluator
is expressed� The bene�t of our approach is more than just pedagogical� one can experiment with various
types of evaluators without worrying about the details of names and variable binding� Representations like
this have been avoided because of the di�culty of expressing certain kinds of computations�

We now present an evaluator for terms in the style of Paterson �	� and Meijer � Hutton ��	� We use
explicit recursion instead of catamorphisms to make clear what exactly is going on and to illustrate why this
approach is limited� Our approach� which improves this method� is described in detail in the next section�

The value domain of our evaluator is�

datatype Value � Num of int j Fun of Value�Value

and uses embedded functions itself to represent the meaning of functional terms in the lambda calculus� The
lambda term evaluator is a function of type Term�Value and could be expressed as�

fun eval�Const n� � Num n
j eval�Succ� � Fun�fn Num n � Num�n����
j eval�Appl�f�e�� � �case eval�f� of Fun�g� � g�eval�e���
j eval�Abs f� � Fun�g��

But it is not obvious what g� in the last clause should be� The type of g� should be Value�Value� The
function f of type Term� Term must somehow be manipulated into a value of type Value� Value� The
proper way to do this is to compose f with a function of type Term�Value on the left and a function of
type Value� Term on the right� The obvious choice for the �rst function is eval� The second function�
which we call reify� translates values into terms� Since term evaluation is not isomorphic in general� we
have many di�erent choices� Whichever function we choose� reify should be the right inverse of eval� i�e��
eval � reify � �x�x� Without this restriction� eval would fail to evaluate even the simplest abstraction�
Abs�fn x � x�� into the correct result� Fun�fn x � x�� For a �rst attempt� we de�ne reify as follows�

fun eval�Const n� � Num n
j eval�Succ� � Fun�fn Num n � Num�n����
j eval�Appl�f�e�� � �case eval�f� of Fun�g� � g�eval�e���
j eval�Abs f� � Fun�eval � f � reify�

and reify�Num n� � Const n
j reify�Fun f� � Abs�reify � f � eval�

Notice the symmetry between eval and reify� In particular� the way reify handles the embedded function
inside Fun is the mirror image of the way eval handles the embedded function inside Abs�

It can be proved by structural induction that reify is the right inverse of eval�
Base case� eval�reify�Num n�� � eval�Const n� � Num n�

�



Induction step� eval�reify�Fun f�� � eval�Abs�reify � f � eval�� � Fun�eval � reify � f � eval � reify� � Fun f
�from the induction hypothesis��

It is instructive to visualize the process that occurs when an Abs term is evaluated� An abstraction is
built that will be placed within a Fun constructor� This abstraction� when applied� will reify its argument�
For example�

eval�Appl�Abs�fn x � Appl�Succ�x���Const ���
� case eval�Abs�fn x � Appl�Succ�x��� of Fun�g� � g�eval�Const ���
� case Fun�fn x � eval�Appl�Succ�reify x��� of Fun�g� � g�eval�Const ���

This abstraction is eventually applied to a term� which needs to be evaluated�

� eval�Appl�Succ�reify�eval�Const �����
� eval�Appl�Succ�reify�Num ����
� eval�Appl�Succ�Const ���
� case Fun�fn Num n � Num�n���� of Fun�g� � g�eval�Const ���
� �fn Num n � Num�n���� �Num ��
� Num 	

We can see that there is some computational redundancy in the evaluator� Some terms� such as Const �� are
evaluated only to be rei�ed later on� In general� if we reduce Appl�Abs�f��e�� where e is a complex term� then
we get eval�f�reify�eval�e����� That is� the term e is evaluated into a value� and then this is rei�ed into a term�
then this term �after reduction by f� is evaluated again into a value by the outer eval� This is the general
scheme within the eval�reify example� reify will undo what eval has done� eval will partially redo what has
been undone� and so on� This problem becomes worse for more complex functions� For example� to de�ne a
printer print for Term� which is a function from Term to string� it is necessary to de�ne a parser parse from
string to Term so that print�parse�x���x� The computational complexity of the parser is linear in the size of
the input string� But� as we will see next� in many cases� an approximate right inverse of print with constant
time complexity is all that is needed�

In addition to the recomputation introduced by the redundant eval�s and reify�s� there is a more serious
reason why this approach is not practical in many cases� reify must be the right inverse of eval� but such
inverses may not always exist for functions other than eval�

This duality is exactly what Paterson �	 and Meijer � Hutton ��	 have explored� They use a pair of
generic dual functions� catamorphism and anamorphism� to capture recursion schemes similar to the one in
the eval�reify example� a catamorphismwill reduce a value of type T into a value of type S while anamorphism
will generate a value of type T from a value of type S�

����� Our Approach

To avoid the computational redundancy and to �nd a way around the problem of �nding a right inverse� we
return to the initial problem of expressing g� as eval � f � h� for a second look� In particular� the crucial
property of h� with type Value�Term is that it satis�es eval � h� � �x�x� In addition� we would like this
to happen with no computational overhead� One way to partially accomplish this is for h� to be a value
constructor and to add the additional clause in the de�nition of eval� eval �h� x� � x� That is� we change
the domain� Term� of eval to include a new constructor and add an extra clause to the de�nition of eval�

Consequently� we modify the datatype de�nition of Term by adding a value constructor Place that
implements h��

datatype Term � Const of int j Succ j Appl of Term � Term j Abs of Term�Term j Place of Value

The evaluator is also extended accordingly�

fun eval�Const n� � Num n
j eval�Succ� � Fun�fn Num n � Num�n����
j eval�Appl�f�e�� � �case eval�f� of Fun�g� � g�eval�e���
j eval�Abs f� � Fun�eval � f � Place�
j eval�Place x� � x

Under this de�nition of eval� the previous example evaluates as follows�

�



eval�Appl�Abs�fn x � Appl�Succ�x���Const ���
� case eval�Abs�fn x � Appl�Succ�x��� of Fun�g� � g�eval�Const ���
� case Fun�fn x � eval�Appl�Succ�Place x��� of Fun�g� � g�eval�Const ���
� eval�Appl�Succ�Place�Num ����
� case Fun�fn Num n � Num�n���� of Fun�g� � g�eval�Place�Num ����
� �fn Num n � Num�n���� �Num ��
� Num 	

Notice that Const � is evaluated only once into Num � and it remains in that form protected by the Place
constructor until it is used �which justi�es the name Place� for a placeholder�� In a way� Place partially
satis�es the requirements needed from reify� We will see that this partial satisfaction is �good enough� in
many cases and its lack can be statically detected�

This technique can be applied to computations over Term other than eval� To be completely general�
it is necessary to generalize the type de�nition of Term by abstracting over the domain of Place with a new
type variable �� after all not all computations over Terms return Values�

datatype � Term � Const of int j Succ j Appl of � Term � � Term j Abs of � Term�� Term j Place of �

This allows any � object to be a subtype of Term� and Place plays the role of an indirection operator or
injection function�

One appropriate generalization of eval is the catamorphism� The catamorphism operator for Term
replaces each value constructor �Const� Succ� Appl� and Abs� in an instance of Term with a corresponding
function �fc� fs� fp� and fa��

fun cataT�fc�fs�fp�fa� �Const n� � fc n
j cataT�fc�fs�fp�fa� Succ � fs
j cataT�fc�fs�fp�fa� �Appl�a�b�� � fp� cataT�fc�fs�fp�fa� a� cataT�fc�fs�fp�fa� b �
j cataT�fc�fs�fp�fa� �Abs f� � fa� cataT�fc�fs�fp�fa� � f � Place �
j cataT�fc�fs�fp�fa� �Place x� � x

Operator cataT has the following signature�

�int���� �� ��� ����� �����������Term��

That is� the abstracted type variable � �the domain of Place� is bound to the type of the result of cataT�
We may express the evaluator eval as a catamorphism as follows�

cataT� Num� Fun�fn Num n � Num�n	���� fn �Fun�f��e� � f e� Fun �

Generally it is not advisable to extend type de�nitions by adding new constructors for reasons of code
reuse� it causes non�exhaustive case analysis in pre�existing code� In our example we have additional reasons
why the existence of the Place constructor is problematic� If the user constructs a Term with Place� the type
of the term will not be fully parametric� That is� the type variable � will be bound to some type� t� and that
term would no longer be acceptable as an input to a catamorphism that produces a value of some type other
than t� In addition� since Place plays the crucial role as the approximate right inverse of the catamorphism�
if the user constructs Terms with Place� it is not clear what this will do to the semantics of cataT�

The solution to this problem is to hide the Place constructor from the programmer� If Place does not
appear in the input of cataT� then it will not appear in the output of cataT either� To see why� consider
the case of cataT over Abs�f�� This is the only case where Place is introduced by cataT� producing the term
fa� fn x � cataT�fc�fs�fp�fa� �f �Place x�� �� If f ignores its argument� then Place will disappear� otherwise
cataT will eventually reduce all places in the input that have type Term� including terms like �Place z�� which
will reduce to z� Therefore� Place will not appear in the output�

This suggests that if the catamorphism operator were a primitive in the programming language� then
just one Place constructor is needed� This special constructor� Place� could be used by every catamorphism�
regardless of the type it traverses� We leave it to the implementation of catamorphisms as primitives to
guarantee that Place is the right inverse of each catamorphism� The Place constructor is completely
hidden from programmers in the same way that programmers cannot access closures� it is strictly an internal
implementation detail�

�



����� The Restriction on Place

The primitive place constructor� Place� is only an approximation to the right inverse of cataT� Where does
this approximation break down� Consider applying eval �de�ned in Section ������ to the following term�

Abs�fn x � case x of Const n � Const n j z � Const 
�

If we evaluate it� we get

Fun�fn y � eval�case �Place y� of Const n � Const n j z � Const 
��

Not every instance of a Term can be traversed by eval expressed as a primitive catamorphism� because the
function� f� embedded in Abs�f� cannot know how to handle Place in all cases� as the example above shows�
If f merely �pushes its argument around�� things will be ok� but if f attempts to analyze its argument with
a case expression to �look inside� as the example above does� things can go wrong since there is no case to
handle Place�

Our proposed solution to this problem is to statically detect when it occurs and to report a compile�time
error� We need to statically detect when a function embedded in a datatype performs a case analysis over
its argument� This is not always problematic� it only becomes a problem if there exists a catamorphism over
a particular instance in the program with this property� Our strategy is to extend the type system to detect
such cases� We investigate such a type system further in Section �� The type�checking algorithm is very
simple and can be implemented e�ciently� It reports error only on invalid terms�

��� Circular Lists

In this section we present a second example of a datatype with embedded functions� We are interested in
expressing computations over in�nite structures that always terminate� Catamorphisms over �nite structures
have this property� We would like to extend this property to graph�like data structures� To do this� we need
to represent these structures by �nite algebraic datatypes� One way to do this is to use embedded functions�
In this section we express circular lists� In Appendix A�� we extent this method to capture general graphs�

Lazy functional languages support circular data structures� For example� the following Haskell de�nition

circ � 
���circ

constructs the in�nite list � � � � � � � � � � � by using a cycle� One way to construct in�nite lists in SML is
to use lazy lists �also known as streams�� which use an explicit �thunk� for the tail of a list to obtain tail
laziness ��	�

datatype � Clist � Nil j Cons of � � �unit�� Clist�

For example� the list circ�
���circ is expressed as follows�

let fun circ�� � Cons�
�fn �� � Cons���circ�� in circ�� end

Even though many circular structures can be de�ned this way� many operations over them need to explicitly
carry a list of visited nodes to avoid falling into an in�nite loop� Identifying which nodes have been visited is
also problematic� since there is no pointer equality in the pure functional subset of SML� Furthermore� the
construction of these circular structures requires the use of recursive function de�nitions �such as the circ
above�� which we want to avoid when we de�ne catamorphisms �after all� a catamorphism is an alternative
to recursion��

To �nd a better de�nition for circular lists� reconsider the previous Haskell de�nition� This is equivalent
to Y �fn x � 
���x�� where Y is the �xpoint operator of type ������� that satis�es Y f � f�Y f�� This
observation while interesting has really accomplished nothing since the Haskell de�nition uses an implicit Y
combinator� Furthermore� the expression does not terminate in strict languages such as SML� One solution
is to suspend the application of Y and unroll the �xpoint explicitly during an operation only when this is
unavoidable� as is done implicitly in lazy languages�

We can accomplish a similar e�ect in strict languages by encapsulating the recursion inside a value
constructor� Rec� with a type similar to the type of the Y combinator� �� list�� list��� list� This leads
us to the following type de�nition for circular lists�





datatype � Clist �
Nil

j Cons of � � � Clist
j Rec of � Clist�� Clist

We can now express the list � � � � � � � � � � � as follows� Rec�fn x � Cons�
�Cons���x���� Functions that
manipulate these structures need to unroll the implicit �xpoint in Rec explicitly� For example�

fun head�Cons�a�r�� � a
j head�Rec f� � head�f�Rec f��

fun nth�Cons�a�r��
� � a
j nth�Cons�a�r��n� � nth�r�n���
j nth�Rec f�n� � nth�f�Rec f��n�

For example� if circ � Rec�fn x � Cons�
�Cons���x���� then nth�circ��

� � 
 and nth�circ��
�� � ��
To express catamorphisms cataC�b�f�g� over Clist� we use the same trick we used earlier by adding an

extra type variable � and a constructor Place to Clist�

datatype ����� Clist �
Nil

j Cons of � � ����� Clist
j Rec of ����� Clist� ����� Clist
j Place of �

Then cataC�b�f�g� is�

fun cataC�b�f�g� Nil � b
j cataC�b�f�g� �Cons�a�r�� � f� a� cataC�b�f�g� r �
j cataC�b�f�g� �Rec h� � g� cataC�b�f�g� � h � Place �
j cataC�b�f�g� �Place x� � x

Notice that cataC does not unroll the �xpoint in Rec h� It does not need to� Instead� it lifts h into a function
of type �� � and it is up to g to decide what to do with it� For example� the map mapC�h� over circular
lists can be expressed by

fun mapC�h� � cataC� Nil� fn �a�r� � Cons�h�a��r�� Rec �

In this case� g � Rec� and g will tie a new �knot� from the lifted function h� which results in a new circular
list� Working through the example� mapC�fn x � x	�� �Rec�fn x � Cons�
�Cons���x���� will compute a
circular list equivalent to Rec�fn x � Cons���Cons���x����

The Haskell de�nition x � ���map��	� x� that computes the in�nite list � � � � � � � � � � � is represented
by the circular list Rec�fn x � Cons���mapC�fn y � y	�� x��� For example�

nth� Rec�fn x � Cons���mapC�fn y � y	�� x��� �

 � � �
�

But consider the following example�

mapC�fn z � 	�z��Rec�fn x � Cons���mapC�fn y � y��� x���
� Rec�fn x � mapC�fn z � 	�z��Cons���mapC�fn y � y��� �Place x����
� Rec�fn x � Cons�	�mapC�fn z � 	�z��mapC�fn y � y��� �Place x����
� Rec�fn x � Cons�	�mapC�fn z � 	�z� x��

which represents the in�nite list � � � � 
 � �� � � � �� This result is incorrect� We should have computed
Rec�fn x � Cons���mapC�fn z � z	�� x��� which represents the in�nite list � � � � 
 � �� � � � �� But why did
we get this error� The problem is that the Place constructor in this example was intended to be used for
the outer mapC� not the inner� Instead it cancelled the inner mapC� If we had followed the Paterson�Meijer�
Hutton approach� we would have used mapC�fn z � z��� the right inverse of mapC�fn z � ��z�� instead
of Place� In that case� we would have derived the correct result� In a situation like this� where a function
is invertible� the Paterson�Meijer�Hutton approach clearly wins over ours� Even though nth works �ne over
the above construction� the problem is that this construction cannot be traversed over by another cataC
in our model� because of the implicit case analysis implied by the application of mapC to the argument x�

�



Fortunately cases like this are automatically discovered by the type inference system discussed in the next
section�

In each of the examples above� it was necessary to use the trick of extending the datatype de�nition with
an additional constructor Place� an additional type variable to hold the type of the result of a catamorphism�
and to write the catamorphism function by hand� In addition� there was no guarantee that the programs
written obeyed the restriction explained in Section ������

In the next section we de�ne a language in which this trick is implemented implicitly� That is� the Place
constructor and the catamorphism function are primitives of the language� Because Place is hidden� it is
impossible for the user to construct programs that use Place� The language also supports a type system that
enforces the restriction� Type inference rules for this type system are also presented�

� The Formal Framework

In this section we de�ne a language that allows the de�nition of new datatypes and implicitly supplies the
trick we used above� The expression sub�language includes the catamorphism operator for any datatype
as a primitive� Syntactically� the user writes cata T� where T is the name of a user�de�ned datatype� The
semantics of the catamorphism primitive is given as an implicit case analysis over the datatype traversed by
the catamorphism and need not be supplied by the user� This semantics accommodates the Place constructor
only as in internal implementation detail�

For reasons of simplicity� the language does not use explicit value constructors� as it is done in most
functional languages� Instead it uses binary sum and product types� This notation makes the theory easier
to explain because fewer rules are needed to express our algorithms� but makes programs hard to understand�
As we proceed through this section� we will show the correspondence between functional languages and our
language�

��� Terms

Terms e in the language are generated by the following grammar�

�term� e ��� x j �� j e e j �x� e j �e� e� j inT e j inL j inR j cataT e j �inT x� e j ��x� x�� e
j �inLx� e �	 inRx� e

where x denotes a variable� The term inT is the value constructor for the recursive type associated
with the type de�nition T �to be explained in detail later�� inL and inR are the left and right injec�
tors of the sum type� cataT is the catamorphism operator for T � The in�abstraction �inT x� e is de�ned
by ��inT x� e� �inTu� � ��x� e�u� The pair�abstraction ��x� y�� e is de�ned by ���x� y�� f�x� y�� �e�� e�� �
f�e�� e��� The sum�abstraction �inLx�� e� �	 inRx�� e�� when applied to inLu� computes ��x�� e��u and�
when applied to inRu� computes ��x�� e��u�

As explained above� our language does not contain value constructors� The value constructors of a
type can be de�ned in terms of other operators and these de�nitions can be generated automatically� For
example� for SML lists de�ned as�

datatype � list � Nil j Cons of � � � list

the value constructors Nil and Cons could be de�ned as�

Nil � inList�inL��� Cons�a� r� � inList�inR�a� r��

Traditional languages use case statements to decompose values� Our term language can capture any case
analysis over a value construction by using sum� and in�abstractions� For example�

case e of Nil � e� j Cons�a� r� � e�

can be expressed by the following composition of operators�

��inList x� ��inLy� e� �	 inRy� ���a� r�� e�� y�x� e

�



� � �� �� k � � x �� ��x�
� � �� �� k� � � �� �� k

� � �� � �� �� k

� � �� �� k� � � �� �� k

� � �� � �� �� k

� � �� �� �k� � � �� �� k

� � ����� �� k

� � �i �� k� � � � �
i
�� �k� T � ��x�� x���� � � ���xn� x

�

n
����

�fx� � �� x�� � 	� � � � � xn � �� x�
n
� 	g � � �� �

� � 	� T ���� � ��� � � � ��n� �
�

n
� �� k

Figure �� Well�formedness of Types �De�nition� ���� � 	 and ��	� � ��

��� Types

Our types are generated by the following grammar�

�type�de�nition� T ��� ��x� x�� T j �

�type� � ��� x j �� j � � � j � � � j ��� j E

�type�use� E ��� 	� T j E ��� � �

�tag� 
 ��� x j cased j folded

A type de�nition consists of a number of type abstractions followed by a type� Each type abstraction
��x� y�� � introduces two type variables� a positive ��� x and a negative �	� y� A positive �negative�
variable should only appear in a positive �negative� position in a type� This condition is implicitly checked
by the well�formedness of types rules described in Figure �� As an informal example� � and � appear in a
positive position in the type ���������� while � and � in a negative�

The rules in Figure � check the well�formedness of types� They use the following de�nitions�

�kind� k ��� x j � j 	

�kind�assignment� � ��� fg j �fx � kg

A type T � ��x�� x
�

��� � � ���xn� x
�

n
��� should satisfy �fx� � �� x�� � 	� � � � � xn � �� x�

n
� 	g � � �� �� A

type de�nition T should have at least one type abstraction ��x�� x
�

��� This type abstraction is used when
constructing the �xpoint 	� T of T � The 
 tag in 	� is used during type�checking and it is hidden from
programmers� The �xpoint type constructor 	� is a primitive and obeys the following equation�

	� T ���� �
�

�� � � � ��n� �
�

n� � T ��	� T ���� �
�

�� � � � ��n� �
�

n��� �	
� T �� ��� ��� � � � ��

�

n� �n��� ���� �
�

�� � � � ��n� �
�

n�

That is� 	� T is the �xpoint of T � where both the arguments of the �rst abstraction of T are �xed to 	� T �
We will see later that any type de�nition T that meets the well�formedness criteria of Figure � is a functor
that is covariant in its positive arguments and contravariant in its negative arguments�

�T �f�� f
�

�� � � � �fn� f
�

n
�� � �T �g�� g

�

�� � � � �gn� g
�

n
�� � T �f� � g�� g

�

� � f
�

�� � � � �fn � gn� g
�

n
� f �

n
�

The following are examples of type de�nitions�

Bool � ��x� y�� �� � ��

Nat � ��x� y�� �� � x

List � ��x� y������ ���� �� � �� x

Rose tree � ��x� y������ �������� ���� �� � ��� � � �	�List �x� y���

Clist � ��x� y������ ���� �� � ��� x� �y�x��

Ctype � ��x� y������ ���� ������ � �y�x�

For example� the inductive list type de�nition






datatype list��� � Nil j Cons of ��list���

is derived by applying the �xpoint operator to List�

list��� � 	� List ��� ��

Note that all types that do not include embedded functions� such as the familiar List� Nat and Bool� make
no mention of their negative type variables�

��� The Semantics of Catamorphism

The semantics of the catamorphism over a type de�nition T � cataT � can be given as an implicit case analysis
over T � A type de�nition T � ��x�� x��� � � ���xn� x

�

n
�� � is associated with a functor� The type mapping

part of the functor is the polymorphic type T itself� The function mapping part of the functor is de�ned
by T �f�� f ��� � � � �fn� f

�

n
� � M��� 		� where each function fif

�

i
is associated with the type variable xix�i� The

term M��� 		 is derived by a case analysis over the type � �

M��xi		 � fi

M����		 � �x�x

M���� � ��		 � ��x� y�� �M����		x�M����		 y�

M���� � ��		 � �inLx� inL�M����		x� �	 inRy� inR�M����		 y�

M�������		 � �h� �x�M����		�h�M����		�x���

M��	� S ���� � ��� � � � ��m� �
�

m
�		 � mapS �M����		�M��� ��		� � � � �M���m		�M��� �

m
		�

where for the functor S � ��x�� x
�

�� � � ���xm� x
�

m
�� � �

�mapS �f�� f ��� � � � �fm� f
�

m
�� � inS

� inS � �S �mapS �f�� f ��� � � � �fm� f
�

m
��mapS �f ��� f�� � � � �f

�

m
� fm�� �f�� f ��� � � � �fm� f

�

m��

Theorem � The functor T �f�� f ��� � � � �fn� f
�

n� �M��� 		� for T � ��x�� x��� � � ���xn� x
�

n��� � satis�es

T ��x�x� �x�x� � � ���x�x� �x�x� � �x�x
�T �f�� f

�

�� � � � �fn� f
�

n�� � �T �g�� g
�

�� � � � �gn� g
�

n�� � T �f� � g�� g
�

� � f
�

�� � � � �fn � gn� g
�

n � f
�

n�

This theorem can be proved by induction over the structure of � inM��� 		� LetM���� 		 � T �f�� f
�

�� � � � �fn� f
�

n
��

M���� 		 � T �g�� g
�

�� � � � �gn� g
�

n
�� and M���� 		 � T �f� � g�� g

�

� � f
�

�� � � � �fn � gn� g
�

n
� f �

n
�� It is su�cient to prove

that� for any type � � if fg � � �� �� then M���� 		 �M���� 		�M���� 		� otherwise M���� 		 �M���� 		�M���� 		� We
present only one case of this proof where � � ����� and � is positive�

M���� 		 �M���� 		
� ��h� �x�M�����		�h�M�����		�x���� � ��h� �x�M�����		�h�M�����		�x���� �by de�nition of M�������		�
� �h� �x� �M�����		�M�����		�h�M�����		�M�����		�x������ �by composition�
� �h� �x� �M�����		�h�M�����		�x���� �by induction hypothesis�
� M���� 		 �by de�nition of M�������		�

The catamorphism over any datatype T is de�ned in terms of the combinator ET � which is the function
mapping part of T with all but its �rst two arguments �xed at the identity function�

ET �f� � f�� � T �f� � f�� ��x�x� �x�x� � � ���x�x� �x�x�

According to Theorem �� it satis�es the law� ET �f� � f�� � ET �g�� g�� � ET �f� � g�� g� � f���
According to our previous discussion� to de�ne the catamorphism over T � we need to extend T with a

new value constructor Place and a new type variable ��

T � � ���� �
�

�� � � � ��n� �
�

n� � �T ���� �
�

�� � � � ��n� �
�

n�� � �

�



Here Place is equal to inT
�

� inR� The catamorphism over T is�

�cataT �� � inT
�

� �inLx� ��ET �cataT �� inT
�

� inR� x� �	 inRy� y

But here the Place constructor is transparent to programmers� To hide it� we need to introduce the special
term Place�

De�nition � �Catamorphism� The catamorphism for a type T is

cataT � �inTx� � ��ET �cataT ��Place� x�
cataT � �Place x� � x

For example� according to this de�nition� the catamorphism for circular lists is cataClist ��

cataClist � �inClist x� � ����inL y� inLy
�	 inRy� inR���inL z� inL����a� r�� �a� cataClist � r�� z�

�	 inRh� inR��w� cataClist � �h�Place w���� y��x�
cataClist � �Place x� � x

If we had expressed the �rst case of this de�nition in a functional language with value constructors and
pattern matching� we would have

cataClist � �inClist x� � ��case x of
Nil� � Nil�

j Cons��a� r� � Cons��a� cataClist � r�
j Rec��f� � Rec���cataClist �� � f �Place��

where Nil� � inL��� Cons��a� r� � inL�inR�a� r��� and Rec��f� � inR�inR�f��� For example� the following
program computes mapC�g�� the map over Clist�

cataClist ��inLy� inL y
�	 inRy� inR���inL z� inL����a� r�� �g a� r�� z�

�	 inRh� inR�h�� y��

Meijer and Hutton ��	 de�ne a catamorphism cataT in conjunction with its dual the anamorphism anaT

as follows�
cataT �� �inTx� � ��ET �cataT ��� anaT ��� x�

anaT �� x � inT �ET �anaT ��� cataT ��� �� x��

That is� both cataT and anaT should take two functions� � and �� one� �� to be used in the catamorphism and
the other� �� to be used in the anamorphism� This dual pair of cata�ana should satisfy the law �cataT ��� �
�anaT ��� � id to be useful� This implies that � � � � id�

��� Type�checking

The grammar for the term language gives syntactic rules for valid term constructions� But not all such
terms have meaning� Traditionally� a type system is used to report invalid terms by assigning types to
terms� Here we will use the type system to distinguish both the ill�typed terms and terms with illegal uses of
catamorphisms� Since we support polymorphic data types� we will need a Hindley�Milner style type�inference
algorithm� Here we will only give the typing rules for the type�inference system�

Figure � presents the typing rules for our ��calculus� All rules are typical except the rules �CATA��
�IN�� and �OUT�� To simplify these rules� we assume that a type de�nition T has only one type abstraction�
i�e� one positive and one negative variable� If we ignore the 
�s in the Rule �IN�� then the type of inT e
is the �xpoint of the functor T and the type of e is T but with both its positive and negative arguments
�xed to the �xpoint of T � In addition� Rule �IN� propagates the 
 �ag only to the negative part of T �
Rule �OUT� is in a way the opposite of Rule �IN�� �inT x� e is a function from the �xpoint of T to the type
of e� Rule �OUT� also sets the 
 �ag of the negative part of T to cased� Rule �CATA� sets the 
 tag of

��



�VAR� � � x � ��x� �UNIT� � � �� � ��

�INL� � � inL � ����� � �� �INR� � � inR � ����� � ��

�APPL�
� � e� � ������ � � e� � ��

� � e� e� � ��
�ABS�

�fx � ��g � e � ��

� � �x� e � �����

�PROD�
� � e� � ��� � � e� � ��

� � �e�� e�� � �� � ��
��ABS�

�fx� � ��� x� � ��g � e � �

� � ��x�� x��� e � �� � ����

�CATA�
� � e � T ��� � ���

� � cataT e � 	folded T��
��ABS�

�fx� � ��g � e� � �� �fx� � ��g � e� � �

� � ��inLx�� e� �	 inRx�� e�� � �� � ����

�IN�
� � e � T �	�� T� 	�� T �

� � inT e � 	�� T
�OUT�

�fx � T �	� T� 	cased T �g � e � �

� � �inT x� e � 	cased T��

Figure �� Typing Rules �where a type�assignment is � ��� fg j �fx � �g�

	� to folded� If a term of type 	� T is examined by the term �inT x� e� it sets the 
 tag to cased� which is
propagated through the negative part of T � If it reaches a catamorphism� then 	cased T and 	folded T will
not unify and the type�checking will fail�

For example� the term
cataClist � �Rec��inClist x� e��

where Rec�f� � inClist�inR�inR�f���� is not well�typed� since ��inClist x� e� is of type 	casedClist� � � the
term inClist will propagate the type of its negative input� 	casedClist� to its output� and �nally the resulting
type 	casedClist will not unify with the type 	folded Clist in Rule �CATA�� On the other hand�

cataClist � �Cons�a� ��inClist x� e� r��

where Cons�a� r� � inClist�inR�inL�a� r���� is well�typed� since Rule �OUT� will bind the 	 tag of the
negative part of T to cased� Since the type of the constructor Cons does not use the negative part of T � this
binding will not be propagated�

A type�checking system that is based on the typing rules in Figure � needs a uni�cation algorithm� This
uni�cation algorithm is quite typical� The only special case it needs to consider is the case of unifying 	�� T
with another 	�� S� since this is the case where an error occurs if a program does not satisfy the restrictions�
The type 	�� T will unify with 	�� T �denoted as 	�� T 
 	�� T � in all but the following cases�

	folded T �
 	cased T 	folded T �
 	folded T

We have already presented an example for the �rst case in which the type checker should report an error�
An example of the second case was given in Section ����

mapC��x� � � x��Rec��x�Cons���mapC��x� x� ��x���

The outer mapC is a catamorphismover the in�nite list � � � � � � � � �� Since the inner mapC is a catamorphism
too� the folded tag will be propagated all the way through the input of the outer mapC� As we have seen�
this program is invalid and it should be ruled out by the type�checker�

��



� Conclusion

We have presented a new method of de�ning catamorphisms over datatypes with embedded functions� Our
approach can be useful even when the approach outlined by other recent proposals fails� as it does not require
the existence of inverse functions� We have characterized exactly when we can trade the restrictive condition
about the existence of an inverse for another more useful condition that we can statically test�

We have demonstrated how to use datatypes with embedded functions on two large and useful domains�
meta�programming and circular structures�

We have demonstrated that structures with embedded functions are a natural way to express meta�
programming and program manipulation of languages with binding constructs like lambda abstraction�
because there is no renaming problem or need for a gensym like solution� Therefore� our solutions are purely
functional without the need to resort to the well known stateful monad tricks� Meta�programs constructed
this way always meet the type�checked condition�

The other domain of examples was on structures with cycles� It is well known that functional language
implementations use pointers and cycles� but these are hidden implementation details� These are exactly
the mechanisms programmers would like to use to implement graphs� but they cannot� We have developed
a mechanism that allows programmers to get a better hold of these implementation details in a still safe
manner�

� Acknowledgments

The authors would like to thank Erik Meijer� Ross Patterson� Doaitse Swierstra� and Andrew Tolmach for
extensive comments on earlier drafts of this paper� Leonidas Fegaras is supported by contract by the Ad�
vanced Research Projects Agency� ARPA order number �
� monitored by the US Army Research Laboratory
under contract DAAB�������C�Q�
�

References

��	 L� Fegaras� T� Sheard� and T� Zhou� Improving Programs which Recurse over Multiple Inductive Struc�
tures� In ACM SIGPLAN Workshop on Partial Evaluation and Semantics�Based Program Manipulation�

Orlando� Florida� pp �� ��� June �����

��	 J� Launchbury and T� Sheard� Warm Fusion� Seventh Conference on Functional Programming Languages

and Computer Architecture� La Jolla� California� June ����

��	 E� Meijer� M� Fokkinga� and R� Paterson� Functional Programming with Bananas� Lenses� Envelopes
and Barbed Wire� In Proceedings of the �th ACM Conference on Functional Programming Languages

and Computer Architecture� Cambridge� Massachusetts� pp ��� ���� August ����� LNCS ���

��	 E� Meijer and G� Hutton� Bananas in Space� Extending Fold and Unfold to Exponential Types� Seventh
Conference on Functional Programming Languages and Computer Architecture� La Jolla� California�
June ����

�	 R� Paterson� Control Structures from Types� Submitted to Journal of Functional Programming� �����
Available from ftp���ftp�ala�doc�ic�ac�uk�pub�papers�R�Paterson�folds�dvi�

��	 L� Paulson� ML for the working programmer� Cambridge University Press� �����

��	 C� Reade� Elements of Functional Programming� Addison Wesley� ��
��

�
	 T� Sheard and L� Fegaras� A Fold for All Seasons� Sixth Conference on Functional Programming Lan�

guages and Computer Architecture� Copenhagen� Denmark� pp ��� ���� June �����

��	 P� Wadler� Theorems for Free! Fourth Conference on Functional Programming Languages and Computer

Architecture� Imperial College� London� September ��
��

��



A More Examples

A�� The Parametricity Theorem

As another example of representing terms by structures with embedded functions� we construct the para�
metricity theorem for any polymorphic function� To understand this section� the reader must be familiar
with Wadler�s theorems�for�free paper ��	�

Any function f of type � satis�es a parametricity theorem� which is directly derived from the type � � For
�rst�order functions� this theorem basically says that any polymorphic function is a natural transformation�
The theorem for f � � is F ��� 		�f� f�� which indicates that �f� f� � � � where types here are considered as
relations�

Theorem � �Parametricity Theorem� For any strict function f � � we have F ��� 		�f� f�� where�

F ��basic		�r� s� 	� r � s

F ���		�r� s� 	� r � ��s�

F ���� � 		�r� s� 	� � � F ��� 		�r� s�

F ���� � ��		�r� s� 	� F ����		����r�� ���s�� � F ����		����r�� ���s��

F �������		�r� s� 	� x� y � F ����		�x� y� � F ����		�r�x�� s�y��

F ��T �� �		�r� s� 	� f� x � F ��� 		�f�x�� x� � r � mapT �f� s

Here� for each type variable �� we associate a function � �of type ������ where �� and �� are instances of
��� �Regularly� we would need to pass an environment through F ��� 		�r� s� that maps type variable names to
function names��

For example� we construct the parametricity theorem for list catamorphism� catalist � ��� �� ���
�� list������ �the construction is done in four simple steps�

F ������ ���		�r� s� 	� �� �� x� y � F ���		�x� y� � F ���		�r�x�� s�y��
	� �� �� x� y � x � ��y� � r�x� � ��s�y��
or �� � � r � � � � � s

F �������� �����		�r� s� 	� �� �� �� x� y � F ���		�x� y� � F �����		�r�x�� s�y��
	� �� �� �� x� y � x � ��y� � r�x� � � � � � s�y�
or �� �� �� y� z � r �� y� �� z� � ��s y z�

F ���� list���		�r� s� 	� �� f� x � f�x� � ��x� � r � maplist�f� s
or � � r � maplist��� s

F ������ ���������� list�����		�r� s�
	� �� ����� � F �������		����� � F ���� list�����		�r�� s��
	� �� ������ x� y � ��x�� �� y� � ��x � y� � r � �� x� �maplist��� y� � ��s � x y�

That is� the list catamorphism satis�es the following theorem�

��x�� �� y� � ��x � y� � catalist��� �� x� �maplist��� y� � ��catalist���x y�

The parametricity theorem can be easily extended to parametrize over type constructors� for each free
type constructor T � � � � we associate a function T of type ��� � ��� � T����� � T������ where T�
and T� are instances of T � This is useful when we want to express laws about operations parametrized
by type constructors� For example� the operation cata of type T� � �T � � �� � 	T � � satis�es�
� � �T �� � � � � � �cata �� � �Y T � � � � �cata��� where these cata here may be of di�erent type
constructors�

The construction of the predicate of Theorem � requires some variable plumbing when we introduce
universal quanti�cation �to avoid name capture etc�� In addition� for each type variable a function is

��



associated� and this binding should be carried through the whole construction� We can avoid these problems
by using structures with embedded functions to capture universal quanti�cation� Our algorithm takes a type
construction of type T and returns a predicate of type E�

datatype T � Basic j Prod of T � T j Arrow of T � T j Univ of T�T j Def of string � T

datatype E � Pi� j Pi	 j Apl of E � E j Eq of E � E j And of E � E j Impl of E � E
j All of E� E j Map of string � E

By following the same routine as before� �i�e� adding the new constructor Place to type T� etc��� the
catamorphism over types is�

fun cataT�b�p�a�u�d� Basic � b
j cataT�b�p�a�u�d� �Prod�x�y�� � p� cataT�b�p�a�u�d� x� cataT�b�p�a�u�d� y �
j cataT�b�p�a�u�d� �Arrow�x�y�� � a� cataT�b�p�a�u�d� x� cataT�b�p�a�u�d� y �
j cataT�b�p�a�u�d� �Univ f� � u� cataT�b�p�a�u�d� � f � Place �
j cataT�b�p�a�u�d� �Def�n�x�� � d� n� cataT�b�p�a�u�d� x �
j cataT�b�p�a�u�d� �Place x� � x

The algorithm that generates the predicate of the parametricity theorem for a function fnc of type tp is the
following higher�order catamorphism�

fun parametricity tp �
All�fn fnc � cataT�fn �r�s� � Eq�r�s��

fn �a�b� � fn �r�s� � And� a�Apl�Pi��r��Apl�Pi��s��� b�Apl�Pi	�r��Apl�Pi	�s�� ��
fn �a�b� � fn �r�s� � All�fn x � All�fn y � Impl�a�x�y��b�Apl�r�x��Apl�s�y������
fn f � fn �r�s� � All�fn x � f�fn �r�s� � Eq�r�Apl�x�s����r�s���
fn �n�a� � fn �r�s� � All�fn f � All�fn x � Impl� a�Apl�f�x��x�� Eq�r�Apl�Map�n�f��s�� ����

tp �fnc�fnc��

When this function operates over Univ�g�� it lifts g�T�T into f� �E � E�E�� �E � E�E�� The input
to f should be fn �r�s� � Eq�r�Apl�x�s��� that is� it should be the rule for handling the type variable x �the
second rule in Theorem ��� Notice that there is no need of using a gensym function to generate new variable
names since the variable scoping is handled implicitly by the execution engine of SML in which this function
is expressed� The Paterson�Meijer�Hutton approach would have failed to capture this function� since there
is no obvious function E�T that is a right inverse of the parametricity function�

A�� Graphs

Graphs can be represented in a way similar to circular lists� This allows terminating computations over
graphs� such as �nding the spanning tree of a graph� to be expressed as catamorphisms� The most common
way to represent graphs in a functional language is to use a vector of adjacency lists� This approach
is not really di�erent from using pointers in a procedural language� it permits ad�hoc constructions and
manipulations of graphs� The approach described in ��	 de�nes a graph type as�

datatype � graph � Graph of ��� list

Here a graph consists of a function that computes the successors of each node� This de�nition requires
special care while programming to guarantee program termination�

Our graphs are based on the idea of using embedded functions as we did for circular lists� We start with
a datatype that can represent trees with nodes that support arbitrary branching levels� We call such a tree
a rose tree� It is de�ned as follows�

datatype � rose tree � Node of � � � rose tree list

Now� we think of a graph as a generalization of rose trees with cycles and sharing�

datatype � graph �
Node of � � � graph list

j Rec of � graph�� graph
j Share of �� graph�� graph� � � graph

��



��
��

�

��
��

� ��
��

�

x

z
y

�
�
�
�R

�
�

�
���
�
�
���

�

��
�

�

x � Node�
��y�z��

y � Node����y�z��

z � Node����x��

Figure �� Graph with three nodes �� �� � and �ve edges

Here� Rec plays the role of the Y combinator to express cycles� while Share plays the role of a function
application� That is� Share�f�e� is unrolled as f e� Basically� all free occurrences of x in u in the term
Share�fn x � u� e� are bound to e� That is� all x in u are sharing the same subgraph e�

For example�

Rec�fn x � Share�fn z � Node�
��z�Rec�fn y � Node����y�z����
Node�	��x���

describes the graph in Figure �� By following the same routine as for circular lists� �i�e� adding the new
constructor Place� etc��� the graph catamorphism� cataG� is�

fun cataG�f�g�k� �Node�a�r�� � f� a� map�cataG�f�g�k�� r �
j cataG�f�g�k� �Rec�h�� � g� cataG�f�g�k� o h o Place �
j cataG�f�g�k� �Share�h�n�� � k� cataG�f�g�k� o h o Place� cataG�f�g�k� n �
j cataG�f�g�k� �Place x� � x

Examples�

val listify � cataG� fn �a�r� � a����atten r�� fn f � f � � fn �f�r� � f r �
val sum � cataG� fn �a�r� � cata�op �� r a� fn f � f 
� fn �f�r� � f r �
fun mapG�g� � cataG� fn �a�r� � Node�g a�r�� Rec� Share �

listify �attens a graph into a list� sum computes the sum of all node values� and mapG is the map over a
graph�

The following is another datatype for graphs� Here we have merged the roles of the Share and the Rec
constructors by using a list in the domain of Rec�

datatype � graph �
Node of � � � graph list

j Rec of int � �� graph list�� graph list�

For example� the graph in Figure � is constructed by

Rec� �� fn �x�y�z� � �Node�
��y�z���Node����y�z���Node����x��� j x � error �

In general� any set of n mutually recursive Haskell de�nitions of the form xi � fi�x�� � � � � xn�� � � i � n� can
be represented by

Rec� n� fn �x�� � � � � xn� � �f��x�� � � � � xn�� � � � � fn�x�� � � � � xn�� j x � error �

The interpretation of Rec�n�f� is hd�Y f�� For practical reasons� both the input and the output list of f must
have the same size� n� in order for the closure Y f to work� By following the same routine as before� �i�e�
adding the new constructor Place� etc��� the graph catamorphism is�

fun cataG�fn�fr� �Node�a�r�� � fn� a� map�cataG�fn�fr�� r �
j cataG�fn�fr� �Rec�m�f�� � fr� m� map�cataG�fn�fr�� � f � �map Place� �
j cataG�fn�fr� �Place x� � x

For example� the following computes the adjacency list of a graph�

cataG� fn �a�r� � ��a�map���� ��atten r���� fn �n�f� � �atten�f�f�ncopies n � ���� �

where ncopies n a creates a list of n copies of a� If we had �atten�f�ncopies n � ��� in the second parameter of
cataG� we would have gotten an empty adjacency list for each node�

�


