
To appear in proceedings of the Re�ection��� Conference San Francisco� California April ����

Re�ection on a Legacy Transaction Processing Monitor

Roger Barga and Calton Pu

Department of Computer Science and Engineering

Oregon Graduate Institute of Science � Technology

email� fbarga�caltong�cse�ogi�edu�

December �� ����

Abstract

In this paper we describe our experience applying the concepts of re�ection to a legacy
transaction processing �TP� monitor in order to support the implementation of extended
transaction models� In the past ten years� numerous extended transaction models have
been proposed to address the challenges posed by new advanced applications� Few practical
implementations of these extended transaction models exist and none are being used in a
commercial TP monitor� We believe the reason for this state of a�airs is that the interface
and functionality of commercial TP monitors is �locked in	 to a 
xed transaction model� We
have developed the Re�ective Transaction Framework as a practical method to implement
extended transaction models on a commercial TP monitor� The design of our framework is
based on the principles of computational re�ection� and in particular open implementation�
The implementation of our framework introduces transaction adapters� which are re�ective
software modules that provide a meta interface to the underlying TP monitor� allowing ap�
plication developers the �exibility to adjust both the application programming interface and
system functionality� Unlike classic re�ective systems� the Re�ective Transaction Frame�
work applies re�ection to a legacy TP monitor written in a non�re�ective programming
language� This paper focuses on the ability of the Re�ective Transaction Framework to
perform re�ective computation and on the extent to which the legacy TP monitor supports
this computation�

�



� Introduction

In recent years� numerous extended transaction models have been proposed to address the re�
quirements posed by advanced applications �Elm���� A few of these models have been imple�
mented as prototypes� but most remain mere theoretical constructs with no practical implemen�

tation �Moh�	� and none are being used in a commercial product� We believe the main reason for
this state of a
airs is that the interface and functionality of commercial transaction processing
�TP� monitors is �locked in� to a 
xed transaction model� making it di�cult� if not impossible�
to readily use them to implement new extended transaction models� We have found �BP���� the

problem is not due to an inherent inadequacy of modern TP monitor functionality� but rather lies
with the visible aspects of the underlying implementation not permitting access to the required
functionality� In this paper� we describe an approach to apply re�ection to a commercial TP mon�
itor to �open up� the interface and underlying functionality so that extended transaction models

can be implemented�

We have introduced the Re�ective Transaction Framework �BP��� as a practical method to
implement a wide range of extended transaction models on a commercial TP monitor� The
design of the Re�ective Transaction Framework is based on the principles of computational re�

�ection �Mae���� and in particular the Open Implementation approach �Kic���� In the Re�ective
Transaction Framework� re�ection is realized using transaction adapters� which are re�ective soft�
ware modules built on top of the TP monitor� Transaction adapters provide a meta interface to
adjust aspects of the legacy TP monitor that are often hidden� e
ectively opening up the imple�

mentation so that programmers can explore alternative transaction model implementations and
application interfaces� To demonstrate the practicality of our approach� we have implemented the
Re�ective Transaction Framework on top of Encina �Cor���� a commercial TP monitor distributed
and supported by Transarc�

We believe the Re�ective Transaction Framework represents a new application of re�ective

concepts� Unlike classic re�ective systems� such as CLOS �BGW��� and ��LISP �dRS�	�� the
Re�ective Transaction Framework applies re�ection to a legacy TP monitor that was written
in a non�re�ective programming language� Concretely� the Re�ective Transaction Framework

demonstrates the practicality and usefulness of this new application of re�ection to incrementally
extend a legacy TP monitor� This approach also enables the reuse of available legacy functionality�
which has obvious economic advantages� Another� more pragmatic contribution� is that the
Re�ective Transaction Framework presents the 
rst practical method to implement a wide range

of extended transaction models on an industrial�grade TP monitor�

This paper is organized as follows� Section � provides background and motivation for our
approach� Section � presents the Re�ective Transaction Framework� and discusses how re�ection
is implemented on a legacy TP monitor� Section 	 illustrates the implementation of an extended
transaction model using our framework� Section � presents a comparison with related work� and

Section � concludes the paper�

�



� Background and Motivation

In order to open up the interface and functionality of a legacy TP monitor� we draw upon results
stemming from work on computational re�ection� The concept of re�ection was 
rst put forth
explicitly by Brian Smith in his PhD thesis �Smi��� concerning the structure and organization of

self�modifying procedures and functions� which was later summarized in a shorter paper �Smi�	��
The essence of computational re�ection is that a program is able to reason about its own behavior
and then change it� While the concept of re�ection originated in work on �exible programming
language design� the notion has proven to be quite general� Over the years� researchers have incor�

porated the principles of re�ection into a variety of application domains and software frameworks
in a general move to make systems �exible �Str��� Yok��� EPT���� This �exibility allows the
systems to be made compatible with other hardware� function e�ciently in a range of di
erent
circumstances and clients� and support application requirements that were not considered during

development� Our motivation� then� is to investigate how we might apply re�ection to a modular
legacy TP monitor� to attack similar challenges of �exibility in the interface and implementation�

In the remainder of this section� we 
rst present background information on transactions and
the implementation challenges presented by extended transaction models� followed by a high�level

description of the TP monitor� Finally� we return to discuss how results from re�ection can be
applied to a legacy TP monitor�

��� Transaction Models� Past and Present

The transaction concept has been used e
ectively in traditional database systems to synchro�

nize concurrent access to a shared database and provide reliable access in the face of failures�
A transaction is an atomic unit of work against the database� consisting of a sequence of data
manipulation operations� typically read and write� along with control operations that a
ect the
execution of the transaction� The control operations found in the traditional database transaction

model are Begin Transaction� Commit Transaction� and Abort Transaction� ACID proper�
ties of transactions �atomicity� consistency� isolation� and durability� guarantee correct concurrent
execution as well as reliability �HR���� The �exibility of a given transaction model depends on
the way these four ACID properties are combined� along with the control operations available to

the transaction�

Although powerful� it is commonly accepted that the traditional transaction model found
in conventional database systems is lacking in functionality and performance when used for ad�
vanced application domains �Elm���� Some of the considerations are that transactions in these

domains are longer in duration and often require the release of intermediate results to other trans�
actions during execution� requiring a relaxed notion of atomicity� This is the case� for example�
in computer�aided design and manufacturing �CAD�CAM� applications� In some application do�
mains� the property of isolation between transaction has to be relaxed to allow cooperation among

transactions in order to accomplish a common task� This is the case in computer�supported co�

�



operative work environments� Hence� over the last 
ve years a number of extended transaction

models have been introduced to accommodate the diverse requirements of advanced application
domains �PKH��� MP��� RC��� CR��� Moh�	� WR���� These models introduce new transaction
control operations� such as the operation Split and Join operations introduced by the split�join
transaction model �PKH���� and they associate �broader� interpretations of the ACID trans�

action properties to provide enhanced functionality while increasing the potential for improved
performance�

While the potential bene
ts of these new extended transaction models have been known for
some time� few practical implementations of these models have been developed �Moh�	�� One

reason for the lack of practical implementations is that conventional TP monitors have a closed
interface� accepting only traditional database transaction control operations and an apparently
rigid implementation� making it di�cult� if not impossible� to implement extended transaction
models� Systems programmers attempting to implement extended transaction behaviors are often

frustrated by the complexity of the task� and� even if they succeed� the closed interface locks in the
extended functionality� preventing application programmers from using the new extended trans�
action behaviors� As a result� to date most extended transaction models remain mere theoretical
constructs with no practical implementation �Moh�	��

��� TP Monitors in the Real World

In contrast to extended transaction models� TP monitors supporting ACID transactions are a
well established technology that has been around for almost �� years� They provide a general
framework for transaction processing� supplying the �glue� to bind together the many functional

components of a transaction processing system through services like multithreaded processes�
interprocess communication� queue management� and system management �Ber���� Early TP
monitors� e�g� IMS�DC� CICS� were single monolithic systems used in proprietary mainframe
environments to achieve high transaction rates in large�scale online transaction processing �OLTP�

systems� such as airline reservation� electronic banking� or securities trading�

While early TP monitors were proprietary and constructed from single monolithic proprietary
systems� modern TP monitors� such as Transarc�s Encina� DEC�s ACMS� and IBM�s CICS������
are more modular and constructed from open transaction middleware� These middleware modules

provide the basic functional building blocks that a TP monitor requires for transaction processing�
such as a Transaction Manager� a Lock Manager� a Log Manager and a Resource Manager �i�e��
DBMS�� Each module provides its transaction services through a relatively simple and uniform
application programming interface �API�� The relationships among a transactional application

and these basic functional components are depicted in Figure �� In a commercial setting� we
might 
nd a TP Monitor such as Transarc Encina or DEC ACMS providing access to various
resource managers� such as an Oracle or Informix relational DBMS�

Although the functional components of modern TP monitors allow users access to system

behaviors and transaction services via the API� the size and complexity of the system forms

	



Transaction

Manager

Resource

Manager
Manager

Lock

Log

Manager

Transaction Processing System

Transactional
Application

Begin_Transaction

Commit

Figure �� Modular Functional Components of a TP Monitor

a barrier to users wishing to extend the behavior of the TP monitor� Rather than a smooth
progression in the level of complexity and degree of expertise required to perform customization
with the available API� there is often a steep learning curve involved in learning all the functions

and understanding how they can be combined�

��� A Practical Approach Based on Re�ection

The challenge of opening up a legacy TP monitor� is therefore� characterized by two inter�related
problems� The 
rst problem is the interface for customization� Conventional TP monitors have a

standard application�level interface that accepts only traditional transaction control operations�
such as Begin Transaction and Commit Transaction� Extending the TP monitor through the
available API would require application programmers to learn intricate details of the TP monitor
architecture and the available API� The second problem is the level of customization� TP monitor

system�level code functions �underneath� the application code and is not subject to the same ab�
stractions as the application� Indeed� with the API approach the TP monitor must be customized
outside the application� rather than within it� An application� then� has no means to specify
its requirements for extended transaction behaviors at runtime� At best� systems programmer

could hope to anticipate the requirements of application programmers and adjust the TP monitor
behavior through the API to implement an extended transaction model a priori� but this is at
the cost of reusability of the TP monitor by applications with other requirements� Both of these
problems combine to give users no easy way to reach in to the TP monitor and customize the way

in which transaction functionality and interface are provided�

Computational re�ection gives us a conceptual tool� the notion of a re�ective module� to
address these two problems� A re�ective module contains a representation of the system� and
has a causal connection between that representation and the actual behavior of the system� The

�



causal connection is two�way� not only are changes in the system re�ected in equivalent changes

to the representation� but changes in the representation will also cause changes in the behavior
of the system� A re�ective module presents the application developer with a base interface that
provides access to the default system behavior� In addition to the base interface� a re�ective
module presents a separate meta interface which a programmer can use to �reach in� and adjust

the representation to add new behaviors to the system� In the next section we describe the
Re�ective Transaction Framework� demonstrating how re�ection and the notion of a re�ective
module can used to enhance a legacy TP monitor� providing the �exibility to open the interface
and implementation�

� A Re�ective Framework for Implementing ETMs

We now turn our attention to the design of the Re�ective Transaction Framework� To open up the
functionality of a legacy TP monitor we introduce transaction adapters� which are add�on re�ective

software modules that provide a meta interface to the underlying TP monitor� In addition� to
open up the application interface to the TP monitor we introduce a separation of programming

interfaces� In the framework� transaction adapters provide an interface for default transaction
control operations� an extensible interface for extended transaction control operations� and the

meta interface to control implementation level concerns�

Although the Re�ective Transaction Framework applies re�ection in a non traditional sense� to
a legacy TP monitor written in a non�re�ective programming language� it nevertheless incorporates
many of the ideas from the traditional notion of computational re�ection� An important di
erence

is that re�ecting on a legacy system implies a strict separation between base and meta objects�
as opposed to the metacircular interpreters from traditional computational re�ection� In our
framework this base�meta object separation in implemented by introducing transaction adapters�
Adapters do not have a full model of the entire monitor� but only a partial model of selected

aspects of the underlying TP Monitor� However� re�ection is still very much present and� as
we will demonstrate� it does enable transaction adapters to open up the legacy TP monitor
functionality and extend it to implement extended transaction models�

��� Transaction Adapters

In the Re�ective Transaction Framework� re�ection is realized through transaction adapters� which
are software modules built on top of the legacy TP monitor� Each adapter corresponds to a
particular aspect �functional component� of the TP monitor� such as transaction execution� lock
management� con�ict detection� and log management� Transaction adapters contain a number of

meta objects which represent selected behaviors of the underlying functional components� and a
meta interface �what some might call a Meta�Object Protocol or MOP� to control the behavior
of that component� This is illustrated in Figure �� The behavior of the TP monitor functional
components can be changed by explicitly updating these meta objects through the adapter meta

�



interface� allowing users to �reach in� and make changes to the behavior of the TP monitor� As

such� adapters provide access to aspects of a legacy TP monitor that are often hidden�

Transaction adapters are application level objects� which means that applications have ac�
cess to them through the meta interface� Changes or modi
cations made to an adapter by an
application change the behavior of the TP monitor component for only that application� For
example� if an application would like to change the isolation for a transaction� it can use the ap�

propriate meta interface operations to change the con�ict detection method for that transaction�
Therefore� transaction adapters allow an application to enhance the underlying mechanisms of a
legacy TP monitor incrementally� and dynamically� in a modular manner at the granularity of

each �extended� transaction execution�

Transaction Mgr. Log Mgr.Lock Mgr.

Metalevel

Baselevel

Adapter
ConflictTransaction Mgr.

Adapter

Meta Interface

Adapter
Lock

Meta Interface Meta Interface

Adapter
Log

Meta Interface

TP Monitor

Figure �� Transaction Adapters in the Re�ective Transaction Framework�

In the context of a legacy TP monitor� re�ection is the ability of an executing TP monitor
to make selected aspects of the underlying functional components� such as transaction operation
dispatch� lock management� con�ict detection and log 
le updates� to be themselves the subject
of computation� The steps involved in this re�ection consist of� rei�cation of structures and

behaviors of the underlying TP monitor component into objects that represent or model aspects
of the underlying TP monitor component� re�ective computation using the rei
ed aspects as data�
and re�ective update that modi
es the actual computational state of the underlying TP monitor
component�

In the Re�ective Transaction Framework� rei�cation is the representation of structural and
computational aspects of the underlying TP monitor component as an object within the corre�
sponding transaction adapter� Rei
cation in our framework is based on callbacks� also known as
upcalls �Cla���� Upcalls support e�cient cross�layer communications and enable the functional

components in the TP monitor to pass relevant state information to a transaction adapter where
it is rei
ed� as illustrated in Figure �� The most important decisions to be made in designing a
transaction adapter are what aspects of the underlying TP monitor component should be rei
ed�
As an example� for the Lock Adapter depicted in Figure �� such aspects include the locks being

held by a transaction� pending lock requests� the procedure used to grant lock requests� and the
structure of the lock table� Depending on the transaction model� however� several other aspects
could also be rei
ed� for example the operations being performed on a locked data object� or the
mode in which a lock has been granted to a transaction� To make adapters as �exible as possible�

�



they are designed to be extensible� Should the need arise� additional aspects of the underlying

functional component can be rei
ed by adding appropriate upcalls to the TP monitor and asso�
ciated rei
cation methods to the transaction adapter� Reifying selected aspects of the underlying
TP monitor component into metalevel objects that are dynamically accessible and modi
able
enables re�ective computation and re�ective update�

In the Re�ective Transaction Framework� the shift in computation from the TP monitor func�

tional component to re�ective computation in the transaction adapter occurs in an event�driven
manner� A transaction signi�cant event is raised whenever a transaction attempts to change
state� e�g� the transaction aborts or commits� or when a transaction requests a service from the

TP monitor� For each transaction event there is an adapter assigned to process the event� and
when that event is raised� control is passed to the assigned transaction adapter along with all
information relating to the event� For example� when the Lock Manager detects a lock con�ict
between two transactions during a lock request� control is passed to the Lock Adapter through

an upcall� along with all information pertaining to the con�icting request� The Lock Adapter

can then apply operation or application�speci
c semantic information to determine if the request
should be granted according to the semantics of the transaction model� The Lock Adapter can
then grant the lock request� or it by simply returning control back to the Lock Manager� e
ec�

tively implementing semantics�based concurrency control �BPZH���� As this example illustrates�
re�ective computation not only allows transaction adapters to expose default behaviors of the
underlying TP monitor� but also to augment legacy functionality with new extended transaction
model behaviors�

If the re�ective computation updates the rei
ed data� the modi
cations are re�ected down
to the actual computational state of the underlying TP monitor component in what is called
a re�ective update� In the Re�ective Transaction Framework� re�ective update is implemented
through calls to the API provided by each TP monitor functional component� Through the API

the transaction adapter can update the structures and computational state of the underlying
functional component� The most challenging issue when implementing an adapter is to identify
the appropriate API calls in order to implement each re�ective update� Ideally� this task is
performed only once� by the designer of the Re�ective Transaction Framework� who is familiar

with the inner workings of the monitor functional components� When an adapter needs to perform
a re�ective update� it issues the appropriate sequence of API calls� as illustrated in Figure ��
Thus� each transaction adapter not only rei
es aspects of the TP monitor functional component�
enabling re�ective computation� but also provides the means to a
ect that state and control the

component�s behavior through re�ective update� This is termed causal�connection �Mae���� and
is satis
ed by transaction adapters in the Re�ective Transaction Framework�

To design each transaction adapter� we followed systematic procedure to select aspects of
the TP monitor for rei
cation� to determine how they would be represented� and the ways they

could be manipulated through the adapter meta interface� This was an important process in the
development of the framework� because it determines what extended behaviors can be realized
on the underlying TP monitor and� correspondingly� what extended transaction models can be
implemented by the Re�ective Transaction Framework� Details of the systematic procedure we

introduced to design the adapters in the framework are not appropriate for this discussion� and can

�



CallAPI UPCALL

Reification

NOK NOK

OK NOK

X

S
S X

Transaction Lock List

o o o o o o o o

Lock Information

Pending Lock RequestsLock Table Lock Compatibility

Lock Adapter Meta Interface

Lock Manager Application Programming Interface

Reflective Update

Transaction Event Handler

causal-connection

Figure �� Re�ective Update and Rei
cation

be found elsewhere �BP���� It is important to note� however� following the systematic procedure
we designed a generic framework to describe extended transaction behaviors within which a wide
range of extended transaction models can be implemented �BP���� For practicality� the functional

design of each transaction adapter was based on the commands and functionality of the well�
documented TP monitor reference architecture �GR���� The TP monitor reference architecture
is general enough to allow us to make observations on TP monitors in general� and yet concrete
enough to make implementation details obvious in a modern commercial TP monitors� Further�

our implementation of the adapters relied only on a small� widely supported� set of commands
found in the API of the TP monitor reference architecture�

In the remainder of this section� we will highlight some of the objects rei
ed by transaction
adapters� and describe selected commands from the adapter meta interface�

Transaction Management Adapter � rei
es transactions executing extended behaviors� and

provides a meta interface to control these transactions and adjust the behavior of the underly�
ing Transaction Manager functional component� Commands in the Transaction Manage�

ment Adapter meta interface include� Instantiate� Reflect� Delegate Ops� Form Dependency�
Create Group� Create Tran� Terminate Tran� and Wait� Primary meta objects rei
ed by the

Transaction Management Adapter include a metatransaction descriptor for each extended trans�
action� see Figure 	� a re�ective transaction table� and a transaction dependency graph�

An extended transaction is entered into the re�ective transaction framework through the com�
mand instantiate� at which time a metatransaction descriptor is created for the transaction�
All information relating to the execution and current status of the transaction will be rei
ed in

this metatransaction descriptor� Afterwards� an instantiated transaction can be assigned a set
of extended transaction control operations �semantics� through the command reflect� When
an extended transaction invokes a control operation� the actual code executed is determined by

�



metatransaction Descriptor�

self� �TRID��

groupID� ��TRID���

execMode� �state��

dependsOn� ��TRID�	 �TRID�	


��

waitOn� ��event���

lockList� ��lockID�	 �lockID�	


��

opList� ��opName�	 �opName�	


��

initiateOperations� ��Begin	 atomicBegin���

processOperations� nil�

terminateOperations���Commit	 atomicCommit�	

�Abort	 atomicAbort����

Figure 	� Metatransaction Descriptor for an Extended Transaction�

its metatransaction� For example� if the transaction were to invoke the Commit operation this

would result in a transaction signi
cant event being raised and control would be passed to the
Transaction Management Adapter Processing the command involves 
rst verifying this control
operation is permitted for the transaction� a simple comparison with the metatransaction descrip�
tor is performed� Once the Transaction Management Adapter has veri
ed the commit operation

is valid then the function identi
ed in the metatransaction descriptor is executed� Afterwards�
any results from the transaction control operation are returned to the base level transaction as if
for a normal operation call�

Con�ict Adapter � rei
es information on the con�icts that occur between transactions at�

tempting to acquire shared resources� and provides a meta interface to control the de
nition of
con�ict and appropriately adjust the behavior of the underlying Lock Manager� Commands
in the Con�ict Adapter meta interface include� Relax Conflict� No Conflict� Allow� Wait and
Revoke� Primary meta objects rei
ed by the Con�ict Adapter include a a compatibility table

de
ning con�ict relationships between operations� and a no�con�ict table that records all con�icts
explicitly relaxed between extended transactions�

Depending on the semantics of a transaction and its relationship to other transactions� not all
con�icts between transactions need to produce dependencies or serialization orderings� To capture

this� the Con�ict Adapter can selectively present and change the de
nition of con�ict for one or
more underlying data objects or extended transactions� By adapting the de
nition of con�ict
o
ered by the underlying TP system� the con�ict adapter is able to provide support for a variety
of extended transaction models and semantics�based concurrency control protocols �BPZH����

Lock Adapter � rei
es information on locks held by transactions and on the lock table�

and provides a meta interface to control these locks and adjust the behavior of the underlying
Lock Manager functional component� Commands in the Lock Adapter meta interface include�
Release Lock� Acquire Lock� Delegate Lock� Share� Wait� Peak and Upgrade Mode� Primary

meta objects rei
ed by the Lock Adapter include a transaction lock list� lock mode table� and an
active locks list�

��



Locks on data objects can restrict the ability of a transaction to see the e
ects of other trans�

actions on data objects while they are executing� The Lock Adapter allows greater control over the
visibility of data objects by enabling a transaction to grant other transactions access to data ob�
jects on which they hold locks� The Lock adapter also enables an extended transaction to delegate
ownership of its locks to another transaction prior to termination through the delegate lock

command� The delegate lock command allows the transaction to specify whether it wishes
to delegate all the locks it currently holds or only those for speci
ed data objects� The con�ict
adapter records access rights granted between extended transactions in the no�con�ict table� while
the lock adapter provides the transactions access to the locked data object�s��

��� A Separation of Programming Interfaces

Application programmers develop transactional applications using a set of transaction model�
speci
c verbs� or transaction control operations� For example� classic database transactions are ini�
tiated by the control operation Begin�Transaction� and terminated by either a Commit�Transaction

or Abort�Transaction control operation� Extended transactions� on the other hand� often intro�
duce additional operations to control their execution� such as the operation Split�Transaction

introduced by the split�join transaction model �PKH���� or the operation Join�Group introduced

in the cooperative group model �MP��� RC���� Indeed� a transaction model de
nes both the
control operations available to a transaction as well as the semantics of these operations� For
example� whereas the Commit�Transaction operation of the classic database transaction model
implies the transaction is terminating successfully and that its e
ects on data objects should be

made permanent in the database� the Commit�Transaction operation of a member transaction
in a cooperative transaction group implies only that its e
ects on data objects be made persistent
and visible to transactions that belong to the same group�

To accommodate the diversity between di
erent extended transaction models� we introduce
a separation of programming interfaces to the TP monitor� This separation follows the open

implementation approach �Kic���� pioneered in the meta�object protocol �KdRB���� in which the
functional interface is separated from the meta interface� The purpose of the meta interface is
to modify the behavior� or semantics� of the functional interface� In our separation of interfaces�

presented 
guratively in Figure � and described below� both the transaction demarcation interface
and extended transaction interface are functional� subdivided for clarity only�

Base Interface: provides ACID
transaction functionality

Transaction Processing Monitor

Extended Transaction Interface: provides

control over implementation
Metalevel Interface: provides

an interface for extended transaction models.

Figure �� Separation of interfaces to the Re�ective Transaction Framework�

��



� Transaction demarcation interface�presents the standard transaction interface o
ered

by the TP monitor and when used alone provides default transaction behavior of ACID
transaction semantics� Control operations in the transaction demarcation interface include�
begin�transaction� commit�transaction� and abort�transaction�

� Extended transaction interface � presents an extensible interface to new extended be�
haviors added to the TP monitor and used when applications require extended transac�
tion functionality and semantics� Operations in the extended transaction interface include

transaction control operations de
ned by speci
c extended transaction models� such as the
operations Split and Join for the split�join transaction model �PKH����

� Meta interface � allows applications to view aspects of the underlying TP monitor func�
tionality and to make modi
cations� The meta interface provides commands for program�
mers to �reach in� to the implementation and adapt it to the needs of a speci
c extended

transaction model� Some of the operations in the meta interface include� instantiate�

reflect� delegateOp� delegateLock� formDependency� and noConflict�

The separation of programming interfaces to the TP monitor provides a way not just to talk
about existing transaction models� but to also introduce new extended transaction behaviors and
interfaces� Default transaction behaviors remain available through the standard transaction de�

marcation interface� New extended transaction behaviors can be de
ned using the meta interface�
and made available to to application through the introduction of new extended transaction con�
trol operations in the extended transaction interface� The extended transaction interface� then�
augments the transaction demarcation interface with new extended control operations�

Using the Re�ective Transaction Framework� TP systems programmers don�t need to �second
guess� the speci
c needs of application developers� or restrict the applicability of the TP monitor
to a subset of extended transaction models� but can use the meta interface to add new extended
transaction models as necessary� Application programmers are not constrained to a 
xed set of

control operations or a 
xed transaction model� but are free to select the appropriate transaction
model to meet the needs of the application� Moreover� they can access these new extended
transaction behaviors using programming skills they already posses� namely through transaction
control operations�

��� An Encina Implementation

For our current implementation of the Re�ective Transaction Framework we are using Encina�
a commercial TP Monitor distributed by the Transarc Corp� Transaction services for Encina
are provided by the Encina Toolkit �Tra�� which is composed of a small number of transaction

middleware service modules� including� Transaction Service Module �TRAN� that pro�
vides transaction execution control and default transaction control operations �begin� commit�
abort�� Lock Service Module �LOCK� that provides a logical locking package to guarantee
transaction isolation and� Log Service Module �LOG� that provides write�ahead log support

��



for transaction updates and crash recovery� The transaction middleware service modules of the

Encina Toolkit provide the basic building blocks of the TP monitor reference architecture �GR���
pp� ���� and have been used by a number of computer system providers to implement various TP
monitors� including IBM�s CICS����� TP monitor� DEC�s ACMSxp TP monitor �BCDW��� and�
of course� the Encina TP monitor �Cor����

Each module in the Encina Toolkit provides access to its transaction services and behaviors

through a relatively simple and uniformAPI� In addition� each module provides a set of transaction
callbacks that allows the user to register a function that is to be called during a transaction
event� In Encina� transaction events include a transaction changing execution state or requesting

a resource� Callbacks not only pass data to the registered function� but allow the function to
modify default system handling of the event� In our implementation we use these existing API
calls and transaction callbacks to form the causal�connection between the modules in the Encina
Toolkit and transaction adapters in the Re�ective Transaction Framework� Transaction adapters

use the callback facility for rei
cation� and the standard Toolkit API for re�ective updates�

While we had access to Encina source code� the implementation did not require any changes
to the fundamental structures or functions of the Encina Toolkit� In a few cases� however� it
was necessary to modify the callback function arguments to pass additional information to the
adapter for rei
cation� Because of the availability of transaction callbacks and rich API com�

mand set in the Encina Toolkit� we have been able to fully integrate the Re�ective Transaction
Framework into Encina� An extended transaction running on Encina behaves just like a standard
ACID transaction� Having opened the implementation of Encina� we can adjust the extended

transaction�s behavior as needed� Extended transactions� generally speaking� retain most of their
base�level semantics provided by Encina and simply gain some additional behavior� such as se�
mantic notions of con�ict or new extended transaction control operations� looking back on the
split�join example� the model added the operations split and join� while the operations begin�

commit� and abort retain their original meaning �implementation��

Our Encina implementation has demonstrated the practicality of the Re�ective Transaction
Framework� A question which naturally arises is how portable the framework is to TP monitors not
constructed from the Encina Toolkit� and to transaction services found in relational and object�
oriented database servers� As pointed out in Section ���� transaction adapters were designed

in the context of the TP monitor reference architecture to use only a small� widely supported�
set of API commands� However� to answer this question concretely� we are compiling a list
of the required transaction functionality and API commands for re�ective update� along with

the necessary upcalls for rei
cation� When complete� we will compare this list against other
transaction facilities to assess the portability of the Re�ective Transaction Framework to other
systems�

��



� Example of Implementing Extended Transactions

In this section we present an example to illustrate how extended transaction functionality can be
implemented using the Re�ective Transaction Framework� This example is based on the split�join
transaction model �PKH���� in particular the transaction control operations split and join� We


rst informally de
ne the extended transaction model� demonstrate how the meta interface is
used to synthesize new extended transaction functionality� illustrate how an application can use
this new functionality and� 
nally� demonstrate how transaction adapters function to implement
the extended transaction behaviors� Readers interested in additional examples of implementing

extended transaction models� are referred to our previous paper �BP����

��� Split�Join Transaction Model

The split�join transaction model was proposed for open�ended activities such as computer�aided
design and manufacturing �CAD�CAM�� Open�ended activities are characterized by uncertain

duration� uncertain developments and interaction with other concurrent activities� Due to these
characteristics� sometimes it is desirable to release earlier modi
ed data of a transaction to other
transactions� The split�join transaction model provides two operations to dynamically restructure
transactions� namely split and join� A transaction T may split into two transactions Ta and Tb�

providing applications with a mechanism to release data objects that are no longer needed and�
hence� release intermediate results to other transactions� Two transactions can also join together
to become one transaction� or use combinations of split and join to allow transfer of resources
from one transaction to another�

����� synthesizing the extended functionality of split and join

When a transaction T� splits� by executing the transaction control operation split�T��� it must


rst create a new transaction �T�� and then delegate responsibility for executing some of its op�
erations to this new transaction� To be more precise� T� transfers to T� responsibility for all
uncommitted operations on a particular set of data objects� referred to as the DelegateSet� In
practice� users de
ne the DelegateSet by selecting the objects to split from the re�structured trans�

action� At the time of the split� a new transaction is created� instantiated� and then operations
invoked on objects in the DelegateSet by T� are delegated to T�� The transactions T� and T�

can then commit or abort independently� The following code segment illustrates how the split

transaction control operation is synthesized using commands in the meta interface�

�	



split�NewTran	 DelegateSet
�

�� instantiate new transaction


instantiate�NewTran
�

�� add split�join transaction interface through reflection


reflect�NewTran	 SplitJoin
�

�� delegate locks related to objects in delegate set


delegate�lock�NewTran	 DelegateSet
�

�� delegate ops related to objects in delegate set


delegate�op�NewTran	 DelegateSet
�

�� initiate execution of the newly created transaction


begin�NewTran
�

�� return execution control to base�level transaction

return�

�

Figure �� Split transaction control operation�

The join transaction operation is the inverse of a split transaction operation� When transaction

T� executes the transaction management operation join�T��� it must delegate its uncommitted
operations and associated locks to T� and then terminate its execution� Transaction T� must
already exist and be instantiated� Transaction T� is now responsible for committing or aborting
these operations� and the updates of T� must be committed together with the e
ects of T�� In

joining a Transaction� the DelegateSet is simply all uncommitted operations and associated locks�
We synthesize the join operation as follows�

join�DestTran	DelegateSet
�

�� delegate locks related to objects in DelegateSet


delegate�lock�DestTran	 DelegateSet
�

�� delegate operations related to objects in DelegateSet


delegate�op�DestTran	 DelegateSet
�

�� terminate execution of T�


commit�self
�

�� return control to invoking transaction


return�

�

Figure �� Join transaction control operation�

Once the extended functionality of the split and join transaction control operations have been
de
ned using the meta interface� the can then be added to the extended transaction interface

where they will be available for applications to use�

��



����� Application Programming Using the split Operation

In order to motivate the need for the split and join operations� consider the requirements of
CAD support for a team of engineers designing a computer chip� Since the design process may
take an arbitrarily long time and involve multiple engineers� the principal engineer might like to
split o
 responsibility for the design of speci
c subsystems to component engineers who can either

join their results into the working chip design at a later time or choose to commit or abort their
designs independently� Such requirements are not satis
ed by traditional database transactions
in an easy and straightforward manner but can be easily satis
ed by the split�join transaction
model� The code fragment below outlines how an application programmer could use the split

and join operations to dynamically restructure a transaction in order to release subsystem data
objects and operations to a separate transaction and� later� join with a separate transaction�

Begin Transaction PE Tran ���
begin

instantiate�PE Tran� ���
re�ect�PE Tran� SplitJoin� ���
� � �

� � �f data manipulation g
� � �

split�CE Tran� Subsystem� ���
� � �

� � �f data manipulation g
� � �

join�QA Tran��� ���
end
Commit Transaction fCAD designg �	�

Line � declares the beginning of the principal engineer�s transaction using the Begin Transaction

command found in the the base interface� This is signi
cant� because it noti
es the transaction
management system that the operations between this point and the Commit Transaction com�

mand in line � are to be executed atomically� according to the traditional transaction model�
Thus� lines � and � bracket the transaction� The purpose of the instantiatemeta interface com�
mand in line � is to notify the Re�ective Transaction Framework of the programmers intention to
�renegotiate� the base transaction model� The reflect meta interface command in line � details

the terms of the renegotiation� selecting the split�join model for the transaction� The importance
of the re�ect command is twofold� First� it determines the control operations and semantics that
are available to the transaction� In this example� the split�join model adds two new transaction
control operations� namely split and join� while the begin� commit and abort commands have the

same semantics as the corresponding commands in the traditional database transaction model�
Second� it informs the transaction adapters in the Re�ective Transaction Framework how to pro�
cess transaction events on behalf of this transaction� such as lock request con�icts� transaction

dependencies that might arise during execution� etc� In line 	� the application programmer uses
the new extended transaction control operation split� where CE Tran is the name of the new

��



transaction created for the component engineer and Subsystem is the subcomponent that is to be

delegated to the component engineer�s transaction� Finally� in line �� the application programmer
uses the new extended transaction control operation join to merge the results and resources held
by the transaction PE Tran with an existing quality assurance program� QA Tran�

One can see from this example that there is no description of creating the new transaction for
the component engineer� no explicit delegation of the locks held on data objects in Subsystem�

and no explicit delegation of the data manipulation operations pertaining to Subsystem when
the application is written� With the exception of the instantiate and re�ect operations� the
programmer simply uses familiar transaction control operations to write the application�

����� Transaction Adapters Behind the Scenes

Continuing with our example� we now examine how transaction adapters work behind the scenes to

support extended transaction behavior on a legacy TP monitor� We begin with the instantiate
meta interface command in line �� During execution� the instantiate command causes control to be
passed to the Transaction Management Adapter� which 
rst creates a metatransaction descriptor

and rei
es information for the transaction PE Tran� including the transaction identi
er �TRID��

current execution status of the transaction� and control operations available to the transaction�
Next� the Transaction Management Adapter directs the other adapters to create initial entries for
objects will be rei
ed for this transaction during its execution� and then it returns control back

to the base transaction for processing� The reflect command in line � also causes control to be
passed to the Transaction Management Adapter� which updates the metatransaction descriptor�
as illustrated below� to contain the transaction control operations split and join� speci
ed by
the split�join extended transaction model�

metatransaction Descriptor�

myid is TRID�

execMode is Active�

initiateOperations� ��Begin	atomicBegin���

processOperations� ��Split	splitOperation���

terminateOperations� ��Commit	atomicCommit�	

�Abort	atomicAbort�	

�Join	joinOperation����

Processing resumes on the base TP monitor� until the transaction control operation split�CE Tran�

Subsystem� is processed in line 	� Split is a transaction control operation de
ned the extended

transaction interface for the transaction PE Tran� When the transaction invokes a control op�
eration� the actual code executed is determined by its metatransaction �see Figure ��� When
the split operation is invoked by the transaction� processing involves 
rst verifying this control

operation is permitted for the transaction� and once it has been veri
ed then the function is
executed� as illustrated in Figure �� For the execution of the split operation� as de
ned in Fig�
ure �� the 
rst meta interface command directs the Transaction Management Adapter to create
a metatransaction descriptor for the new transaction CE Tran� This change is re�ected down

��



onto the Transaction Manager� resulting in the creation of a new base level transaction� The

commands instantiate and re�ect are then processed by the Transaction Management Adapter to
initialize the meta objects for the transaction CE Tran� Next� the Lock Adapter delegates locks
on all data objects in the delegate set Subsystem from the transaction PE Tran to the transac�
tion CE Tran� This change is 
rst made 
rst to the meta object lockTable� and through causal

connection the change is re�ected down to the Lock Manager through the API commands
releaseLock and acquireLock� Once the delegate lock command is complete� the Transaction

Management Adapter processes the delegate op command� Finally� the begin command is pro�
cessed by the Transaction Management Adapter� which sets the execution mode of the transaction

CE Tran to active and returns control to the TP monitor to begin base level processing�

Base-level Transaction

ooo

ooo

Begin_Transaction

Commit_Transaction;

Split(CE_Tran, Subsystem)

Transaction Management Adapter

Metatransaction Descriptor
<Split, splitMethod>

1

4 Return

}

ooo

splitMethod(TRID DelegateSet){

Implementation-levelpreTest Invariant

postTest Invariant

3

2

Baselevel

Metalevel

Call

Trap

Figure �� Transaction control operation redirection

� Comparison to Related Work

In this section we compare the Re�ectiveTransaction Framework to related e
orts in implementing
extended transaction models and re�ective systems�

There exist only a small number of research e
orts on implementing extended transaction

models� similar in spirit to the Re�ective Transaction Framework� Two noteworthy systems
are ASSET �BDG��	� and TSME �GHKM�	�� Similar to our framework� these systems are
designed to facilitate the implementation of extended transaction models� However� they simply

present the user with a closed application interface and a 
xed selection of mechanisms from
which a predetermined set of extended transaction models can be implemented� In our approach�
the user is presented with a �exible framework in which the functionality and interface for an
extended transaction model can be created� rather than a 
xed selection of mechanisms from

which particular extended transaction models can be selected�

��



ASSET �BDG��	� provides a set of new language primitives that enable the realization of

various extended transaction models in an object�oriented database setting� In addition to the
standard database control operations Begin� Commit and Abort� ASSET provides three new prim�
itives� form�dependency to establish structure�related inter�transaction dependencies� permit to
allow for data sharing without forming inter�transaction dependencies� and delegatewhich allows

a transaction to transfer responsibility for an operation to another transaction� Using these new
primitives� it is possible to synthesize certain extended transaction control operations within the
program� However� the task of synthesizing new control operations is a skill that each programmer
would necessary have to learn and the task must be repeated for each transaction that requires

the operation�

TSME �GHKM�	� consists of a transaction speci
cation facility that understands TSME�s
transaction speci
cation language� and drives the transaction management mechanism to con
g�
ure a run�time system in order to support speci
c extended transaction models� The transaction

management mechanism is programmable� but uses templates to describe existing extended trans�
action models� TSME is a toolkit based system� in which certain expressions in the speci
cation
language are mapped to certain con
gurations of pre�built components in the transaction man�
agement mechanism� If the needs of the application fall outside of this pre�built set� there is

no recourse for the programmer � even though the transaction facility may be fully capable of
implementing the required behavior�

As for re�ective systems� most of the work on re�ection has been on procedural re�ection�
where the meta�level directly implements the base�level� Some notable exceptions are Rok Sosic�s

work on Dynascope �Sos��b� Sos��a� and the Synthetix project �PAB����� Dynascope is a pro�
gramming environment for directing the execution of traditional compiled languages� Program
directing involves two processes� an executor and a director� When a program is executed in
the Dynascope environment� the executor process generates an execution stream which the direc�

tor process monitors� When selected events occur� similar to breakpoints� computation is shifted
from the application to the Director where event�speci
c processing is performed on behalf of the
application� This approach is similar to that of the Re�ective Transaction Framework� in that
adapters respond to selected transaction signi
cant events and perform processing on behalf of

the transaction� However� unlike transaction adapters� the Dynascope director does not maintain
a causal connection with underlying application� and it requires a special�purpose programming
environment for the necessary instrumentation�

Also� the Synthetix project �PAB���� is studying specialization of operating systems� which

can be viewed as a form of re�ection� The Synthetix notion of specialization classes �CPW�
provides a declarative meta interface through which an application can specify it�s particular
speci
cation needs� Software tools then apply these specializations to the operating system to
achieve the desired performance and functionality goals of the application�

��



� Conclusions and Future Research

In this paper we have described an approach to apply re�ection to a legacy TP monitor in order
to support the implementation of extended transaction models� We described the Re�ective
Transaction Framework� in which re�ection is manifested in a small number of add�on software

modules called transaction adapters� Transaction adapters open up the functional components of
the legacy TP monitor and present a meta interface through which users can adjust the behavior of
the functional component according to their requirements� The Re�ective Transaction Framework
provides application programmers who 
nd the default transaction model insu�cient for their

applications� the means to reach in to a conventional legacy TP monitor and implement new
extended transaction models�

The Re�ective Transaction Framework represents a new application of re�ective concepts�
While there have been papers that discuss various aspects of re�ection and classify metalevel re�
�ective architectures from di
erent viewpoints� there are few previous works that apply re�ection

to legacy systems� One contribution of the Re�ective Transaction Framework is that it demon�
strates the practicality and usefulness of this new application of re�ection to incrementally extend
a legacy TP monitor� In general� this requires very little change at the underlying TP monitor� A

distinct advantage of this approach is that of reusability� A second� more pragmatic contribution
of the Re�ective Transaction Framework� is that it provides the 
rst practical method to imple�
ment a wide range of extended transaction models on an industrial�grade TP monitor� By doing
so� we hope this will enables application developers to draw conclusions from direct experience in

applying extended transaction models in real� working environments�

Our current implementation of the Re�ective Transaction Framework is implemented on the
commercial TP monitor Encina� We are currently in the process of measuring and optimizing
the performance of this implementation� In addition� we are working to extend the ideas of
the framework to other TP monitors� and to other research challenges in advanced transaction

processing� such as semantics�based concurrency control protocols �BPZH���� It is our hope that
this work will not only provide solutions of practical value to these challenging problems� but
provide insights into the general application of the notions of re�ection and open implementation

to legacy systems�

References

�BCDW
�� R�K� Baaif� J�I� Carrie� W�B� Drury� and O�L� Wiesler� ACMSxp open distributed transaction
processing� Digital Technical Journal� ����������� �

��

�BDG�
�� A� Biliris� S� Dar� N� Gehani� H�V� Jagadish� and K� Ramamritham� Asset� A system for
supporting extended transactions� In Proceedings of ���� ACM SIGMOD� pages ������ May
�

��

�Ber
�� Philip A� Bernstein� Transaction processing monitors� Communications of the ACM�
������������� �

��

��



�BGW
�� Daniel G� Bobrow� Richard Gabriel� and Jon L White� CLOS in Context	 The Shape of the
Design Space� MIT Press� �

��

�BP
�� Roger S� Barga and Calton Pu� A practical and modular method to implement extended
transaction models� In Proceedings of the 
�st International Conference on Very Large Data
Bases� Zurich� Switzerland� September �

��

�BPZH
�� R�S� Barga� C� Pu� T� Zhou� and W�W� Hseush� A practical method for implementing
semantics�based concurrency control� Technical Report OGI�CSE�
�� Department of Com�
puter Science and Engineering� Oregon Graduate Institute� May �

��

�Cla��� David D� Clark� The Structuring of Systems Using Upcalls� In Proceedings of the Tenth
ACM Symposium on Operating System Principles� pages �������� Orcas Island� Washington�
December ��� �
���

�Cor
�� Transarc Corp� Encina Product Overview� Transarc Corp� Pittsburgh� PA�� �

��

�CPW� Crispin Cowan� Calton Pu� and Jonathan Walpole� Specialization Objects� A Re�ective
Interface for Specialization� Submitted for review�

�CR
�� P�K� Chrysanthis and K� Ramamritham� ACTA	 The SAGA Continues� chapter ��� Morgan
Kaufmann� �

��

�dRS��� Jim des Rivi�eres and Brian Smith� The implementation of procedurally re�ective languages�
Technical Report ISL��� Xerox PARC� June �
���

�Elm
�� Ahmed K� Elmagarmid� editor� Database Transaction Models for Advanced Applications�
Morgan Kaufmann� �

��

�EPT
�� D� Edmond� M� Papzoglou� and Z� Tari� R�OK� A re�ective model for distributed object man�
agement� In Proceedings of the RIDE ��� Workshop �Research Issues in Data Engineering�
�

��

�GHKM
�� D� Georgakopoulos� M� Hornick� P� Krychniak� and F� Manola� Speci
cation and manage�
ment of extended transactions in a programmable transaction environment� In Proceedings
of the ���� IEEE Conference on Data Engineering� pages �������� Feb �

��

�GR
�� J� Gray and A� Reuter� Transaction Processing	 Concepts and Techniques� Morgan Kauf�
mann Publishers� �

��

�HR��� T� Haerder and A� Reuter� Principles of transaction�oriented database recovery� ACM
Computing Surveys� �������������� December �
���

�KdRB
�� Gregor Kiczales� Jim des Rivi�eres� and Daniel G� Bobrow� The Art of the Metaobject Protocol�
MIT Press� �

��

�Kic
�� Gregor Kiczales� Towards a new model of abstraction in software engineering� In Pro

ceedings of the IMSA��
 Workshop on Re�ection and Meta
level Architectures� �

�� See
http���www�xerox�com�PARC�spl�eca�oi�html for updates�

�Mae��� P� Maes� Concepts and experiments in computational re�ection� In Proceedings of the Con

ference on Object
Oriented Programming Systems� Languages� and Applications �OOPSLA��
October �
���

�Moh
�� C� Mohan� Advanced transaction models � survey and critique� Tutorial Presented at the
ACM SIGMOD International Conference on Management of Data� �

��

�MP
�� B� Martin and C� Pederson� Long�lived concurrent activities� In Amar Gupta� editor� Dis

tributed Object Management� pages �������� Morgan Kaufmann� �

��

��



�PAB�
�� Calton Pu� Tito Autrey� Andrew Black� Charles Consel� Crispin Cowan� Jon Inouye� Lakshmi
Kethana� Jonathan Walpole� and Ke Zhang� Optimistic Incremental Specialization� Stream�
lining a Commercial Operating System� In Symposium on Operating Systems Principles
�SOSP�� Copper Mountain� Colorado� December �

��

�PKH��� C� Pu� G�E� Kaiser� and N� Hutchinson� Split�transactions for open�ended activities� In
Proceedings of the Fourteenth International Conference on Very Large Data Bases� pages
������ Los Angeles� August �
���

�RC
�� K� Ramamritham and P�K� Chrysanthis� In search of acceptability criteria� Database con�
sistency requirements and transaction correctness properties� In Amar Gupta� editor� Dis

tributed Object Management� pages �������� Morgan Kaufmann� �

��

�Smi��� Brian C� Smith� Re�ection and Semantics in a Procedural Language� PhD thesis� Mas�
sachusetts Institute of Technology� �
���

�Smi��� B�C� Smith� Re�ection and Semantics in Lisp� In Proceedings of the ��th Annual ACM
Symposium on Principles of Programming Languages� pages ������ �
���

�Sos
�a� Rok Sosic� Dynascope� A tool for program directing� In SIGPLAN ��
 Conference on
Programming Language Design and Implementation� SIGPLAN Notices� volume ��� pages
������ July �

��

�Sos
�b� Rok Sosic� The Many Faces of Introspection� PhD thesis� University of Utah� �

��

�Str
�� R� J� Stroud� Transparency and re�ection in distributed systems� ACM Operating Systems
Review� ������

����� April �

��

�Tra� Transarc Corporation� Pittsburgh� PA� ����
� Encina Toolkit Server Core Programmer�s
Reference�

�WR
�� H� Wachter and A� Reuter� Database Transaction Models for Advanced Transactions� chapter
The ConTract Model� In Elmagarmid �Elm
��� �

��

�Yok
�� Y� Yokote� The apertos re�ective operating system� The concept and its implementation�
In Proceedings of the Conference on Object
Oriented Programming Systems� Languages� and
Applications �OOPSLA�� October �

��

��


