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Abstract

Macroeconomic forecasting is a very difficult task due to the lack of an accurate, convincing model of the economy. The most
accurate models for economic forecasting, “black box” time series models, assume little about the structure of the economy.
Constructing reliable time series models is challenging due to short data series, high noise levels, nonstationarities, and nonlinear
effects. This paper describes these challenges and surveys some neural network solutions to them. Important issues include
balancing the bias/variance tradeoff and the noise/nonstationarity tradeoff. The methods surveyed include hyperparameter selection
(regularization parameter and training window length), input variable selection and pruning, network architecture selection and
pruning, new smoothing regularizers, and committee forecasts. Empirical results are presented for forecasting the U.S. Index
of Industrial Production. These demonstrate that, relative to conventional linear time series and regression methods, superior
performance can be obtained using state-of-the-art neural network models.

1 Challenges of Macroeconomic Forecasting

Of great interest to forecasters of the economy is predicting the “business cycle”, or the overall level of economic activity. The
business cycle affects society as a whole by its fluctuations in economic quantities such as the unemployment rate (the misery
index), corporate profits (which affect stock market prices), the demand for manufactured goods and new housing units, bankruptcy
rates, investment in research and development, investment in capital equipment, savings rates, and so on. The business cycle also
affects important socio-political factors such as the the general mood of the people and the outcomes of elections.

The standard measures of economic activity used by economists to track the business cycle include the Gross Domestic Product
(GDP) and the Index of Industrial Production (IP). GDP is a broader measure of economic activity than is IP. However, GDP
is computed by the U.S. Department of Commerce on only a quarterly basis, while Industrial Production is more timely, as it
is computed and published monthly. IP exhibits stronger cycles than GDP, and is therefore more interesting and challenging to
forecast. (See figure 1.) In this paper, all empirical results presented are for forecasting the U.S. Index of Industrial Production.

Macroeconomic modeling and forecasting is challenging for several reasons:

No a priori Models: A convincing and accurate scientific model of business cycle dynamics is not yet available due to the
complexities of the economic system, the impossibility of doing controlled experiments on the economy, and non-quantifiable
factors such as mass psychology and sociology that influence economic activity. There are two main approaches that economists
have used to model the macroeconomy, econometric models and linear time series models:

Econometric Models: These models attempt to model the macroeconomy at a relatively fine scale and typically contain hundreds
or thousands of equations and variables. The model structures are chosen by hand, but model parameters are estimated from
the data. While econometric models are of some use in understanding the workings of the economy qualitatively, they are
notoriously bad at making quantitative predictions.

Linear Time Series Models: Given the poor forecasting performance of econometric models, many economists have resorted to
analyzing and forecasting economic activity by using the empirical “black box” techniques of standard linear time series
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Figure 1: U.S. Index of Industrial Production (IP) for the period 1967 to 1993. Shaded regions denote official recessions, while
unshaded regions denote official expansions. The boundaries for recessions and expansions are determined by the National Bureau
of Economic Research based on several macroeconomic series. As is evident for IP, business cycles are irregular in magnitude,
duration, and structure.

analysis. Such time series models typically have perhaps half a dozen to a dozen input series. The most reliable and popular
of these models during the past decade or so have been bayesian vector autoregressive (BVAR) models (Litterman, 1986).
As we have found in our own work, however, neural networks can often outperform standard linear time series models. The
lack of an a priori model of the economy makes input variable selection, the selection of lag structures, and network model
selection critical issues.

Noise: Macroeconomic time series are intrinsically very noisy and generally have poor signal to noise ratios. (See figures 2 and 3.)
The noise is due both to the many unobserved variables in the economy and to the survey techniques used to collect data for those
variables that are measured. The noise distributions are typically heavy tailed and include outliers. The combination of short data
series and significant noise levels makes controlling model variance, model complexity, and the bias / variance tradeoff important
issues (Geman, Bienenstock and Doursat, 1992). One measure of complexity for nonlinear models is Peff , the effective number of
parameters (Moody, 1992; Moody, 1994b). Peff can be controlled to balance bias and variance by using regularization and model
selection techniques.

Nonstationarity: Due to the evolution of the world’s economies over time, macroeconomic series are intrinsically nonstationary.
To confound matters, the definitions of many macroeconomic series are changed periodically as are the techniques employed in
measuring them. Moreover, estimates of key series are periodically revised retroactively as better data are collected or definitions
are changed. Not only do the underlying dynamics of the economy change with time, but the noise distributions for the measured
series vary with time also. In many cases, such nonstationarity shortens the useable length of the data series, since training on older
data will induce biases in predictions. The combination of noise and nonstationarity gives rise to a noise / nonstationarity tradeoff
(Moody, 1994a), where using a short training window results in too much model variance or estimation error due to noise in limited
training data, while using a long training window results in too much model bias or approximation error due to nonstationarity.

Nonlinearity: Traditional macroeconomic time series models are linear (Granger and Newbold, 1986; Hamilton, 1994). However,
recent work by several investigators have suggested that nonlinearities can improve macroeconomic forecasting models in some
cases (Granger and Terasvirta, 1993; Moody et al., 1993; Natter, Haefke, Soni and Otruba, 1994; Swanson and White, 1995). (See
table 1 and figures 2 and 3.) Based upon our own experience, the degree of nonlinearity captured by neural network models of
macroeconomic series tends to be mild (Moody et al., 1993; Levin, Leen and Moody, 1994; Rehfuss, 1994; Utans, Moody, Rehfuss
and Siegelmann, 1995; Moody, Rehfuss and Saffell, 1996; Wu and Moody, 1996). Due to the high noise levels and limited data,
simpler models are favored. This makes reliable estimation of nonlinearities more difficult.
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Figure 2: The U.S. Index of Industrial Production and five return series (rates of change measured as log differences) for time scales
of 1, 3, 6, 9, and 12 months. These return series served as the prediction targets for the standard Jan 1950 - Dec 1979 / Jan 1980 -
Jan 1990 benchmark results reported in Moody et al. (1993). The difficulty of the prediction task is evidenced by the poor signal
to noise ratios and erratic behavior of the target series. For the one month returns, the performance of our neural network predictor
in table 1 suggests that the SNR is around 0.2. For all returns series, significant nonstationarities and deviations from normality of
the noise distributions are present.

2 Neural Network Solutions

We have been investigating a variety of algorithms for neural network model selection that go beyond the vanilla neural network
approach.1 The goal of this work is to construct models with minimal prediction risk (expected test set error). The techniques
that we are developing and testing are described below. Given the brief nature of this survey, I have not attempted to provide an
exhaustive list of the many relevant references in the literature.

Hyperparameter Selection: Hyperparameters are parameters that appear in the training objective function, but not in the network
itself. Examples include the regularization parameter, the training window length, and robust scale parameters. Examples of
varying the regularization parameter and the training window length for a 12 month IP forecasting model are shown in figure 4 a
and b. Varying the regularization parameter trades off bias and variance, while varying the training window length trades off noise
and nonstationarity.

1We define a vanilla neural network to be a fully connected, two-layer sigmoidal network with a full set of input variables and a fixed number of hidden units
that is trained on a data window of fixed length with backprop and early stopping using a validation set. No variable selection, pruning, regularization, or committee
techniques are used.
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Figure 3: The U.S. Index of Leading Indicators (DLEAD) and its 11 component series as currently defined. The Leading Index is a
key tool for forecasting business cycles. The input variables for the IP forecasting models reported in Moody et al. (1993) included
transformed versions of DLEAD and several of its components. The difficulty of macroeconomic forecasting is again evident, due
to the high noise levels and erratic behaviors of DLEAD and its components. (Note that the component series included in DLEAD
have been changed several times during the past 47 years. The labels for the various series are those defined in Citibase: HSBP
denotes housing starts, FM2D82 is M2 money supply, FSPCOM is the Standard & Poors 500 stock index, and so on.)

Input Variable Selection and Pruning: Selecting an informative set of input variables and an appropriate representation for them is
critical to the solution of any forecasting problem. We have been studying the use of both model-independent and model-dependent
variable selection procedures. The Delta Test, a model independent procedure, is a nonparametric statistical algorithm that selects
meaningful predictor variables by direct examination of the data set (Pi and Peterson, 1994). We are developing some refinements
to this approach. Sensitivity-based pruning (SBP) techniques are model-dependent algorithms that prune unnecessary or harmful
input variables from a trained network (Mozer and Smolensky, 1990; Moody and Utans, 1994; Moody, 1994b; Utans et al., 1995).
An example of reducing a set of input variables from 48 to 13 for a 12 month IP forecasting model is shown in figure 5.

Model Selection and Pruning: A key technique for controlling the bias / variance tradeoff for noisy problems is to select the size
and topology of the network. For two-layer networks, this includes selecting the number of internal units, choosing a connectivity
structure, and pruning unneeded nodes, weights, or weight matrix eigennodes. A constructive algorithm for selecting the number
of internal units is sequential network construction (SNC) (Ash, 1989; Moody and Utans, 1994; Moody, 1994b). Techniques
for pruning weights and internal nodes include sensitivity-based pruning methods like optimal brain damage (OBD) (LeCun,
Denker and Solla, 1990) and optimal brain surgeon (OBS) (Hassibi and Stork, 1993). Our recently-proposed supervised principal
components pruning (PCP) method (Levin et al., 1994) prunes weight matrix eigennodes, rather than weights. Since PCP does
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Prediction Trivial Univariate Multivariate Sigmoidal Nets
Horizon (Average of AR(14) Model Linear Reg. w/ PC Pruning
(Months) Training Set) Iterated Pred. Direct Pred. Direct Pred.

1 1.04 0.90 0.87 0.81
2 1.07 0.97 0.85 0.77
3 1.09 1.07 0.96 0.75
6 1.10 1.07 1.38 0.73
9 1.10 0.96 1.38 0.67
12 1.12 1.23 1.20 0.64

Table 1: Comparative summary of normalized prediction errors for rates of return on Industrial Production for the period January
1980 to January 1990 as presented in Moody et al. (1993). The four model types were trained on data from January 1950 to
December 1979. The neural network models significantly outperform the trivial predictors and linear models. For each forecast
horizon, the normalization factor is the variance of the target variable for the training period. Nonstationarity in the IP series makes
the test errors for the trivial predictors larger than 1.0. In subsequent work, we have obtained substantially better results for the IP
problem (Levin et al., 1994; Rehfuss, 1994; Utans et al., 1995; Moody et al., 1996; Wu and Moody, 1996).

not require training to a local minimum, it can be used with early stopping. It has computational advantages over OBS, and can
outperform OBD when input variables or hidden node activities are noisy and correlated. Figure 6 shows reductions in prediction
errors obtained by using PCP on a set of IP forecasting models.

Better Regularizers: Introducing biases in a model via regularization or pruning reduces model variance and can thus reduce
prediction risk. Prediction risk can be best minimized by choosing appropriate biases. Quadratic weight decay (Plaut, Nowlan
and Hinton, 1986; Hoerl and Kennard, 1970b; Hoerl and Kennard, 1970a), the standard approach to regularization used in the
neural nets community, is an ad hoc function of the network weights. Weight decay is ad hoc in the sense that it imposes direct
constraints on the weights independent of the nature of the function being learned or the parametrization of the network model. A
more principled approach is to require that the function f�W�x� learned by the network be smooth. This can be accomplished by
penalizing the mth order curvature of f�W�x�. The regularization or penalty functional is then the smoothing integral

S�W�m� �

Z
dDx��x�

����d
mf�W�x�

dxm

����
2

� (1)

where ��x� is a weighting function and k k denotes the Euclidean tensor norm. Since numerical computation of (1) generally
requires expensive Monte Carlo integrations and is therefore impractical during training, we have derived algebraically-simple
approximations and bounds to S�W�m� for feed forward networks that can be easily evaluated at each training step (Moody and
Rögnvaldsson, 1995). Our empirical experience shows that these new smoothing regularizers typically yield better prediction
accuracies than standard weight decay. In related work, we have derived an algebraically-simple regularizer for recurrent nets that
corresponds to the case m � 1 (Wu and Moody, 1996). A comparison of this recurrent regularizer to quadratic weight decay for 1
month forecasts of IP is shown in figure 7.

Committee Forecasts: Due to the extremely noisy nature of economic time series, the control of forecast variance is a critical
issue. One approach for reducing forecast variance is to average the forecasts of a committee of models. Researchers in economics
have studied and used combined estimators for a long time, and generally find that they outperform their component estimators
and that unweighted averages tend to outperform weighted averages, for a variety of weighting methods (Granger and Newbold,
1986; Winkler and Makridakis, 1983; Clemen, 1989). We are exploring several extensions of this approach. Reductions of
prediction error variances obtained by unweighted committee averaging for a selection of different IP forecasting models are shown
in figure 8.

3 Discussion

In concluding this brief survey of the algorithms that we are developing and testing for improving forecast accuracy with neural
networks, it is important to note that many other techniques have been proposed. Also, the empirical results presented herein are
preliminary, and further work on both the algorithms and forecasting models is required. As a final comment, I would like to
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Figure 4: Left: Example of the Noise / Nonstationary Tradeoff and selection of the best training window, in this case 10 years
(Rehfuss, 1994; Moody et al., 1996). The longer training windows of 15 and 20 years yield higher test set error due to the model
bias induced by nonstationarity. The shorter training windows of 5 and 7 years have significantly higher errors due to model
variance resulting from noise in the data series and smaller data sets. The test errors correspond to models trained with the best
regularization parameter 0.15 indicated in the figure on the right. Right: Example of the effect of regularization (weight decay)
parameter on test error (Rehfuss, 1994; Moody et al., 1996). The five curves are for training windows of length 5, 7, 10, 15, and
20 years. The Bias / Variance Tradeoff is clearly evident in all the curves; the minimum test set errors occur for weight decay
parameters of order 0�1. Larger errors due to bias occur for larger weight decay coefficients, while larger errors due to model
variance occur for smaller values of the coefficient.

emphasize that given the difficulty of macroeconomic forecasting, no single technique for reducing prediction risk is sufficient for
obtaining optimal performance. Rather, a combination of techniques is required.
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