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1 Introduction 

The problem of automatic language identification-identifying the language being spoken 
by an unknown talker from a short excerpt of speech-is a challenging and important one, 
of interest to  linguists and computer speech researchers. This document reviews the studies 
done so far in this area. 

2 Review 

Given below are brief descriptions of the major studies in automatic language identification 
to date. Table 1 summarizes the salient features of these studies. 

2.1 The Texas Instruments Effort 

One of the most sustained efforts in automatic language identification was carried out 
between 1973 and 1980 at Texas Instruments (TI), documented in a series of four reports 
[LD74, LD75, LD78, Leo801. 

The basic philosophy underlying the TI approach was that languages differ by the fre- 
quency of occurrence of certain reference sounds or sound sequences. The sounds or sound 
sequences characteristic of a language occur more often in that language than in any other 
language under consideration. Therefore, the likelihoods of the languages, given these se- 
quences, could be computed and used to make decisions in reasonably short times. 

Study 1. The first study [LD74] concentrated on single reference sounds. The data con- 
sisted of read text from 100 adult male speakers of 5 languages, referred to simply as L1, 
La, L3, L4, and L5. The training data consisted of 90-second segments of speech from each 
of 10 speakers of each of the five languages. The test data consisted of 90-second segments 
from: 10 speakers of L1, L g ,  and L5; 6 speakers of La; and 14 speakers of L4. 

The first step in this approach was an automatic segmentation of the digitized speech 
based on a measure of dynamic spectral change called "transitionitivity". Reference files of 
sound segments potentially useful for language discrimination were automatically generated 
from the training data, using an "intersegment distance" measure. This technique allowed 
a segment to be added to a file only if it was sufficiently different from each segment 
already in the file. These reference files were then pruned to eliminate sounds that did not 
demonstrate sufficient language specificity. The frequency of occurrence of the remaining 
reference segments in the files was determined and the time average log-likelihood of the 
languages computed (i.e. for each language L and reference segment R, the probability 
or likelihood that language L was spoken, given that segment R has occurred). In one 
experiment, decision functions were computed for each pair of languages for each of the 50 
test speakers. The decision strategy was to choose the language with the smallest negative 
average log likelihood. Pairwise identification accuracy of the 10 language pairs ranged 
from 60% to  100%. Overall accuracy was 64% with a nearest neighbor decision rule using 
the pairwise identification results. The identification decision was made using 60 seconds 
of speech. 

Study 2. The second phase of the study [LD75] used the same data as above, but used 
sequences of several phoneme-like segments for classification. Another improvement was the 
use of "time-frequency scanning" to accept or reject hypothesized occurrences of component 
sound segments. Two measures were introduced to help prune the file of reference sequences: 
(i) an information-theoretic measure called "entropy threshold" that guided the selection 



Table 1: Studies in Automatic Language Identification 
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RESULTS 

62% 
(no rejection) 

1 Wh 
(68% rejection) 

Near-perfect 
discrimination 
(no % 
specified) 

80% 

84% 

92% 

39% 

64 % 
(11 % reject ion) 

Reduced 
Foil's error rate 
in half 
(no % specified) 

65% 

80% 

Not 
specified 

79.5% 
(5.7s of speech) 

89.5% 
(1 7.1 s of speech) 

APPROACH 

Detection of 
"Reference Sounds" 
and estimation of 
log likelihoods of 
the languages 

HMMs tralned on 
sequences of broad 
category labels 

Segment-based 
and syiiablsbased 
Markov models 

Acoustic features 
and a polynomlal 
decision function 

Expert System 
Production Rules 

Processing Pitch & 
Energy Contours 

Formant-clustering 
algorithm 

Improvd Formant 
Clustering Algorithm 

Standard VQ 

VQ histogram 
Algorithm 

HMMs & 
pitch contour 
Analysis 

Broad phonetic 
category segment- 
based features & 
neural networks 

SPEAKERS 

100 adult 
males 

(50 train 
50 test) 

150 

(Strain 
50 evaluate 
50 test) 

40 

(train and 
test sets 

unspecified) 

122 adult 
males 

(train and 
test sets 

unspecified) 

Not specified 

Not specified 

76 Males 
77 Females 

Not specified 

40 Males 
40 Females 

TYPE 
OF 

DATA 

Read 
Speech 

Phonetic 
trans. 
of text 
(no real 
speech) 

Read 
Speech 

Read 
Speech 

Spoken 
Speech 
(100 to 
5000 Hz) 

Speech 
from 
mdio 

(SNR 5 dB) 

Speech 
from 
radio 

(SNR 9 dB) 

Spoken 
speech 
( A V ~ .  SNR 
49.2 dB) 

Read 
Speech 
(0 - 4.5 kHz) 

Conversa- 
tional 
Speech 
(0 - 8 kHz) 

STUDY 

Texas 
Instru- 
ments 
(1 973-80) 

H O U ~ ~  
and 
Neuberg 
(1 977) 

Li 
and 
Edwards 
(1 980) 

Cimaru*i and 

lves 
(1 982) 

lves 
(1986) 

Foil 
(1986) 

Goodman 
et. a1 
(1 989) 

Sugiyama 
(1991) 

Savic 
et. a1 
(1991) 

Mu*usamy 
et. al 
(1 992) 

LANGUAGES 

7 
(not specified) 

American 
English, 
Chinese, Greek, 
Korean, Urdu, 
Japanesel 
Russian and 
Swahili (8) 

2 Asian & 
3 Indo- 
European 
(not 
specified) 

ky$;ArnCzech, 
Farsi, Korean, 

E3::n, 
Russian & 
Vietnamese (8) 

American 
English, Czech, 
Farsl, Korean, 
German, 
Mandarin, 
Russian & 
Vietnamese (8) 

3 
(not specified) 

Four different 
sets of 

languages 
(not specified) 

20 languages 
(CCITT SG-XII 
CD-ROM) 

English, 
Hindi, 
Mandarin & 
Spanish 

English, 
Japanese, 
Mandarin & 
Tamil 



of reference sequences with sufficient language specificity, and (ii) an acceptance level for 
hypothesized sequences, that rejected sequences that did not occur often enough to merit 
inclusion. 

Classification was based on the summed logarithms of the language likelihood estimates, 
given the occurrences of the reference sound sequences. Experiments were performed with 
sound sequences of different lengths. It was found that sequences of length 4 performed 
best on the training data: 88% correct classification of the 5 languages with an entropy 
threshold of 2.3 and acceptance level of 12.5%. A decision rule using sequences of length 5 
in combination with sequences of length 1 yielded 70% accuracy on the test data, with the 
same threshold values as above. 

Study 3. The third study [LD78] used an interactive approach to  the generation of ref- 
erence sounds: manual selection of reference sounds was followed by automatic isolation of 
the representative occurrences of these sounds from the speech data. The isolated sounds 
were then manually verified before further processing. This approach produced achieved 
comparatively better results than the previous two studies. 

Study 4. In the final study [Leo80], the interactive approach to  reference sound generation 
was extended to allow more accuracy in specifying reference sounds and more flexibility in 
the allowed types of reference sounds. Another improvement was the introduction of a 
criterion for rejection, i.e. not classifying an utterance when the basis for such a decision is 
not sufficiently strong. 

The data of the first three studies was augmented with speech from 17 speakers of 
language L7 (L6 was reserved for English) and 14 speakers of 1angua.ge Ls. There were now 
66 speakers in the training set and 65 speakers in the test set. 

The speech was digitized and the characteristic sound sequences determined using the 
improved interactive reference sound generation program. The initial reference file had 94 
sounds from the 7 languages. The training data was processed to automatically detect and 
count occurrences of these sounds to compute parameters of a decision function. After 
applying pruning techniques based on various thresholds, a file of 80 reference sounds was 
produced. The decision function for a language was defined to be the negative of the sum 
of the log-likelihoods for all detected reference sounds. The test data was then processed 
to detect and count reference sounds to evaluate decision function values (one for each 
possible language). The language with the minimum decision function value was chosen. If 
the difference between the smallest and next smallest decision function value was below a 
certain threshold, the speaker was rejected (the rejection criterion). 

With the 7-language 65-speaker test set consisting of 80 reference sounds, 62% accuracy 
was attained when no rejects were allowed, and 100% accuracy was achieved with a rejection 
rate of 68%. With the original 5-language 50-speaker test set consisting of 54 reference 
sounds, the corresponding figures were 72% and 100% with only a 56% reject rate. 

While it is clear that significant contributions to the field of automatic language identi- 
fication have been made by the TI effort, the extensibility of their general approach is open 
to question. Improved results were obtained in the latter two studies, in which automatic 
determination of reference sounds was replaced by an interactive process that required con- 
siderable human input. However, such manual determination of the reference sounds in 
the languages under consideration mandates the researchers' a priori knowledge of, and 
familiarity with the languages. This could severely limit addition of languages to  the iden- 
tification system. This weakness is apparent in the fourth study [Leo801 in which there is a 
degradation in performance (from 72% to 62%) with the addition of the two languages L7 
and Ls. The author attributes it to a lack of familiarity with the two languages resulting in 



selection of inappropriate reference sounds for these languages. Also, the database consisted 
of adult male speakers only. It is not clear how the systems would perform with female or 
young speakers. 

2.2 House and Neuberg 

House and Neuberg [HN77] demonstrated the feasibility of using acoustic features derived 
from broad phonetic categories of speech to identify languages. They reasoned that, since 
accurate phoneme recognition is beyond the current state-of-the-art, the information pro- 
vided by the broad phonetic categories (stop, fricative, vowel, silence) should be examined. 
They assumed that the sequence of broad phonetic categories of a language were produced 
by a Markov model, and that the parameters of the model could be estimated for a given 
language from sufficient training data. 

The data for this study consisted of manually generated phonetic transcriptions of text 
from each of the following eight languages: American English, Chinese, Greek, Japanese, 
Korean, Russian, Swahili and Urdu. 

Hidden Markov models were trained on sequences of broad phonetic category labels 
derived from these phonetic transcriptions, and perfect discrimination of the eight languages 
was obtained. 

It should be noted that this study did not make use of real speech, only phonetic 
transcriptions of text. With actual speech, manual segmentation is not feasible for large 
amounts of data. Also, it is not clear whether the differences between the scores for the 
different languages are statistically significant. 

2.3 Li and Edwards 

The Markovian techniques suggested by House and Neuberg were further developed by Li 
and Edwards and applied to actual speech data. Their work [LE80] represents some of 
the earliest efforts to develop statistical inference techniques to discriminate among real 
languages. They used a broad segmentation scheme to classify data into six acoustic- 
phonetic classes: 

1. syllabic nuclei (vowels and syllabic nasals, etc.) 

2. non-vowel sonorants (nasals, liquids, semivowels, and voiced stops and fricatives in 
intervocalic environments) 

3. vocal murmur (voice detection) 

4. voiced frication (voiced sibilants, fricatives, etc.) 

5. voiceless frication (voiceless sibilants, fricatives and aspiration of stops) 

6. silence and low energy segments (plosive gaps, If, h/ etc.) 

Based on these broad segmental classes, two statistical models for automatic language 
identification were developed: one based on segments and one ba.sed on syllables. The 
segmental models were implemented as either zero, first or second order Markov models 
and characterized segmental sequences in the languages. 

The syllable model was divided into two types, one based on inter-syllable-nuclei se- 
quences and one based on intra-syllable-nucleus segment sequences. The inter-syllable zero- 
order Markov model described segment sequences between two syllabic nuclei, which can 
be roughly paraphrased as characterizing possible consonant clusters in the languages. The 
intra-syllable model represented a syllable as a nucleus preceded or followed by up to  two 



segments (not including a neighboring syllabic nucleus), and approximated the internal 
structure of a syllable without requiring detection of specific syllable boundaries. The 
intra-syllable model was implemented as both zero and first order Markov models. 

The database consisted of read speech from 20 talkers of five languages, two Asian 
and three Indo-European. The two Asian languages were monosyllabic tonal languages 
with relatively simple consonant-vowel (CV) or CVC word structure. The three European 
languages represented two different language families, and were distinguished from the Asian 
languages by greater word length and more complex consonant clusters. 

The training database consisted of 200 minutes of speech (four minutes each from ten 
talkers for each of five languages) collected in a reading mode, for a total of about 42,000 
syllables and 150,000 segments. The test data was 100 minutes of read speech (two minutes 
each from ten talkers for five languages). 

The identification procedure consisted of moving a variable length analysis window 
through the training data and the independent test data. The analysis window was x 
segments (for the segment based model) or y syllables (for the syllable based models) where 
x and y were varied to cover an analysis period from 15 seconds to two minutes long. Each 
model was tested over a selected analysis window with each language accumulating a condi- 
tional probability of being the language tested. For each window, an accumulated weighted 
vote was obtained for each language based on the conditional probabilities. The window 
was then incremented by one element (segment or syllable) and the process repeated with 
new weighted votes accumulated until the data was exhausted for each talker. The language 
associated with the largest analysis-window vote for that talker was chosen as the correct 
language. 

The results of these techniques varied considerably across the various models, reaching 
a maximum of about 80% correct identification using the inter-syllable model for an inde- 
pendent test of 50 talkers (ten per five languages). An analysis of the confusions among 
languages indicates that the techniques distinguish the two major types of languages very 
well, that is, the Asian languages from the Indo-European languages. This suggests that a 
two-stage algorithm might be useful in language identification. The first stage divides the 
languages into major types, and the second stage examines the languages within each type 
in more detail and makes focused decisions based on known characteristics of that language 

type- 

2.4 Cimarusti and Ives 

Cimarusti and Ives [CI82] conducted a feasibility study of an approach to automatic lan- 
guage identificatjon that was not based on linguistic units such as acoustic-phonetic seg- 
ments or syllables. This approach applied pattern analysis techniques to acoustic features 
extracted from the speech signal. 

The data consisted of three minutes of read speech collected from five adult male speakers 
for each of the following eight languages: American English, Czech, Farsi, German, Korean, 
Mandarin, Russian and Vietnamese. The data was randomly divided into training and test 
sets. 

Using a 30 ms moving analysis frame with a 30 ms increment, 100 features derived from 
LPC analysis (including autocorrelation coefficients, ceps tral coefficients, filter coefficients, 
log area ratios and formant frequencies) were extracted. There were equal number of feature 
vectors in the training and test sets. 

A potential function was generated for all features in the training set. Using an iterative 
pattern analysis program, the complexity of a polynomial decision function was systemat- 
ically increased until all the vectors in the training set were separated into the properly 
identified languages (100% classification accuracy). When this "tuned" decision function 



was applied t o  the evaluation test set, the overall classification accuracy was 84%. The 
individual language classification scores ranged from 76.8% (American English) t o  93.4% 
(Korean). 

It is not clear whether all of the 100 features contributed to  the classification per- 
formance. Issues such as feature selection, and removal of redundant features were not 
examined. The absence of an independent, "uncorrupted" test set, and the fact that only 5 
speakers from each language were used makes it likely that the system is not truly speaker- 
independent. 

2.5 Ives 

Using an extended database for the same languages as the previous study, Ives [Ive86] 
developed an expert system for real-time automatic language identification. The goal of this 
effort was to  develop a set of rules which would minimize the time required for classification. 

The database used consisted of a total of 50 hours of speech from 122 male speakers from 
each of the following eight languages: American English, Czech, Farsi, German, Korean, 
Mandarin, Russian and Vietnamese. Exactly 720 five-second patterns were randomly chosen 
from each of the 8 languages for analysis. Thus, a total of 5760 patterns were used. The 
training and test set subdivisions were not mentioned. 

The classification logic was based on 50 distinguishing features. An empirical thresh- 
old algorithm converted these subjective distinguishing features into objective numerical 
boundaries or thresholds. These thresholds were used to  design a minimum set of nine pro- 
duction rules. Application of this rule set to  the test data resulted in classification scores 
ranging from 84% (Russian) to  99% (Vietnamese). The overall accuracy was 92%. 

The training and test sets use in this study are not specified. Also, the database had 
only male speakers. Performance of this system on female speakers is not known. 

2.6 Foil 

Foil [Foi86] was perhaps the first researcher to address speech recorded from radio under 
noisy conditions (the typical signal-to-noise ratio was 5 dB). He imposed an additional 
constraint that language recognition be made using less than 10 seconds of speech. 

The data used consisted of 10 hours of speech from each of three unspecified languages, 
each from a different major language group. One of them was Slavic, and another was 
tonal south-east Asian. The identity of the third group was not revealed. The training set 
consisted of 6 hours of speech, the development set had 1.5 hours of speech and the final 
evaluation set had 2.5 hours of speech. The number of speakers was not specified. 

Two techniques were explored, each designed to capture the language information in 
the speech signal. 

The first technique was based on the premise that prosodic features, such as rhythm and 
intonation patterns which vary from language to  language, could be the basis of a powerful 
language identification technique. In one configuration, a classical quadratic classifier was 
applied to  seven prosodic features extracted from pitch and energy contours in the speech 
signal. The recognition accuracy on the final test set, using an average of 5 seconds of 
speech for the identification decision, was 39%. This is only slightly better than chance, 
given the 3-way choice between the languages. 

A second technique was designed to  exploit the frequency of occurrence of characteris- 
tic sounds of a language by using formant frequency values and locations to  represent the 
sounds. In this configuration, a k-means clustering algorithm determined the 10 best for- 
mant vector clusters for each language, and a vector-quantization distortion measure was 



used as the basis for language decisions. The recognition accuracy on the final test set, 
using an average signal duration of only 4.5 seconds, was 64%, with a rejection rate of 11%. 

Considering the extremely noisy data used, the results of this study are impressive. The 
inclusion of a development test set, that was used to  provide feedback for the algorithm 
development process, seems to  have helped in "fine-tuning" the features used. The relatively 
high success rate can also be attributed to  the large volume of data used in the experiments. 

2.7 Goodman et  al. 

Goodman et al. [GMW89] enhanced Foil's formant extraction technique for language iden- 
tification by modifying and adding parameters, improving the classifier and reducing its 
channel sensitivity. A new formant peak-picking algorithm was devised that performed well 
even with very noisy speech. The original formant vector was augmented with log amplitude 
values at the formant frequencies, and time difference terms measuring the formant tran- 
sitions between significant phonetic events in the language. An improved voiced/unvoiced 
decision algorithm significantly reduced the number of false voicing errors. A k-means 
clustering algorithm similar to  the one used by Foil was used to  determine the 60 best 
formant-vector clusters for each language. The decision strategy was improved by the use 
of a weighted Euclidean distance measure instead of a Euclidean distance measure. 

The data consisted of a large (9.6 hours), noisy (signal-to-noise ratio: 9 dB), database of 
six languages, with 2.92 hours of speech in the training set, 2.78 hours in the development 
set and 3.9 hours in the final test set. The final evaluation was done on a larger database 
of four different language sets, including this six-language set, the original three-language 
set used by Foil, and two other geographical subsets. 

The recognition results were superior to the earlier algorithm in all four language sets 
(percentage values not mentioned). The error rate on Foil's original three-language set was 
reduced by more than 50%. A significant result was the insensitivity of the recognition 
accuracy to  the signal-to-noise ratio, indicating the robustness of the formant peak-picking 
algorithm. 

2.8 Sugiyama 

Sugiyama [Suggl] proposed two language identification algorithms that were based on vec- 
tor quantization and used acoustic features of the speech signal such as LPC coefficients, 
autocorrelation coefficients and A cepstral coefficients. 

The data was taken from a multilingual speech database distributed by NTT, Japan 
[IIK9O]. It consists of 16 sentences uttered twice by 4 male and 4 female speakers in each 
of 20 languages. The duration of each sentence is about 8 seconds. Both the training and 
test sets had approximately the same amount of data: around 21 minutes. 

The first algorithm was based on standard vector quantization (VQ). Each language, k, 
is characterized by its own VQ codebook, Vk, generated using the training sentences. In the 
recognition stage, input speech is quantized by Vk and accumulated quantization distortion, 
dk, is computed. The language with the minimum accumulated distortion is the recognized 
language. Several measures of spectral distortion were experjmented with. The recognition 
accuracy was 65% using 64 seconds of unknown speech. 

In the second technique, a universal codebook U = { u j ) ,  is generated using all training 
data. Each language k is characterized by its occurrence probability histogram hk. During 
recognition, each input sentence is quantized by U and its occurrence probability histogram, 
h(uj), is computed. The language which has the minimum distance between hk and h is 
the recognized language. A Euclidean distortion measure is used to determine histogram 



separation. With this technique, the overall recognition accuracy was 80% using 64 seconds 
of unknown speech. 

The results of this study are impressive, considering the large number of languages used. 
The individual language accuracies were not specified, so an analysis of the inter-language 
confusions is not possible. 

2.9 Savic et al. 

Savic et al. [SAG911 reported preliminary work on language identification using HMMs and 
pitch contours. The data consisted of 10 minutes of read speech in 4 languages: English, 
Hindi, Mandarin Chinese and Spanish. No quantitative results were specified. 

2.10 Muthusamy et al. 

Muthusamy et al. [MCG91, MC92] developed a $-language high-quality speech language 
identification system using a combination of knowledge-based features and artificial neural 
networks. The fundamental assumption underlying this research was that each language 
has an unique acoustic signature that can be characterized by the acoustic, phonetic, and 
prosodic features of speech. Phonetic, or segmental features, include the the inventory 
of phonetic segments and their frequency of occurrence in speech. Prosodic information 
consists of the relative durations and amplitudes of sonorant (vowel-like) segments, their 
spacing in time, and patterns of pitch change within and across these segments. 

The data for this research consisted of natural continuous speech recorded in a laboratory 
by 20 native speakers (10 male and 10 female) of American English, Mandarin Chinese, 
Japanese and Tamil. The speakers were each asked to speak a total of 20 utterances1: 15 
conversational sentences of their choice, two questions of their choice, the days of the week, 
the months of the year and the numbers "0" through "10". The objective was to  have a mix 
of unconstrained- and restricted-vocabulary speech. The average duration of the utterances 
was 5.4 seconds. The data was digitized at 16 kHz with 16-bit resolution. The training 
set consisted of 10 or 20 utterances from each of 14 speakers per language for a total of 
930 utterances. The test set consisted of 10 or 20 utterances from each of 6 speakers per 
language for a total of 440 utterances. 

The approach consisted of (a) neural network segmentation of the speech signal into 
seven broad phonetic categories: vowels, fricatives, stops, closures (silence and background 
noise), pre-vocalic sonorants, inter-vocalic sonorants, and post-vocalic sonorants; (b) design 
and computation of phonetic and prosodic features based on these broad category segments 
(e.g., inter-segment and intra-segment variation in pitch, duration statistics of the seven 
phonetic categories, frequency of occurrence of the seven categories, etc.), and (c) neural 
network classification of the languages using these features as input. 

The segmentation phase consisted of a neural network that assigned 7 broad phonetic 
category scores to each 3 ms frame of the utterance. The frame-by-frame output of the 
network was converted into a time-aligned sequence of broad phonetic category labels using 
a Viterbi search with duration and bigram probabilities. The segmenter network was trained 
with 304 spectral and waveform features computed in the vicinity of each training frame. 
The segmentation output agreed with the hand-la.bels of the test utterances 85.1% of the 
time. 

The language classification phase consisted of a second neural network that used features 
computed on the time-aligned broad phonetic category sequence to tell the languages apart. 
These features were designed to capture the phonetic and prosodic differences between the 

'Five speakers in Japanese and one in Tamil provided only 10 utterances each. 



languages. For example, an "inter- and intra-segment variation in pitch" feature was in- 
cluded specifically to distinguish Mandarin Chinese (a tonal language), from the other three 
languages which did not display such a large pitch variation within and across segments. 
Similarly, the presence of sequences of equal-length broad category segments in Japanese 
utterances led us to design an 5nter-segment duration difference" feature. A total of 80 
such phonetic and prosodic features were used. 

On test utterances that were 5.7 seconds long on the average, the identification accuracy 
was 79.6%. When trained and tested on longer utterances (obtained by concatenating 
triples of the utterances in the training and test set), the performance rose to 89.5% on test 
utterances that were 17.1 seconds long on the average. Note that these performance figures 
were obtained by training and testing on both the fixed and free vocabulary utterances. 
The corresponding figures for testing on just the free vocabulary utterances were 79.5% and 
88.5% respectively. 

Despite the small number of speakers used, we are encouraged by the results obtained 
with this broad phonetic segment-based approach to automatic language identification. 

3 Summary and Conclusions 

There have been only about a dozen studies in automatic language identification over the 
past two decades. The data have spanned the range from phonetic transcriptions of text 
to  telephone and radio speech. The number of languages has varied from three to twenty. 
The approaches to language identification have used "reference sounds" in each language, 
segment- and syllable-based Markov models, formant vectors, and acoustic, phonetic and 
prosodic features derived from broad phonetic categories. A variety of classification methods 
have been tried, including HMMs, expert systems, VQ, quadratic classifiers and artificial 
neural networks. 

While the performance figures of each study might look impressive in isolation, mean- 
ingful comparisons across studies is virtually impossible, for the following reasons: 

Many of the studies represent classified or sensitive research, so experimental details 
(e.g., languages used, method of data collection) are often not described. 

There is no common, public-domain database (cf. TIMIT) with which to evaluate 
different approaches to automatic language identification. 

We believe that basic research and the development of a public-domain, standardized, 
multi-language database are essential prerequisites to further adva.nces in automatic lan- 
guage identification. 
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