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ABSTRACT 

Recent times have witnessed rapid advances in microprocessor technology 
resulting in an order of magnitude performance improvement every few years. 
These developments in hardware have been paralleled by several prominent 
trends in operating system design, the most notable being a move towards 
message-passing micro-kernels. However, operating system performance has not 
kept pace with that of the underlying 11ardwa.re. It has become apparent that 
design changes to enhance processor performance can have adverse effects on 
operating system performance. This problem arises when the architectural as- 
sumptions implicit in an operating system's design are inappropriate for the 
architectures on which it executes. 

This paper examines one specific area in which operating system design as- 
sumptions appear to be in conflict with trends in modern processor architecture. 
We focus on the performa.nce effects of virtually addressed caches on two contem- 
porary operating systems (Mach and Chorus). We present experimental results 
to  illustrate the impact of virtually addressed caches on the performance of 
primitive virtual memory operations, and higher-level opera.tions, such as inter- 
process communication, that utilize these primitive operations. The main goal 
of the paper is to  encourage operating system designers to revisit some of the 
basic architectural assumptions implicit in modern operating system designs. 

1 Introduction 

There is an increasing awareness that operating system performance has not scaled 
with hardware performance in recent years [Ousterhout 901. This decline in relative op- 
erating system performance is attributable to conflicting design assumptions in operating 
systems and the architectures on which they execute [Anderson et al. 911. In particular, it 
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has become apparent that design changes to  enhance processor performance can have ad- 
verse effects on operating system performance. This problem arises when the architectural 
assumptions implicit in an operating system's design are inappropriate for the architectures 
on which it executes. 

Cache design is a key area in which operating system assumptions about computer ar- 
chitecture have become inappropriate. The design of many contemporary operating systems 
is based on the implicit assumption of a physically addressed cache. However, the promi- 
nent recent trend in computer architecture has been a move towards virtually addressed 
caches in order to  decrease cache access times (by allowing parallel translation look-aside 
buffer (TLB) and cache lookups) and hence support shorter cycle times [Lee 89, Bakoglu 
et al. 90, MIPS 901. Since processor speed is also increasing faster than memory access 
speed, cache effects are becoming more and more important. 

A salient feature of these virtually addressed cache architectures is that they often 
impose the task of maintaining cidclress truvzslutioa consistency on software. Specifically, 
address aliases must now be resolved by the virtual memory management component of the 
operating system. This requirement has a major impact on the expense of certain primitive 
virtual memory operations. For example, mapping multiple virtual addresses to  the same 
physical address can be more costly on architectures with virtually addressed caches. 

Contrary to  these developments in computer architecture, contemporary operating 
systems make significantly more use of memory mapping techniques than their predecessors. 
The prominent recent trend in operating system design is the emergence of micro-kernel 
operating systems which construct higher-level operating system functionality from multiple 
server components that interact via message passing [Accetta et al. 86, Armand et al. 891. 
Since message passing is central to these systems, the efficiency of message passing is a 
critical issue in their design. The most common approach to enha.ncing the performance of 
message passing is to implement it using memory mapping operations. However, the validity 
of this approach depends heavily on assumptions about the performance of certain primitive 
virtual memory operations. This, in turn, depends on the underlying cache architecture. 

This paper examines the architectural assumptions implicit in the virtual memory 
designs of two contemporary operating systems and investigates the suitability of these as- 
sumptions for architectures with virtually addressed caches. We determine, experimentally, 
the effects of virtually addressed caches on the cost of various primitive virtual memory 
operations as well as higher-level operations, such as interprocess communication (IPC), 
that utilize these primitive operations. Performance figures are gathered from implemen- 
tations of Mach and Chorus on Hewlett-Packa.rd Precision Architecture RISC (PA-RISC) 
workstations. 

Section 2 presents the ba.sic chara.cteristics of virtually addressed caches and discusses 
the problems associated with them. Section 3 explores the architectural assumptions im- 
plicit in contemporary virtual memory designs a.nd outlines the implementation of certain 
primitive virtual memory operations on architectures with virtually addressed caches. The 
performance of these primitive operations and the implications for higher-level operating 
system performance, particularly IPC, is investigated in section 4. A brief survey of related 
work is presented in section 5. Finally, section 6 presents our conclusions. 



2 Vir tua l ly  Addressed  Caches  

The key distinction between virtually and physically addressed caches is that virtu- 
ally addressed caches are indexed using part of a virtual address rather than a physical 
address. Virtually addressed caches offer potentially faster access times by avoiding the 
delay associated with address translation. While a physically addressed cache requires the 
TLB translation before it can be accessed, a virtually addressed cache can be accessed in 
parallel with the TLB reducing the amount of time required for cache access. 

Faster cache access times do not come without cost, however. Architectures that use 
virtually addressed caches must resolve problems associated with homonyms and synonyms 
[Koldinger et al. 91, Smith 831. Homonyms are created when a single virtual address is 
mapped to two or more different physical addresses. This situation can arise on architec- 
tures that support private per-process address spaces. Synonyms are created when two or 
more virtual addresses are mapped to the same physical address. Because contemporary 
architectures avoid homonyms by either providing a global address space or process tags for 
each page table entry, we have concentrated on synonyms, henceforth referred to  as address 
aliases. 

Address aliases are potentially dangerous because they can result in multiple copies 
of the same data being present in the cache concurrently. Figure 1 illustrates the different 
ways in which data can be replicated within the PA-RISC's virtually addressed cache. The 
cache may also be indexed using a physical address when virtual translation is disabled or 
certain privileged instructions are used. This may create additional address aliases if both 
virtual and physical addresses are used for the same page. In figure 1, the physical address 
of X is mapped to both the virtual address of A and B.  Three distinct copies of the same 
cache line containing X can appear in the cache as a result: one due to  a reference to A ,  
one due t o  a reference to B ,  and a third due to a reference to the physical address of X. If 
any of these values are modified or left in the caclte as stale data, the contents of the cache 
will become inconsistent. 

In order to  ensure that correct values are returned for accesses via the cache, the cache 
or higher-level software must maintain address translation consistency. Address translation 
consistency is one facet of the more general problem of cache consistency. In the remainder 
of the paper we will simply use the term cache consistency. This should not be confused 
with multiprocessor cache consistency or split instruction and data cache consistency. 

Many cache implementations, including the PA-RISC, store the physical page number 
as part of the cache tag. This a.llows aliases falling within the same set to  be resolved 
by hardware. Such aliases are said to be cache aligned. Alias resolution between different 
cache sets is a more difficult problem. Rather than resolving this problem in hardware, most 
computer architectures pass the ca.che consistency problem up to  the operating system, since 
only the operating system can generate a.ddress aliases in the first place. In the remainder 
of the paper we investigate the impa.ct of this approa.cl1 on contemporary operating systems 
which generate large numbers of address aliases. 

3 Vi r tua l  M e m o r y  Design Assumpt ions  

A characteristic feature of contemporary operating systems is their increased use of 
virtual memory operations to support functionality that was not previously associated with 
virtual memory mana.gement. Exa.mples include support for IPC, shared memory, and lazy 
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Figure 1: Data replication caused by address aliases on the PA-RISC. The dashed arrows 
represent the cache index calculated from the address. 

copying of data. The primary motivation in using virtual memory operations to  support 
these features is to  improve performance. However, the rationale for this approach is based 
on a number of key assumptions about the relative costs of certain primitive virtual memory 
operations. 
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For example, consider the motivation for using memory mapping techniques, such as 
copy-on-write, to  support IPC. The rationale is that by mapping the data of a message, 
rather than copying it, the operating system ca,n dela.y, and hopefully avoid altogether, the 
cost of byte copying. This is an optin~istic approach that is makes the assumption that 
modifying protection information aad setting up and maintaining a memory mapping is 
cheaper than copying the data, and t11a.t the possible copying of data at a later time is not 
significantly more expensive t11a.n copying it eagerly. 
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On architectures with physically a,ddressed caches, the trade-off between the cost of 
copying and the cost of setting up and maintaining a mapping typically pays off for messages 
beyond a few K-bytes in size. However, because of the overhead of managing consistency, 
this is not necessarily the case on architectures with virtually addressed caches. 

The standard operating system approach to resolving address aliases is to  allow only 
one instance of an alias to  exist within the ca.che at any point in time. For example, if two 
virtual addresses map to the same physical address, only one virtual address is allowed to  
be present -in the cache at a,ny moment. This a.pproach is called pseudo-aliasing because 
aliases are not allowed to  occur within the machine-dependent layer of the virtual memory 
system, but appear to  be supported at higher layers. The effects of this technique on the 
implementation of primitive virtual memory operations are illustrated below. 
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addresses, unless the new mapping causes the page to  become equivalently mapped1. 

Creating a subsequent mapping to a physical page requires the previous mapping to  
be invalidated, the TLB entry purged, and the cache lines associated with that page 
t o  be flushed. Sufficient information is maintained by the virtual memory system 
to  allow further accesses using the invalidated virtual addresses to  cause a pseudo 
page fault. The handling of a pseudo page fault involves validating the access and 
restoring the old mapping by invaIidating any existing mapping to  that physical page 
and flushing the cache lines associated with it. 

Invalidating mappings to  a physical page requires the cache lines associated with the 
page to  be flushed, or purged, to  avoid leaving stale data in the cache. Flushing is used 
if the consistency of the physical page is important following the unmap operation. 

Modifying a mapping to a physical page requires the cache lines associated with the 
previous mapping to  be flushed, the TLB entry purged, and the new mapping to  be 
established. 

Pseudo-aliasing is not the oilly method for managing the consistency of a virtually 
addressed cache. However, it is the basis for many other approaches, and the description 
above illustrates the potential impact of these vistually addressed caches on virtual memory 
design assumptions. In particular, setting up, maintaining, and destroying mappings to  a 
page involve cache flushes that are not necessary on architectures with physically addressed 
caches. Depending on the magnitude of these costs, it may be necessary to  alter virtual 
memory designs and/or revisit the assumptions on which they are based. The remainder 
of this paper attempts to initiate this process by presenting a quantitative and qualitative 
study of the impacts of virtually addressed caches on primitive virtual memory operations. 

4 Virtual Memory Performance on a Virtually Addressed Cache 

The performance figures presented in this section were gathered from implementa- 
tions of the Chorus v3.3 nucleus and Mach 2.0 running on Hewlett-Packard 9000/834 and 
9000/835 workstations, respectively. Both systems use the PA-RISC 1.0 processor with 
virtually addressed instruction and data caches. The write-back, two-way set-associative 
data cache is 128 K-bytes in size with a 32-byte line size. Both systems use a physical page 
size of 2 K-bytes. Mach used a logical page size of 2, 4, or 8 K-bytes, and Chorus used a 
logical page size of 2 K-bytes. 

4.1 Low-Level Virtual Memory Primitives 

Virtually addressed caches have already been shown to affect the performance of 
primitive virtual memory operations. Anderson, et al., noted that 536 out of the 559 
instructions required to cha.nge a pa.ge table entry (PTE) for the Intel i860 are concerned 
with flushing the virtually addressed ca.che [Anderson et al. 911. This caused the cost of 
changing a PTE on the i860 to he an order of magnitude more expensive than changing 
a PTE on the other platforms studied in the paper. Our experience with Chorus on the 
PA-RISC reinforces these observations. The primary cost of changing a PTE on the PA- 
RISC is cache flushing cost. Table 1 shows the cost (in microseconds) of selectively flushing 

'A page is equivalently mapped if its virtual and physical addresses are cache aligned. 
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Ta.ble 1: Cache Flush Times (in psecs) 

a data block from the data cache on a. Hewlett-Packard 9000/834 workstation2. The cache 
state, Empty, Clean, and Dirty indicates whether all cache lines are not present, present 
but clean, and present and dirty respectively. In mea,suring empty performance, the entire 
data cache was flushed prior to the selective flush. Clean performance was measured by 
flushing the entire data cache and then reading each line in the block prior to  the selective 
flush. Worst case performance was measured by writing each line in the block prior to  the 
selective flush. 

Cache State 

Clean 

Table 2: Byte Copying Performance (in psecs) 

In order to  understand the potential impact of these cache flushing costs on PTE 
operations, we measured the cost of unmapping a 2 K-byte page without flushing the cache. 
This cost fluctuated between 15 and 20 psecs during the experiments. This variability is a 
result of the time it takes to remove the PTE from the pa.ge table3. Adding the flush cost 
to the unmap operation increases its cost by 150% in the best case and 1000% in the worst 
case. 

Cache State 

Best Case 
Worst Case 

For comparison, table 2 illustra.tes the cost of byte copying on the same machine for 
various cache states. In measuring the best case performance, we repeatedly copied data 
from one buffer to  another. This causes both the source and destination data to  appear 
in the cache4. To measure worst case performance, both the source and destination data 
were flushed from the cache. The ca.che was then filled with dirty lines, by writing each line 
in a 256 K-byte buffer that did not overlap either the source or destination buffer, before 
measuring the cost of copying from the source to the destination. 

The figures presented above show tha.t, under certain circumstances, the cost of copy- 
ing a page can be similar to, or even faster than, flushing the pa.ge. In particular, copying 

Number of Bytes Copied 

2We used the HP-UX routine pdcacheo which flushes 16 cache lines per loop iteration. 
3The PA-RISC uses a hashed inverted page table and all PTE's falling into a hash bin are organized as 

a linked list which must be traversed to find the preceding entry in order to delete a PTE. 
'The source and destination buffers were chosen so they would not be cache aligned. While this may not 

be significant on a two-way set,-associative cache it can affect performance on a direct mapped cache. 

1 I<b 
57 

212 

4 Kb 
224 
793 

2 I<b 
113 
408 

8 Kb 
446 

1562 



a page that is completely in the cache to a page that is also completely in the cache (best 
case copy) is faster than flushing the same page from the cache when the lines are dirty 
(worst case flush). This is beca.use flushing dirty lines requires access to  physical memory, 
whereas cache to  cache copying does not. Of course, it is highly likely that the dirty lines 
left in the cache by a copy will eventually need to  be written back to  memory. 

The performance figures presented above illustrate that a significant portion of the 
cost of primitive virtual memory operations on architectures with virtually addressed caches 
can be associated with cache flushing. This cost is not present on physically addressed cache 
architectures. Furthermore, different cache states can lead to considerable variation in the 
relative performance of primitive mapping and copying operations. 

It is apparent that moving an operating system from an architecture with a physically 
addressed cache to  one with a virtually addressed cache can change the relative costs of 
various low-level virtual memory operations. In order to understand the significance of 
these changes, the following subsections study higher-level opera.ting system functionality 
that makes implicit assumptions about these relative costs. In particular, we focus on the 
use of virtual memory operations to  support IPC and page initialization. 

4.2 Chorus IPC Performance 

Chorus supports two variants of IPC. The first variant is semantically a copy of the 
message from the sender's address spa.ce to the receiver's. The second is semantically a 
move. The main distinction is t11a.t the contents of the sender's message buffer are un- 
defined following a send-by-move. The implementa.tion of each of these IPC variants is 
optimized for good performa.nce, particularly on physically addressed cache architectures. 
These optimizations are used when messa,ge data is page-aligned and multiple-page-sized. 
For such data, the Chorus IPC-copy is implemented as follows5: 

1. The sender writes the message to a send buffer in its address space and then calls 
ipcsend. 

2. The IPC system allocates a new physical pa.ge. 

3. The IPC system obtains a virtual a.ddress in the kernel address space and uses it to  
map the newly allocated physical page (the IPC b u f f e ~ ) ~ .  

4. The IPC system copies the sender's data into the IPC buffer, i.e., it copies from 
addresses in the sender's address space to addresses in the kernel's address space. 
The speed of this copy depends on the state of the cache at  the time of the copy. 
Since the IPC buffer has only just been allocated, it is liltely that the destination 
addresses of the copy will not be in the cache. The source of the copy may be in the 
cache if the sender writes the messa.ge immediately before sending. 

5. The IPC system checks whether the virtual page of the receive buffer in the receiver's 
address space is currently mapped to a physical pa.ge. If it is, the page is unmapped 

5Each step is repeated for every page in the message before the next step is started. 
'Rather than using physical addresses, Chorus maps all physical memory into a special section of the 

kernel's address space. 



and destroyed, resulting in a cache flush. If the page is not shared, then the contents 
can be purged instead of flushed7. 

6. When the receiver calls ipcReceive, the IPC system unloads the page used for the 
IPC buffer from the kernel address space. This requires a cache flush. Note that 
all the dirty lines in the page must be written back to  memory a t  some point either 
before or during this fiush operation. 

7. The IPC system lazily maps the physical page used for the IPC buffer into the re- 
ceiver's address space, i.e., the physical page is associated with the receiver's segment 
cache8, but the mapping is not set up until the receiver attempts to  access the page. 

8. The receiver accesses the page containing the receive buffer. This causes a pseudo 
page fault which forces the mapping of the physical page containing the data into the 
receiver's address space. This does not require a cache flush because the page was 
unmapped during step 6 .  

Note that the IPC operation described above is semantically a copy, but is imple- 
mented as a copy from the sender to the kernel, plus a move from the kernel t o  the receiver. 
This is an optimization based on the a.ssumption that remapping a page from the kernel to  
the receiver is cheaper than copying it. We will revisit this assumption a little later. 

Chorus IPC-move is implemented as follows: 

1. The sender writes the message to a send buffer in its address space and then calls 
ipcSend. 

2. The IPC system unloads the page from the sender's address space. This requires a 
cache flush which may involve a number of dirty cache lines if the sender writes the 
message immediately before sending. 

3. When the receiver calls ipcfleceive, the IPC system determines whether the receiver 
has a physical page allocated to the receive buffer. If so, it unmaps and destroys the 
page. This requires a cache flush (or purge if the pa.ge is not shared). 

4. The IPC system lazily maps the physical page used for the sender's message buffer 
into the receiver's address space. 

5. As described in the IPC-copy example above, the receiver takes a page fault when 
it first attempts to access the pa.ge. This causes the page to  be mapped into the 
receiver's address space. Note that the contents of the receiver's buffer will not be 
present in the cache after an IPC-move operation. 

The IPC implementa.tion outlined a.bove is based purely on remapping. On physi- 
cally addressed caches, this is expected to offer better performance than an implementation 
based on copying. This alone, however, does not espla.in the use of move rather than copy 

7The cost of a purge is iltdepeltdent of cache state and faster than the best case flush on the PA-RISC. 
However, the current implementation of the nucleus always flushes when unloading because it does not 
differentiate page unloads prior to mapping from unloads prior to destruction. 

'A segment is Chorus' abst,raction for storage. A segment cache is a collection of physical pages used to 
cache parts of a segment. 



semantics however. Copy-on-write techniques can be used t o  implement IPC that  is seman- 
tically a copy without any physical byte-copying (as in Mach). Operating systems, such as 
Accent, have shown that  copy-on-write IPC can outperform IPC based on byte-copying on 
many physically addressed cache architectures [Fitzgerald and Rashid 861. The motivation 
for using move semantics rather than copy-on-write (or copy-on-reference) is that  i t  avoids 
the overhead of maintaining information about shared physical pages. Manipulation of the 
da ta  structures (shadow objects in Mach [Rashid et al. 881, and history objects in Cho- 
rus [Abrossimov et al. 891) for managing this information can be expensive [Nelson and 
Ousterhout 881. 

The key point is that  both copy-on-write and move-based IPC are based on the implicit 
assumption that  remapping a page is dramatically cheaper than actually copying it. It 
has been argued that  the difference in performance on physically addressed caches more 
than offsets the additional complexity of mapping, even for copy-on-write. In Chorus the 
difference in performance between the copy and move-based IPC variants is expected t o  be 
large enough t o  warrant the use of the less pala,ta.ble move semant,ics for some applications. 

In order t o  test the validity of this contention, we implemented a third variant of 
Chorus IPC. This variant, which would be considered naive on physically addressed cache 
architectures, is semantically a copy. It is implemented as two copies: one from the sender 
t o  the kernel, and the other from the kernel to  the receiver. Our implementation involves 
the following steps: 

1. The sender writes the message to a send buffer in its address space and then calls 
ipcSend. 

2. The IPC system obtains a virtual address for an IPC buffer in the kernel address 
space. If no such buffer exists, a new physical page is allocated and mapped t o  the 
returned virtual address. A ca.che flush is unnecessary in either case. In the former 
case the original mapping is being used and the entire page is about t o  be written 
blindly. In the latter case the page was not previously mapped. 

3. The IPC system copies the sender's data  into the IPC buffer. The speed of this copy 
depends on the state of the cache a t  the time of the copy. If an existing IPC buffer 
was allocated in the previous stage, a.nd if that buffer was recently used, it is possible 
that  the destination of the copy will a1rea.d~ be in the cache. Similarly, if the sender 
has recently written the niessa.ge to the send buffer it is possible that  the source of 
the copy will also be in the ca.che, i.e., in the best case this can be a cache t o  cache 

COPY. 

4. When the receiver calls ipcReceive, the IPC system copies the message from the IPC 
buffer t o  the receive buffer in the receiver's address space. 

5. The receiver accesses the pa,ge containing the receive buffer. Since the da ta  has been 
copied rather than mapped into the receive buffer, the IPC operation has a chance t o  
warm the cache. This is only significa.nt if the receiver reads the message soon after 
receiving it. 

Table 3 presents a. comparison of the costs of these different IPC variants. The numbers 
represent the cost of a uni-directiona.1 ipcSend operation containing various amounts of data. 



Table 3: Local Page-Aligned, Page-Sized ipcSend Cost (in psecs) 

I Operation I null I 1 KB 1 2 KB 1 4 KB 1 8 KB 1 16 KB 1 

In each experiment two separate Chorus user actors, a client and a server, are created with 
their own communication ports. During each message exchange, the client writes every 
word in its buffer, checks the time, and sends the message to  the server using an ipcSend 
system call. Once the server receives the message, it reads one word from each page of 
the message, and then checks the timeg. The time of reception is then passed back to  the 
client and the server waits for the next messa.ge. We repeatedly performed these message 
exchanges until the average message time did not fluctuate significantly. In all three cases, 
the sender's and receiver's buffer were not cache aligned, i.e., they did not compete for the 
same cache sets. 

Table 3 shows that for page-aligned, multiple-page-sized messages, the pure-copy IPC 
approach outperforms both the Chorus IPC-copy and IPC-move. In this experiment, Chorus 
IPC-move requires two flushes (the sender's buffer and the receiver's old buffer) and a page 
fault for each page in the message. Flushing the sender's buffer is very expensive since the 
sender writes every word prior to sending the message. The cost of flushing the receiver's old 
buffer is a best case flush since no lines are written by the receiver during the experiment. 

I I I 1 

Each message exchange requires two copies for the pure-copy IPC. A closer examina- 
tion of the pure-copy experiment revealed that IPC buffers were being recycled. Instead of 
being passed to  the receiver as in the IPC-copy experiment, buffer pages were being reused 
for the next message exchange. Since the receiver's buffer was constantly being written, it 
was also present in the cache. Because of this situation, our measurements of the pure-copy 
performance involved two best case copy costslO. From table 1 and table 2 we can see that 
the sum of a best and worst case cache flush is less than the sum of two best cache copies. 
The IPC-move performance is worse t1ia.n the pure-copy performa.nce because of the cost of 
the fault required to  map the messa.ge into the receiver's address space. 

5097 
4225 
3806 

Chorus IPC-copy 
Chorus IPC-move 
Pure-copyIPC 

In order to  confirm this, we measured the cost of taking a pseudo page fault in the 
IPC-move operation and found it to be around 400 psecs, which is a.pproximately the cost of 
the worst case copy. If Chorus eagerly mapped the page instead of doing it lazily this page 
fault could be avoided.ll. An IPC-move implementation that eagerly mapped the message 
would outperform the pure-copy IPC in this experiment. 

9562 
7649 
7273 

When interpreting these performance figures it is important to note that there are 
several hidden costs that did not show up in table 3, but may show up in measurements of 
overall system performance. In the v3.3 kernel, the move semantics may result in a page 
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'Times were taken using the processor's interval timer, a 1/15 1-second resolution clock register. 
''There is also the additional cost of setting up a recovery mechanism whenever copies take place between 

user actors and the kernel. 
"We learned that  later versions of the virtual memory manager do perform eager mapping. 
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fault when the sender attempts to  access the contents of the virtual page previously sent 
using an IPC-move. This page fault alloca.tes a new physical page to  replace the physical 
page sent to  the receiver. 

Pure copying also conta.ins some hidden costs involving dirty cache lines. Copying 
to  the IPC buffer and then to the receiver 1ea.ves dirty cache lines belonging to  the pages 
representing the IPC buffer and receiver. These cache lines will need to  be written back to  
memory when they are replaced12. Note that copying to  the receiver will leave the receiver's 
message data in a "warm" cache state while remapping it will leave the data in a "cold" 
cache state. 

In this example we have shown that operating system designers need to  be careful 
about making implicit assumptions about the cache design of the machine. The Chorus 
optimization of passing messages by moving pages (remapping) assumes remapping a page 
is significantly faster than copying it. This assumption ignores the cost of unmapping a 
page on machines using virtua.11~ addressed caches. Our results show that on such machines, 
pure-copy IPC may perform close enough to Chorus IPC-move to  override the performance 
incentive of using the less desirable move sema.ntics. The important lesson is that the flush 
overhead of handling a remapping may balance the costs between copying and manipulating 
PTE's. The next section analyzes the impact of flushes caused by the use of physical 
addressing. 

4.3 Mach pmap Performance 

The machine-dependent section of the Mach virtual memory (VM) system is the 
pmap module. The original Ma.ch design tried to  make very few assumptions about the 
VM hardware capabilities of the ma.chine. They needed the capability to  initialize a new 
page in order to satisfy a page fault and needed to guarantee that no other thread in a 
multiprocessor system would be able to access that page until it was completely mapped. 
The method used was to  leave the page unmapped and to  access the page using physical 
addresses until the page was co~npletely initialized. A t  that point, the page could be mapped 
and would be available to  all. This solution requires very little hardware support and works 
well on machines with a physically addressed ca.che. There is no performance penalty to 
access a page using its physical address and tha,t access may even go faster than a virtual 
access as it is not necessary to go through the TLB to get the virtual-to-physical translation. 
Unfortunately, while the routines which a.ctua.11~ initialize and map a page are part of the 
pmap module, the routines which decide not to  ma.p the page until it has been initialized 
are in the machine independent code, even though the choice to  access the page in physical 
mode has the implicit machine-dependent assu~nption that this is an efficient way to  access 
a page. In addition to  unmapping costs discussed in the previous section, this assumption 
is incorrect on a machine with a virtually addressed cache. 

Before accessing a page using its physical address, it is necessary to  flush any virtually 
indexed lines of that page from the cache. After accessing the page, it is necessary to  flush 
the physically indexed lines of that page before mapping it to a virtual address. It is worth 
noting that because the copy was done with physica,l addresses, none of the data has been 
"prestaged" in the cazhe by the copy (i.e., when the page is finally used, the cache will 

''The lines belonging to the IPC buffer may be purged once the message has been sent, but  the next copy 
t o  that  buffer will need to access physical memory for each line in the message. 



be "cold"). If a given virtually addressed machine has the capability of mapping a page 
but marking it as NO-ACCESS for everyone including the kernel (except for a couple of 
special routines which are only used to initialize these pages), it is possible to  do the page 
initialization safely using virtual addresses instead of physical addresses. The examples 
below show how this works and explains why this is a performance win on a machine with 
a virtually addressed cache. 

Copy-on-write memory is typically marked as read-only until a process writes to  the 
page. At that point, a new page is allocated, the old page is copied to  the new page and 
the writing process gets a private writable page. For these examples, we assume that the 
original page is at least partially in the cache (due to  reads or writes before it was marked 
copy-on-write or due to reads after that point) and that the new page (probably from the 
free pool) is not in the cache. 

Case 1: On a physically addressed cache architecture, the old page is copied to  the 
new page. This involves a copy from a partia,lly wa,rm page to a cold page. After 
the copy, the new page would be warm, which is an adva,nta.ge as the user is 
actively using this page (which is why we faulted). 

Case 2: On a virtually addressed cache architecture using the original Mach code, the 
old page would be flushed, there would be a physical-to-physical copy from the 
old (now cold) page to the new (cold) page, the physical lines (warm) for the old 
page would have to  be flushed from the cache, and the new (now warm) page 
would have to be flushed and then mapped. At this point the new page is cold. 
With a little bit of extra work in the copy routine (machine-dependent), it is 
possible to look up the virtual address of the original page and do a virtual-to- 
physical copy which at least saves the double flush of the old page. This would 
be even faster if the copy routine was given the virtual address of the old page. 

Case 3: On a virtually addressed machine which can protect a page as NO-ACCESS,  
it is possible (in the Mach machine independent code) to  map the new page (no 
flush is necessary as the page is known to be cold since it is from the free pool) 
and then do a copy from a warm virtual address to the new cold virtual address. 
As in ca.se 1 above, after the copy the new pa.ge will be warm. 

Case 1 and 3 above have the sa,lne rela,tive cost since in both cases, the majority of 
the work is the copy from a warm page to a cold page. Using the data from section 4.1, it 
can be shown that case 2 is much more expensive. At best, it requires the flush of the warm 
physically addressed new pa.ge and the cost to copy a cold page to  a cold page. Without 
the optimization of doing a. virtual-to-physical copy, it takes a double flush of the old page 
and a single flush of the new pag.e in addition to the cost of a cold-to-cold copy. 

The Tut project at Hewlett-Packard Labora.tories measured a 1-3% overall system 
improvement on several different benchmarks when changing from case 2 above to  case 
3 [Chao et al. 901. This change involved nmking some minor modifications to  the Mach 
machine-independent code. As in section 4.2, the iinportan t point is that operating system 
designers need to  be careful about their implicit assumptions about the cache design of the 
machine. 



5 Related Work 

Both hardware and software solutions to the synonym problem have been proposed. 
Hardware designers have attempted to avoid making the cache visible to  software by pro- 
viding special hardware to  detect aliases [Smith 831. One hardware mechanism, loosely 
called a reverse translation buffer (RTB), allows aliases to be detected within the cache. 
On a cache miss, the TLB produces a physical address and the subsequent request to  main 
memory is made in parallel with an RTB search. If the RTB produces a virtual address that 
is already present in another cache line, the line must be renamed and moved to  the new 
location. As alluded to in section 2, an RTB implementation can be very simple if aliases 
can be forced to fall within the same set, i.e., if aliases are cache aligned. It is possible to  
force aliases t o  be cache aligned by using only the page offset bits to  index the cache. This 
scheme limits the cache size to  the logical page size multiplied by the cache set-associativity. 
The drawback of this solution is that it results in small cache sizes unless a high degree of 
associativity is supportedI3. 

Commercial operating systems have a.voided problems with virtually addressed caches 
by limiting alias generation. Most versions of Hewlett-Packard's HP-UX operating system 
do not support copy-on-write memory or the UNIX mrnap0 system call14. Shared text is 
implemented by sharing the same globa.1 virtual address segment instead of using memory 
mapping. System V shared memory is supported only if each shared memory segment is 
used at  the same virtual address by each process using it [Clegg et al. 861. 

The Tut project at  Hewlett-Packaxd Laboratories ported Mach 2.0 to  PA-RISC and 
compared simple minded cache flushes to prevent aliases with both using read-only aliasing 
and the shared global address spa.ce techniques present in HP-UX [Chao et al. 901. (Read- 
only aliasing allows virtual address alia,sing of rea.d-only memory to  exist at  the hardware 
level. Since the memory is shared read-only, there is no consistency problem as long as 
all aliases are purged from the ca.che if the memory becomes writable again.) Using read- 
only aliasing significantly improved the overall system performance (6-10%). Using both 
read-only aliasing and the shared global address space gave an additional 2-3%. This was 
on a machine with a large cache and a large number of TLB entries. It is expected that 
the addition of shared global address space techniques will give even better performance on 
machines with small caches and small TLBs as the replicated cache lines and TLB entries 
needed for pure read-only aliasing will have a bigger negative impact. 

Several modifications to SunOS Release 3.2 were necessary to  manage the virtually 
addressed cache in the Sun-3 series 200 workstation [Cheng 871. Three methods were used 
t o  maintain cache consistency: flushing the page on any address mapping invalidation, 
cache alignment points (1281<), and non-cacheable pages. Measurements showed that cache 
flushing costs were smaller than expected. Tlle worst benchmark result showed that 3.0% 
of the total time was spent flushing the cache. In this benchmark, increased use of the 
Direct Virtual Memory Access (DVMA) operation caused ma.ny page flushes. The DVMA 
operation creates a new address lnappi~lg ( to  the DVhiIA region) for a page which already 
contains a virtual address. This requires one cache flush when establishing the new DVMA 
mapping, and another upon completion. 

The Sprite operating system used a combination of copy-on-write (COW) and copy-on- 

13Associativity can be very expensive in integrated primary caches. 
'*This functionality is supported by certain versions of HP-UX 8.0 .  



reference (COR) during process creation [Nelson and Ousterhout 881. In this modification 
of a pure COW scheme, a fork operation causes the pages of the parent t o  be marked copy- 
on-write, and the child's pages to  be marked copy-on-reference. One of the reasons behind 
the choice of COW-COR over a pure COW mechanism was the existence of a virtually 
addressed cache. Sprite was targeted to  run on the Spur workstation, a virtually addressed 
cache architecture [Wood et al. 861. Because the SPUR'S virtually addressed cache stored 
protection information in cache lines, any change in a page's protection required the contents 
of the  page t o  be flushed from the cache. This cost associated with a protection change 
is not as expensive on the PA-RISC since protection information is stored in the TLB. 
Changing the protection of a page requires purging a TLB entry instead of cache lines. 

We have concentrated on address translation consistency in single processor environ- 
ments. However, other researchers have already begun t o  study the problem of multipro- 
cessor virtually addressed cache consistency [Cheriton et al. 86, Goodman 871. 

6 Conclusion 

In this paper we ha.ve examined the effect of virtually addressed caches on primitive 
virtual memory operations. In addition, we ha,ve shown how the cost of these primitive 
operations can affect design decisions in higher order operations in Mach and Chorus. Both 
Chorus' IPC and Mach's pmap were designed assuming physically addressed cache archi- 
tectures. 

In the case of Chorus IPC, we have shown the effect that  virtually addressed caches 
have on page remapping performance. Unmapping a page requires all its virtually addressed 
lines t o  be flushed from the cache. The cost of an unmap operation can cause a simple pure- 
copy implementation to  perform comparably with a Chorus IPC-move operation. 

The Mach pmap experiment showed that by ignoring the underlying cache architec- 
ture, virtual memory designs can suffer unilecessary performance degradation. By making 
minor modifications in the ma.chjne-independent sections to  allow for machines with differ- 
ent cache designs, it may be possible, as it wa.s in this experiment, to  run both on machines 
with physically addressed ca.ches aad ma.chines with virtually a.ddressed caches with no 
performance penalty. 

If operating systems continue to receive the burden of providing address translation 
consistency, operating system designers will need to re-evaluate their design decisions re- 
garding the cost of virtual memory opera.tions. We have shown that  the failure t o  take into 
account cache designs can ha.ve significa.nt effects on operating system design and perfor- 
mance. 
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