
Fast Concurrent Dynamic Linking for an

Adaptive Operating System �

Crispin Cowan� Tito Autrey� Calton Pu� and Jonathan Walpole

Department of Computer Science and Engineering

Oregon Graduate Institute of Science � Technology

�synthetix�request�cse�ogi�edu�

October ��� ����

Abstract

The need for customizable and application�speci�c operating systems has been rec�

ognized for many years� A customizable operating system is one that can adapt to

some particular circumstance to gain some functional or performance bene�ts� Micro�

kernels have attempted to address this problem� but su�er performance degradation

due to the cost of inter�process protection barriers� Commercial operating systems that

can e�ciently adapt themselves to changing circumstances have failed to appear� in

part due to the di�culty of providing an interface that is e�cient to invoke� provides

a protection barrier� and can be dynamically recon�gured�

Providing such a safe� e�cient� and dynamic interface in a concurrent operating

system requires an e�ective concurrency control mechanism to prevent con�icts be�

tween system components proposing to execute specialized components� and those

components responsible for dynamically replacing specialized components� This pa�

per outlines our basic approach to specialization of operating systems� and details our

dynamic replacement mechanism and its concurrency control features�

� Introduction

A key dilemma faced by operating system developers is the need to produce software that

is both general�purpose and e�cient� Operating systems must execute correctly under all

�This research is partially supported by ARPA grant N���������������	 NSF grant CCR��

����	 and

grants from the Hewlett�Packard Company and Tektronix


�



conditions� but must also exhibit high performance under certain common conditions� The

conventional approach to this dilemma is to write code that is general�purpose� but optimized

for a single anticipated common case� The result is an implementation with functionality and

performance characteristics that are �xed throughout the lifetime of the operating system�

The need for con�gurability arises when the anticipated common case doesn�t match the

characteristics of some important application� This situation can arise when the application

in question was developed after the operating system� or when the operating system developer

simply failed to recognize the importance of this application or class of applications�

The problem can be serious when the optimizations embedded in the operating system

are particularly bad for the new application� For instance� the usual paging policy pro�

vided by most operating systems is simply not appropriate for database applications 	
���

Mukherjee and Schwan 	

� showed that both spinlocks and blocking locks can provide su�

perior performance under di�erent circumstances� Thus it is important to provide operating

system facilities that are appropriate to the application�

Micro�kernels have addressed this problem by providing a minimal kernel� and encapsu�

lating the rest of OS functionality in replaceable server processes 	�� �� �� �
� ��� 

� 
��� Such

systems can be customized by replacing or providing additional servers that implement the

desired policies while making use of existing mechanisms provided by the micro�kernel� Using

this approach� customization is supported at a coarse granularity� through the replacement

of complete servers�

The customizability that comes from restructuring operating systems as collections of

user�level servers is not free� System calls that previously involved only procedure calls and

accesses to shared data within the kernel now incur the overhead of virtual memory context

switches and thread switches associated with message passing across protection boundaries�

In view of the fact that performance really matters� operating system researchers have

explored several alternatives to the micro�kernel approach� Projects such as SPIN 	�� and the

Exokernel 	��� provide facilities to allow applications to incorporate their own variants of OS

functionality while moving the traditional microkernel protection barriers up or down so as

to minimize the performance penalties of dynamic con�guration� Object�oriented operating

systems use objects for con�gurability and to provide protection�

The Synthetix approach to OS con�guration is to automatically provide specialized im�

plementations of various OS services� The specialized implementations are tuned to provide

improved OS performance by exploiting invariants that are particular to the application






using the service�

By way of example� consider a simpli�edUnix File System interface in which open takes

a path name and returns an �open �le� object� The operations on that object include read�

write� close� and seek� The method code for read and write can be specialized� at open

time� to read and write that particular �le� because at that time the system knows� among

other things� which �le is being read� which process is doing the reading� the �le type� the

�le system block size� whether the inode is in memory� and if so� its address� etc� Thus� a

lot of the interpretation of �le system data structures that would otherwise have to go on

at every read can be done once at open time� Performing this interpretation at open time is

a good idea if read is more common than open� and in our experience with specializing the

Unix �le system� loses only if the �le is opened for read and then never read�

Exploiting these ideas in an operating system with concurrent processes requires an e�ec�

tive concurrency control mechanism to prevent con�icts between system components propos�

ing to execute specialized components� and those components responsible for dynamically

replacing specialized components� This paper outlines our basic approach to specialization

of operating systems� and details our dynamic replacement mechanism and its concurrency

control features�

Section 
 elaborates on the Synthetix notions of specialization� Section � describes our

experiments exploiting specialization in systems� Section � details our mechanism for safe�

concurrent replacement of specialized modules� a process we call replugging� Section �

describes related work� Finally Section � discusses our conclusions and future work�

� Specialization

The Synthetix project seeks to de�ne a systematic approach to dynamic customization of

an operating system� We begin with a high�level speci�cation of customization requirements

using invariants� A true invariant� like a classical invariant� is a state property of the

system that is guaranteed to be true at all times� A quasi�invariant is a state property

that is momentarily true� but may be falsi�ed at some future point in time�

Once invariants have been established� specialized modules can be prepared to replace

their generic counterparts in the system� A specialized module can either be a specialization

of mechanism or of policy� A specialized mechanism is a more e�cient implementation of the

same functionality� optimized using partial evaluation with respect to the invariants� A

�



specialized policy module provides the same interface as its generic counterpart� but changes

the behavior of the module to provide improved performance to the application� e�g� a

specialized �le pre�fetching policy�

Quasi�invariants can be falsi�ed� potentially making their corresponding specialized mod�

ules either ine�cient or invalid� Thus quasi�invariants must be guarded� A guard is a test

placed at a location in the system where a quasi�invariant might be invalidated� if execution

of that point invalidates the quasi�invariant� then the guard re�plugs all the specialized

modules that depend on it with less specialized modules that do not depend on the falsi�

�ed quasi�invariant� Because a specialized module that depends on quasi�invariants can be

removed� possibly even before it is used� we refer to the use of such specialized modules as

optimistic specialization�

Specializedmodules can be installed when ever the appropriate set of invariants and quasi�

invariants is discovered to be true� Discovering that an invariant is true requires the same set

of checks as discovering that an invariant is false� and so the aforementioned guards can be

used to instantiate the use of specialized modules� allowing the operating system to infer the

specializations that should be used� Sometimes� however� invariants are discovered to be true

at di�erent points in time� In that case� the specialized module may be replaced with one

that is more specialized than the current module� We call this incremental specialization�

Section ��� describes an experimentalmodi�cation of the HP�UX operating system to exploit

the techniques of optimistic and incremental specialization�

The HP�UX experiment is an example of mechanism specialization� An example of

policy specialization is illustrated by a �ne�grained specialization technique called software

feedback� Software feedback proposes that in a system containing producer and consumer

processes� the consumer feed back properties of it�s input to the producer so as to balance

and optimize the data �ow� Section ��
 describes our distributed video�audio player that

uses software feedback to dynamically adapt to the changing bandwidth provided by the

Internet� This example serves to illustrate two concepts� The feedback messages produced

by the consumer explicitly change the behavior of the system� thus feedback constitutes a

policy specialization rather than a mechanism specialization�

Software feedback re�specializes the behavior of the system between individual invocations

of the system call to fetch data� Thus software feedback is a much �ner�grained example of

specialization than has previously been discussed� instead of replacing a module once and

for all� as in a microkernel� or once a specialization opportunity is discovered� as in our

�



HP�UX experiment� software feedback continuously re�specializes the system� None the less�

software feedback can still be modeled using the Synthetix model for specialization� the

consumer describes the properties of its input data stream as quasi�invariants� and when

these quasi�invariants are violated� a feedback message is sent to the producer to correct the

data stream so that the quasi�invariant will again be true�

� Special Experiences

We have experimentally validated the performance bene�ts of specialization� This section

reviews these experiments� Subsection ��� describes optimistic and incremental mechanism

specialization in the HP�UX operating system� Subsection ��
 describes �ne�grained policy

specialization through software feedback in a distributed multimedia player�

��� Optimistic and Incremental Specialization in HP�UX

The experiment in 	
�� sought to evaluate the e�ectiveness of mechanism specialization in

a commercial operating system� Previous work 	��� 
�� had already shown that specialized

mechanism could provide performance bene�ts of up to a factor of �� 	���� but this work did

not clearly distinguish between the bene�ts provided by specialized mechanisms and bene�ts

provided by other means� such as a kernel hand�coded in assembler�

In this experiment we produced a specialized implementation of the read system call

mechanism� The specialized read implementation exploits several true invariants and quasi�

invariants to produce a simpler and faster read mechanism� For instance� the generic read

mechanism is forced to interpret numerous data structures that describe the type of the

object being read ��le� socket� etc��� the type of the �le system �local or network�� and

the parameters of the �le system �block size� etc��� However� once a speci�c �le is opened�

these values all become �xed as true invariants� Thus a faster implementation of the read

mechanism can be created that does not check these parameters� but instead hard�codes

them into the specialized read mechanism�

The generic readmechanism also acquires several concurrency locks on kernel data struc�

tures to protect against errors that may occur if more than one process concurrently accesses

these data structures� However� it is possible to determine at open time whether there are

any concurrent processes accessing the �le� If there are not� then it is a quasi�invariant that

the �le is not shared� and the acquisition of the concurrency locks can be omitted from the

�



specialized read mechanism� This is an important savings� because concurrency locks can

be quite slow on shared memory multiprocessors 	
��

Non�sharing of �les is a quasi�invariant� because at any time another process may open

the �le and access it� To protect against this possibility� guards are placed in all locations in

the kernel where �les may be opened �open� creat� etc��� If it is detected that the �le being

opened has been �specialized�� i�e� is being accessed by a specialized implementation of read�

then the quasi�invariant has been violated� and the specialized read mechanism is replaced

with a more generic mechanism that does not depend on the �non�shared� quasi�invariant�

Applications are designed around the fact that OS system calls are expensive to use

because of high software overhead� and thus system calls such as read are usually used to

read large blocks of data� Our experiments show that a specialized implementation can

reduce the software overhead of the read system call by more than a factor of three� Such a

reduction in system call overhead not only improves application performance� it also enables

a more �exible use of OS system calls�

��� Policy Specialization Through Software Feedback

Two of the hottest topics in current computer systems are the Internet and multimedia�

Unfortunately� they don�t work well together� multimedia presentations demand real�time

performance� while the bandwidth and latency characteristics of the Internet are highly

variable and impossible to control� It is therefore necessary for distributed multi�media

systems to adapt to the changing conditions found in a distributed network� This experiment

showed how the use of feedback to make multimedia presentations adaptive enables video

to be played across an irregular network such as the Internet without bene�t of resource

reservations 	���

We use software feedback 	��� 
��� reminiscent of hardware feedback� to adapt multi�

media presentations to the changing conditions of the Internet� Our video player has a

distributed client�server architecture� The client measure various properties of its video

stream its receiving from the network� and feeds them back to the server� allowing both the

client and the server to adapt to changing Internet conditions�

Software feedback takes the form of quasi�invariants and guards� If a quasi�invariant is

true� then the present state is within tolerance� and no feedback is required� If the quasi�

invariant is violated� then some property has exceeded tolerance� and some form of feedback

action is necessary� Guards detect the violation of the quasi�invariants� and induce feedback

�



events which undertake to make the quasi�invariant again true�

For instance� it is desirable that the server only send as many frames per second as the

network can support� sending additional frames just wastes bandwidth� because these frames

are either dropped by the network� or discarded by the client because they arrived to late to

be useful� Thus we use a quasi�invariant that the server�s frame transmission rate is within

� of the client�s frame display rate� If a guard detects that this quasi�invariant has been

violated� then a feedback message is sent to tell the server to adjust it�s frame transmission

rate so that the client and server�s frame rates will again be within � tolerance of one another�

The invariants and guards used in software feedback are similar to those used in mecha�

nism specialization� However� the actions taken by the guards that detect violations of quasi�

invariants are di�erent� Rather than replacing one mechanism with another� the guards take

explicit actions that cause components of the system to change their operational behavior�

e�ectively changing the component�s policy� Thus software feedback is a form of policy

specialization�

The guards are also triggered much more frequently� and the corrective actions they take

are much cheaper than replacing one mechanism with another� Thus software feedback is

much �ner�grained than mechanism specialization� However� it is not always the case that

policy specialization is �ne�grained� In future research� we will examine the prospects for

larger�scale policy specializations in an operating system� such as paging policy� or �le system

pre�fetching policy�

� The Replugging Algorithm

The use of specialized implementations requires a facility that supports the e�cient invo�

cation of specialized implementations while also supporting safe� concurrent replacement

of specialized implementations� Concurrently executing and modifying system components

presents a concurrency control problem� The purpose of this paper is to present our system

for satisfying these constraints�

Supporting mechanism specialization� as in the HP�UX experiment in Subsection ����

basically requires a simple indirect jump� as in a C function pointer� However� an adaptive

operating system that is using optimistic and incremental specialization must also deal with

concurrency problems� Concurrency errors may occur in the following circumstances�

� A guard triggers replugging of a specialized function concurrent with another process

�



attempting to execute that specialized function�

� A guard triggers replugging of a specialized function while another process is blocked
inside that specialized function� e�g� waiting for disk I�O�

� Two or more guards concurrently trigger replugging of the same specialized function�

The system must correctly handle the possibility of the above concurrent events� Fur�

thermore� it is imperative that the execution of specialized functions not be signi�cantly

slowed down by the concurrency control of the replugging system� or else the bene�ts of

specialization will be lost�

Policy specialization� as described in the software feedback experiment in Subsection ��
�

can also be supported using indirect jumps� However� software feedback may only require

the changing of some parameters� rather than replacing implementation modules� None the

less� the same concurrency errors may occur if the parameters are concurrently used by an

executing process and changed by a replugging action� The same performance constraints

also apply� executing specialized modules must not su�er delay due to acquiring concurrency

locks�

��� Basic Replugging

It is possible to solve this concurrency problem using some form of wait�free synchroniza�

tion 	���� However� wait�free synchronization is not always faster than simple locking� can

be considerably more complex� and may require hardware support for variations of atomic

test�set instructions� Instead� we implemented asymmetric locking� both the processes exe�

cuting specialized functions� and the processes replugging specialized functions must acquire

and release locks on the specialized function� The asymmetry is that the method used to

acquire and release the lock for processes executing the specialized function is considerably

faster than that used by replugging processes�

Note that the algorithm presented here assumes that a coherent read from memory is

faster than a concurrency lock� if specialized hardware makes locks fast� then the specialized

synchronization mechanism presented here can be replaced with locks�

To simplify the replugging algorithm� we make some assumptions that are true in many

Unix systems�

�� Kernel calls cannot abort� i�e� take an unexpected path out of the kernel on failure�
This assumption allows us to avoid checking for an incomplete kernel call to is read�

�




� There is only one thread per process� This assumption allows us to assume that
multiple kernel calls cannot concurrently access process level data structures�

�� That there can be at most one thread executing inside specialized code� This assump�
tion simpli�es the streamlined lock acquisition for executing specialized functions�

To separate the simple case �when no thread is executing inside code to be replugged�

from the complicated case �when one thread is inside�� we use an inside�flag� The �rst

instruction of the specialized read code sets the inside�flag to indicate that a thread is

inside� The last instruction in the specialized read code clears the inside�flag�

To simplify the synchronization of threads during replugging� the replugging algorithm

uses a queue� called the holding tank� to stop the thread that happens to invoke the

specialized kernel call while replugging is taking place� Upon completion of replugging� the

algorithm activates the thread waiting in the holding tank� The thread then resumes the

invocation through the unspecialized code�

For simplicity� we describe the replugging algorithm as if there were only two cases�

specialized and non�specialized� The paths take the following steps�

�� Check the �le descriptor to see if this �le is specialized� If not� branch out of the fast
path to the standard read function�


� Set inside�flag�

�� Branch indirect� This branch leads to either the holding tank or the read path� The
indirect address is changed by the replugger�

Read Path�

�� Do the read work�


� Clear inside�flag�

Holding Tank�

�� Clear inside�flag�


� Sleep on the per��le lock to await replugger completion�

�� Jump to the new read path pointed to by the replugger�

Replugging Algorithm�

�� Acquire per�process lock to block concurrent repluggers� It may be that some guard
was triggered concurrently for the same �le descriptor� in which case we are done�


� Acquire per��le lock to block exit from holding tank�

�



�� Change the per��le indirect pointer to send readers to the holding tank �changes action
of the reading thread at step � so no new threads can enter the specialized code��

�� Spinwait for the per��le inside�flag to be cleared� Now no threads are executing the
specialized code�

�� Perform incremental specialization according to which invariant was invalidated�

�� Set �le descriptor appropriately� including indicating that the �le is no longer special�
ized�

�� Release per��le lock to unblock thread in holding tank�

�� Release per�process lock to allow other repluggers to continue�

The replugger synchronizes with the reader thread through the inside�flag in combi�

nation with the indirection pointer� If the reader sets the inside�flag before a replugger

sets the indirection pointer then the replugger waits for the reader to �nish� If the reader

takes the indirect call into the holding tank� it will clear the inside�flag which will tell the

replugger that no thread is executing the specialized code� Once the replugging is complete

the algorithm unblocks any thread in the holding tank and they resume through the new

unspecialized code�

To generalize this algorithm so that more than one thread can execute a specialized

function at the same time� the inside�flag should be changed to an inside�counter that

is incremented and decremented by threads using the specialized function� Thus the fast�path

lock becomes a counting semaphore� rather than a boolean semaphore� The replugging path

continues to check the inside�counter� as before� but only proceeds with replugging when

the inside�counter is 
� This method su�ces so long as all paths out of the specialized

read path decrement the inside�counter� including abnormal terminations�

The replugging procedure su�ers from substantial ine�ciency if a thread executing the

specialized read blocks for disk I�O� because it will spinwait at step � until the I�O completes�

To make the the replugging procedure more e�cient� a second blocked �ag is added� Because

disk I�O is orders of magnitude slower than computation� conventional semaphores can be

used for this purpose� and so blocked is a conventional semaphore� Before blocking on the

disk I�O� the executing thread thread sets the blocked �ag� Before entering the spinwait

at step �� the replugging algorithm checks the blocked �ag� and if set� waits on blocked

instead of spinwaiting�

�




��� Distributed Replugging

Replugging components in a distributed system presents additional problems� Replugging

a component becomes slower because of the additional latency imposed by waiting until it

can be assured that no other process will try to execute the facility being replugged on any

other machine� Fault�tolerant execution on a system in which network failures can occur is

especially di�cult�

Software feedback addresses this problem with careful design of the policy specializa�

tions� Software feedback does not have to synchronize between replugging on one machine

and execution on another machine because there is a momentary tolerance of inconsistency

between the machines� After replugging has been e�ected on one machine� that machine

ignores further violations of the relevant quasi�invariants for a period of time� so as to allow

the system to adapt to the replugging action that has just been applied�

In classical feedback terms� this can be viewed as damping the software feedback mecha�

nism so as to avoid repeating oscillations due to positive feedback� Damping further feedback

for a period of time that is longer than twice the longest possible propagation delay across

the distributed system su�ces to guarantee that oscillation due to positive feedback will not

occur�

��� Replugging Performance

The dynamic replugging system just described has two important performance �gures�

�� The added overhead of invoking a replaceable function�


� The cost of replacing a function�

The overhead added to the fast path in is read includes checking if it is specialized and

calling read if not� and for writing the inside��ag bit twice� and the indirect function� call

with zero arguments otherwise� A timed microbenchmark shows this cost to be �� cycles�

The cost of replacing a function depends on whether there is a thread already present in

the code path to be replugged� If so� the elapsed time taken to replug can be dominated by

the time taken by the thread to exit the specialized path� The worst case for the read call

�What is really desired is an indirect branch	 with no register save or stack frame overhead
 It would

require sophisticated compiler analysis to determine that such a specialized procedure call linkage could be

used	 much less construct it


��



occurs when the thread present in the specialized path is blocked on I�O� We are working on

a solution to this problem which would allow threads to �leave� the specialized code path

when initiating I�O and rejoin a replugged path when I�O completes� e�ectively employing

a wait�free synchronization technique� but this solution is not yet implemented�

In the case where no thread is present in the code path to be replugged� the cost of

replugging is determined by the cost of acquiring two locks� one spinlock� checking one

memory location and storing to another �to get exclusive access to the specialized code��

To fall back to the generic read takes � stores plus address generation� plus storing the

specialized �le o�set into the system �le table which requires obtaining the File Table Lock

and releasing it� After incremental specialization two locks have to be released� An inspection

of the generated code shows the cost to be about ��� cycles assuming no lock contention�

The cost of the holding tank is not measured since that is the rarest subcase and it would

be dominated by spinning for a lock in any event�

� Related Work

Our dynamic linking mechanism is motivated by the needs of optimistic and incremental

specialization� and so it is subtly di�erent from previous dynamic linking mechanisms� The

dld tool 	��� provides for basic dynamic linking� but is designed to be used by an application

program� As such� it does not deal with concurrency issues� but does partially automate the

garbage collection of un�used functions from the program�s address space�

The OMOS system 	
�� dynamically links modules in a system in an object�oriented

manner� OMOS automatically decides which version of a module will best meet the speci�ed

requirements� functioning somewhat like an interface de�nition language� OMOS does deal

with concurrency issues� but functions at a coarser granularity than our system because it

was designed to support the Flex microkernel 	���

Chorus 	
�� allows modules� known as supervisor actors� to be loaded into the kernel

address space� A specialized IPC mechanism is used for communication between actors

within the kernel address space� Similarly� Flex 	�� allows dynamic loading of operating

system modules into the Mach kernel� and uses a migrating threads model to reduce IPC

overhead�

One problem with allowing applications to load modules into the kernel is loss of protec�

tion� The SPIN kernel 	�� allows applications to load executable modules� called spindles�

�




dynamically into the kernel� These spindles are written in a type�safe programming language

to ensure that they do not adversely a�ect kernel operations�

Object�oriented operating systems allow customization through the use of inheritance�

invocation redirection� and meta�interfaces� Mukherjee and Schwan et al 	�
� 

� 
�� control

concurrent execution and modi�cation of an object using attributes and object ownership�

Choices 	�� provides generalized components� called frameworks� which can be replaced with

specialized versions using inheritance and dynamic linking� The Spring kernel uses an ex�

tensible RPC framework 	��� to redirect object invocations to appropriate handlers based on

the type of object� The Substrate Object Model 	�� supports extensibility in the AIX kernel

by providing additional interfaces for passing usage hints and customizing in�kernel imple�

mentations� Similarly� the Apertos operating system 	
�� supports dynamic recon�guration

by modifying an object�s behavior through operations on its meta�interface�

Synthetix di�ers from the other extensible operating systems described above in a number

of ways� First� Synthetix infers the specializations needed even for applications that have

never considered the need for specialization� Other extensible systems require applications

to know which specializations will be bene�cial and then select or provide them�

Second� Synthetix supports optimistic specializations and uses guards to ensure the va�

lidity of a specialization and automatically replug it when it is no longer valid� In contrast�

other extensible systems do not support automatic replugging and support damage control

only through hardware or software protection boundaries�

Third� the explicit use of invariants and guards in Synthetix also supports the composabil�

ity of specializations� guards determine whether two specializations are composable� Other

extensible operating systems do not provide support to automatically determine whether

separate extensions are composable�

Like Synthetix� Scout 	��� has focused on the specialization of existing systems code�

Scout has concentrated on networking code and has focused on specializations that minimize

code and data caching e�ects� In contrast� we have focused on parametric specialization to

reduce the length of various fast paths in the kernel� We believe that many of the techniques

used in Scout are also useful in Synthetix� and vice versa�

��



� Conclusions

This paper has described an e�cient mechanism to support the concurrent execution and

replacement of functions in an operating system� Such a facility is essential for operating

systems that wish to adaptively recon�gure themselves at a �ne granularity� Fine�grained

adaptivity is required to use the techniques of optimistic and incremental specialization�

described here and in 	�� 
���

We have demonstrated the feasibility and usefulness of dynamic linking as used by in�

cremental and optimistic specialization by applying it to �le system code in a commercial

operating system �HP�UX�� The experimental results show that signi�cant performance im�

provements are possible even when the base system is �a� not designed speci�cally to be

amenable to specialization� and �b� is already highly optimized� Furthermore� these im�

provements can be achieved without altering the semantics or restructuring the program�

In future work� we will explore more e�cient and general methods of implementing

concurrent dynamic linking� We will also investigate methods to automate the techniques

of optimistic and incremental specialization� so as to make these techniques more accessible

to the kernel developer�

� Acknowledgements

Ke Zhang and Lakshmi Kethana wrote the specialized version of the read system call� based

on early work by Bill Trost and Takaichi Yoshida� Andrew Black and Jon Inouye contributed

numerous conceptual and technical suggestions to the design and implementation of the

specialized read system in general� and the dynamic replugging system in particular�

References

	�� Arindam Banerji and David L� Cohn� An Infrastructure for Application�Speci�c Cus�
tomization� In Proceedings of the ACM European SIGOPS Workshop� September �����

	
� Brian N� Bershad� David D� Redell� and John R� Ellis� Fast Mutual Exclusion for
Uniprocessors� In Fifth International Conference on Architectural Support for Program�
ming Languages and Operating Systems �ASPLOS�V�� pages 

��
��� Boston� MA�
September ���
�

	�� Brian N� Bershad� Stefan Savage� Przemys�law Pardyak� Emin G un Sirer� Marc Fiuczyn�
ski� David Becker� Susan Eggers� and Craig Chambers� Extensibility� Safety and Perfor�

��



mance in the SPIN Operating System� In Symposium on Operating Systems Principles
�SOSP�� Copper Mountain� Colorado� December �����

	�� D�L� Black� D�B� Golub� D�P� Julin� R�F� Rashid� R�P� Draves� R�W� Dean� A� Forin�
J� Barrera� H� Tokuda� G� Malan� and D� Bohman� Microkernel Operating System
Architecture and Mach� In Proceedings of the Workshop on Micro�Kernels and Other
Kernel Architectures� pages ����
� Seattle� WA� April ���
�

	�� F� J� Burkowski� C� L� A� Clarke� Crispin Cowan� and G� J� Vreugdenhil� Architectural
Support for Lightweight Tasking in the Sylvan Multiprocessor System� In Symposium
on Experience with Distributed and Multiprocessor Systems �SEDMS II�� pages ��������
Atlanta� Georgia� March �����

	�� Roy H� Campbell� Nayeem Islam� and Peter Madany� Choices� Frameworks and Re�ne�
ment� Computing Systems� �����
���
��� ���
�

	�� John B� Carter� Bryan Ford� Mike Hibler� Ravindra Kuramkote� Je�rey Law� Lay Lep�
reau� Douglas B� Orr� Leigh Stoller� and Mark Swanson� FLEX� A Tool for Building
E�cient and Flexible Systems� In Proceedings of the Fourth Workshop on Workstation
Operating Systems� pages ����


� Napa� CA� October �����

	�� Shanwei Cen� Calton Pu� Richard Staehli� Crispin Cowan� and Jonathan Walpole� A
Distributed Real�Time MPEG Video Audio Player� In Proceedings of the ���� Inter�
national Workshop on Network and Operating System Support for Digital Audio and
Video �NOSSDAV����� New Hampshire� April �����

	�� David R� Cheriton� The V Distributed System� Communications of the ACM� ����������
���� March �����

	�
� David R� Cheriton� M� A� Malcolm� L� S� Melen� and G� R� Sager� Thoth� A Portable
Real�Time Operating System� Communications of the ACM� 

�
���
������ February
�����

	��� Dawson R� Engler� M� Frans Kaashoek� and James O�Toole Jr� Exokernel� An Operating
System Architecture for Application�level Resource Management� In Symposium on
Operating Systems Principles �SOSP�� Copper Mountain� Colorado� December �����

	�
� Ahmed Gheith� Bodhisattwa Mukherjee� Dilma Silva� and Karsten Schwan� KTK�
Kernel Support for Con�gurable Objects and Invocations� In International Workshop
on Con	gurable Distributed Systems� March ����� Also available as GIT�CC�������
ftp���ftp�cc�gatech�edu�pub�coc�tech reports������GIT�CC�������ps�Z�

	��� Graham Hamilton� Michael L� Powell� and James G� Mitchell� Subcontract� A �exible
base of distributed programming� In Proceedings of the Fourteenth ACM Symposium on
Operating System Principles �SOSP��
�� pages ������ Asheville� NC� December �����

	��� Maurice Herlihy� Wait�Free Synchronization� ACM Transactions on Programming Lan�
guages and Systems� �������
������ January �����

	��� Dan Hildebrand� An Architectural Overview of QNX� In Proceedings of the USENIX
Workshop on Micro�kernels and Other Kernel Architectures� pages �����
�� Seattle�
WA� April ���
�

��



	��� W� Wilson Ho and Ronald A� Olsson� An Approach to Genuine Dynamic Linking�
Software � Practice and Experience� 
��������
� April �����

	��� Henry Massalin and Calton Pu� Threads and Input�Output in the Synthesis Kernel� In
Symposium on Operating Systems Principles� �����

	��� Henry Massalin and Calton Pu� Fine�Grain Adaptive Scheduling Using Feedback� Com�
puting Systems� ������������� Winter ���
�

	��� David Mosberger� Larry L� Peterson� and Sean O�Malley� Protocol Latency� MIPS and
Reality� Report TR ���

� Dept of Computer Science� University of Arizona� Tuscon�
Arizona� April �����

	

� Bodhisattwa Mukherjee and Karsten Schwan� Experiments with Con�gurable Locks
for Multiprocessors� Report GIT�CC����
�� College of Computing� Georgia Institute of
Technlolgy� Atlanta� GA� January �����

	
�� Bodhisattwa Mukherjee and Karsten Schwan� Improving Performance by use of
Adaptive Object� Experimentation with a Con�gurable Multiprocessor Thread Pack�
age� In Second IEEE International Symposium on High�Performance Distributed
Computing �HPDC���� Spokane� WA� July ����� Also available as GIT�CC�������
ftp���ftp�cc�gatech�edu�pub�coc�tech reports����	�GIT�CC��	��
�ps�Z�

	

� S� J� Mullender� G� van Rossum� A� S� Tanenbaum� R� van Renesse� and H� van Staveren�
Amoeba! A distributed Operating System for the ���
�s� IEEE Computer� 
����� May
���
�

	
�� Doug Orr� OMOS � an object server for program execution� In Proc
 International
Workshop on Object�Oriented Operating Systems� ���
�

	
�� Calton Pu� Tito Autrey� Andrew Black� Charles Consel� Crispin Cowan� Jon Inouye�
Lakshmi Kethana� Jonathan Walpole� and Ke Zhang� Optimistic Incremental Special�
ization� Streamlining a Commercial Operating System� In Symposium on Operating
Systems Principles �SOSP�� Copper Mountain� Colorado� December �����

	
�� Calton Pu and Robert M� Fuhrer� Feedback�Based Scheduling� a Toolbox Approach� In
Proceedings of Fourth Workshop on Workstation Operating Systems� Napa Valley� CA�
October �����

	
�� Calton Pu� Henry Massalin� and John Ioannidis� The Synthesis Kernel� Computing
Systems� ���������
� Winter �����

	
�� M� Rozier� V� Abrossimov� F� Armand� I� Boule� M� Gien� M� Guillemont� F� Her�
rman� C� Kaiser� S� Langlois� P� Leonard� and W� Neuhauser� Overview of the Chorus
Distributed Operating System� In Proceedings of the Workshop on Micro�Kernels and
Other Kernel Architectures� pages ������ Seattle� WA� April ���
�

	
�� Michael Stonebraker� Operating system Support for Database Management� Commu�
nications of ACM� 
����� �����

	
�� Yasuhiko Yokote� The Apertos Re�ective Operating System� The Concept and Its
Implementation� In Proceedings of the Conference on Object�Oriented Programming
Systems� Languages� and Applications �OOPSLA����� Vancouver� BC� October ���
�

��


