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ABSTRACT

Rescaled Range R�S analysis and Hurst Exponents are widely used as measures
of long�term memory structures in stochastic processes� Our empirical studies
show	 however	 that these statistics can incorrectly indicate departures from
random walk behavior on short and intermediate time scales when very short�
term correlations are present� A modi�cation of rescaled range estimation �R� �S
analysis� intended to correct bias due to short�term dependencies was proposed
by Lo ������� We show	 however	 that Lo�s R� �S statistic is itself biased and
introduces other problems	 including distortion of the Hurst exponents� We
propose a new statistic R�S� that corrects for mean bias in the range R	 but
does not su�er from the short term biases of R�S or Lo�s R� �S� We support our
conclusions with experiments on simulated random walk and AR��� processes
and experiments using high frequency interbank DEM � USD exchange rate
quotes� We conclude that the DEM � USD series is mildly trending on time
scales of �� to ��� ticks	 and that the mean reversion suggested on these time
scales by R�S or R� �S analysis is spurious�

�
 Introduction and Overview

There are three widely used methods for long�term dependence analysis� auto�
correlation analysis� fractional di�erence models �Granger � Joyeux 
��� Hosking

�
�� and scaling law analysis� including rescaled range �R�S� analysis �Hurst 
��
��
Hurst exponents� �Hurst 
��
� Mandelbrot � Van Ness 
���� and drift exponents
�M�uller� Dacorogna� Olsen� Pictet� Schwarz � Morgenegg 
����� This paper stud�
ies R�S analysis and Hurst exponents� which have become recently popular in the
�nance community largely due to the empirical work of Peters �
���� Compared
to autocorrelation analysis� the advantages of R�S analysis include� �
� detection of
long�range dependence in highly non�gaussian time series with large skewness and
kurtosis� ��� almost sure convergence for stochastic processes with in�nite variance�

and ��� detection of nonperiodic cycles� However� there are also two de�ciencies



associated with rescaled range analysis and the estimation of Hurst exponents� �
�
estimation errors exist when the time scale is very small or very large relative to the
number of observations in the time series� �Mandelbrot � Wallis 
���� Wallis � Mata�
las 
���� Feder 
�� Ambrose� Ancel � Gri�ths 
���� Moody � Wu 
���a� M�uller�
Dacorogna � Pictet 
����� and ��� the rescaled range is sensitive to short�term de�
pendence �McLeod � Hipel 
��� Hipel � McLeod 
��� Lo 
��
�� The second
shortcoming will sometimes lead to completely incorrect results�
Lo �
��
� analyzed the mean bias in the range statistic R due to short�term

dependencies in the time series� and proposed a modi�ed rescaling factor �S that is
intended to remove or reduce these e�ects� We have found� however� that Lo�s statistic
is itself biased and causes some new problems on short time scales while attempting
to correct the mean bias of the range R� including distortion of the Hurst exponents�
While Lo�s approach focuses on the actual value of the �R��S��N� statistic for a given
time scale of interest N � Hurst and Mandelbrot test for long term dependency by

comparing the slope of �R�S��N� curve to ���� Our empirical results show� however�
that Hurst exponents� standard rescaled range analysis� and Lo�s modi�ed rescaled
range can yield incompatible results �with the conventional interpretations of these
statistics� due to the biases contained in the R� S� and �S statistics�
We propose a new� unbiased rescaling factor S� that is able to correct for the mean

biases in R at all time scales without inducing new distortions of the rescaled range
and Hurst exponents at short time scales�
The outline of this paper is as follows� In Section �� we will brie#y introduce

the rescaled range analysis and the Hurst exponent� The analysis and estimation
procedures are then demonstrated on tick by tick interbank foreign exchange data�
Through empirical comparisons� we show how seriously short�term dependencies in a
time series can a�ect the rescaled range analysis� In Section �� we explain why there
is a mean bias in the range estimation and introduce Lo�s modi�ed approach� Some
simulation results with the modi�ed algorithm are shown and compared to results
using the original algorithm� In Section �� we evaluate Lo�s modi�ed rescaled range
analysis� list and analyze the problems associating with it� and show how it distorts
the Hurst exponent� In Section �� we present our new� unbiased rescaling factor S�

along with empirical results that demonstrate the improvements that it yields relative
to the standard R�S and Lo�s R� �S statistics� In Section �� we conclude our paper
with a discussion�


 R�S Analysis for High Frequency FX Data

Among the various approaches for quantifying correlations and deviations from
gaussian behavior for stochastic processes� several approaches have been suggested
that are based on scaling laws� Unlike traditional correlation analysis� these scaling

law methods are intended to quantify structure that persists on a spectrum of time



scales�
The !Rescaled Range" �R�S� analysis and Hurst Exponents were �rst developed

by Hurst �
��
� and re�ned and popularized by Mandelbrot et�al� in the late 
����s
and early 
����s� These became popular in �nance due to the clear exposition of the
methods in Feder �
�� and the empirical work of Peters �
���� A related approach
based on the drift exponent was independently pioneered by M�uller et al� �
�����
and scaling laws for directional change frequency have been suggested by Guillaume
�
����� In this paper� we restrict our attention to R�S analysis and Hurst exponents�

���� R�S Analysis and Hurst Exponents

The R�S statistic is the range of partial sums of deviations of a time series from its
mean rate of change� rescaled by its standard deviation� Denoting a series of returns
�one period changes� by rt� the average m and �biased� standard deviation S of the
returns from t � t� � 
 to t � t� �N are�a

m�N� t�� �
t��NX
t�t���

rt�N � �
�

S�N� t�� �

	
� 
N
t��NX
t�t���

�rt �m�N� t���
�

��
���

� ���

The partial sum of deviations of rt from its mean and the range of partial sums
are then de�ned as�

X�N� t�� 
� �
t���X
t�t���

�rt �m�N� t��� for 
 	 
 	 N � ���

R�N� t�� � max
�

X�N� t�� 
� �min
�

X�N� t�� 
� � ���

The R�S statistic for time scale N is simply the ratio between the average values
of R�N� t�� and S�N� t���

�R�S��N� �
P

t� R�N� t��P
t� S�N� t��

� ���

aThe quantity S�N� t�� conventionally used in R�S analysis is an estimate of the standard deviation
that is biased downward by a factor

p
�N � ���N � The unbiased estimate of the true standard

deviation ��N� t�� is

b��N� t�� �

�
�

N � �

t��NX
t�t���

�rt �m�N� t���
�

����
�

In section �	 we present improved results using the unbiased estimate b��N� t���



Assuming that a scaling law exists for �R�S��N�� we can write

�R�S��N� � �aN�H � ���

where a is a constant and H is referred to as the Hurst exponent� By estimating H�
we can characterize the behavior of time series as follows�

H � ��� random walk
H � ��� ���� mean�reverting
H � ����� 
� mean�averting �

For a more detailed� but readable� discussion of R�S analysis and Hurst exponents�
see Feder �
���

���� R�S Analysis for High Frequency FX Data

High frequency interbank FX data consists of a sequence of Bid�Ask prices quoted
by various �rms that function as market makers� While Bid�Ask price quotes from
many market makers are displayed simultaneously by wire services such as Reuters
and Telerate� a single price series can be constructed from the sequence of newly
updated quotes�
We are analyzing a full year of such tick�by�tick Interbank FX price quotes for

three exchange rates� the Deutschmark � US Dollar rate �DEM�USD�� the Japanese
Yen � US Dollar rate �JPY�USD�� and the Deutschmark � Yen �DEM�JPY� cross�
rate� The data were obtained from Olsen � Associates of Z�urich� The data sample
includes every tick from October 
��� through September 
���� For the DEM�USD�
the year has 
�������� ticks�
To study the behavior of returns on a spectrum of time scales� we perform rescaled

range analysis and compute Hurst exponents� Figure 
 shows the rescaled range anal�

ysis for October 
��� DEM�USD Bid returns� Both the original data and scrambled
data were analyzed� The upward shift in the curve for the scrambled data is evidence
for mean reversion of the original series on all time scales measured�
Further results are presented in �Moody � Wu �
������ To summarize them�

the behavior of the Hurst exponents in the returns of DEM�USD exchange rates
is qualitatively di�erent from the Hurst exponents of gaussian series and scrambled
series of the returns� The behaviors of �R�S��N� and H are more similar to those of
an AR�
� process with negative coe�cient�
To understand the nature and meaning of the apparent mean reverting behavior in

the high frequency FX data� we have performed a series of investigations as described
in �Moody � Wu �
���b��� The question is whether the observed mean reversion over
a range of intermediate times scales is due to short�term price oscillations on time
scales of a few ticks or is evidence of intrinsic dependencies in the price movements
on those intermediate time scales�
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Figure 
� Rescaled range analysis for DEM�USD Bid returns during October 
����
Between Original and Scrambled curves is a straight line with a slope ���� The lower
slope for the original series for time scales less than 
��� ticks suggests that mean
reversion is present on short time scales�

One of our studies is to observe the behavior of the block averages of prices� The
block average price is de�ned as�

pk�t� �



�k

i�k��X
i��

�log�Bid�t � i�� � log�Ask�t� i��� ���

where k is the length of the sequence of ticks over which the mean price is calculated�
The sequences are then downsampled by a factor of k� so that the blocks do not
overlap each other�
Rescaled range analysis of the block average prices is presented in Figure �� Here�

the mean prices are calculated for blocks of 
� �� � and  ticks respectively� As
explained in the �gure� the price behavior changes completely for blocks of 
 tick
versus blocks of  ticks� the behavior in the tick�by�tick DEM�USD series shifts from
mean�reverting to mean�averting�
In summary� the mean�reverting price behavior appears to be due to the high

frequency oscillations� When short�run oscillations �possibly caused by inventory ef�
fects� are smoothed� the price movements shift from mean�reverting to mean�averting
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Figure �� Rescaled range analysis for DEM�USD during October 
���� The price is
taken as the average of bids and asks over a short sequence of ticks� From Figure
�a� to �d�� the block consists of 
� �� � and  ticks respectively� The dotted curves
are formed by the scrambled price sequences and their slopes equal to ���� The lower
slopes of solid curves in Figure �a� and �b� suggest mean�reverting price behavior�
The higher slopes of solid curves in Figure �c� and �d� suggest mean�averting price
behavior�



behavior�

�
 Lo�s Modi�ed R�S Analysis

	��� Mean Bias in Range Statistic

While studying long�term memory structures in stock prices using R�S analysis�
Lo �
��
� found that rejections of the null hypothesis �that the time series is a random
walk� on long time scales can be erroneous and can be due instead to bias induced by
short�term dependencies� He compared the asymptotic distributions of the rescaled
ranges between an i�i�d random series and an AR�
� short�term dependent series�
When the time scale N increases without bound� the normalized rescaled range of an
i�i�d series converges to the range of a Brownian bridge on the unit interval�

R�N� t��p
N

�� B i�i�d� Series ��

However� for a short�term dependent AR�
� series with a regression coe�cient �� the
normalized rescaled range converges to

R�N� t��p
N

�� 	B AR�
� Series� ���

The mean is biased by a factor of 	� which for this special case is 	 �
q
�
 � ����
� ���

The bias can be signi�cant� For example� if � � ����� the normalized rescaled range
��� is biased downward by a factor ������ Therefore� the short�term dependence will
bias the estimation of the long�term rescaled range�

	��� Modi
ed R�S Analysis

To remove the e�ect of mean bias due to short�term dependencies� Lo �
��
�
proposed a modi�ed R�S statistic� His motivation was that if rt is subject to short�
term dependence� the autocovariances of rt will not be equal to zero� and the range
R cannot simply be normalized by the standard deviation alone� The covariances
should be considered also �Andrews �
��
��� The rescaling term suggested by Lo�
includes weighted covariances up to lag q and has the form�b

�S�N� t�� q� �

	
� 
N
t��NX
t�t���

�rt �m�� �
�

N

qX
j��

wj�q�
t��NX
t�t��j

�rt �m��rt�j �m�

��
���

�

�
��

bNote that the �S is biased downward� The �rst term in ���� is biased by a factor �N � ���N 	 while
the second term has negative bias� This issue will be addressed empirically in sections 
�
 and �
Section � presents an unbiased replacement S��



where wj�q� is de�ned as

wj�q� � 
� j

q � 

� �

�

This weighting function always yields a positive �S� The determination of q is rather
complicated� Not being able to determine q by a simple closed�form expression� Lo
discussed the e�ect of varying q� When q becomes large relative to N � the �nite�
sample distribution of the estimator can be radically di�erent from its asymptotic
limit� However� q cannot be chosen too small� since the autocovariances beyond
lag q may be substantial and should be included in the weighted autocovariances�
Therefore� the truncation lag must be chosen with some consideration of the data at
hand�
The modi�ed R�S analysis rescales the range R using �S instead of the standard

deviation S� so we refer to it as R� �S analysis� As we shall demonstrate empirically
in sections ��� and � Lo�s rescaling factor �S has signi�cant downward bias for small
N � and this distorts both R� �S and the Hurst exponent H�

	�	� R� �S Analysis for Foreign Exchange Rates

In Section �� we found that the interbank tick�by�tick foreign exchange price
changes show mean�reverting behavior on time scales from several ticks to hundreds
of ticks� However� when we consider the block average prices �averaged over a few
ticks�� the mean�reverting behavior on longer time scales is not signi�cant� suggesting
that the apparent mean�reverting behavior is not due to the fundamental nature of

the price movements� but rather is just an artifact induced by the high frequency
oscillations� In the following� we use R� �S analysis and try to get an answer�
We now consider Lo�s modi�ed R� �S analysis to see whether it can help con�rm

our conclusion above that the observed mean reverting behavior on intermediate time
scales is actually due to the high frequency oscillations� Unfortunately� however� we
�nd that the R��S statistic introduces new problems and is not helpful in resolving
this issue�
The R� �S analysis for the prices of DEM�USD exchange rates in October 
��� is

plotted in Figure �� The data used consists of 
���
� ticks� We take the price as
the average of Bid and Ask quotes� The e�ect of the lag q is also depicted in the
�gure� Since the high frequency oscillations in the foreign exchange data �believed
by some to be an inventory e�ect� are on very short time scales in tick time� we only
use small q �q � f�� �� �� g� in our analysis� The case with q � � corresponds to
the standard R�S analysis� From the �gure� we see that �
� the R� �S curves shift
upwards� compared to the R�S curve� and ��� the upward shift when the time scaleN
is small is signi�cantly larger than that when N is large� This is due to the downward
biases in �S�
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Figure �� R� �S analysis for DEM�USD data in October 
���� Four solid curves
correspond to the analysis for the same data but using di�erent lag q for computing
the autocovariances� When q � �� the R��S analysis reduces to the R�S analysis� The
dashed straight line is with a slope of ��� and corresponds to a random walk� Note
that when the time scale is large �N � 
��� 
����� all R��S curves have very similar
slopes and the slopes are all smaller than that for the random walk�



Table 
� Estimated Hurst exponents from the R� �S analysis for DEM�USD data in
October 
����

Lags Time Scales
q 
��
�� 
���
���
� ����� �����
� ����� �����
� ����� �����
 ����� �����

�
 R� �S Analysis and Hurst Exponents

Table 
 lists the estimated Hurst exponents from the R��S analysis over the time
scales 
�� 
�� and 
��� 
���� From the table� we can see that� �
� for the smaller
time scales N � 
� � 
��� the Hurst exponents decrease signi�cantly as the lag q
increases� ��� for the larger time scales N � 
���
���� the Hurst exponents decrease
only slightly with increasing lag q� and ��� all Hurst exponents are less than ����
By observing a series of empirical results in our studies� we have found the fol�

lowing� �
� There indeed exists an estimation bias in the range statistic R due to
short�term dependencies in the series that shifts the standard rescaled range statistic
R�S� When the time scale N is large� the modi�ed R� �S statistic can correct this
bias� ��� When the time scale N is small� the rescaling factor �S introduces some new
errors in estimating both the rescaled range statistic R��S and the Hurst exponents�
��� When the time scale N is large� the slopes of R� �S curves are independent of the
lag q� even though they shift vertically� This means that the R��S analysis �when
q � �� and the R�S analysis �when q � �� yield the same Hurst exponents�
To investigate the above issues further� we have conducted the R� �S analysis for

simulated gaussian random walk and AR�
� series�
To demonstrate our �rst observation� we compare the R��S analysis for a simulated

gaussian i�i�d� returns process and an AR�
� returns process with regression coe�cient
� � ����� For su�ciently large N � we know that the estimated autocovariances for
the i�i�d� process will be very small and fall inside the �� signi�cance band for
non�zero lags� Similarly� the autocovariances for the AR�
� process �j����
 � ���
decay exponentially with lag j� and their estimates for �nite N fall within the �� 
signi�cance band for large enough j� Therefore� we expect that for the i�i�d� process�
the R� �S curves for di�erent q should be the same for large time scales �N� and that
the R� �S curves for the AR�
� process for large N will approach those of the i�i�d�
process with increasing q� These e�ects are illustrated by Figures � and �� where for
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Figure �� R��S analysis for a gaussian i�i�d� returns process �left panel� and an AR�
�
returns process with negative coe�cient �right panel� using di�erent lag parameters
q � �� �� �� � Note that the R� �S statistic introduces a new estimation error when the
observed time scale N is small�

large time scales� R� �S curves for the AR�
� process shift upward for increasing q and
overlap the R� �S curves for the i�i�d� process only for q � � This demonstrates that
the bias of the range exists in the R�S statistic and that the R� �S statistic can correct
this bias for large N with a proper choice of the lag parameter q�
The left panel of Figure � illustrates our second observation� Since there is no

dependence in the time series� we expect that all the R��S curves should be equivalent
for di�erent lag parameters q for all time scales N � However� as shown by Figure ��
the curves for di�erent q are not the same when the time scale N is small� This e�ect
is due to the negative bias in the second term of Eq��
���
To explain our third observation� we �rst rewrite the R� �S analysis

log
�
R
�S

�
� Hlog�N� � b �
��

as

log
�
R

S

�
� Hlog�N� � b�




�
log

�

 �

C

S�

�
� �
��

Where b is constant and S� and C are the �rst and the second terms of Eq��
��
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Figure �� Comparison of the R� �S analysis for an AR�
� series �solid curve� to that
for a gaussian series �dashed curve� for q � �� �� �� � The bias of the range due to
the short�term dependence in AR�
� series can clearly be seen in the curves with
q � �� �� �� When q � � the bias is corrected and the R��S curve of the AR�
� series
overlaps that of gaussian series for long time scales N �



respectively� We have�

C

S�
�
�
Pq

j��wj�q�
Pt��N

t�t��j
�rt �m��rt�j �m�Pt��N

t�t����rt �m��
� �
��

If there is no short�term dependence and C
S�
� �� Eq��
�� reduces to that for the R�S

analysis� If N is small� C
S�
will change with N � The slope of log

�
R
S

�
against log�N�

in Eq��
�� will be modi�ed� If N is large enough� C
S�
will not depend on the value of

N � The e�ect of �
�
log

�

 � C

S�

�
in Eq��
�� is the same as that of b� Its existence will

shift the R�S curve vertically� but will not change the slope of the curve� The above
explanation is completely consistent with the empirical results shown in Figures ��
�� � and Table 
� We therefore con�rm that the R��S analysis and the R�S analysis

have the same Hurst exponents when the time scale N is large�
In Lo�s own simulation results in �Lo �
��
��� for example� Table Vb for an AR�
�

process and Table VIb for a gaussian fractional di�erenced process� we also �nd similar
evidence� For the AR�
� process� when N � ���� the R��S curves with q�����
� have
very close slopes� For the gaussian fractional di�erenced process� all R��S curves
have similar slopes on all time scales with q�����
���� and ��� Figure � depicts the
R� �S curves of Lo�s simulation results� On the other hand� the upper panel of Figure
� shows that Lo�s �R� �S��N� may have a negative slope� which is not theoretically
justi�able using the standard de�nition of Hurst exponents� and is incompatible with
the scaling laws for stochastic processes �Feder �
����
In summary� Lo tests the random walk hypothesis directly based on the value of

the R�S or R� �S statistic� while Hurst and Mandelbrot do so by comparing the slope
of �R�S��N� curve to ���� Unfortunately� biases in the de�nitions of R� S and �S can
lead to errors in the estimates of �R�S��N�� �R� �S��N�� and H for short time scales
N or when short term dependencies are present in the series under study� Under
standard interpretations of �R�S��N�� �R� �S��N�� and H� these errors can lead to
misleading and sometimes inconsistent results�

�
 Rescaled Range Analysis with Unbiased S�

To address the problems with the statistics �R�S��N� and �R� �S��N� described
above� we propose an unbiased rescaling factor S� that corrects for mean biases in
the range R due to short�term dependencies without inducing the distortions on short
time scales that S and Lo�s �S do� Denoting the standard unbiased estimate of the
variance as

b���N� t�� �



N � 

t��NX
t�t���

�rt �m�� � �
��
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Figure �� Lo�s R� �S curves for gaussian fractional di�erenced processes� The curves
are constructed based on Lo�s own simulation results �see Table VIa and Table VIb in
�Lo �
��
���� All the R� �S curves have similar slopes in all time scales with di�erent
time lags� For the process with d � �
��� all the R� �S slopes are negative� This is
incompatible with the allowed scaling laws for stochastic processes�



the proposed unbiased rescaling factor with weighted covariances up to lag q is�

S��N� t�� q� �

��
� � �

qX
j��

wj�q�
N � j

N�

�b���N� t�� � �

N

qX
j��

wj�q�

t��NX
t�t��j

�rt �m��rt�j �m�

����

� ����

where wj�q� is the weighting function as de�ned by Lo �wj�q� � 
 � j
q��
�� This

weighting function yields a positive S��� provided that q � N � It is trivial to show
that the estimates of the autocovariances in �
�� have zero mean bias� When q � ��
S� reduces to the unbiased standard deviation b��
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Figure �� �R�S���N� for a gaussian i�i�d� returns process �left panel� and an AR�
�
returns process with negative coe�cient �right panel� using di�erent lag parameters
q � f�� �� �� g� Note that unlike the results for �R� �S��N� in Figure �� the mean bias
in R for the AR�
� process is corrected with q �  without inducing distortions for
short time scales N � Note also� that unlike the results for �R� �S��N�� the results for
the gaussian i�i�d� process are independent of q�

Figures � and  present empirical results for the proposed �R�S���N� statistic�
The results for simulated gaussian i�i�d� and AR�
� returns processes shown in Figure
� con�rm the e�cacy of our proposed �R�S���N� analysis� The results for the high
frequency DEM�USD FX series in Figure  support our conclusions obtained by block
averaging in Figure � that� �
� the DEM�USD series is actually trending� rather than
mean�reverting on short time scales �
� to 
�� ticks�� and ��� the spuriously�observed



mean�reversion on these time scales in the �R�S��N� curves is actually due to high
frequency oscillations on time scales of a few ticks�
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Figure � �R�S���N� for the DEM�USD bid returns for October 
��� using lag pa�
rameters q � f�� �� �g� Comparing the results for q � � to the �R�S��N� curves for
the unscrambled FX data in Figures 
 and � �a�� we see slightly less apparent mean
reversion at short time scales N � This reduction in apparent mean reversion is due
to the unbiasedness of S� relative to S� The results for q � f�� �g are qualitatively
similar to the block averaged results for blocks of � and  ticks shown in Figures �
�c� and �d�� This supports our conclusion that the apparent mean reversion on short
time scales in the DEM�USD series is actually due to the high frequency oscillations�
and that when these are removed� the series is actually slightly trending�

�
 Concluding Remarks and Discussions

���� The R�S� R��S� and R�S� Statistics and Hurst Exponents

Due to the use of a biased estimate of the standard deviation� the R�S and R��S
statistics are biased upward on short time scales� resulting in downward errors in
estimated Hurst exponents� When short�term dependencies are present� the estimated
range in R�S analysis may be biased� The R� �S statistic adds autocovariance to the



standard deviation to correct this bias when the observed time scale is large enough�
When the time scale is small� however� the R� �S statistic introduces new estimation
errors due to negative biases in �S� This e�ect also results in downward errors in
estimated Hurst exponents� Our proposed R�S� statistic overcomes de�ciencies in
both R�S and R��S correcting for short term dependencies in the time series without
introducing additional biases on short time scales N �

���� The Tick�by�Tick DEM�USD Series

As demonstrated in �Moody �Wu �
���� Moody �Wu �
���a� and Moody �Wu
�
���b��� there exist very signi�cant one or two tick anti�correlations in the returns
of the DEM�USD series� When analyzing the price behavior and forecasting price
changes on longer time scales� such short�term anti�correlations should be removed�
We have demonstrated in this paper that not considering these e�ects results in
completely di�erent conclusions about the behavior of the series as measured by the
Hurst exponents on time scales of 
� to 
�� ticks�
As shown in �Moody �Wu �
���b��� simply down�sampling the price series cannot

removed this short�term anti�correlation� However� our proposed �R�S���N� analy�
sis con�rms our previous results obtained by short term block averaging that the
DEM�USD series is actually mildly trending on time scales of 
� to 
�� ticks� and
that the suggested mean�reversion in the R�S and R� �S analyses on these time scales
is spurious�
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