To appear in proceedings of the Reflection’96 Conference San Francisco, California April 1996

Reflection on a Legacy Transaction Processing Monitor

Roger Barga and Calton Pu

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
email: {barga,calton}@cse.ogi.edu)

December 7, 1996

Abstract

In this paper we describe our experience applying the concepts of reflection to a legacy
transaction processing (TP) monitor in order to support the implementation of extended
transaction models. In the past ten years, numerous extended transaction models have
been proposed to address the challenges posed by new advanced applications. Few practical
implementations of these extended transaction models exist and none are being used in a
commercial TP monitor. We believe the reason for this state of affairs is that the interface
and functionality of commercial TP monitors is “locked in” to a fixed transaction model. We
have developed the Reflective Transaction Framework as a practical method to implement
extended transaction models on a commercial TP monitor. The design of our framework is
based on the principles of computational reflection, and in particular open implementation.
The implementation of our framework introduces transaction adapters, which are reflective
software modules that provide a meta interface to the underlying TP monitor, allowing ap-
plication developers the flexibility to adjust both the application programming interface and
system functionality. Unlike classic reflective systems, the Reflective Transaction Frame-
work applies reflection to a legacy TP monitor written in a non-reflective programming
language. This paper focuses on the ability of the Reflective Transaction Framework to
perform reflective computation and on the extent to which the legacy TP monitor supports
this computation.

1 Introduction

In recent years, numerous extended transaction models have been proposed to address the re-
quirements posed by advanced applications [EIm93]. A few of these models have been imple-
mented as prototypes, but most remain mere theoretical constructs with no practical implemen-
tation [Moh94] and none are being used in a commercial product. We believe the main reason for
this state of affairs is that the interface and functionality of commercial transaction processing
(TP) monitors is “locked in” to a fixed transaction model, making it difficult, if not impossible,
to readily use them to implement new extended transaction models. We have found [BP95], the
problem is not due to an inherent inadequacy of modern TP monitor functionality, but rather lies
with the visible aspects of the underlying implementation not permitting access to the required
functionality. In this paper, we describe an approach to apply reflection to a commercial TP mon-
itor to “open up” the interface and underlying functionality so that extended transaction models
can be implemented.

We have introduced the Reflective Transaction Framework [BP95] as a practical method to
implement a wide range of extended transaction models on a commercial TP monitor. The
design of the Reflective Transaction Framework is based on the principles of computational re-
flection [Mae87], and in particular the Open Implementation approach [Kic92]. In the Reflective
Transaction Framework, reflection is realized using transaction adapters, which are reflective soft-
ware modules built on top of the TP monitor. Transaction adapters provide a meta interface to
adjust aspects of the legacy TP monitor that are often hidden, effectively opening up the imple-
mentation so that programmers can explore alternative transaction model implementations and
application interfaces. To demonstrate the practicality of our approach, we have implemented the
Reflective Transaction Framework on top of Encina [Cor91], a commercial TP monitor distributed
and supported by Transarc.

We believe the Reflective Transaction Framework represents a new application of reflective
concepts. Unlike classic reflective systems, such as CLOS [BGW93] and 3-LISP [dRS84], the
Reflective Transaction Framework applies reflection to a legacy TP monitor that was written
in a non-reflective programming language. Concretely, the Reflective Transaction Framework
demonstrates the practicality and usefulness of this new application of reflection to incrementally
extend a legacy TP monitor. This approach also enables the reuse of available legacy functionality,
which has obvious economic advantages. Another, more pragmatic contribution, is that the
Reflective Transaction Framework presents the first practical method to implement a wide range
of extended transaction models on an industrial-grade TP monitor.

This paper is organized as follows: Section 2 provides background and motivation for our
approach. Section 3 presents the Reflective Transaction Framework, and discusses how reflection
is implemented on a legacy TP monitor. Section 4 illustrates the implementation of an extended
transaction model using our framework. Section 5 presents a comparison with related work, and
Section 6 concludes the paper.

2 Background and Motivation

In order to open up the interface and functionality of a legacy TP monitor, we draw upon results
stemming from work on computational reflection. The concept of reflection was first put forth
explicitly by Brian Smith in his PhD thesis [Smi82] concerning the structure and organization of
self-modifying procedures and functions, which was later summarized in a shorter paper [Smi84].
The essence of computational reflection is that a program is able to reason about its own behavior
and then change it. While the concept of reflection originated in work on flexible programming
language design, the notion has proven to be quite general. Over the years, researchers have incor-
porated the principles of reflection into a variety of application domains and software frameworks
in a general move to make systems flexible [Str93, Yok92, EPT95]. This flexibility allows the
systems to be made compatible with other hardware, function efficiently in a range of different
circumstances and clients, and support application requirements that were not considered during
development. Our motivation, then, is to investigate how we might apply reflection to a modular
legacy TP monitor, to attack similar challenges of flexibility in the interface and implementation.

In the remainder of this section, we first present background information on transactions and
the implementation challenges presented by extended transaction models, followed by a high-level
description of the TP monitor. Finally, we return to discuss how results from reflection can be
applied to a legacy TP monitor.

2.1 Transaction Models, Past and Present

The transaction concept has been used effectively in traditional database systems to synchro-
nize concurrent access to a shared database and provide reliable access in the face of failures.
A transaction is an atomic unit of work against the database, consisting of a sequence of data
manipulation operations, typically read and write, along with control operations that affect the
execution of the transaction. The control operations found in the traditional database transaction
model are Begin Transaction, Commit _Transaction, and Abort_Transaction. ACID proper-
ties of transactions (atomicity, consistency, isolation, and durability) guarantee correct concurrent
execution as well as reliability [HR83]. The flexibility of a given transaction model depends on
the way these four ACID properties are combined, along with the control operations available to
the transaction.

Although powerful, it is commonly accepted that the traditional transaction model found
in conventional database systems is lacking in functionality and performance when used for ad-
vanced application domains [Elm93]. Some of the considerations are that transactions in these
domains are longer in duration and often require the release of intermediate results to other trans-
actions during execution, requiring a relaxed notion of atomicity. This is the case, for example,
in computer-aided design and manufacturing (CAD/CAM) applications. In some application do-
mains, the property of isolation between transaction has to be relaxed to allow cooperation among
transactions in order to accomplish a common task. This is the case in computer-supported co-

operative work environments. Hence, over the last five years a number of extended transaction
models have been introduced to accommodate the diverse requirements of advanced application
domains [PKH88, MP92, RC92, CR92, Moh94, WR93]. These models introduce new transaction
control operations, such as the operation Split and Join operations introduced by the split/join
transaction model [PKHS88], and they associate "broader” interpretations of the ACID trans-
action properties to provide enhanced functionality while increasing the potential for improved
performance.

While the potential benefits of these new extended transaction models have been known for
some time, few practical implementations of these models have been developed [Moh94]. One
reason for the lack of practical implementations is that conventional TP monitors have a closed
interface, accepting only traditional database transaction control operations and an apparently
rigid implementation, making it difficult, if not impossible, to implement extended transaction
models. Systems programmers attempting to implement extended transaction behaviors are often
frustrated by the complexity of the task, and, even if they succeed, the closed interface locks in the
extended functionality, preventing application programmers from using the new extended trans-
action behaviors. As a result, to date most extended transaction models remain mere theoretical
constructs with no practical implementation [Moh94].

2.2 TP Monitors in the Real World

In contrast to extended transaction models, TP monitors supporting ACID transactions are a
well established technology that has been around for almost 20 years. They provide a general
framework for transaction processing, supplying the “glue” to bind together the many functional
components of a transaction processing system through services like multithreaded processes,
interprocess communication, queue management, and system management [Ber90]. Early TP
monitors, e.g. IMS/DC, CICS, were single monolithic systems used in proprietary mainframe
environments to achieve high transaction rates in large-scale online transaction processing (OLTP)
systems, such as airline reservation, electronic banking, or securities trading.

While early TP monitors were proprietary and constructed from single monolithic proprietary
systems, modern TP monitors, such as Transarc’s Encina, DEC’s ACMS, and IBM’s CICS/6000,
are more modular and constructed from open transaction middleware. These middleware modules
provide the basic functional building blocks that a TP monitor requires for transaction processing,
such as a Transaction Manager, a Lock Manager, a Log Manager and a Resource Manager (i.e.,
DBMS). Each module provides its transaction services through a relatively simple and uniform
application programming interface (API). The relationships among a transactional application
and these basic functional components are depicted in Figure 1. In a commercial setting, we
might find a TP Monitor such as Transarc Encina or DEC ACMS providing access to various
resource managers, such as an Oracle or Informix relational DBMS.

Although the functional components of modern TP monitors allow users access to system
behaviors and transaction services via the API, the size and complexity of the system forms

= - === — = = == == === === -

Transaction Processing System

!]
! |
' Resource |
! | Transaction L ock :
H — =——| Manager]
Begin_Transaction | Manager M anager :
t]
! |
! !
!]
! |
! !
!]
! |
' Log H
]
i | fr— - 1
Commit
' M anager !
!]
Transactional ' :
Application ' :
!]
! |
! !
]

Figure 1: Modular Functional Components of a TP Monitor

a barrier to users wishing to extend the behavior of the TP monitor. Rather than a smooth
progression in the level of complexity and degree of expertise required to perform customization
with the available API, there is often a steep learning curve involved in learning all the functions
and understanding how they can be combined.

2.3 A Practical Approach Based on Reflection

The challenge of opening up a legacy TP monitor, is therefore, characterized by two inter-related
problems. The first problem is the interface for customization. Conventional TP monitors have a
standard application-level interface that accepts only traditional transaction control operations,
such as Begin Transaction and Commit_Transaction. Extending the TP monitor through the
available API would require application programmers to learn intricate details of the TP monitor
architecture and the available API. The second problem is the level of customization. TP monitor
system-level code functions 'underneath’ the application code and is not subject to the same ab-
stractions as the application. Indeed, with the API approach the TP monitor must be customized
outside the application, rather than within it. An application, then, has no means to specify
its requirements for extended transaction behaviors at runtime. At best, systems programmer
could hope to anticipate the requirements of application programmers and adjust the TP monitor
behavior through the API to implement an extended transaction model a priori, but this is at
the cost of reusability of the TP monitor by applications with other requirements. Both of these
problems combine to give users no easy way to reach in to the TP monitor and customize the way
in which transaction functionality and interface are provided.

Computational reflection gives us a conceptual tool, the notion of a reflective module, to
address these two problems. A reflective module contains a representation of the system, and
has a causal connection between that representation and the actual behavior of the system. The

causal connection is two-way; not only are changes in the system reflected in equivalent changes
to the representation, but changes in the representation will also cause changes in the behavior
of the system. A reflective module presents the application developer with a base interface that
provides access to the default system behavior. In addition to the base interface, a reflective
module presents a separate meta interface which a programmer can use to "reach in” and adjust
the representation to add new behaviors to the system. In the next section we describe the
Reflective Transaction Framework, demonstrating how reflection and the notion of a reflective
module can used to enhance a legacy TP monitor, providing the flexibility to open the interface
and implementation.

3 A Reflective Framework for Implementing ETMs

We now turn our attention to the design of the Reflective Transaction Framework. To open up the
functionality of a legacy TP monitor we introduce transaction adapters, which are add-on reflective
software modules that provide a meta interface to the underlying TP monitor. In addition, to
open up the application interface to the TP monitor we introduce a separation of programming
interfaces. In the framework, transaction adapters provide an interface for default transaction
control operations, an extensible interface for extended transaction control operations, and the
meta interface to control implementation level concerns.

Although the Reflective Transaction Framework applies reflection in a non traditional sense, to
a legacy TP monitor written in a non-reflective programming language, it nevertheless incorporates
many of the ideas from the traditional notion of computational reflection. An important difference
is that reflecting on a legacy system implies a strict separation between base and meta objects,
as opposed to the metacircular interpreters from traditional computational reflection. In our
framework this base/meta object separation in implemented by introducing transaction adapters.
Adapters do not have a full model of the entire monitor, but only a partial model of selected
aspects of the underlying TP Monitor. However, reflection is still very much present and, as
we will demonstrate, it does enable transaction adapters to open up the legacy TP monitor
functionality and extend it to implement extended transaction models.

3.1 Transaction Adapters

In the Reflective Transaction Framework, reflection is realized through transaction adapters, which
are software modules built on top of the legacy TP monitor. Each adapter corresponds to a
particular aspect (functional component) of the TP monitor, such as transaction execution, lock
management, conflict detection, and log management. Transaction adapters contain a number of
meta objects which represent selected behaviors of the underlying functional components, and a
meta interface (what some might call a Meta-Object Protocol or MOP) to control the behavior
of that component. This is illustrated in Figure 2. The behavior of the TP monitor functional
components can be changed by explicitly updating these meta objects through the adapter meta

interface, allowing users to “reach in” and make changes to the behavior of the TP monitor. As
such, adapters provide access to aspects of a legacy TP monitor that are often hidden.

Transaction adapters are application level objects, which means that applications have ac-
cess to them through the meta interface. Changes or modifications made to an adapter by an
application change the behavior of the TP monitor component for only that application. For
example, if an application would like to change the isolation for a transaction, it can use the ap-
propriate meta interface operations to change the conflict detection method for that transaction.
Therefore, transaction adapters allow an application to enhance the underlying mechanisms of a
legacy TP monitor incrementally, and dynamically, in a modular manner at the granularity of
each (extended) transaction execution.

Meta Interface Meta Interface | Meta Interface | Meta Interface
Transaction Mgr.| Lock Conflict Log
Adapter Adapter | Adapter | Adapter | Metalevel

1 Baselevel

[TransactionMgr. Lock Mgr.| LogMgr.

l TP Monitor J

Figure 2: Transaction Adapters in the Reflective Transaction Framework.

In the context of a legacy TP monitor, reflection is the ability of an executing TP monitor
to make selected aspects of the underlying functional components, such as transaction operation
dispatch, lock management, conflict detection and log file updates, to be themselves the subject
of computation. The steps involved in this reflection consist of: reification of structures and
behaviors of the underlying TP monitor component into objects that represent or model aspects
of the underlying TP monitor component, reflective computation using the reified aspects as data,
and reflective update that modifies the actual computational state of the underlying TP monitor
component.

In the Reflective Transaction Framework, reification is the representation of structural and
computational aspects of the underlying TP monitor component as an object within the corre-
sponding transaction adapter. Reification in our framework is based on callbacks, also known as
upcalls [Cla85]. Upcalls support efficient cross-layer communications and enable the functional
components in the TP monitor to pass relevant state information to a transaction adapter where
it is reified, as illustrated in Figure 3. The most important decisions to be made in designing a
transaction adapter are what aspects of the underlying TP monitor component should be reified.
As an example, for the Lock Adapter depicted in Figure 3, such aspects include the locks being
held by a transaction, pending lock requests, the procedure used to grant lock requests, and the
structure of the lock table. Depending on the transaction model, however, several other aspects
could also be reified, for example the operations being performed on a locked data object, or the
mode in which a lock has been granted to a transaction. To make adapters as flexible as possible,

they are designed to be extensible. Should the need arise, additional aspects of the underlying
functional component can be reified by adding appropriate upcalls to the TP monitor and asso-
ciated reification methods to the transaction adapter. Reifying selected aspects of the underlying
TP monitor component into metalevel objects that are dynamically accessible and modifiable
enables reflective computation and reflective update.

In the Reflective Transaction Framework, the shift in computation from the TP monitor func-
tional component to reflective computation in the transaction adapter occurs in an event-driven
manner. A transaction significant event is raised whenever a transaction attempts to change
state, e.g. the transaction aborts or commits, or when a transaction requests a service from the
TP monitor. For each transaction event there is an adapter assigned to process the event, and
when that event is raised, control is passed to the assigned transaction adapter along with all
information relating to the event. For example, when the LOCK MANAGER detects a lock conflict
between two transactions during a lock request, control is passed to the Lock Adapter through
an upcall, along with all information pertaining to the conflicting request. The Lock Adapter
can then apply operation or application-specific semantic information to determine if the request
should be granted according to the semantics of the transaction model. The Lock Adapter can
then grant the lock request, or it by simply returning control back to the LOCK MANAGER, effec-
tively implementing semantics-based concurrency control [BPZH95]. As this example illustrates,
reflective computation not only allows transaction adapters to expose default behaviors of the
underlying TP monitor, but also to augment legacy functionality with new extended transaction
model behaviors.

If the reflective computation updates the reified data, the modifications are reflected down
to the actual computational state of the underlying TP monitor component in what is called
a reflective update. In the Reflective Transaction Framework, reflective update is implemented
through calls to the API provided by each TP monitor functional component. Through the API
the transaction adapter can update the structures and computational state of the underlying
functional component. The most challenging issue when implementing an adapter is to identify
the appropriate API calls in order to implement each reflective update. Ideally, this task is
performed only once, by the designer of the Reflective Transaction Framework, who is familiar
with the inner workings of the monitor functional components. When an adapter needs to perform
a reflective update, it issues the appropriate sequence of API calls, as illustrated in Figure 3.
Thus, each transaction adapter not only reifies aspects of the TP monitor functional component,
enabling reflective computation, but also provides the means to affect that state and control the
component’s behavior through reflective update. This is termed causal-connection [Mae87], and
is satisfied by transaction adapters in the Reflective Transaction Framework.

To design each transaction adapter, we followed systematic procedure to select aspects of
the TP monitor for reification, to determine how they would be represented, and the ways they
could be manipulated through the adapter meta interface. This was an important process in the
development of the framework, because it determines what extended behaviors can be realized
on the underlying TP monitor and, correspondingly, what extended transaction models can be
implemented by the Reflective Transaction Framework. Details of the systematic procedure we
introduced to design the adapters in the framework are not appropriate for this discussion, and can

Lock Adapter Meta I nterface

ED ED ED ED | [[[[00000000

Transaction Lock List Lock Information

[Trangaction Event Handler }

Reflective Update —
UPCALL causal-connection | AP Call

__ Reification

Lock Manager Application Programming I nterface
1] LT T H T S X
1] I O I IO O s | ok |NOK
L] NOK | NOK
1] 1]

Lock Table Pending L ock Requests Lock Compatibility

Figure 3: Reflective Update and Reification

be found elsewhere [BP95]. It is important to note, however, following the systematic procedure
we designed a generic framework to describe extended transaction behaviors within which a wide
range of extended transaction models can be implemented [BP95]. For practicality, the functional
design of each transaction adapter was based on the commands and functionality of the well-
documented TP monitor reference architecture [GR93]. The TP monitor reference architecture
is general enough to allow us to make observations on TP monitors in general, and yet concrete
enough to make implementation details obvious in a modern commercial TP monitors. Further,
our implementation of the adapters relied only on a small, widely supported, set of commands
found in the API of the TP monitor reference architecture.

In the remainder of this section, we will highlight some of the objects reified by transaction
adapters, and describe selected commands from the adapter meta interface.

Transaction Management Adapter — reifies transactions executing extended behaviors, and
provides a meta interface to control these transactions and adjust the behavior of the underly-
ing TRANSACTION MANAGER functional component. Commands in the Transaction Manage-
ment Adapter meta interface include: Instantiate, Reflect, Delegate Ops, Form Dependency,
Create Group, Create Tran, Terminate Tran, and Wait. Primary meta objects reified by the
Transaction Management Adapter include a metatransaction descriptor for each extended trans-
action, see Figure 4, a reflective transaction table, and a transaction dependency graph.

An extended transaction is entered into the reflective transaction framework through the com-
mand instantiate, at which time a metatransaction descriptor is created for the transaction.
All information relating to the execution and current status of the transaction will be reified in
this metatransaction descriptor. Afterwards, an instantiated transaction can be assigned a set
of extended transaction control operations (semantics) through the command reflect. When
an extended transaction invokes a control operation, the actual code executed is determined by

metatransaction Descriptor{
self: <TRID>;
groupID: [<TRID>];
execMode: <state>;
dependsOn: [<TRID>, <TRID>,...];
waitOn: [<event>];
lockList: [<lockID>, <lockID>,...]1;

opList: [<opName>, <opName>,...];
initiateOperations: {<Begin, atomicBegin>};
processOperations: nil;

terminateOperations:{<Commit, atomicCommit>,
<Abort, atomicAbort>}};

Figure 4: Metatransaction Descriptor for an Extended Transaction.

its metatransaction. For example, if the transaction were to invoke the Commit operation this
would result in a transaction significant event being raised and control would be passed to the
Transaction Management Adapter Processing the command involves first verifying this control
operation is permitted for the transaction; a simple comparison with the metatransaction descrip-
tor is performed. Once the Transaction Management Adapter has verified the commit operation
is valid then the function identified in the metatransaction descriptor is executed. Afterwards,
any results from the transaction control operation are returned to the base level transaction as if
for a normal operation call.

Conflict Adapter — reifies information on the conflicts that occur between transactions at-
tempting to acquire shared resources, and provides a meta interface to control the definition of
conflict and appropriately adjust the behavior of the underlying LOCK MANAGER. Commands
in the Conflict Adapter meta interface include: Relax Conflict, No_Conflict, Allow, Wait and
Revoke. Primary meta objects reified by the Conflict Adapter include a a compatibility table
defining conflict relationships between operations, and a no-conflict table that records all conflicts
explicitly relazed between extended transactions.

Depending on the semantics of a transaction and its relationship to other transactions, not all
conflicts between transactions need to produce dependencies or serialization orderings. To capture
this, the Conflict Adapter can selectively present and change the definition of conflict for one or
more underlying data objects or extended transactions. By adapting the definition of conflict
offered by the underlying TP system, the conflict adapter is able to provide support for a variety
of extended transaction models and semantics-based concurrency control protocols [BPZH95].

Lock Adapter — reifies information on locks held by transactions and on the lock table,
and provides a meta interface to control these locks and adjust the behavior of the underlying
Lock MANAGER functional component. Commands in the Lock Adapter meta interface include:
Release Lock, Acquire Lock, Delegate Lock, Share, Wait, Peak and Upgrade Mode. Primary
meta objects reified by the Lock Adapter include a transaction lock list, lock mode table, and an
active locks list.

10

Locks on data objects can restrict the ability of a transaction to see the effects of other trans-
actions on data objects while they are executing. The Lock Adapter allows greater control over the
visibility of data objects by enabling a transaction to grant other transactions access to data ob-
jects on which they hold locks. The Lock adapter also enables an extended transaction to delegate
ownership of its locks to another transaction prior to termination through the delegate lock
command. The delegate lock command allows the transaction to specify whether it wishes
to delegate all the locks it currently holds or only those for specified data objects. The conflict
adapter records access rights granted between extended transactions in the no-conflict table, while
the lock adapter provides the transactions access to the locked data object(s).

3.2 A Separation of Programming Interfaces

Application programmers develop transactional applications using a set of transaction model-
specific verbs, or transaction control operations. For example, classic database transactions are ini-
tiated by the control operation Begin-Transaction, and terminated by either a Commit-Transaction
or Abort-Transaction control operation. Extended transactions, on the other hand, often intro-
duce additional operations to control their execution, such as the operation Split-Transaction
introduced by the split/join transaction model [PKHS8S], or the operation Join-Group introduced
in the cooperative group model [MP92, RC92]. Indeed, a transaction model defines both the
control operations available to a transaction as well as the semantics of these operations. For
example, whereas the Commit-Transaction operation of the classic database transaction model
implies the transaction is terminating successfully and that its effects on data objects should be
made permanent in the database, the Commit-Transaction operation of a member transaction
in a cooperative transaction group implies only that its effects on data objects be made persistent
and visible to transactions that belong to the same group.

To accommodate the diversity between different extended transaction models, we introduce
a separation of programming interfaces to the TP monitor. This separation follows the open
implementation approach [Kic92], pioneered in the meta-object protocol [KdRB91], in which the
functional interface is separated from the meta interface. The purpose of the meta interface is
to modify the behavior, or semantics, of the functional interface. In our separation of interfaces,
presented figuratively in Figure 5 and described below, both the transaction demarcation interface
and extended transaction interface are functional, subdivided for clarity only.

Base Interface: provides ACID Extended Transaction Interface: provides
transaction functionality... an interface for extended transaction models.
Metalevel Interface: provides N RN

control over implementation,_ [|| |

Transaction Processing Monitor

Figure 5: Separation of interfaces to the Reflective Transaction Framework.

11

e Transaction demarcation interface — presents the standard transaction interface offered
by the TP monitor and when used alone provides default transaction behavior of ACID
transaction semantics. Control operations in the transaction demarcation interface include:
begin-transaction, commit-transaction, and abort-transaction.

¢ Extended transaction interface — presents an extensible interface to new extended be-
haviors added to the TP monitor and used when applications require extended transac-
tion functionality and semantics. Operations in the extended transaction interface include
transaction control operations defined by specific extended transaction models, such as the
operations Split and Join for the split/join transaction model [PIKKHSS].

e Meta interface — allows applications to view aspects of the underlying TP monitor func-
tionality and to make modifications. The meta interface provides commands for program-
mers to “reach in” to the implementation and adapt it to the needs of a specific extended
transaction model. Some of the operations in the meta interface include: instantiate,
reflect, delegateOp, delegateLock, formDependency, and noConflict.

The separation of programming interfaces to the TP monitor provides a way not just to talk
about existing transaction models, but to also introduce new extended transaction behaviors and
interfaces. Default transaction behaviors remain available through the standard transaction de-
marcation interface. New extended transaction behaviors can be defined using the meta interface,
and made available to to application through the introduction of new extended transaction con-
trol operations in the extended transaction interface. The extended transaction interface, then,
augments the transaction demarcation interface with new extended control operations.

Using the Reflective Transaction Framework, TP systems programmers don’t need to “second
guess” the specific needs of application developers, or restrict the applicability of the TP monitor
to a subset of extended transaction models, but can use the meta interface to add new extended
transaction models as necessary. Application programmers are not constrained to a fixed set of
control operations or a fixed transaction model, but are free to select the appropriate transaction
model to meet the needs of the application. Moreover, they can access these new extended
transaction behaviors using programming skills they already posses, namely through transaction
control operations.

3.3 An Encina Implementation

For our current implementation of the Reflective Transaction Framework we are using Encina,
a commercial TP Monitor distributed by the Transarc Corp. Transaction services for Encina
are provided by the Encina Toolkit [Tra], which is composed of a small number of transaction
middleware service modules, including: TRANSACTION SERVICE MODULE (TRAN) that pro-
vides transaction execution control and default transaction control operations (begin, commit,
abort), Lock SERVICE MODULE (LOCK) that provides a logical locking package to guarantee
transaction isolation and, LoG SERVICE MODULE (LOG) that provides write-ahead log support

12

for transaction updates and crash recovery. The transaction middleware service modules of the
Encina Toolkit provide the basic building blocks of the TP monitor reference architecture [GR93,
pp- 21], and have been used by a number of computer system providers to implement various TP
monitors, including IBM’s CICS/6000 TP monitor, DEC’s ACMSxp TP monitor [BCDW95] and,

of course, the Encina TP monitor [Cor91].

Each module in the Encina Toolkit provides access to its transaction services and behaviors
through a relatively simple and uniform API. In addition, each module provides a set of transaction
callbacks that allows the user to register a function that is to be called during a transaction
event. In Encina, transaction events include a transaction changing execution state or requesting
a resource. Callbacks not only pass data to the registered function, but allow the function to
modify default system handling of the event. In our implementation we use these existing API
calls and transaction callbacks to form the causal-connection between the modules in the Encina
Toolkit and transaction adapters in the Reflective Transaction Framework. Transaction adapters
use the callback facility for reification, and the standard Toolkit API for reflective updates.

While we had access to Encina source code, the implementation did not require any changes
to the fundamental structures or functions of the Encina Toolkit. In a few cases, however, it
was necessary to modify the callback function arguments to pass additional information to the
adapter for reification. Because of the availability of transaction callbacks and rich API com-
mand set in the Encina Toolkit, we have been able to fully integrate the Reflective Transaction
Framework into Encina. An extended transaction running on Encina behaves just like a standard
ACID transaction. Having opened the implementation of Encina, we can adjust the extended
transaction’s behavior as needed. Extended transactions, generally speaking, retain most of their
base-level semantics provided by Encina and simply gain some additional behavior, such as se-
mantic notions of conflict or new extended transaction control operations; looking back on the
split/join example, the model added the operations split and join, while the operations begin,
commit, and abort retain their original meaning (implementation).

Our Encina implementation has demonstrated the practicality of the Reflective Transaction
Framework. A question which naturally arises is how portable the framework is to TP monitors not
constructed from the Encina Toolkit, and to transaction services found in relational and object-
oriented database servers. As pointed out in Section 3.1, transaction adapters were designed
in the context of the TP monitor reference architecture to use only a small, widely supported,
set of APl commands. However, to answer this question concretely, we are compiling a list
of the required transaction functionality and API commands for reflective update, along with
the necessary upcalls for reification. When complete, we will compare this list against other
transaction facilities to assess the portability of the Reflective Transaction Framework to other
systems.

13

4 Example of Implementing Extended Transactions

In this section we present an example to illustrate how extended transaction functionality can be
implemented using the Reflective Transaction Framework. This example is based on the split /join
transaction model [PKHS88], in particular the transaction control operations split and join. We
first informally define the extended transaction model, demonstrate how the meta interface is
used to synthesize new extended transaction functionality, illustrate how an application can use
this new functionality and, finally, demonstrate how transaction adapters function to implement
the extended transaction behaviors. Readers interested in additional examples of implementing
extended transaction models, are referred to our previous paper [BP95].

4.1 Split/Join Transaction Model

The split/join transaction model was proposed for open-ended activities such as computer-aided
design and manufacturing (CAD/CAM). Open-ended activities are characterized by uncertain
duration, uncertain developments and interaction with other concurrent activities. Due to these
characteristics, sometimes it is desirable to release earlier modified data of a transaction to other
transactions. The split/join transaction model provides two operations to dynamically restructure
transactions, namely split and join. A transaction T may split into two transactions T, and Ty,
providing applications with a mechanism to release data objects that are no longer needed and,
hence, release intermediate results to other transactions. Two transactions can also join together
to become one transaction, or use combinations of split and join to allow transfer of resources
from one transaction to another.

4.1.1 synthesizing the extended functionality of split and join

When a transaction Ty splits, by executing the transaction control operation split(Ts), it must
first create a new transaction (T3) and then delegate responsibility for executing some of its op-
erations to this new transaction. To be more precise, T; transfers to Ty responsibility for all
uncommitted operations on a particular set of data objects, referred to as the DelegateSet. In
practice, users define the DelegateSet by selecting the objects to split from the re-structured trans-
action. At the time of the split, a new transaction is created, instantiated, and then operations
invoked on objects in the DelegateSet by T; are delegated to Ty. The transactions Ty and T,
can then commit or abort independently. The following code segment illustrates how the split
transaction control operation is synthesized using commands in the meta interface:

14

split(NewTran, DelegateSet){
// instantiate new transaction.
instantiate(NewTran);
// add split/join transaction interface through reflection.
reflect(NewTran, SplitJoin);
// delegate locks related to objects in delegate set.
delegate_lock(NewTran, DelegateSet);
// delegate ops related to objects in delegate set.
delegate_op(NewTran, DelegateSet);
// initiate execution of the newly created transaction.
begin(NewTran) ;
// return execution control to base-level transaction
return;

Figure 6: Split transaction control operation.

The join transaction operation is the inverse of a split transaction operation. When transaction
T, executes the transaction management operation join(Ty), it must delegate its uncommitted
operations and associated locks to Ty and then terminate its execution; Transaction Ty must
already exist and be instantiated. Transaction T; is now responsible for committing or aborting
these operations, and the updates of Ty must be committed together with the effects of T;. In
joining a Transaction, the DelegateSet is simply all uncommitted operations and associated locks.
We synthesize the join operation as follows:

join(DestTran,DelegateSet){
// delegate locks related to objects in DelegateSet.
delegate_lock(DestTran, DelegateSet);
// delegate operations related to objects in DelegateSet.
delegate_op(DestTran, DelegateSet);
// terminate execution of T1.
commit (self);
// return control to invoking transaction.
return;

Figure 7: Join transaction control operation.

Once the extended functionality of the split and join transaction control operations have been
defined using the meta interface, the can then be added to the extended transaction interface
where they will be available for applications to use.

15

4.1.2 Application Programming Using the split Operation

In order to motivate the need for the split and join operations, consider the requirements of
CAD support for a team of engineers designing a computer chip. Since the design process may
take an arbitrarily long time and involve multiple engineers, the principal engineer might like to
split off responsibility for the design of specific subsystems to component engineers who can either
join their results into the working chip design at a later time or choose to commit or abort their
designs independently. Such requirements are not satisfied by traditional database transactions
in an easy and straightforward manner but can be easily satisfied by the split/join transaction
model. The code fragment below outlines how an application programmer could use the split
and join operations to dynamically restructure a transaction in order to release subsystem data
objects and operations to a separate transaction and, later, join with a separate transaction:

Begin_Transaction PE_Tran (1)
begin
instantiate(PE_Tran) (2)
reflect(PE_Tran, SplitJoin) (3)

...{ data manipulation }
split (CE_Tran, Subsystem) (4)

...{ data manipulation }

join(QA Tran,*) (5)
end
Commit_Transaction {CAD_design} (6)

Line 1 declares the beginning of the principal engineer’s transaction using the Begin Transaction
command found in the the base interface. This is significant, because it notifies the transaction
management system that the operations between this point and the Commit Transaction com-
mand in line 6 are to be executed atomically, according to the traditional transaction model.
Thus, lines 1 and 6 bracket the transaction. The purpose of the instantiate meta interface com-
mand in line 2 is to notify the Reflective Transaction Framework of the programmers intention to
“renegotiate” the base transaction model. The reflect meta interface command in line 3 details
the terms of the renegotiation, selecting the split/join model for the transaction. The importance
of the reflect command is twofold. First, it determines the control operations and semantics that
are available to the transaction. In this example, the split/join model adds two new transaction
control operations, namely split and join, while the begin, commit and abort commands have the
same semantics as the corresponding commands in the traditional database transaction model.
Second, it informs the transaction adapters in the Reflective Transaction Framework how to pro-
cess transaction events on behalf of this transaction, such as lock request conflicts, transaction
dependencies that might arise during execution, etc. In line 4, the application programmer uses
the new extended transaction control operation split, where CFE_Tran is the name of the new

16

transaction created for the component engineer and Subsystem is the subcomponent that is to be
delegated to the component engineer’s transaction. Finally, in line 5, the application programmer
uses the new extended transaction control operation join to merge the results and resources held
by the transaction PE_Tran with an existing quality assurance program, QA_Tran.

One can see from this example that there is no description of creating the new transaction for
the component engineer, no explicit delegation of the locks held on data objects in Subsystem,
and no explicit delegation of the data manipulation operations pertaining to Subsystem when
the application is written. With the exception of the instantiate and reflect operations, the
programmer simply uses familiar transaction control operations to write the application.

4.1.3 Transaction Adapters Behind the Scenes

Continuing with our example, we now examine how transaction adapters work behind the scenes to
support extended transaction behavior on a legacy TP monitor. We begin with the instantiate
meta interface command in line 2. During execution, the instantiate command causes control to be
passed to the Transaction Management Adapter, which first creates a metatransaction descriptor
and reifies information for the transaction PE_Tran, including the transaction identifier (TRID),
current execution status of the transaction, and control operations available to the transaction.
Next, the Transaction Management Adapter directs the other adapters to create initial entries for
objects will be reified for this transaction during its execution, and then it returns control back
to the base transaction for processing. The reflect command in line 3 also causes control to be
passed to the Transaction Management Adapter, which updates the metatransaction descriptor,
as illustrated below, to contain the transaction control operations split and join, specified by
the split/join extended transaction model.

metatransaction Descriptor{

myid is TRID;

execMode is Active;

initiateOperations: {<Begin,atomicBegin>};

processOperations: {<Split,splitOperation>};

terminateOperations: {<Commit,atomicCommit>,
<Abort,atomicAbort>,
<Join, joinOperation>}};

Processing resumes on the base TP monitor, until the transaction control operation split (CE Tran,
Subsystem) is processed in line 4. Split is a transaction control operation defined the extended
transaction interface for the transaction PE_Tran. When the transaction invokes a control op-
eration, the actual code executed is determined by its metatransaction (see Figure 8). When
the split operation is invoked by the transaction, processing involves first verifying this control
operation is permitted for the transaction, and once it has been verified then the function is
executed, as illustrated in Figure 8. For the execution of the split operation, as defined in Fig-
ure 6, the first meta interface command directs the Transaction Management Adapter to create
a metatransaction descriptor for the new transaction CE_Tran. This change is reflected down

17

onto the TRANSACTION MANAGER, resulting in the creation of a new base level transaction. The
commands instantiate and reflect are then processed by the Transaction Management Adapter to
initialize the meta objects for the transaction CFE_Tran. Next, the Lock Adapter delegates locks
on all data objects in the delegate set Subsystem from the transaction PFE_Tran to the transac-
tion CE_Tran. This change is first made first to the meta object lockTuable, and through causal
connection the change is reflected down to the LOCK MANAGER through the API commands
releaselLock and acquireLock. Once the delegate_lock command is complete, the Transaction
Management Adapter processes the delegate_op command. Finally, the begin command is pro-
cessed by the Transaction Management Adapter, which sets the execution mode of the transaction
CFE_Tran to active and returns control to the TP monitor to begin base level processing.

-

splitMethod (TRID DelegateSet) {

@ ooo

}

preTest Invariant L L Implementation-level
Transaction Management Adapter, d postTest Invariant

M etatransaction Descriptor
<Split, splitMethod> Trap@ M etal a/el

Baselevel

Begin_ Transaction
@ Call ooo

Split (CE_Tran, Subsystem)
: Return ooo

Commit_ Transaction;

L Base-level Transaction

Figure 8: Transaction control operation redirection

5 Comparison to Related Work

In this section we compare the Reflective Transaction Framework to related efforts in implementing
extended transaction models and reflective systems.

There exist only a small number of research efforts on implementing extended transaction
models, similar in spirit to the Reflective Transaction Framework. Two noteworthy systems
are ASSET [BDG'94] and TSME [GHKM94]. Similar to our framework, these systems are
designed to facilitate the implementation of extended transaction models. However, they simply
present the user with a closed application interface and a fixed selection of mechanisms from
which a predetermined set of extended transaction models can be implemented. In our approach,
the user is presented with a flexible framework in which the functionality and interface for an
extended transaction model can be created, rather than a fixed selection of mechanisms from
which particular extended transaction models can be selected.

18

ASSET [BDG194] provides a set of new language primitives that enable the realization of
various extended transaction models in an object-oriented database setting. In addition to the
standard database control operations Begin, Commit and Abort, ASSET provides three new prim-
itives: form-dependency to establish structure-related inter-transaction dependencies, permit to
allow for data sharing without forming inter-transaction dependencies, and delegate which allows
a transaction to transfer responsibility for an operation to another transaction. Using these new
primitives, it is possible to synthesize certain extended transaction control operations within the
program. However, the task of synthesizing new control operations is a skill that each programmer
would necessary have to learn and the task must be repeated for each transaction that requires
the operation.

TSME [GHKM94] consists of a transaction specification facility that understands TSME’s
transaction specification language, and drives the transaction management mechanism to config-
ure a run-time system in order to support specific extended transaction models. The transaction
management mechanism is programmable, but uses templates to describe existing extended trans-
action models. TSME is a toolkit based system, in which certain expressions in the specification
language are mapped to certain configurations of pre-built components in the transaction man-
agement mechanism. If the needs of the application fall outside of this pre-built set, there is
no recourse for the programmer — even though the transaction facility may be fully capable of
implementing the required behavior.

As for reflective systems, most of the work on reflection has been on procedural reflection,
where the meta-level directly implements the base-level. Some notable exceptions are Rok Sosic’s
work on Dynascope [Sos92b, Sos92a] and the Synthetix project [PAB*95]. Dynascope is a pro-
gramming environment for directing the execution of traditional compiled languages. Program
directing involves two processes, an executor and a director. When a program is executed in
the Dynascope environment, the executor process generates an execution stream which the direc-
tor process monitors. When selected events occur, similar to breakpoints, computation is shifted
from the application to the Director where event-specific processing is performed on behalf of the
application. This approach is similar to that of the Reflective Transaction Framework, in that
adapters respond to selected transaction significant events and perform processing on behalf of
the transaction. However, unlike transaction adapters, the Dynascope director does not maintain
a causal connection with underlying application, and it requires a special-purpose programming
environment for the necessary instrumentation.

Also, the Synthetix project [PAB195] is studying specialization of operating systems, which
can be viewed as a form of reflection. The Synthetix notion of specialization classes [CPW]
provides a declarative meta interface through which an application can specify it’s particular
specification needs. Software tools then apply these specializations to the operating system to
achieve the desired performance and functionality goals of the application.

19

6 Conclusions and Future Research

In this paper we have described an approach to apply reflection to a legacy TP monitor in order
to support the implementation of extended transaction models. We described the Reflective
Transaction Framework, in which reflection is manifested in a small number of add-on software
modules called transaction adapters. Transaction adapters open up the functional components of
the legacy TP monitor and present a meta interface through which users can adjust the behavior of
the functional component according to their requirements. The Reflective Transaction Framework
provides application programmers who find the default transaction model insufficient for their
applications, the means to reach in to a conventional legacy TP monitor and implement new
extended transaction models.

The Reflective Transaction Framework represents a new application of reflective concepts.
While there have been papers that discuss various aspects of reflection and classify metalevel re-
flective architectures from different viewpoints, there are few previous works that apply reflection
to legacy systems. One contribution of the Reflective Transaction Framework is that it demon-
strates the practicality and usefulness of this new application of reflection to incrementally extend
a legacy TP monitor. In general, this requires very little change at the underlying TP monitor. A
distinct advantage of this approach is that of reusability. A second, more pragmatic contribution
of the Reflective Transaction Framework, is that it provides the first practical method to imple-
ment a wide range of extended transaction models on an industrial-grade TP monitor. By doing
so, we hope this will enables application developers to draw conclusions from direct experience in
applying extended transaction models in real, working environments.

Our current implementation of the Reflective Transaction Framework is implemented on the
commercial TP monitor Encina. We are currently in the process of measuring and optimizing
the performance of this implementation. In addition, we are working to extend the ideas of
the framework to other TP monitors, and to other research challenges in advanced transaction
processing, such as semantics-based concurrency control protocols [BPZH95]. It is our hope that
this work will not only provide solutions of practical value to these challenging problems, but
provide insights into the general application of the notions of reflection and open implementation
to legacy systems.

References

[BCDW95] R.K. Baaif, J.I. Carrie, W.B. Drury, and O.L. Wiesler. ACMSxp open distributed transaction
processing. Digital Technical Journal, 7(1):23-33, 1995.

BDGT94] A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, and K. Ramamritham. Asset: A system for
g
supporting extended transactions. In Proceedings of 1994 ACM SIGMOD, pages 44-53, May
1994.

[Ber90] Philip A. Bernstein. Transaction processing monitors. Communications of the ACM,
33(11):75-86, 1990.

20

[BGW93]

[BP95]

[BPZH95]

[Cla85]

[Cor91]

[CPW]

[CR92]

[dRSS4]

[Elm93]

[EPT95]

[GHKM94]

[GRO3]

[HR83]

[KARBY1]

[Kic92]

[Mae87]

[Moh94]

[MP92]

Daniel G. Bobrow, Richard Gabriel, and Jon L. White. CLOS in Context: The Shape of the
Design Space. MIT Press, 1993.

Roger S. Barga and Calton Pu. A practical and modular method to implement extended
transaction models. In Proceedings of the 21st International Conference on Very Large Data
Bases, Zurich, Switzerland, September 1995.

R.S. Barga, C. Pu, T. Zhou, and W.W. Hseush. A practical method for implementing
semantics-based concurrency control. Technical Report OGI-CSE-95, Department of Com-
puter Science and Engineering, Oregon Graduate Institute, May 1995.

David D. Clark. The Structuring of Systems Using Upcalls. In Proceedings of the Tenth
ACM Symposium on Operating System Principles, pages 171-180, Orcas Island, Washington,
December 1-4 1985.

Transarc Corp. Encina Product Quverview. Transarc Corp, Pittsburgh, PA., 1991.

Crispin Cowan, Calton Pu, and Jonathan Walpole. Specialization Objects: A Reflective
Interface for Specialization. Submitted for review.

P.K. Chrysanthis and K. Ramamritham. ACTA: The SAGA Continues, chapter 10. Morgan
Kaufmann, 1992.

Jim des Rivieres and Brian Smith. The implementation of procedurally reflective languages.
Technical Report ISL-4, Xerox PARC, June 1984.

Ahmed K. Elmagarmid, editor. Database Transaction Models for Advanced Applications.
Morgan Kaufmann, 1993.

D. Edmond, M. Papzoglou, and Z. Tari. R-OK: A reflective model for distributed object man-
agement. In Proceedings of the RIDFE 95 Workshop (Research Issues in Data Engineering,
1995.

D. Georgakopoulos, M. Hornick, P. Krychniak, and F. Manola. Specification and manage-
ment of extended transactions in a programmable transaction environment. In Proceedings
of the 1994 IEFE Conference on Data Engineering, pages 462-473, Feb 1994.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, 1993.

T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM
Computing Surveys, 15(4):287-317, December 1983.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991.

Gregor Kiczales. Towards a new model of abstraction in software engineering. In Pro-
ceedings of the IMSA’92 Workshop on Reflection and Meta-level Architectures, 1992. See
http://www.xerox.com/PARC/spl/eca/oi.html for updates.

P. Maes. Concepts and experiments in computational reflection. In Proceedings of the Con-
ference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
October 1987.

C. Mohan. Advanced transaction models — survey and critique. Tutorial Presented at the
ACM SIGMOD International Conference on Management of Data, 1994.

B. Martin and C. Pederson. Long-lived concurrent activities. In Amar Gupta, editor, Dis-
tributed Object Management, pages 188-206. Morgan Kaufmann, 1992.

21

[PAB*95]

[PKHSS]

[RC92]

[Smis2]
[Smis4]
[Sos92a]
[S0s92b]
[Str93]
[Tra]
[WR93]

[Yok92]

Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon Inouye, Lakshmi
Kethana, Jonathan Walpole, and Ke Zhang. Optimistic Incremental Specialization: Stream-

lining a Commercial Operating System. In Symposium on Operating Systems Principles
(SOSP), Copper Mountain, Colorado, December 1995.

C. Pu, G.E. Kaiser, and N. Hutchinson. Split-transactions for open-ended activities. In

Proceedings of the Fourteenth International Conference on Very Large Data Bases, pages
27-36, Los Angeles, August 1988.

K. Ramamritham and P.K. Chrysanthis. In search of acceptability criteria: Database con-
sistency requirements and transaction correctness properties. In Amar Gupta, editor, Dis-
tributed Object Management, pages 212-230. Morgan Kaufmann, 1992.

Brian C. Smith. Reflection and Semantics in a Procedural Language. PhD thesis, Mas-
sachusetts Institute of Technology, 1982.

B.C. Smith. Reflection and Semantics in Lisp. In Proceedings of the 11th Annual ACM
Symposium on Principles of Programming Languages, pages 23-35, 1984.

Rok Sosic. Dynascope: A tool for program directing. In SIGPLAN ’92 Conference on
Programming Language Design and Implementation, SIGPLAN Notices, volume 27, pages
12-21, July 1992.

Rok Sosic. The Many Faces of Introspection. PhD thesis, University of Utah, 1992.

R. J. Stroud. Transparency and reflection in distributed systems. ACM Operating Systems
Review, 22(2):99-103, April 1993.

Transarc Corporation, Pittsburgh, PA. 15219. Fncina Toolkit Server Core Programmer’s
Reference.

H. Wachter and A. Reuter. Database Transaction Models for Advanced Transactions, chapter
The ConTract Model. In Elmagarmid [Elm93], 1993.

Y. Yokote. The apertos reflective operating system: The concept and its implementation.
In Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA), October 1992.

22

