
The Effects of Virtually Addressed Caches
on Virtual Memory Design and Performance

Jon Inou ye
Ravindranath Konuru

Jonathan Walpole
Bart Sears

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Engineering

19600 N.W. von Neumann Drive
Beaverton, Oregon 97006-1999

Technical Report No. CS/E 92-010

The Effects of Virtually Addressed Caches
on Virtual Memory Design and Performance*

Jon Inouye, Ravindranath Konuru, and Jonathan Walpole
Department of Computer Science and Engineering

Oregon Graduate Institute of Science & Technology
(jinou ye, konuru, walpole@cse.ogi. edu)

Bart Sears
Hewlet t-Packard Laboratories

(sears@hplabs. hpl. hp. corn)

ABSTRACT

Recent times have witnessed rapid advances in microprocessor technology
resulting in an order of magnitude performance improvement every few years.
These developments in hardware have been paralleled by several prominent
trends in operating system design, the most notable being a move towards
message-passing micro-kernels. However, operating system performance has not
kept pace with that of the underlying 11ardwa.re. It has become apparent that
design changes to enhance processor performance can have adverse effects on
operating system performance. This problem arises when the architectural as-
sumptions implicit in an operating system's design are inappropriate for the
architectures on which it executes.

This paper examines one specific area in which operating system design as-
sumptions appear to be in conflict with trends in modern processor architecture.
We focus on the performa.nce effects of virtually addressed caches on two contem-
porary operating systems (Mach and Chorus). We present experimental results
to illustrate the impact of virtually addressed caches on the performance of
primitive virtual memory operations, and higher-level opera.tions, such as inter-
process communication, that utilize these primitive operations. The main goal
of the paper is to encourage operating system designers to revisit some of the
basic architectural assumptions implicit in modern operating system designs.

1 Introduction

There is an increasing awareness that operating system performance has not scaled
with hardware performance in recent years [Ousterhout 901. This decline in relative op-
erating system performance is attributable to conflicting design assumptions in operating
systems and the architectures on which they execute [Anderson et al. 911. In particular, it

'This research is supported by the Hewlett-Packard Company, Chorus Systkmes, and the Oregon Ad-
vanced Computing Institute (OACIS).

has become apparent that design changes to enhance processor performance can have ad-
verse effects on operating system performance. This problem arises when the architectural
assumptions implicit in an operating system's design are inappropriate for the architectures
on which it executes.

Cache design is a key area in which operating system assumptions about computer ar-
chitecture have become inappropriate. The design of many contemporary operating systems
is based on the implicit assumption of a physically addressed cache. However, the promi-
nent recent trend in computer architecture has been a move towards virtually addressed
caches in order to decrease cache access times (by allowing parallel translation look-aside
buffer (TLB) and cache lookups) and hence support shorter cycle times [Lee 89, Bakoglu
et al. 90, MIPS 901. Since processor speed is also increasing faster than memory access
speed, cache effects are becoming more and more important.

A salient feature of these virtually addressed cache architectures is that they often
impose the task of maintaining cidclress truvzslutioa consistency on software. Specifically,
address aliases must now be resolved by the virtual memory management component of the
operating system. This requirement has a major impact on the expense of certain primitive
virtual memory operations. For example, mapping multiple virtual addresses to the same
physical address can be more costly on architectures with virtually addressed caches.

Contrary to these developments in computer architecture, contemporary operating
systems make significantly more use of memory mapping techniques than their predecessors.
The prominent recent trend in operating system design is the emergence of micro-kernel
operating systems which construct higher-level operating system functionality from multiple
server components that interact via message passing [Accetta et al. 86, Armand et al. 891.
Since message passing is central to these systems, the efficiency of message passing is a
critical issue in their design. The most common approach to enha.ncing the performance of
message passing is to implement it using memory mapping operations. However, the validity
of this approach depends heavily on assumptions about the performance of certain primitive
virtual memory operations. This, in turn, depends on the underlying cache architecture.

This paper examines the architectural assumptions implicit in the virtual memory
designs of two contemporary operating systems and investigates the suitability of these as-
sumptions for architectures with virtually addressed caches. We determine, experimentally,
the effects of virtually addressed caches on the cost of various primitive virtual memory
operations as well as higher-level operations, such as interprocess communication (IPC),
that utilize these primitive operations. Performance figures are gathered from implemen-
tations of Mach and Chorus on Hewlett-Packa.rd Precision Architecture RISC (PA-RISC)
workstations.

Section 2 presents the ba.sic chara.cteristics of virtually addressed caches and discusses
the problems associated with them. Section 3 explores the architectural assumptions im-
plicit in contemporary virtual memory designs a.nd outlines the implementation of certain
primitive virtual memory operations on architectures with virtually addressed caches. The
performance of these primitive operations and the implications for higher-level operating
system performance, particularly IPC, is investigated in section 4. A brief survey of related
work is presented in section 5. Finally, section 6 presents our conclusions.

2 Vir tua l ly Addressed Caches

The key distinction between virtually and physically addressed caches is that virtu-
ally addressed caches are indexed using part of a virtual address rather than a physical
address. Virtually addressed caches offer potentially faster access times by avoiding the
delay associated with address translation. While a physically addressed cache requires the
TLB translation before it can be accessed, a virtually addressed cache can be accessed in
parallel with the TLB reducing the amount of time required for cache access.

Faster cache access times do not come without cost, however. Architectures that use
virtually addressed caches must resolve problems associated with homonyms and synonyms
[Koldinger et al. 91, Smith 831. Homonyms are created when a single virtual address is
mapped to two or more different physical addresses. This situation can arise on architec-
tures that support private per-process address spaces. Synonyms are created when two or
more virtual addresses are mapped to the same physical address. Because contemporary
architectures avoid homonyms by either providing a global address space or process tags for
each page table entry, we have concentrated on synonyms, henceforth referred to as address
aliases.

Address aliases are potentially dangerous because they can result in multiple copies
of the same data being present in the cache concurrently. Figure 1 illustrates the different
ways in which data can be replicated within the PA-RISC's virtually addressed cache. The
cache may also be indexed using a physical address when virtual translation is disabled or
certain privileged instructions are used. This may create additional address aliases if both
virtual and physical addresses are used for the same page. In figure 1, the physical address
of X is mapped to both the virtual address of A and B. Three distinct copies of the same
cache line containing X can appear in the cache as a result: one due to a reference to A ,
one due t o a reference to B , and a third due to a reference to the physical address of X. If
any of these values are modified or left in the caclte as stale data, the contents of the cache
will become inconsistent.

In order to ensure that correct values are returned for accesses via the cache, the cache
or higher-level software must maintain address translation consistency. Address translation
consistency is one facet of the more general problem of cache consistency. In the remainder
of the paper we will simply use the term cache consistency. This should not be confused
with multiprocessor cache consistency or split instruction and data cache consistency.

Many cache implementations, including the PA-RISC, store the physical page number
as part of the cache tag. This a.llows aliases falling within the same set to be resolved
by hardware. Such aliases are said to be cache aligned. Alias resolution between different
cache sets is a more difficult problem. Rather than resolving this problem in hardware, most
computer architectures pass the ca.che consistency problem up to the operating system, since
only the operating system can generate a.ddress aliases in the first place. In the remainder
of the paper we investigate the impa.ct of this approa.cl1 on contemporary operating systems
which generate large numbers of address aliases.

3 Vi r tua l M e m o r y Design Assumpt ions

A characteristic feature of contemporary operating systems is their increased use of
virtual memory operations to support functionality that was not previously associated with
virtual memory mana.gement. Exa.mples include support for IPC, shared memory, and lazy

Cache
Virtual Address Tag Data Physical Address

Tag 27

0

PhAddr X

virtual
page number page offset

Figure 1: Data replication caused by address aliases on the PA-RISC. The dashed arrows
represent the cache index calculated from the address.

copying of data. The primary motivation in using virtual memory operations to support
these features is to improve performance. However, the rationale for this approach is based
on a number of key assumptions about the relative costs of certain primitive virtual memory
operations.

physica

Set 0
[page number 1 p q e I

b, -- . . .
\ .

Set 1 \,

1 4 . Tag Cache Index

'\.\ \ '. VtAddr A
\

\

'\ VtAddr B

Set N

TagX

TagX

For example, consider the motivation for using memory mapping techniques, such as
copy-on-write, to support IPC. The rationale is that by mapping the data of a message,
rather than copying it, the operating system ca,n dela.y, and hopefully avoid altogether, the
cost of byte copying. This is an optin~istic approach that is makes the assumption that
modifying protection information aad setting up and maintaining a memory mapping is
cheaper than copying the data, and t11a.t the possible copying of data at a later time is not
significantly more expensive t11a.n copying it eagerly.

------..------
x

------..------
X

,

On architectures with physically a,ddressed caches, the trade-off between the cost of
copying and the cost of setting up and maintaining a mapping typically pays off for messages
beyond a few K-bytes in size. However, because of the overhead of managing consistency,
this is not necessarily the case on architectures with virtually addressed caches.

The standard operating system approach to resolving address aliases is to allow only
one instance of an alias to exist within the ca.che at any point in time. For example, if two
virtual addresses map to the same physical address, only one virtual address is allowed to
be present -in the cache at a,ny moment. This a.pproach is called pseudo-aliasing because
aliases are not allowed to occur within the machine-dependent layer of the virtual memory
system, but appear to be supported at higher layers. The effects of this technique on the
implementation of primitive virtual memory operations are illustrated below.

TagX

a Creating an initial mapping to a physical page requires the cache lines associated
with the pa,ge to be flushed if a.ny a.ccess has been made to the page using physical

X
------..------

addresses, unless the new mapping causes the page to become equivalently mapped1.

Creating a subsequent mapping to a physical page requires the previous mapping to
be invalidated, the TLB entry purged, and the cache lines associated with that page
t o be flushed. Sufficient information is maintained by the virtual memory system
to allow further accesses using the invalidated virtual addresses to cause a pseudo
page fault. The handling of a pseudo page fault involves validating the access and
restoring the old mapping by invaIidating any existing mapping to that physical page
and flushing the cache lines associated with it.

Invalidating mappings to a physical page requires the cache lines associated with the
page to be flushed, or purged, to avoid leaving stale data in the cache. Flushing is used
if the consistency of the physical page is important following the unmap operation.

Modifying a mapping to a physical page requires the cache lines associated with the
previous mapping to be flushed, the TLB entry purged, and the new mapping to be
established.

Pseudo-aliasing is not the oilly method for managing the consistency of a virtually
addressed cache. However, it is the basis for many other approaches, and the description
above illustrates the potential impact of these vistually addressed caches on virtual memory
design assumptions. In particular, setting up, maintaining, and destroying mappings to a
page involve cache flushes that are not necessary on architectures with physically addressed
caches. Depending on the magnitude of these costs, it may be necessary to alter virtual
memory designs and/or revisit the assumptions on which they are based. The remainder
of this paper attempts to initiate this process by presenting a quantitative and qualitative
study of the impacts of virtually addressed caches on primitive virtual memory operations.

4 Virtual Memory Performance on a Virtually Addressed Cache

The performance figures presented in this section were gathered from implementa-
tions of the Chorus v3.3 nucleus and Mach 2.0 running on Hewlett-Packard 9000/834 and
9000/835 workstations, respectively. Both systems use the PA-RISC 1.0 processor with
virtually addressed instruction and data caches. The write-back, two-way set-associative
data cache is 128 K-bytes in size with a 32-byte line size. Both systems use a physical page
size of 2 K-bytes. Mach used a logical page size of 2, 4, or 8 K-bytes, and Chorus used a
logical page size of 2 K-bytes.

4.1 Low-Level Virtual Memory Primitives

Virtually addressed caches have already been shown to affect the performance of
primitive virtual memory operations. Anderson, et al., noted that 536 out of the 559
instructions required to cha.nge a pa.ge table entry (PTE) for the Intel i860 are concerned
with flushing the virtually addressed ca.che [Anderson et al. 911. This caused the cost of
changing a PTE on the i860 to he an order of magnitude more expensive than changing
a PTE on the other platforms studied in the paper. Our experience with Chorus on the
PA-RISC reinforces these observations. The primary cost of changing a PTE on the PA-
RISC is cache flushing cost. Table 1 shows the cost (in microseconds) of selectively flushing

'A page is equivalently mapped if its virtual and physical addresses are cache aligned.

5

Ta.ble 1: Cache Flush Times (in psecs)

a data block from the data cache on a. Hewlett-Packard 9000/834 workstation2. The cache
state, Empty, Clean, and Dirty indicates whether all cache lines are not present, present
but clean, and present and dirty respectively. In mea,suring empty performance, the entire
data cache was flushed prior to the selective flush. Clean performance was measured by
flushing the entire data cache and then reading each line in the block prior to the selective
flush. Worst case performance was measured by writing each line in the block prior to the
selective flush.

Cache State

Clean

Table 2: Byte Copying Performance (in psecs)

In order to understand the potential impact of these cache flushing costs on PTE
operations, we measured the cost of unmapping a 2 K-byte page without flushing the cache.
This cost fluctuated between 15 and 20 psecs during the experiments. This variability is a
result of the time it takes to remove the PTE from the pa.ge table3. Adding the flush cost
to the unmap operation increases its cost by 150% in the best case and 1000% in the worst
case.

Cache State

Best Case
Worst Case

For comparison, table 2 illustra.tes the cost of byte copying on the same machine for
various cache states. In measuring the best case performance, we repeatedly copied data
from one buffer to another. This causes both the source and destination data to appear
in the cache4. To measure worst case performance, both the source and destination data
were flushed from the cache. The ca.che was then filled with dirty lines, by writing each line
in a 256 K-byte buffer that did not overlap either the source or destination buffer, before
measuring the cost of copying from the source to the destination.

The figures presented above show tha.t, under certain circumstances, the cost of copy-
ing a page can be similar to, or even faster than, flushing the pa.ge. In particular, copying

Number of Bytes Copied

2We used the HP-UX routine pdcacheo which flushes 16 cache lines per loop iteration.
3The PA-RISC uses a hashed inverted page table and all PTE's falling into a hash bin are organized as

a linked list which must be traversed to find the preceding entry in order to delete a PTE.
'The source and destination buffers were chosen so they would not be cache aligned. While this may not

be significant on a two-way set,-associative cache it can affect performance on a direct mapped cache.

1 I<b
57

212

4 Kb
224
793

2 I<b
113
408

8 Kb
446

1562

a page that is completely in the cache to a page that is also completely in the cache (best
case copy) is faster than flushing the same page from the cache when the lines are dirty
(worst case flush). This is beca.use flushing dirty lines requires access to physical memory,
whereas cache to cache copying does not. Of course, it is highly likely that the dirty lines
left in the cache by a copy will eventually need to be written back to memory.

The performance figures presented above illustrate that a significant portion of the
cost of primitive virtual memory operations on architectures with virtually addressed caches
can be associated with cache flushing. This cost is not present on physically addressed cache
architectures. Furthermore, different cache states can lead to considerable variation in the
relative performance of primitive mapping and copying operations.

It is apparent that moving an operating system from an architecture with a physically
addressed cache to one with a virtually addressed cache can change the relative costs of
various low-level virtual memory operations. In order to understand the significance of
these changes, the following subsections study higher-level opera.ting system functionality
that makes implicit assumptions about these relative costs. In particular, we focus on the
use of virtual memory operations to support IPC and page initialization.

4.2 Chorus IPC Performance

Chorus supports two variants of IPC. The first variant is semantically a copy of the
message from the sender's address spa.ce to the receiver's. The second is semantically a
move. The main distinction is t11a.t the contents of the sender's message buffer are un-
defined following a send-by-move. The implementa.tion of each of these IPC variants is
optimized for good performa.nce, particularly on physically addressed cache architectures.
These optimizations are used when messa,ge data is page-aligned and multiple-page-sized.
For such data, the Chorus IPC-copy is implemented as follows5:

1. The sender writes the message to a send buffer in its address space and then calls
ipcsend.

2. The IPC system allocates a new physical pa.ge.

3. The IPC system obtains a virtual a.ddress in the kernel address space and uses it to
map the newly allocated physical page (the IPC b u f f e ~) ~ .

4. The IPC system copies the sender's data into the IPC buffer, i.e., it copies from
addresses in the sender's address space to addresses in the kernel's address space.
The speed of this copy depends on the state of the cache at the time of the copy.
Since the IPC buffer has only just been allocated, it is liltely that the destination
addresses of the copy will not be in the cache. The source of the copy may be in the
cache if the sender writes the messa.ge immediately before sending.

5. The IPC system checks whether the virtual page of the receive buffer in the receiver's
address space is currently mapped to a physical pa.ge. If it is, the page is unmapped

5Each step is repeated for every page in the message before the next step is started.
'Rather than using physical addresses, Chorus maps all physical memory into a special section of the

kernel's address space.

and destroyed, resulting in a cache flush. If the page is not shared, then the contents
can be purged instead of flushed7.

6. When the receiver calls ipcReceive, the IPC system unloads the page used for the
IPC buffer from the kernel address space. This requires a cache flush. Note that
all the dirty lines in the page must be written back to memory a t some point either
before or during this fiush operation.

7. The IPC system lazily maps the physical page used for the IPC buffer into the re-
ceiver's address space, i.e., the physical page is associated with the receiver's segment
cache8, but the mapping is not set up until the receiver attempts to access the page.

8. The receiver accesses the page containing the receive buffer. This causes a pseudo
page fault which forces the mapping of the physical page containing the data into the
receiver's address space. This does not require a cache flush because the page was
unmapped during step 6 .

Note that the IPC operation described above is semantically a copy, but is imple-
mented as a copy from the sender to the kernel, plus a move from the kernel t o the receiver.
This is an optimization based on the a.ssumption that remapping a page from the kernel to
the receiver is cheaper than copying it. We will revisit this assumption a little later.

Chorus IPC-move is implemented as follows:

1. The sender writes the message to a send buffer in its address space and then calls
ipcSend.

2. The IPC system unloads the page from the sender's address space. This requires a
cache flush which may involve a number of dirty cache lines if the sender writes the
message immediately before sending.

3. When the receiver calls ipcfleceive, the IPC system determines whether the receiver
has a physical page allocated to the receive buffer. If so, it unmaps and destroys the
page. This requires a cache flush (or purge if the pa.ge is not shared).

4. The IPC system lazily maps the physical page used for the sender's message buffer
into the receiver's address space.

5. As described in the IPC-copy example above, the receiver takes a page fault when
it first attempts to access the pa.ge. This causes the page to be mapped into the
receiver's address space. Note that the contents of the receiver's buffer will not be
present in the cache after an IPC-move operation.

The IPC implementa.tion outlined a.bove is based purely on remapping. On physi-
cally addressed caches, this is expected to offer better performance than an implementation
based on copying. This alone, however, does not espla.in the use of move rather than copy

7The cost of a purge is iltdepeltdent of cache state and faster than the best case flush on the PA-RISC.
However, the current implementation of the nucleus always flushes when unloading because it does not
differentiate page unloads prior to mapping from unloads prior to destruction.

'A segment is Chorus' abst,raction for storage. A segment cache is a collection of physical pages used to
cache parts of a segment.

semantics however. Copy-on-write techniques can be used t o implement IPC that is seman-
tically a copy without any physical byte-copying (as in Mach). Operating systems, such as
Accent, have shown that copy-on-write IPC can outperform IPC based on byte-copying on
many physically addressed cache architectures [Fitzgerald and Rashid 861. The motivation
for using move semantics rather than copy-on-write (or copy-on-reference) is that i t avoids
the overhead of maintaining information about shared physical pages. Manipulation of the
da ta structures (shadow objects in Mach [Rashid et al. 881, and history objects in Cho-
rus [Abrossimov et al. 891) for managing this information can be expensive [Nelson and
Ousterhout 881.

The key point is that both copy-on-write and move-based IPC are based on the implicit
assumption that remapping a page is dramatically cheaper than actually copying it. It
has been argued that the difference in performance on physically addressed caches more
than offsets the additional complexity of mapping, even for copy-on-write. In Chorus the
difference in performance between the copy and move-based IPC variants is expected t o be
large enough t o warrant the use of the less pala,ta.ble move semant,ics for some applications.

In order t o test the validity of this contention, we implemented a third variant of
Chorus IPC. This variant, which would be considered naive on physically addressed cache
architectures, is semantically a copy. It is implemented as two copies: one from the sender
t o the kernel, and the other from the kernel to the receiver. Our implementation involves
the following steps:

1. The sender writes the message to a send buffer in its address space and then calls
ipcSend.

2. The IPC system obtains a virtual address for an IPC buffer in the kernel address
space. If no such buffer exists, a new physical page is allocated and mapped t o the
returned virtual address. A ca.che flush is unnecessary in either case. In the former
case the original mapping is being used and the entire page is about t o be written
blindly. In the latter case the page was not previously mapped.

3. The IPC system copies the sender's data into the IPC buffer. The speed of this copy
depends on the state of the cache a t the time of the copy. If an existing IPC buffer
was allocated in the previous stage, a.nd if that buffer was recently used, it is possible
that the destination of the copy will a1rea.d~ be in the cache. Similarly, if the sender
has recently written the niessa.ge to the send buffer it is possible that the source of
the copy will also be in the ca.che, i.e., in the best case this can be a cache t o cache

COPY.

4. When the receiver calls ipcReceive, the IPC system copies the message from the IPC
buffer t o the receive buffer in the receiver's address space.

5. The receiver accesses the pa,ge containing the receive buffer. Since the da ta has been
copied rather than mapped into the receive buffer, the IPC operation has a chance t o
warm the cache. This is only significa.nt if the receiver reads the message soon after
receiving it.

Table 3 presents a. comparison of the costs of these different IPC variants. The numbers
represent the cost of a uni-directiona.1 ipcSend operation containing various amounts of data.

Table 3: Local Page-Aligned, Page-Sized ipcSend Cost (in psecs)

I Operation I null I 1 KB 1 2 KB 1 4 KB 1 8 KB 1 16 KB 1

In each experiment two separate Chorus user actors, a client and a server, are created with
their own communication ports. During each message exchange, the client writes every
word in its buffer, checks the time, and sends the message to the server using an ipcSend
system call. Once the server receives the message, it reads one word from each page of
the message, and then checks the timeg. The time of reception is then passed back to the
client and the server waits for the next messa.ge. We repeatedly performed these message
exchanges until the average message time did not fluctuate significantly. In all three cases,
the sender's and receiver's buffer were not cache aligned, i.e., they did not compete for the
same cache sets.

Table 3 shows that for page-aligned, multiple-page-sized messages, the pure-copy IPC
approach outperforms both the Chorus IPC-copy and IPC-move. In this experiment, Chorus
IPC-move requires two flushes (the sender's buffer and the receiver's old buffer) and a page
fault for each page in the message. Flushing the sender's buffer is very expensive since the
sender writes every word prior to sending the message. The cost of flushing the receiver's old
buffer is a best case flush since no lines are written by the receiver during the experiment.

I I I 1

Each message exchange requires two copies for the pure-copy IPC. A closer examina-
tion of the pure-copy experiment revealed that IPC buffers were being recycled. Instead of
being passed to the receiver as in the IPC-copy experiment, buffer pages were being reused
for the next message exchange. Since the receiver's buffer was constantly being written, it
was also present in the cache. Because of this situation, our measurements of the pure-copy
performance involved two best case copy costslO. From table 1 and table 2 we can see that
the sum of a best and worst case cache flush is less than the sum of two best cache copies.
The IPC-move performance is worse t1ia.n the pure-copy performa.nce because of the cost of
the fault required to map the messa.ge into the receiver's address space.

5097
4225
3806

Chorus IPC-copy
Chorus IPC-move
Pure-copyIPC

In order to confirm this, we measured the cost of taking a pseudo page fault in the
IPC-move operation and found it to be around 400 psecs, which is a.pproximately the cost of
the worst case copy. If Chorus eagerly mapped the page instead of doing it lazily this page
fault could be avoided.ll. An IPC-move implementation that eagerly mapped the message
would outperform the pure-copy IPC in this experiment.

9562
7649
7273

When interpreting these performance figures it is important to note that there are
several hidden costs that did not show up in table 3, but may show up in measurements of
overall system performance. In the v3.3 kernel, the move semantics may result in a page

337

N/A
N/A

'Times were taken using the processor's interval timer, a 1/15 1-second resolution clock register.
''There is also the additional cost of setting up a recovery mechanism whenever copies take place between

user actors and the kernel.
"We learned that later versions of the virtual memory manager do perform eager mapping.

786

N/A
N/A

1668
1531
1355

2838
2424
2282

fault when the sender attempts to access the contents of the virtual page previously sent
using an IPC-move. This page fault alloca.tes a new physical page to replace the physical
page sent to the receiver.

Pure copying also conta.ins some hidden costs involving dirty cache lines. Copying
to the IPC buffer and then to the receiver 1ea.ves dirty cache lines belonging to the pages
representing the IPC buffer and receiver. These cache lines will need to be written back to
memory when they are replaced12. Note that copying to the receiver will leave the receiver's
message data in a "warm" cache state while remapping it will leave the data in a "cold"
cache state.

In this example we have shown that operating system designers need to be careful
about making implicit assumptions about the cache design of the machine. The Chorus
optimization of passing messages by moving pages (remapping) assumes remapping a page
is significantly faster than copying it. This assumption ignores the cost of unmapping a
page on machines using virtua.11~ addressed caches. Our results show that on such machines,
pure-copy IPC may perform close enough to Chorus IPC-move to override the performance
incentive of using the less desirable move sema.ntics. The important lesson is that the flush
overhead of handling a remapping may balance the costs between copying and manipulating
PTE's. The next section analyzes the impact of flushes caused by the use of physical
addressing.

4.3 Mach pmap Performance

The machine-dependent section of the Mach virtual memory (VM) system is the
pmap module. The original Ma.ch design tried to make very few assumptions about the
VM hardware capabilities of the ma.chine. They needed the capability to initialize a new
page in order to satisfy a page fault and needed to guarantee that no other thread in a
multiprocessor system would be able to access that page until it was completely mapped.
The method used was to leave the page unmapped and to access the page using physical
addresses until the page was co~npletely initialized. A t that point, the page could be mapped
and would be available to all. This solution requires very little hardware support and works
well on machines with a physically addressed ca.che. There is no performance penalty to
access a page using its physical address and tha,t access may even go faster than a virtual
access as it is not necessary to go through the TLB to get the virtual-to-physical translation.
Unfortunately, while the routines which a.ctua.11~ initialize and map a page are part of the
pmap module, the routines which decide not to ma.p the page until it has been initialized
are in the machine independent code, even though the choice to access the page in physical
mode has the implicit machine-dependent assu~nption that this is an efficient way to access
a page. In addition to unmapping costs discussed in the previous section, this assumption
is incorrect on a machine with a virtually addressed cache.

Before accessing a page using its physical address, it is necessary to flush any virtually
indexed lines of that page from the cache. After accessing the page, it is necessary to flush
the physically indexed lines of that page before mapping it to a virtual address. It is worth
noting that because the copy was done with physica,l addresses, none of the data has been
"prestaged" in the cazhe by the copy (i.e., when the page is finally used, the cache will

''The lines belonging to the IPC buffer may be purged once the message has been sent, but the next copy
t o that buffer will need to access physical memory for each line in the message.

be "cold"). If a given virtually addressed machine has the capability of mapping a page
but marking it as NO-ACCESS for everyone including the kernel (except for a couple of
special routines which are only used to initialize these pages), it is possible to do the page
initialization safely using virtual addresses instead of physical addresses. The examples
below show how this works and explains why this is a performance win on a machine with
a virtually addressed cache.

Copy-on-write memory is typically marked as read-only until a process writes to the
page. At that point, a new page is allocated, the old page is copied to the new page and
the writing process gets a private writable page. For these examples, we assume that the
original page is at least partially in the cache (due to reads or writes before it was marked
copy-on-write or due to reads after that point) and that the new page (probably from the
free pool) is not in the cache.

Case 1: On a physically addressed cache architecture, the old page is copied to the
new page. This involves a copy from a partia,lly wa,rm page to a cold page. After
the copy, the new page would be warm, which is an adva,nta.ge as the user is
actively using this page (which is why we faulted).

Case 2: On a virtually addressed cache architecture using the original Mach code, the
old page would be flushed, there would be a physical-to-physical copy from the
old (now cold) page to the new (cold) page, the physical lines (warm) for the old
page would have to be flushed from the cache, and the new (now warm) page
would have to be flushed and then mapped. At this point the new page is cold.
With a little bit of extra work in the copy routine (machine-dependent), it is
possible to look up the virtual address of the original page and do a virtual-to-
physical copy which at least saves the double flush of the old page. This would
be even faster if the copy routine was given the virtual address of the old page.

Case 3: On a virtually addressed machine which can protect a page as NO-ACCESS,
it is possible (in the Mach machine independent code) to map the new page (no
flush is necessary as the page is known to be cold since it is from the free pool)
and then do a copy from a warm virtual address to the new cold virtual address.
As in ca.se 1 above, after the copy the new pa.ge will be warm.

Case 1 and 3 above have the sa,lne rela,tive cost since in both cases, the majority of
the work is the copy from a warm page to a cold page. Using the data from section 4.1, it
can be shown that case 2 is much more expensive. At best, it requires the flush of the warm
physically addressed new pa.ge and the cost to copy a cold page to a cold page. Without
the optimization of doing a. virtual-to-physical copy, it takes a double flush of the old page
and a single flush of the new pag.e in addition to the cost of a cold-to-cold copy.

The Tut project at Hewlett-Packard Labora.tories measured a 1-3% overall system
improvement on several different benchmarks when changing from case 2 above to case
3 [Chao et al. 901. This change involved nmking some minor modifications to the Mach
machine-independent code. As in section 4.2, the iinportan t point is that operating system
designers need to be careful about their implicit assumptions about the cache design of the
machine.

5 Related Work

Both hardware and software solutions to the synonym problem have been proposed.
Hardware designers have attempted to avoid making the cache visible to software by pro-
viding special hardware to detect aliases [Smith 831. One hardware mechanism, loosely
called a reverse translation buffer (RTB), allows aliases to be detected within the cache.
On a cache miss, the TLB produces a physical address and the subsequent request to main
memory is made in parallel with an RTB search. If the RTB produces a virtual address that
is already present in another cache line, the line must be renamed and moved to the new
location. As alluded to in section 2, an RTB implementation can be very simple if aliases
can be forced to fall within the same set, i.e., if aliases are cache aligned. It is possible to
force aliases t o be cache aligned by using only the page offset bits to index the cache. This
scheme limits the cache size to the logical page size multiplied by the cache set-associativity.
The drawback of this solution is that it results in small cache sizes unless a high degree of
associativity is supportedI3.

Commercial operating systems have a.voided problems with virtually addressed caches
by limiting alias generation. Most versions of Hewlett-Packard's HP-UX operating system
do not support copy-on-write memory or the UNIX mrnap0 system call14. Shared text is
implemented by sharing the same globa.1 virtual address segment instead of using memory
mapping. System V shared memory is supported only if each shared memory segment is
used at the same virtual address by each process using it [Clegg et al. 861.

The Tut project at Hewlett-Packaxd Laboratories ported Mach 2.0 to PA-RISC and
compared simple minded cache flushes to prevent aliases with both using read-only aliasing
and the shared global address spa.ce techniques present in HP-UX [Chao et al. 901. (Read-
only aliasing allows virtual address alia,sing of rea.d-only memory to exist at the hardware
level. Since the memory is shared read-only, there is no consistency problem as long as
all aliases are purged from the ca.che if the memory becomes writable again.) Using read-
only aliasing significantly improved the overall system performance (6-10%). Using both
read-only aliasing and the shared global address space gave an additional 2-3%. This was
on a machine with a large cache and a large number of TLB entries. It is expected that
the addition of shared global address space techniques will give even better performance on
machines with small caches and small TLBs as the replicated cache lines and TLB entries
needed for pure read-only aliasing will have a bigger negative impact.

Several modifications to SunOS Release 3.2 were necessary to manage the virtually
addressed cache in the Sun-3 series 200 workstation [Cheng 871. Three methods were used
t o maintain cache consistency: flushing the page on any address mapping invalidation,
cache alignment points (1281<), and non-cacheable pages. Measurements showed that cache
flushing costs were smaller than expected. Tlle worst benchmark result showed that 3.0%
of the total time was spent flushing the cache. In this benchmark, increased use of the
Direct Virtual Memory Access (DVMA) operation caused ma.ny page flushes. The DVMA
operation creates a new address lnappi~lg (to the DVhiIA region) for a page which already
contains a virtual address. This requires one cache flush when establishing the new DVMA
mapping, and another upon completion.

The Sprite operating system used a combination of copy-on-write (COW) and copy-on-

13Associativity can be very expensive in integrated primary caches.
'*This functionality is supported by certain versions of HP-UX 8.0 .

reference (COR) during process creation [Nelson and Ousterhout 881. In this modification
of a pure COW scheme, a fork operation causes the pages of the parent t o be marked copy-
on-write, and the child's pages to be marked copy-on-reference. One of the reasons behind
the choice of COW-COR over a pure COW mechanism was the existence of a virtually
addressed cache. Sprite was targeted to run on the Spur workstation, a virtually addressed
cache architecture [Wood et al. 861. Because the SPUR'S virtually addressed cache stored
protection information in cache lines, any change in a page's protection required the contents
of the page t o be flushed from the cache. This cost associated with a protection change
is not as expensive on the PA-RISC since protection information is stored in the TLB.
Changing the protection of a page requires purging a TLB entry instead of cache lines.

We have concentrated on address translation consistency in single processor environ-
ments. However, other researchers have already begun t o study the problem of multipro-
cessor virtually addressed cache consistency [Cheriton et al. 86, Goodman 871.

6 Conclusion

In this paper we ha.ve examined the effect of virtually addressed caches on primitive
virtual memory operations. In addition, we ha,ve shown how the cost of these primitive
operations can affect design decisions in higher order operations in Mach and Chorus. Both
Chorus' IPC and Mach's pmap were designed assuming physically addressed cache archi-
tectures.

In the case of Chorus IPC, we have shown the effect that virtually addressed caches
have on page remapping performance. Unmapping a page requires all its virtually addressed
lines t o be flushed from the cache. The cost of an unmap operation can cause a simple pure-
copy implementation to perform comparably with a Chorus IPC-move operation.

The Mach pmap experiment showed that by ignoring the underlying cache architec-
ture, virtual memory designs can suffer unilecessary performance degradation. By making
minor modifications in the ma.chjne-independent sections to allow for machines with differ-
ent cache designs, it may be possible, as it wa.s in this experiment, to run both on machines
with physically addressed ca.ches aad ma.chines with virtually a.ddressed caches with no
performance penalty.

If operating systems continue to receive the burden of providing address translation
consistency, operating system designers will need to re-evaluate their design decisions re-
garding the cost of virtual memory opera.tions. We have shown that the failure t o take into
account cache designs can ha.ve significa.nt effects on operating system design and perfor-
mance.

References

[Abrossimov et al. 891 Abrossimov, V., Rozier, M., and Shapiro, h/l. (1989). Generic Virtual
Memory Management for Operating System Kernels. In Proceedings of the 12th ACM
Symposium on Operating Sgstems Principles.

[Accetta et al. 861 Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian,
A., and Young, M. (1936). Mach: A New Kernel Foundation For UNIX Development. In
Proceedings of the 1986 Szinzrner USEI?I,'I Conference, pages 93-112, Atlanta, Georgia.

[Anderson et al. 911 Anderson, T. E., Levy, H. M., Bershad, B. N., and Lazowska, E. D.
(1991). The Interaction of Architecture and Operating System Design. In Proceedings
of the Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 108-120, Santa Clara, CA.

[Armand et al. 891 Armand, F., Gien, M., Herrmann, F., and Rozier, M. (1989). Revolution
89 or "Distributing UNIX Brings it Back to its Original Virtues". In Proceedings of the
Workshop on Experiences with Building Distributed and Multiprocessor Systems. Also
published as technical report CS/TR-89-36.

[Bakoglu et al. 901 Bakoglu, H. B., Grohoski, G. F., and Montoye, R. K. (1990). The
IBM RISC System/6000 processor: Hardware Overview. IBM Journal of Research and
Development, 34(1):12-22.

[Chao e t al. 901 Chao, C., Mackey, M., and Sears, B. (1990). Mach on a virtually addressed
cache architecture. In Proceedings of the USENIX Mach Workshop.

[Cheng 871 Cheng, R. (1987). Virtual Address Cache in UNIX. In Proceedings of the
Summer 1987 USENIX Technical Conference and Exhibition, pages 217-224.

[Cheriton e t al. 861 Cheriton, D., Slavenburg, G. A., and Boyle, P. (1986). Software-
Controlled Caches in the VMP Multiprocessor. In Proceedings of the 13th Annual Inter-
national Symposium on Computer Architecture, pages 366-374.

[Clegg et al. 861 Clegg, F. W., Ho, G. S.-F., Kusmer, S. R., and Sontag, J. R. (1986). The
HP-UX Operating System on HP Precision Architecture Computers. Hewlett-Packard
Journal, 37(12):4-22.

[Fitzgerald and Rashid 861 Fitzgerald, R. and R.ashid, R. (1986). The Integration of Virtual
Memory Management and Interprocess Communication in Accent. A CM Transactions
on Computer Systems, 4(2):147-177.

[Goodman 871 Goodman, J. R.. (1987). Coherency For Multiprocessor Virtual Address
Caches. In Proceedings of the Second International Conference on Architectural Support
for Programming La.ng~inges and Operating Systems, pages 72-81.

[Koldinger et al. 911 Koldinger, E. J., Levy, H. M., Chase, J. S., and Eggers, S. J. (1991).
The Protection Lookaside Buffer: Efficient Protection for Single-Address Space Com-
puters. Technical Report 91-11-05, University of Washington, Department of Computer
Science & Engineering. In preparation.

[Lee 891 Lee, R. B. (1989). Precision Architecture. IEEE Computer, 22(1):78-91.

[MIPS 901 MIPS (1990). JVIIPS R4UUO Prelinzinary Users Guide. MIPS Computer Systems
Inc. Preliminary Revisioil 2.0.

[Nelson and Ousterhout 881 Nelson, M. and Ousterhout, J. (1988). Copy-on-Write For
Sprite. In Proceedings of the 1988 Summer USENIX Conference, pages 187-201.

[Ousterhout 901 Ousterhout, J. I<. (1990). Why Aren't Operating Systems Getting Faster
As Fast as Hardware? In Proceerlings of the Summer 1990 USENIX Conference, pages
247-256, Anaheim, CA.

[Rashid et al. 881 Rashid, R., Jr., A. T., Young, M., Golub, D., Baron, R., Black, D.,
Bolosky, W. J., and Chew, J. (1988). Machine-Independent Virtual Memory Manage-
ment for Paged Uniprocessor and A.lultiprocessor Architectures. IEEE Transactions on
Computers, 37(8):896-908.

[Smith 831 Smith, A. J . (1983). Ca.che memories. ACM Computing Surveys, 14(3):473-530.

[Wood et al. 861 Wood, D. A., Eggers, S. J., Gibson, G., Hill, M. D., Pendleton, J . M.,
Richie, S. A., Taylor, G. S., I<atz, R. H., and Patterson, D. A. (1986). An In-Cache
Address Translation Mechanism. In Proceedings of the 13th Annual International Sym-
posium on Computer Architecture, pages 358-365.

