
Notes for pipelines of transformations for ML

F� Bellegarde�

Paci�c Software Research Center
Oregon Graduate Institute of Science � Technology

Id � commands�tex� v��������������� � �� � ��bellExp

Abstract

These notes attempt to survey basic manipulations that can be

done to a ML functional program prior to compilation� The paper does

not consider transformations for improvement of the code but it only

considers manipulations of the source text which can allow the compiler

to do a better job� Which manipulation to choose depends on the target

language� The survey can be useful for answering the above question

and hence for choosing a convenient pipeline of transformations to

prepare translation towards a given target language�

Functional program transformation modi�es the whole structure of a func�
tional program in order to facilitate the production of a better code	 It can
also make the program use less memory	 Functional programs have a precise
mathematical semantic which allows to use source to source transformation
techniques in order to provide any semantically correct desired form of pro�
gram	 In this paper
 we address a catalog of eager semantic transformations
on a functional language like ML	 We consider only here fully automatic pro�
gram transformation	 Most of these transformations are usually well known
though it can happen that the paper makes some contribution in some of the
transformations that are described	 The goal of the paper consists mostly
in classifying basic transformations and in seeing how they can be combined
into diverses transformation strategies	 It might happen that the transfor�
mation strategy we describe as a composition of basic transformations could
be expressed directly in a more speci�c and e�cient algorithm	 However the
division into basic parts makes the transformation toolkit which is proposed
in the paper very �exible and reusable	

�The author was supported by a contract with Air Force Materiel Command �F������
�	�C�

����

�



A transformation strategy serves a certain purpose	 The concern can be
the target language of the translation	 For example
 monomorphization is a
useful transformation if the target language is a nonpolymorphic language

and defunctionalization is useful if the target language is �rst order
 and
lambda�lifting is useful if the target language is a term rewriting system	 The
sole concern can be optimization	 In this case
 transformation strategies such
as deforestation or tuppling are useful	 Another concern can be the model
of the implementation sequential or parallel or distributed	 In this paper

we limit ourselves to some transformation strategies of the �rst category	

Some basic transformations are easily recognized as belonging in a spe�
ci�c strategy but they can also be used as steps in other strategies	 For
example a type enumeration can be a step for a monomorphization but it
can also be useful to perform type enumeration as a step of a defunctional�

ization in a polymorphic program	 In the �rst section
 we attempt to classify
these basic transformations with respect to the area of the structure of the
program they modify	 Then
 we will see how to combine them into safe and
e
ective strategies	

� Classi�cation of basic transformations

Basic transformations exists for every areas of the program structure�

� renamings


� patterns and case expressions


� ��abstractions and let expressions


� functions and applications


� types


� expressions	

��� Renaming

Uniqueness of identi�ers is a useful prerequisite for all transformation strate�
gies	 Two di
erent kinds of renaming can be distinguished�

� ��renaming ensures scope independence for the identi�ers in lambda�
abstractions and local let declarations	

� Pattern renaming ensures scope independence for variables in local
patterns	

�



��� Pattern and case transformations

The simpler the syntax of the core language of the transformation
 the sim�
pler the transformation algorithm	 Also limitation of the number of the
possible constructions can be very useful as prerequisite for e
ective trans�
formation strategies	 Transformation about the patterns and the case ex�
pressions in a functional program are well�known	 We class them as follows�

� Commodity pattern removals� These transformations removes com�
modity for programmers like the wild�card and the as constructions	

� Pattern limitation to case expressions� This transformationmakes pat�
terns appear only in case expressions	 It has been studied by Auguston
in ���	

� Conversion to simple patterns� The simple patterns are interesting
because a case expression consisting only of single patterns can be
compiled easily into an e�cient code	 This transformation is described
in ���	 It is supposed that the patterns occurs only in cases	 The
algorithm can increase the size of the code by a large amount but it
does not change its e�ciency	 The algorithm can be written so that
it creates wild�card patterns but it works only on a program without
commodity patterns	

� Case removal from application arguments� The transformation re�
moves case expressions as operators in function applications	 So

f t� � � � case e of p� � e� j � � � j pn � en� � � � tm

is transformed into�

case e of
p� � f t� � � � e� � � � tm
			
j pn � f t� � � � en � � � tm�

This transformation increases the size of the code	

� Case and if application� This transformation pushes the applied terms
of a case or of a functional if expression inside the case	 For example�

case e of

p� � e�
			
j pn � en� u� u� � � � um

�



becomes
case e of

p� � e� u� u� � � � um
			
j pn � en u� u� � � � um

� Overlapping pattern removal� Patterns in case expressions are sup�
posed to be checked from top to bottom	 This allows to have over�
lapping patterns	 However an earlier pattern is not allowed to overlap
completely a later pattern since then
 the later pattern could never
match	 This error can be detected syntactically	 We suppose here
that the program is syntactically correct	 The goal of this transfor�
mation is to remove overlapping patterns from the program	 It is
necessary for a translation into a term rewrite system which does not
take account of order in its rewriting	

When a list of patterns p�� � � � � pn is made of simple patterns
 over�
lapping of patterns is either a repetition of the same pattern or an
overlap with a variable	 In a syntactically correct program
 this can
happen only when there is a pattern reduced to a variable	 Moreover

the pattern reduced to a variable must be pn	 The case expression is
then�

case e of
c��x���� � � � � x��m�

�� e�
			
j cn���xn����� � � � � xn���mn � en��
j x �� en

Suppose the constructors belong to the data type T of constructor
set C
 the complement fc��� c

�

�� � � � � c
�

mg in C of the set fc�� � � � � cn��g
allows to generate the equivalent and non overlapping case expression�

case e of
c��x���� � � � � x��m�

�� e�
			
j cn���xn����� � � � � xn���mn�� en��
j c���xnew���

� � � � � xnew
��m�

�

�� en
			
j c�m�xnew���

� � � � � xnewm���m�

m
�� en

�



When patterns are non overlapping in a syntactically correct program

the following particular cases can be noticed�

� when a tuple is a pattern
 it has to be the unique pattern


� when the simple patterns are exhaustive and when the last pat�
tern is a variable pattern
 this last pattern will never match in a
well�typed program
 therefore
 it corresponds to dead code that
can be removed	

This transformation increases the size of the code but it does not a
ect
its e�ciency	

� Trivial case expressions� It is important to free the program from
trivial cases	 The identity case case e of y � e� can be simpli�ed into
e��e�y�	 Other simpli�cations can be made like�

case e of
p� � p�
			
j pn � pn

can be transformed into e or

case e of

p� � e�
			
j e� � ei
			
j pn � en

where e� is a renaming ��e� of e can be transformed into ����e��	

� Variable limited case test expressions� Case test expressions need to
be removed for translating the program into a term rewrite system	 A
construction

case e of

p� � e�
			
j pn � en

�



can be transformed into a function application fnew�e� x� � � �xm� where
the variables x�� � � � � xm are the global variables occurring inside the
case expressions and where fnew is de�ned as�

fnew�ynew � x�� � � � � xm� � case ynew of

p� � e�
			
j pn � en

This transformation creates a new mutually recursive function	 A
simple unfolding of fnew gives back the original program	

� Pattern limitation to functions� When the simple patterns are exhaus�
tive and non overlapping i	e	 when there are no variable as a pattern

a transformation can push the patterns into the left�hand side of the
function de�nition	 It generates an equation for each pattern�

f�x�� � � � � xm� � case xi of

p� � e�
			
j pn � en

becomes
f�x�� � � � � xi��� p�� xi��� � � � � xm�� e�
			
f�x�� � � � � xi��� pn� xi��� � � � � xm�� en

We get nested patterns by furthermore transformations of the con�
structions�

f�pa�� � � � � pai� � � � � pam� � case xi of

p� � e�
			
j pn � en�

where xi occurs in the pattern pai
 into�

f�pa�� � � � � pa��p��xi�� � � � � pam�� e�
			
f�pa�� � � � � pai�pn�xi�� � � � � pam�� en

�



� Case from conditional� The conditional is a non strict feature in an
eager language	 For example
 there is no if construction in a �non con�
ditional� term rewriting system	 It is easy to remove if constructions
by transforming an expression

if b then e� else e�

into an application fnew b x� � � � xn where x�� � � � � xn are the global
variables in e� and e�
 and

fnew true x� � � � xn � e�

fnew false x� � � � xn � e��

� Conditional from case� It is the inverse transformation of the condi�
tional removal	 If the language has patterns limited to case expres�
sions
 the transformation consists in looking for of pairs of patterns
true
 false in case expressions	

� Case generation by selectors in tuple removal� An expression e which
contains occurrences of a same expression e� under selectors �rst and
second in a tuple can be compiled in a better code if transformed
into�

case e� of

�u� v�� e�uo� � u� � � � � uon � u� vo� � v� � � � � von � v�

where uo�� � � � � uon are the occurrences of �rst e� and vo�� � � � � von are
the occurrences of second e�	

� Trivial conditional� This consists to cancel the trivial�

if true then e� else e�

into e�
 and
if false then e� else e�

into e�	

� Constant propagation� It can be worthwhile to propagate informations
about values that are given to variables by the way of constant equality
tests�

if x � e then e�else e�

�



where e is a constant can be transformed into�

if x � e then e��e�x�else e�

or inequality tests�

if x �� e then e�else e�

where e is a constant can be transformed into�

if x �� e then e�else e��e�x�

The same can be done for constant patterns in case expression where
pi � ei from a case expression with test variable x and where pi is a
constant can be replaced by pi � ei�pi�x�	

��� Lambda�abstraction and let expression transformations

� Trivial let� A let expression like let x � e in x becomes e	

� ��reduction� Applications of ��abstractions can safely be ��reduced in
a well�typed program	 Safely
 here means that the transformation is
terminating	 However it has also to induce a better
 not a worse gen�
erated code	 For that it is required to limit beta�reductions to variable
parameters or to expression parameters corresponding to linear bound
variables �i	e	 bound variables which occurs once in the body of the
��abstraction	

� Lambda�naming� It gives a name to a ��term � e	g	 �x��y�e becomes
let f � �x��y�e in f� to prepare removal of a ��abstraction	

� Let�lifting� It lifts a local let expression at the top level	 It supposes
that patterns are limited to case expressions e	g	 the let constructions
cannot use patterns	 The transformation abstracts the free variables
in let expressions following an algorithm described by Johnson ��� and
then it can lift safely the let expressions at the top level	

� Lambda�pulling� The transformation pulled all the abstracted vari�
ables of a ��abstraction named f as arguments for f 	 For example
f � �x��y�e becomes f x y � e	 Lambda�pulling composed with
Lambda�naming removes syntactic ��abstractions from the program	

� Lambda�pushing� which conversely transforms a function de�nition
with arguments as an abstraction	 For example f x y � e becomes
f � �x��y�e	

�



� Eta�abstraction� It is also called eta�expansion	 The transformation
expands ��abstractions which returns functions 
 e	g ��abstractions of
type�order greater than �
 by supplying the variables that are missing
to get a type�order �	 For example �x�e of type�order �
 becomes
��u��v��x�e� u v	

��� Functions

Functions applications can be folded
 unfolded
 specialized with respect to
some arguments
 or partially evaluated	

� Unfolding� Unfolding is a basic technique in program transformation	
A function application can be unfolded under certain conditions which
ensures that the unfolding transformation terminates �safety condi�

tion�
 and that it does not imply generation of less e�cient code �ef�
fectiveness condition�	 Unfolding is rewriting	 It can be seen also as a
partial evaluation with another point of view	

For e�ectiveness
 the conditions are the following�

�	 unfolding a variable parameter is e�ective


�	 unfolding an expression parameter �not reduced to a variable�
is e�ective if and only if the unfolding does not duplicate the
expression	 This implies that the parameter corresponds to a
right linear argument	

For safety a transformation strategy which uses unfolding must ensure
that it always unfolds �nitely	

Obviously unfolding nonrecursive function is always safe	 However
 for
code expansion concerns
 only nonrecursive functions that are applied
once can be safely and e
ectively unfolded	

When the program is translated into a term rewriting system
 the
safety condition is the termination property of the term rewriting sys�
tem	 Though this property is not decidable
 powerful orderings like re�
cursive path orderings can ensure that some term rewriting systems are
terminating	 In this case
 unfolding becomes safe	 The term rewriting
systems we can obtain from functional program which have their func�
tion declarations has a set of mutually recursive functions ff�� � � � � fng
declared as

f� tc��� � � � tc��m�
� t�

�



			

fn tcn�� � � � tcn�mn � tn

where tc is a constructor term i	e	 a term built only from constructors
and variables	 As such
 it is a constructor�based term rewriting system	
Recent work ��� on an ordering which is suitable for constructor�based
term rewriting systems can be interesting for this respect	

� Evaluation� We dare not to say partial evaluation though it is exactly
what the transformation we are proposing here is
 but the name par�
tial evaluation ��� has a broader meaning and a larger e
ect	 Let us
consider an eager semantic terminating program in a term rewriting
system form	 As in ���
 we call inductive the parameters which are not
reduced to a variable
 in other words their top symbol is a constructor	
An inductive parameter position is subterm decreasing
 if the recursive
calls arguments in the set of mutually recursive constructor�based dec�
larations are strict subterms of the inductive argument	 For example

in the constructor based de�nition of append�

append �� y � y

append �x �� xs� y � x �� �append xs y�

the position � is a subterm decreasing inductive position	 An appli�
cation which contains a constant arguments in inductive and subterm
decreasing parameter positions can be safely unfolded	 For example

the application append ��� �� �� y can be evaluated by unfolding into
� �� �� �� �� �� y��	 This is far too restrictive	 This idea is extended for�

�	 a set of constant arguments in inductive parameter positions if the
corresponding set of constructor�based arguments is decreasing
according to a multiset extension or a lexicographical extension
of the subterm ordering
 and

�	 a set of arguments that matches the constructor terms of the
inductive parameters	

� Function specialization� It can be interesting to specialize a function
with respect to variable only parameters	 The variable only criteria
has been de�ned by Chin in ���	

De�nition � Given a set of mutually recursive functions ff�� � � � � fng
declared as

f� x��� � � � x��m�
� t�

��



���

fn xn�� � � � xn�mn � tn

the kth parameter xi�k of a function fi is variable only if and only

if each recursive call is in the form fi e� � � � emi
in the body of the

function declarations of ff�� � � � � fng and has its jth argument as a

global variable i�e� variables from the parameters xi�j�

This criteria ensures the safety of the unfolding which generates the
de�nition of the specialized function by guaranteeing that the recursive
call can be folded	 Other parameter positions that can be specialized
safely are the positions where the recursive calls have constant argu�
ments	 Let us call such positions constant recursive position	 E
ective
arguments in application that are interesting to be specialized are the
following�

� Sp�ecialization of constant arguments in variable only positions or
constant recursive positions permits some constant propagation
among function applications	 For example
 consider the above
declaration of append	 The application append x ��� �� �� is spe�
cialized with respect to its second constant argument into app� x
where�

app� �� � ��� �� ��

app� �x �� xs� � x �� �app� xs��

� Sp�ecialization of higher�order arguments in variable only posi�
tions or in constant recursive positions allows to decrease the
type order of the functions in the program	

The variable�only specialization algorithm is driven by call sites	 A
dictionary of the specialized functions is maintained�	

For each function application f t� t� � � � tm t� t� � � � tn with higher�order
variable only arguments t�� t�� � � � � tn �with one at least not reduced to
a variable� triggers the following transformation which�

� �	 computes the set V of variables in t�� t�� � � � � tn


�The dictionary must be transmitted to a 
rst order algebraic transformation system
like ASTRE so that� it can use specializations of laws on combinators or theorem for free�

��



�	 specialization� if it does not exists yet in the dictionary
 creates an
equation of a new specialized function fspec of arity m� size�V �
by unfolding the right�hand side of the de�nition of f	 This un�
folding is realized by substituting the variable only higher�order
argument to the variables that corresponds to the higher�order
arguments in the right�hand side of the de�nition	 The special�
ized function is a new entry in the dictionary	 The call is updated
with the new specialized function	

�	 folding� if it exists in the dictionary
 fold to update the call	

� termination

Proof� Consider all the applications that needs to be
specialized	 There exists a �nite number of higher�order
variable only arguments of functions that could be special�
ized by the instances given by these applications	 A spe�
cialization does not create another instance because of the
variable only condition	 Therefore the transformation must
terminate	 �

After specialization of a program of order �
 it remains higher�order
applications with nonvariable only arguments
 and nonconstant recursive
arguments	 It remains also higher order constructor applications	

Function declaration cleaning� After some transformations
 for example
after a specialization
 useless function declarations can be removed from the
program	 A useless function is a function which is not called by the program
expression	 The calling relation is the transitive closure of the relation be�
tween functions de�ned as f calls g if and only if an application of g occurs
in the body of f 	 The main functions are the functions that occurs in the
body of the program expression	 The cleaning consists in keeping in the
declaration list only the function declarations which are strongly connected
to a main function	

��� Types

� Explicit tuples� For example
 the transformation of an expression into
a �rst�order term requires to put explicit constructors in place of tuples
with an explicit arity	 For that
 the transformation introduces possibly
in�nite families of constructors Tuple�� Tuple�� � � �	 In ML
 where the
constructors are not curri�ed
 this transformation introduces a Tuple

constructor under the constructors of arity greater than one	 It is

��



a source of obscurity for later program transformation when such a
pattern is simpli�ed
 since then
 the recursive call is placed by the
transformation in a mutually recursive set of functions	 For example

the naive declaration of the function reverse is�

reverse x � case x of

��� ��
�C �x� xs��� append �reverse xs� �x�

But with simple patterns
 it becomes�

reverse x � case x of

��� ��
�C x�� fnew�x�

fnew x � case x of

�Tuple� �x� xs�� � append �reverse xs� �x�

In the �rst form
 it is easy to see that the continuation of reverse is
append
 but it is less easy with the second form	

� Enumeration� This transformation enumerates for each declared poly�
morphic function the diverse type instances coming from the func�
tion applications	 It also annotates the function declaration by these
types	 For example
 given the polymorphic declaration id x � x where
id � �� �
 the application id � updates the enumeration set of id with�
fint � intg
 and the application id sqr x allows to update the enu�
meration set of id as� fint � int� �int � int� � �int � int�g	 Once
enumeration is made
 later transformations must update enumeration
sets	

� Expansion� This transformation expands a polymorphic declaration
with type annotations into di
erent copies according to the types in
the enumeration set	 For the example above
 it will make two copies of
id� id� for the type instance fint� intg and id� for the type instance
�int� int�� �int� int�	 It also updates the applications	

� Strategies

A strategy is supposed to put the program on a form which is appropriate
to its translation into a target language	

��



��� Monomorphization

The target program is nonpolymorphic
 in other words its typing does not
use type variables	 The transformation can simply be composed of an enu�
meration transformation followed by an expansion transformation	

��� Lambda�lifting

Lambda�lifting puts the local let expressions and the local ��abstractions at
the top level	 We suppose here that patterns occur only in case expressions	
This transformation is done by� Lambda�naming followed by an abstraction
of the free variables in let expressions �following mostly an algorithm de�
scribed by Johnson ����
 then Let�lifting� the transformation pushes all the
let expressions at the global level
 and �nally Lambda�pulling� the transfor�
mation pulled all the abstracted variables of a named ��abstraction to the
left�hand sides	 At this point all the syntactic ��abstractions are removed	

��� Defunctionalization

This transformation is used if the target language is �rst�order	 When the
language is polymorphic
 the analysis of the program is made at applica�
tion sites but if the language is nonpolymorphic
 the higher�order function
de�nitions can be transformed directly	 The transformation is concerned
by functions that returns functions
 and functions that take functions as
arguments	

� Functional results� A program without functional results is said to be
fully applied	 Full�application is called full �parametrization in ���	 It
is a variant of eta�expansion in a polymorphic language	 In a poly�
morphic language
 an argument can be functional or not
 depending
of the polymorphic instance	 For example in id �
 the application of
id returns an integer but in id f �
 the application id f returns a func�
tion	 Therefore the program needs to be monormophized with respect
to an enumeration of the application sites which returns functions	
An expansion of polymorphic functions that returns functions in their
applications need to be made	 For the above example
 it introduces
a copy id� of the function id which takes � arguments� a functional
argument and an integer	 The application id f � is renamed id� f �	
In the transformed program
 in each application of a function f
 f has
a number of arguments which is equal to its arity	

��



We suppose here that the transformation is applied on lambda�lifted

programs	 Full application allows the transformation of functions re�
turning functions that are not encapsulated in a constructor or a tu�
ple	 In a nonpolymorphic program
 full application is quite simple
 it
is enough to have function applications �which are not in parameter
position� with a number of arguments equal to their arity	 i	e	

f � add � becomes f x � add � x

In a polymorphic program
 as we show above
 it is slightly more com�
plicated
 because the arity of a polymorphic function does not re�ect
its type order
 e	g	 the occurrence of id in the term id g x has type
instance �� � �� � � � �	 The subterm id g returns a function	
Here
 the number of arguments of the application is greater than the
arity of id	 A way out
 in this case
 is a transformation we can call
a monomorphization by need	 It specializes higher�order functionals
according to their instances in the program	 For example
 the term
id g x becomes idnew g x where idnew f y � f y	 Afterwards
 the
number of arguments of the application of idnew is equal to its arity	
The transformation is composed of�

�	 uncurrying� Functions de�nitions are uncurried by looking for
each right�hand sides equation of a function de�nition of type�
order greater than �	 In such a case
 there will be 	�expansion
�also called 	�abstraction� followed by ��pulling	

�	 case application� The variables introduced by the 	�expansion
are pulled inside the cases so the type�order of function in appli�
cations which are not arguments is greater or equal to its arity	

�	 monomorphization by need� It concerns only the functions which
have applications where the number of arguments is greater than
their arities	

The two last steps has to be mutually recursive until full appli�
cation is reached	

A term is then�

t���v t����tn �c t����tn � f t����tn

� case t of p� ��t� � ��� � pn �� tn

p��� v � c p����pn

��



Moreover
 after full�application transformation
 function applications
�except functional arguments� are of type�order �	

Argument for termination�

Proof� From a monormophized application other appli�
cations in the copy body have to be monormophized	 How�
ever
 the process is �nite for the following reasons� Consider
the set A of applications that have their type�order greater
than their arity	 We have in the program only a �nite num�
ber of polymorphic variables susceptible to be monormo�

phized and they can have only the instances asked by the
set A	 �

Remark Some functions that have been monormophized can be cleaned
from the program	

� Functional arguments� Functional arguments can be removed by ap�
plication of Reynolds� method	 Reynolds� idea gives a general and
complete method to generate a program where all the arguments of
constant function applications are of type�order � given a fully�applied
program	 The target program is �rst�order when the program ex�
pression is of type�order �	 The transformation is easier if the source
program is given in a lambda�lifted form	

The transformation encodes families of functions which are argument
of higher�order functions into elements of a �possibly recursive� sum
declared by a data type	 It de�nes an apply function taking account
of each encoding corresponding to the sum	 Following Reynolds
 we
call the transformation a defunctionalization ���	

The functional arguments to remove can be�

� Higher�order arguments of function applications� The higher�
order arguments �that are not variables� in position i of appli�
cations of f must be encoded as di
erent elements of a sum data
type	 In this encoding
 a closed term is represented by a constant
constructor
 and a non closed term of set of variables v�� � � � � vn is
represented by a constructor with variables type arguments which
corresponds to the data�types of the v�is �it is a type variable for
�rst order variables�	

An application of an encoded function �i	e a higher order global
variable in a right�hand side of a de�nition�
 must be replaced

��



by an application of a function apply to the encoding on its ar�
guments	 The body of the apply function is a case statement
on the patterns which correspond to the di
erent constructors of
the sum type which encodes the function	 Each constructor cor�
responds to a functional term	 This functional term is unfolded in
the arm of the case	 It may happens that this unfolding uncovers
some new applications of an encoded argument	 Then it allows
to de�ne new occurrences of apply applications	 This happens
with higher�order functional arguments	

Each data�type of encoded functions creates di
erent apply func�
tions	 Because of the polymorphism
 it may happen that an ar�
gument i has di
erent types instances in di
erent applications
of f 	 Then
 similar data�types must be constructed for the dif�
ferent instances	 This will generate di
erent apply functions as
well and also di
erent copies of the declaration of f 	 So the al�
gorithm needs to know the types of the higher�order application
arguments and needs to detect them	 It also needs to look at
the types of the arguments of function applications in order to
create data�types	 Afterwards it creates the new applications and
the copies of the declaration that are driven by di
erent applica�
tions	 Then it creates the declaration of the apply functions by
unfolding the higher�order term which is encoded	 For example�

mp Z f x � case x of

��� �f �� �� ��
�x �� xs�� �f x� ��mp Z �Z f�xs

db f x � f �f x�
inc x � x� �
mp db inc ��� �� ��

becomes�
T�� D
T�� I j C of T� � T�

��



mps Z f x � case x of

��� applymps� f �� �� ��
�x �� xs�� �applymps� f x� ��
mps Z �C �Z� f�� xs

applymps� f x � case f of

I � inc x
C�Z� g�� �applymps� Z g x�

applymps� Z g x � case Z of

D� dbs g x

dbs f x � applymps� f �applymps� f x�
inc x � x� �
mps D I ��� �� ��

The problem with the above transformation is that it multiplies
the data�types and the apply functions	 Some creation of new
data�types could be avoided by reuse of existing standard types
when isomorphic	 For example
 when a data�type is isomorphic
to the data�type Nat
 i	e	 T � C� j C of T 
 the algorithm could
use constructors of the Nat type� � and successor
 if they exist
as such in the program	 Another important case is isomorphism
with lists� T of � � C� j C of �� T 	 This kind of improvement
of the method can be made afterwards as shown in ���	

A constructor term is obviously an encoding of a closure and an
application of apply forces the evaluation of a closure	 The trans�
formation does not improve the e�ciency of the program since it
can be seen easily that the reduction paths are not changed by
the encodings	 However it removes the overhead that comes from
the use of higher�order functions in the program	

Notice that a certain amount of monomorphization is done by
the transformation	

� Functional arguments in constructor applications� A constructor
can have functional arguments if it belongs to a polymorphic
data�type� e	g	 List of � which has List of �� � �� as an
instance	 A constructor can also be directly speci�ed in a data�
type as having a functional argument �arrow type�	 Moreover

there can be functional elements in a product	

Functions which are argument of a constructor application are
encoded in a data�type in the same way than functions in argu�
ment of a functional application	 But here the constructor with

��



a functional type must be also updated accordingly	 For example
look at the constructor Store in the following�

��� �� store � Store of �� �

with

initstore � Store init
init x � �
fetch x �Store f� � f x
update �Store f� x a� Store �assoc ��x� a�� f�

and

assoc l f y � case l of

��� f y
�x� a� �� xs� if x � y

then a else assoc xs f y

in
update initstore �x� �

which is transformed into�

� store � Store of �

with
T � C� j C of �string � int� T �

and
initstore � Store C�
init x � �
fetch x �Store f� � apply T f x

update �Store f� x a� Store C�x� a� f�

and
applyT f y �case f of

C�� �
T �x� a� f��

assoc ��x� a�� f y

and
assoc l f y �case l of

��� applyT f y

x �� xs� if x � y
then a else assoc xs f y

��



in
fetch z �update initstore �x� ��

Note that it is possible to unfold the application of assoc in
applyT 	 The result of this unfolding is the following�

applyT f y �case f of

C�� �
T �x� a� f��

if x � y then a else applyT f y

Afterwards assoc can be removed by cleaning	 So we see that
the transformation can allow further simpli�cations by unfolding
functions in the arms of apply functions	

We can also have functions which are encapsulated under a poly�
morphic type as in list of functions	 In ���
 Chin signals that these
functional arguments can sometimes disappear by higher�order
deforestation	 However
 a defunctionalization algorithm possibly
followed by a �rst�order deforestation is more general	 In the
following example
 the the constructor of the polymorphic type
itself is higher�order	

m xs y � maph �add� xs� y
maph lf y� case lf of

��� ��
f �� fs� �fy� �� �maph fs y�

add� l � case l of
��� ��
x �� xs� �kx� �� �add� xs�

kxz � z � � � x

Defunctionalization also removes functions that are arguments
of constructor applications	 By defunctionalization
 the above
example is transformed into the following�

� T � Fun of �

��



m xs y � maph �add� xs� y
maph lf y� case lf of

��� ��
x �� fs� �apply x y� �� �maph fs y�

apply f y � case f of

Fun x� k x y
add� l � case l of

��� ��
x �� xs� �Fun x� �� �add� xs�

k x z � z � � � x

Now �rst�order deforestation applies�

m xs y � maph� xs y

maph� xs y �case xs of
��� ��
x �� xs� �apply x y� �� �maph� xs y�

apply f y � case f of

Fun x� k x y

An unfolding of apply
 and the new type becomes useless�	

� Functions encapsulated into tuples� A function can also be en�
capsulated into a tuple as in the following example�

fmin t � case t of

Leaf a� �Leaf� a�
Tree �t�� t���

case �fmin t�� of
�f�� m��� case �fmin t�� of

�f�� m��� �k f� f�� min�m�� m���

k f g x � Tree �f x� g x�
mintree t �case �fmin t� of

�f�m�� �f m�

This can be transformed as a special case of functional construc�
tor application	 The above programs becomes�

T � C� j C of T � T

��



fmin t � case t of

Leaf a� �C�� a�
Tree �t�� t���

case �fmin t�� of
�f�� m��� case �fmin t�� of

�f�� m��� �C�f�� f��� min�m��m���

apply f m �case f of

C�� �Leaf m�
C�f�� f��� �k f� f� m�

k f g m � Tree�apply f m� apply g m�
mintree t � case �fmin t� of

�f�m�� �apply f m�

A transformation algorithm based on the above ideas will encode all
higher�order arguments of constant functions	 Moreover it can also
encode functions encapsulated as arrows into data type or into poly�
morphic data�types and tuples	 However it multiplies the data�types
and it is better to transform the applications to higher�order argu�
ments by function specialization when possible	

��� Constructor based term rewriting system

The goal is to transform a functional program into a constructor�based term
rewriting system	

A rewrite system is constructor�based� if all proper subterms of its left�
hand sides have only free constructor symbols and variables	 The roots of
left�hand sides are de�ned symbols	

First
 we transform the program into a possibly higher�order language
restricted in the following way�

� Patterns are limited to case expressions	

� Patterns are simple	

� Function applications are simple	 That is
 case expressions do not
occur as operators in function applications	

� There are no lambda or let expressions	

�A constructor�based system of equalities is similar to set of de
nition equalities with
pattern�matching arguments in functional programming�

��



� The term evaluated by a case expression must be fully�applied	 Thus

case add � of f �� f 	 is not allowed	

The grammar of such a language is the following�

Datatypes� ddecl ��� datatype �� � � ��n T � cdecs
cdecs ��� cdec j cdec jj cdecs

cdec ��� C type� � � � �� typen �n 	 ��

Function
declarations� fdecls ��� fdecl j fdecl and fdecls

fdecl ��� f v� � � �vn � term

Terms� term ��� rator term� � � � termn �n 	 ��
j case term of pat� �� term� jj � � �
jj patn �� termn

rator ��� f j v j C
pat ��� C v� � � �vn �n 	 ��

j 
v��v	�

Types type ��� � j type� � type� j T type� � � � typen
j type� � type�

For that the program is transformed

�	 by removing commodity patterns
 trivial ifs
 and trivial cases
 then

�	 by translating the conditionals into cases

�	 by limiting the patterns to case expressions
 then

�	 by removing functional cases using case application
 then

�	 by conversion to simple patterns
 then

�	 by lambda�lifting which removes the syntactic ��abstractions and local
let expressions
 then

�	 by case application so that each case is fully�applied
 then

�	 by removing the overlapping patterns in case expressions so that no
patterns are reduced to a variable	

��



Second
 the program has to be �rst�order
 so defunctionalization trans�
formations must be performed	 At this point the grammar of the language
is slightly modi�ed� the case v disappears in the rator rule	

Third
 it remains�

�	 to limit case test expression to variables then the grammar rule for
term is changed into�

term ��� rator term� � � � termn �n 	 ��
j case v of pat� �� term� jj � � �
jj patn �� termn


 and

�	 �nally patterns can be limited to functions	 Then the case disappear
from the term rule
 and the patterns appears in the fdecl rule	

The �nal grammar is the following�

Datatypes� ddecl ��� datatype �� � � ��n T � cdecs
cdecs ��� cdec j cdec jj cdecs

cdec ��� C type� � � � �� typen �n 	 ��

Function
declarations� fdecls ��� fdecl j fdecl and fdecls

fdecl ��� f pat� � � �patn � term

Terms� term ��� rator term� � � � termn �n 	 ��
jj patn �� termn

rator ��� f j C

pat ��� C v� � � �vn �n 	 ��
j 
v��v	�

Types type ��� � j type� � type� j T type� � � � typen
j type� � type�

� Conclusions

We have presented a tool kit of basic transformations for a pipeline of trans�
formation from a higher�order polymorphic strongly typed language towards
a �rst�order nonpolymorphic functional language	 This can be useful if the
target language is a nonpolymorphic strongly typed language and or �rst�
order like ADA or PASCAL or MODULA	 It can be also useful to perform

��



transformations which can be easily done on a �rst�order language	 It was
the case of Wadler�s deforestation algorithm and later of Chin�s deforesta�
tion algorithm ��
 �
 ��	 It is also the case of algebraic transformations that
are based on term rewriting techniques	

References

��� T	 Arts and H	 Zantema	 Termination of constructor system using
semantic uni�cation	 Unpublished work
 ����	

��� L	 Auguston	 A compiler for lazy ml	 In ACM
 editor
 Proceedings of
the �	
� Lisp and Functional Programming conference
 pages �������

����	

��� L	 Auguston	 Compiling pattern matching	 In Springer Verlag
 editor

Proceedings of the conference on Functional Programming and Com�

puter Architecture
 volume ��� of LNCS
 pages �������
 ����	

��� J	 M	 Bell and J	 Hook	 Defunctionalization of Typed Programs	 Tech�
nical report
 Department of Computer Science and Engineering
 Oregon
Graduate Institute
 February ����	

��� F	 Bellegarde	 Automatic Synthesis by Completion	 In Journ�ees Fran�

cophones sur les Langages Applicatifs
 INRIA
 collection didactiques

����	

��� Fran�coise Bellegarde and James Hook	 Substitution� A formal methods
case study using monads and transformations	 Science of Computer

Programming
 ���������������
 ����	

��� W	 Chin	 Safe Fusion of Functional Expressions	 Proceedings of the

ACM Symposium on Lisp and Functional Programming
 San Francisco


Ca�
 pages �����
 June ����	

��� W	 Chin and J	 Darlington	 Higher�Order Removal� A modular ap�
proach	 To be published
 ����	

��� C	 Consel and O	 Danvy	 Tutorial note on partial evaluation	 In Twenti�

eth Annual ACM Symposium on Principle of Programming Languages

pages �������
 ����	

���� T	 Johnson	 Lambda Lifting� Transforming Programs to Recursive
Equations	 In Springer Verlag
 editor
 Proceedings of the conference

��



on Functional Programming and Computer Architecture
 volume ��� of
LNCS
 pages �������
 ����	

���� P	 Wadler	 Deforestation� Transforming Programs to eliminate trees	
Theoritical Computer Science
 ����������
 ����	

��


