
Specification and Generation of Displays
for Complex Database Objects

Belinda B. Flynn
David Maier

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006- 1999 USA

Technical Report No. CS/E 92-01 1

March, 1992

Specification and Generation of Displays for Complex
Database Objects

Belinda B. Flynn
David Maim

Abstract

The overall objective of this research is to provide support for producing interactive displays
of complex database objects. In particular, the generat,ed displays sho~tld be able to express the
semantics and behavior of the ustderlyi~lg dat.a, in order to promote the feeling of directly affecting
the data as concrete objects. Our approach is to move display manage~nent from the application
program to a display system that generates and operates displays, and directly accesses database
objects according to user request,^ made through the displays. Thus, the application program is only
concerned with how and when displays are created, not how they operatr..

Designing the display facility involves two major parts: 1) the specification techniques used to
describe the desired display, and 3) a runtime syst,em that produces the displays from specifications.
A main issue to address in the design is providing capabilities to describe how displays reflect object
semantics, while still maintaining modularity between display specifications and the specification of
data processing and manipulation. We identify three design features needed to meet our goals, then
describe the facility's design and how it addresses those features.

1 Introduction

As with user interfaces in general, database user interfaces are turning towards a style in which the main

mode of interaction is editing and browsing data objects - the interface produces the notion of directly af-

fecting the d a t a as if they were concrete object,^. Providing t.his notion requires tha t the interface be able

t o express the semantics and behavior of the underlying objects. Several visual database interfaces [Gold-

man85, Bryce90, Leong89, Larson$6] have adopt,ed this style t,o enable users t o access databases more

effectively without extensive training or knowledge of the database schejna. Domain-specific database

applications most likely would receive similar benefits by having s u c l ~ interfaces. T h e overall objective

of this research is t o develop support for creating this type of user interface in applications tha t deal

with complex database objects.

Presently, database applications tha t support. such visual interfaces (lo so without much help from

the DBMS. Wi th record-oriented da.t.a models such as the network, hierarchical or relational models,

the respoilsibility for displaying structured objects is typically associated with the application because

the d a t a in the database has a "flat" generalized struct,ure (e.g., a relation), and thus the application

is required to impose the connectivity or "object structure" on the data . Since the application realizes

structured objects from da ta records, it is best. suit.ed to creat,e and manage the object displays for

the user interface. T h e app l i~a t~ ion is t,herefore performing two transformations: 1) translating between

records and struct.ured objects, and 2) trailslatling between da ta objects and their display structure, or

in other words, between an internal and an est.erna1 representation. In addition, t he application most

likely will be responsible for maintaining any int.egrit,y constraint,^ concerl~ing object structure.

Object-oriented databases (OODBs) provide the capability to model data directly as structured

objects so that object construction need not be managed in applications and constraints regarding

object structure can be associated with object classes. Since object structure is imposed by the database

rather than the application, complex objects can be displayed directly, without any intervention by the

application. Since the user interface has a direct link to the database objects, the application only needs

to specify how and when displays are created, not how the displays operate. A display system could

generate and manage interactive displays using only information stored in the database.

In short, our approach is to move display management from the application to a display system that
directly accesses database objects. The database acts as a central resource for both the application

program and the user interface. This arrangement can improve productivity due to the benefits of

modularity:

Display specifications can be developed more independently of the application program, and once

some basic requirements are established, development of the applica.tion programs and their asso-

ciated displays may be done in parallel.

Displays are reusable among different applications that operate on t.he same database.

Display implementation is less tightly coupled with the rest of application processing. When the

two are tightly coupled, it is difficult t,o know exactly what parts of the code to extract for handling

the display execution and constraint checking among input values.

I t is easier to experiment with different alternatives for displays in an application.

We have developed the Object Display Definition Systein (ODDS) to investigate our approach.

Related Work

There are several existing approaches to providing support for displays of complex database objects.

Many database systems include application development tools (sometimes called 4th Generation Lan-

guages) that support the creation of form-based user interfaces. These tools generally provide a set

of display building blocks, such as text-entry fields, radio buttons and menus, which can be included

in the form, to be used for entering data or invoking database operations or queries. An example is

the Forms Application Development Systein [Rowe89] for Ingres databases. A related approach is to

integrate a user-interface toolkit or class library with the programming facilities of an object-oriented

DBMS [SchmidtSO]. Its main difference is that it seeks to produce a broader range of user interface

styles than just forms.

Another related area involves display genera.tion tools that produce browsers for object-oriented

databases. These systems generate defa.ult displays for objects, based on the structure information kept in

the object classes. The generated displays include predefined techniques for browsing, such as switching

between displays with different levels of detail. These system typically allow the designer to customize

the default disp1a.y~ through a language or graphics editor. Examples include LOOKS [DeuxSl], which

is part of the programming environment for the 0 2 OODBhIS, and I<IVIEW [Laenens89], used with the

KIWI OODBMS.

A substantial amount of research has been done on User Interface Management Systems (UIMSs).

In general, the goal of these systems is to support declmative, high-level specification of user interfaces,

either through a language or a direct manipulation environment. However, relatively few of these s y s

tems are targeted a t applications dealing with dat,a that are stored in a central repository and managed

separately from tlie application. Examples of these data-oriented U I M S s include HIGGENS [Hudson881

and the Serpent UIMS [Bass90]. Some of these systems are based on a data-dependency view of inter-

active applications [GarrettBP]. In that view, many of the application's activities are expressed in terms

of dependencies among data parameters that come from input devices, control graphical output, or are

values within application objects. In general, a dependency is the combination of an asser t ion and an

a d i o n to be performed when the assertion is true. In constraint-based systems, assertions and actions

are implicit; whenever a value taking part in a constraint is updated, the underlying system acts to

resatisfy the constraint. The exact form for expressing dependencies differs with each system.

2 Design Issues

In designing our system, we have discerned three crit,ical design aspects: 1) the database model used

for defining objects, 2) the amount of behavior a display definition captures, and 3) the responsiveness

of display format with respect to cha.nges in t.he underlying object structure. This section discusses

alternatives for each aspect and which alternative we feel is necessary to achieve the desired level of

support for object displays.

2.1 Database Model

Although all OODBs by definition support complex objects [Zdonik90], they differ in the extent that

object behavior can be defined. Some database models, called s e ~ n a n t i c database mode l s [Hu1187], con-

centrate only on structural abstra.ctions, e.g., aggregation, set grouping, and relationships. Other models

provide for the expression of rules or constraints concerning the objects' semantics. One kind of rule

describes the creation of derived data computed from exist,ing data. Other rules are one-way constraints

that state how changing a particular data item will cause values in other data items to be re-evaluated.

These rules produce the notion of active data that can react to changes. Certain aspects of the objects'

behavior can be described using these techniques; however, some systems using such models, e.g., the

Cactis [Hudson901 and HiPAC [McCartnhy89] DBhlSs, do not express rules about an object's connections

t o other objects.

Behavioral mode l s use the concept of abstract data types to associate general behavior with complex

objects. An abstract data type includes an int,ernal representation (which may be a complex structure)

and a set of operations or messages used t,o int,erac,t with objects of that type. Unlike the previous

categories of models, behavioral models enforce a strong view of encapsulation, meaning that the mes-

sages of a type do not necessarily allow direct access to the objects' internal representation. Examples

of systems using behavioral models are GeillStone [Butmterwortli91] and 0 2 [DeuxSl].

The choice of database model affects tlie capabilities of the display system because it determines

what information the DBMS can provide to the display system regarding the objects being displayed.

In particular, the display system should know about an object's structure, and needs to be informed

of how an object is being updated during the time it is displayed. We choose to interface our display

system to an OODB with a behavioral model. This choice provides the advantage that the information

regarding the objects' integrity constraint,^ and behavior can all be managed within the database. With

the non-behavioral models, this management must be split between the database and the applications

that use the data. Besides complicating matters for the display system, such a distribution introduces the

possibility that one application may violate some constraints being maintained by another application.

Another advantage of using a behavioral database model is that the message paradigm provides a

mechanism for the display system to manipulate database objects. Within a display specification, one

may specify that some message should be sent to a database object after a particular event or event

sequence has occurred. Consequently, the application program does not need to be involved in every

update of the database objects on behalf of the displays.

The user-interface tools that deal with a relational or partially behavioral database model receive

limited kinds of information on the objects being displayed. The schema in a relational database holds

information on the attributes of relations, but none on the complex structure of the database entities,

because this information can only be determined by exaillining the data values within the relations.

Similarly, the database models in data-oriented UIMSs typically notify displays of changes to attributes,

but not changes in an object's connections to other objects. It may be possible to encode connectivity

information within attributes, but this burden would be placed on the database designer. In addition,

encoding one-to-many relationships would be cumbersome because these database models generally do

not support objects with variable number of attributes [HudsonBB].

2.2 Scope of Display Descriptioils

The second design aspect is the extent to which display definitions capture the activities in the display,

which in turn affects how well display management, can be separated logically from an application.

Different tools for building user interfaces capture various levels of display activity. At the lowest level,

toolkits provide predefined interaction techniques (e.g., buttons, menus, gauges) and require that the

designer build up displays by using a procedura.1 progra.mming language to combine the interaction

techniques. Toolkits give no support for a logical separation for the code that manages the displays, as

that code is allowed to be interspersed with the rest of t,he application code.

UIMSs capture more activity, since the designer can specify compositions of interaction techniques.

The display descriptions are defined via a special-purpose language or environment, and thus are sepa-

rate from the application code. Many UIMSs are ba,sed on the Seeheim architecture [Green85], which

separates the user interface and application in such a way that the user interface is concerned only with

interpreting user input, providing feedback as the input is parsed, and sending an appropriate request

to the application. In this architecture, only the application has direct access to its objects and there is

no explicit means, such as a dat,a management component,, t,o let the the user interface directly access

information about the structure of the application's objects. Therefore, these UIMSs have some diffi-

culties displaying application objects with complex structure. Typically, a change in one subpart of a

complex object will require that its entire display be redrawn. Because of this overhead, the application

will manage the semantic feedback in object displays instead of having the UIMS do it. The underlying

reason for the difficulty is that although the UIMSs ca.n specify composit~ions of display components, the

display definitions cannot express the mapping of display subcomponents onto object subcomponents.

A third level of support would include t,he description of display behavior that reflects how the

underlying objects have changed. Basic display responses include feedback on scalar data values such

as a strings, numbers, and enumerations. Here, t,he feedback is determined by a simple conversion from

the value to a graphical object. More complex responses involve some interpretation or intermediate

processing of the updated values in the underlying objects. For example, a display change may be

triggered by certain conditions in object state, such as a list being empty or non-empty. Another case

is some display change that occurs in addition to feedback on data values. For example, when a course

is assigned to a classroom whose capacity is too small, the display might reflect the assignment, but

also bring up a notifier stating that the course enrollment exceeds the classroom size. The specification

of these kinds of display responses requires some way to reference particular parts of object structure.

Data-oriented UIMSs have addressed this level of support by introducing a data model where the objects'

structure can be defined. Naturally, ODDS should try to achieve this level of support since its objective

is t o manage displays of complex database objects.

2.3 Display Responsiveness

The third design aspect is the system's ability to produce displays whose structure is responsive t o

changes in underlying objects. Some systems support staizc representation, where displays are limited

to a fixed template for all instances of a class, and only the basic data values in the display may change.

Some systems allow varzable representation so that an object can be displayed in various ways based

only on conditions evaluated a t the time the display is created. Dynamzc representation calls for displays

whose format may change during their lifetime, either to reflect the state of the underlying object, t o

respond to some user request, or to meet some space requirements. A format change of a display means

altering the number or arrangement of display subcomponents, the graphics connecting subcomponents,

or the format of any subcomponent.

Our objectives require that dynamic representation be supported because displays of complex objects

should reflect changes in an object's structure as well as changes to basic values in an object. An object's

structure can be viewed as a set of connections or references to other complex objects, where such a

reference represents the fact that a semantic relationship holds between the referrer and referenced

objects; e.g., a Course object references a Classroom object, to capture the "taught in" relationship.

Structural changes that create or delete an object's connections to other objects could result respectively

in adding or deleting the subcomponents of a display. In addition, replacing one of the object's references

can result in changing the format of a display subcomponent. Such a change occurs if the newly

referenced object has a different type. In many OODB models, the referenced object in a particular

object connection is restricted to a specific type or subtype of that type. A type and its subtype(s) may

have different display requirements. For example, suppose the type Laboratory is a subtype of Classroom.

A Laboratory display could include addit,ional information not applicable to a regular classroom.

In particular, the ability to reflect object structure is useful in database browsers that facilitate

exploring, querying, and manipulating the database contents. For example, in the browsers generated

by SIG [Maier86] and LOOI<S [Plateau89], referenced objects are displayed using nested displays, so

structural changes are shown when viewing data. Many browsers allow the user to control the level of

detail a t which objects are viewed. This "zooming" operation is another form of dynamic representation,

although it is not tied to changes in the state of the object being displayed.

The declarative specification of dynamic representation has rarely been addressed. This aspect

of display behavior generally must be specified procedurally, as part of the application program. To

support dynamic representation, it is necessary to express 1) assertions about the connections between

application objects and 2) actions that describe the rearrangement or replacement of subcomponents in

a display. Data-dependency systems are mostly concerned with how display attributes are dependent on

basic values, not how display structure depends on object structure. The assertion-action pairs in these

systems often constrain basic values in application and graphical objects, or maintain a link between an

application object and graphical object.

To summarize, the features we desire for supporting interactive displays are:

a behavioral model for defining complex objects,

support for capturing display behavior that includes complex responses to database changes, and

support for dynamic representation.

3 Towards Support for Direct Manipulation

As mentioned earlier, our objective is t o support displays that provide a sense of direct interaction

with the objects of interest. Two factors have been identified as being cruc.ia1 to obtaining this feeling of

directness in user interfaces: direct engagement and reduction of distance [Hutchins86]. An understanding

of these factors provides a basis for seeing how the three desired features contribute towards producing

a display system capable of supporting direct manipulation.

Direct engagement is the sense that the displays actually are the objects they represent, and that one

is controlling the displayed objects through one's physical actions. This effect is produced by displays that

exhibit some behavior, rather than merely being static output expressions printed on the screen. Direct

engagement also requires a special relationship between input and output in which output expressions

(i.e., the display images) may serve as compol~ents of input expressions. In other words, selecting or

referencing an object's display is part of an input sequence that invokes an operation on the object.

Since the input sequence results in changes to the display image, it appears to the user that referring to

an object causes it t o behave. Rapid feedback is also important to direct engagement, as it helps to hide

the computer's role as an intermediary that is manipulating the display images on behalf of the user.

The other factor contributing to directness is the redudion of distance, where distance refers to the

relationship between the user's task and t,he interface's mecliai~isms for dealing with that task. Thus,

the notion of distance emphasizes that the directness of a display is a1wa.y~ relative to the goals of the

users. A short distance means that, for a given task, a small amount of cognitive effort is required to

manipulate the objects as desired or to eva1ua.t.e t,he results of one's actions. Since this effort is reduced,

the interaction feels more direct.

Distance can be broken down into two levels. Semantic distance refers to the relationship between

user goals and the meanings behind input and output expressions. With respect to input, the semantic

distance of a user interface is bridged by providing com~nands that allow the user to accomplish a task

in a concise manner. With respect to output, i t is bridged by providing feedback information that allows

the user to evaluate readily whether the desired goal lias been achieved. Articulatory distance refers

to the relationship between the meanings of expressions and t,heir physical forms; i.e., it indicates how

well the form of an (input or output) expression reflects it,s intended meaning. Examples of forms for

input expressions include sequences of mouse movements, mouse button clicks, and key presses. Forms

for output expressions may be character strings, bitmap images, sounds, or the composition of several

output expressions. Articulatory distance is reduced by choosing the a.ppropriate physical forms for

requesting a given operation and for representing the concepts and objects of the application domain.

The three design features from the previous section are needed to support the specification of display

properties that foster these two factors. In support of direct engagement, the use of behavioral models

supplies a more complete account of the objects7 behavior, which is necessary to update the display in

such a way that i t appears t o be the object it represents. These display behaviors will most likely involve

complex display responses (such as those described in Section 2.2), as well as changes in the display's

format. Thus it is important to be able to specify such responses through a display facility.

The display capabilities that contribute to reducing distance are mostly dependent on the subject

domain and the tasks to be performed. However, reducing semantic distance in a display's output often

requires presenting information that is not part of any object's state, but is computed from values in the

state of an object or group of objects. The message paradigm in behavioral database models can be used

t o provide access to the computation for deriving this required information. Some support for reducing

articulatory distance can be provided if we consider a particular meaning for output expressions. When

the intent of output is to reveal object structure, any display changes regarding the connections among

the underlying objects contributes to reducing articulatory distance. Dynamic representation enables

a display t o adust its format to match changes in an object's connections. These changes may also be

manifested through notifiers or as effects on the set of objects currently displayed.

4 The Display Facility and Its Architecture

Having discussed key features concerning the espressivelless of the display specifications, we turn to

design decisions concerning their form. First, we chose to have the displays described by declarative

specifications, and to generate the displays from the specifications. With declarative specifications, the

designer can indicate the desired functionality without being overly concerned with how it is accom-

plished. Since our primary motivation is to improve productivity and reduce extraneous effort, the

designer should be able to work at a level of abst,raction that matches the design task, rather than being

concerned with the details of a conventional programming language. For this reason, we did not take the

alternative of defining displays using a procedural specification, i.e. source code. In addition, choosing

a particular programming language can introduce restrictions on what implementation language may be

used for the application program.

Another alternative was to create displays within a direct manipulation environment, by graphi-

cally composing display components, and possibly using graphical symbols to represent computation

or inter-communication between display subparts. Fabrik [Ingalls88] and Hypercard are examples of

such environments. A problem with this approa.ch is that temporal aspect.s of the display are not easily

expressed, making it difficult to describe how displays will reflect changes in object structure during

execution.

Because of our choice to use declarative ~pecificat~ions, designing the display facility involves two

major parts: 1) the specification techniclues used to describe the desired end-product, i.e., the display,

and 2) a runtime system that produces the displays from specifications.

A second key decision was to store display ~pecificat~ions in the database along with the objects

being displayed. Thus the display specifica.tions are t,hemselves database objects, belonging to the class

Outline. An Outline is used to generate displays for objects of a particular class, called its source class.]

We call our specifications Outlines because they do not completely describe displays of individual objects.

'The specification can also be used to display instances of the subclasses of its source class.

Rather, they are templates or partial descriptions that lack the actual data values that would come from

the object being displayed. An Outline basically consists of two kinds of information: 1) a description of

the display's graphical image and 2) a behavioral description; i.e., the display's responses t o user-input

events, including visual feedback and message passing t o underlying database objects. Accordingly, there

are two hierarchies of specification classes, the Layout and Iitteraction classes, whose instances are used

within an Outline and are called Layout and Interaction specs.

The main reason for making specifications database objects was t o make them accessible to, and

sharable by, all database applications as well as the display runtime system. The specifications need

to be available to the runtime system during display execution, so it can obtain information on how to

handle the displays' format changes. If each application were to hold its own specifications and provide

them to the runtime system for interpretation, then the specifications would not be available to other

applications. A possible alternative would be to store the specifications in files so that they are sharable

among applications. However, this approach would duplicate some data management capabilities already

present in the DBMS. One significant capability is being able to model complex objects that can be

referenced from several other objects. This capability is often needed to express the complex structure

of display specifications, and it also allows reusability in the sense that different display specifications

may share a common subpart.

Several other advantages are gained by making display specifications part of the database. The

specifications may be associated with class definitions, thus providing a more comprehensive view of

the objects' semantics. Multiple specifications may be assigned to a particular class so that an instance

can be displayed differently depending on the context of the display. This capability is often needed for

objects with complex semantics, because a single representation generally will not be appropriate for all

possible operations on an object.

Another advantage is that the ~pecificat~ions can be examined, modified, and displayed just as other

objects are [Anderson86]. An interactive editor for creating new specifications could be built as a

database application that uses the display specifications associated with the Outline, Layout and Inter-

action classes. In addition, the specificat.ion objects will be available to other database tools that assist

with application programming.

The remainder of this section gives an overview of the specification techniques and the runtime

system, placing emphasis on those elements that serve in achieving the three desired features listed in

Section 2.

4.1 System Architecture

Figure 1 shows the architecture of ODDS'S runtmime systsem in relation to the database and the appli-

cation program. The runtime system is made up of the components shown in ovals. Our prototype

implementation uses the Gemstone DBRIS, \vlrhich has a behavioral data.base model that is similar to

the object model in Smalltalk. The ruiltime system is irnpleinented in Smalltalk, with the exception of

the Source-Update Manager, which is implemented within Gemstone.

The database acts as a central resource and a means of communication for the display runtime system

and the application program. Since both sides have read and write access to the database objects being

displayed, the modifications made by one side are observable to the other side. The application might act

based on changes made by the runtime system, and the runtime can update the displays to reflect changes

made by the application. As a result, the two sides communicate indirectly through modifications to

teraction Mana

Communication

Requests display
services

Figure 1: Components in System Architecture

the database objects.

With respect to control flow, the runtime system and the application program cooperate as coroutines;

i.e., each will voluntarily give up control to the other a t certain points in its execution. The Process

Control Manager handles this exchange of control, hiding the details of process communication from the

other components. Thus the rest of the runtime system is not concerned with whether the application

is a local process or on a remote machine, or whether it is a C or Smalltalk application.

The runtime system cedes control as directed by a display's specification. The specification framework

provides a special object to be used in Outlines to indicate that control should return to the application.

The application grants control to the runtime system for several purposes: to create or close displays,

to hide or unhide displays, or to resume operation of the displays. The application can also temporarily

release control to display some intermediate effects of a comput,ation, and regain control after the dis-

plays have been refreshed, without any further action hy the runtime system. The application makes

these requests by sending messages to the Application Coinmunication Layer, which forwards the re-

quests to the Process Control Manager. The services provided through the Application Communication

Layer could be viewed as an extension to the existing set of functionalities that a DBMS provides to

applications. Thus, the ability to display objects becomes another aspect of data management.

When the application requests that a display he created, it supplies the name of an Outline and

the database object to be displayed, which we call the source object. This information is passed to

the Display Generator, which generates a set of Smalltalk objects called executors that draw the screen

images and carry out the behaviors as defined in the Outline. To construct executors, data from the

source object is merged with the Outline's partial descriptions, producing a complete description of the

source object's display. The structure and content of the generated executors essentially parallels that of

the specs in the Outline. Thus, the classes of executors, called LayoutExec and Interact ionExec classes,

have an exact correspondence with the Layout and Interaction specification classes. A key difference

between the executors and the specs is that the executors are non-persistent objects known only to the

runtime system.

The Interaction Manager is responsible for the overall execution of the displays. Most of its work

is performed by the executors produced by the Display Generator. The methods of the executors are

designed to interpret information copied from its spec counterpart so that the executor will carry out the

semantics expressed by the spec object. Work that is performed out,side of the execution objects includes

processing the events originating from input devices and from database changes, and routing them to

the appropriate Interaction executor, which will act based on the new event. Finally, the Interaction

Manager will need to activate the Display Generator when a display format is to be altered. The Display

Generator evaluates the tests that choose between formats of the display. It obtains the appropriate

spec describing the new format, then reconfigures the display.

The Source-Update Manager monitors the source objects currently being displayed, and produces

a list of updated source objects, the particular instance variables that were affected, and the object

identifiers for the new values of those instance variables. Thus, the Source-Update Manager supplies

information that the display needs to produce semantic feedback. The Process Control Manager re-

quests this information whenever there is an exchange of control between the runtime system and the

application, and passes the information to the one that has just regained control, so that it may react

to the changes. In addition, this information is requested and passed to the Interaction Manager after

a database message has been sent, so that changes that occured during the message's execution may be

reflected in the displays.

4.2 Specification Capabilities

Since an Outline does not contain the actual data values to be displayed, it instead contains special

'placeholder' objects called Paths, which indicate a message or message sequence that will return a

particular part of a source object's state. An object class may have several Outlines that display its

instances differently and may also indicate a default Out,line t.o be used in cases where no specific Outline

is requested when an instance is displayed.

An Outline may contain objects called Deferments to specify that another Outline will be used to

generate a subpart of the display. Rather than havi~lg an Outline refer directly to another Outline,

Deferments provide more flexibility in indicating which Outline is to be used. A Deferment can either

indicate a particular Outline by name, provide a test to choose among several Outlines, or just use the

default Outline for the appropriate class.

4.2.1 Classes for Layout Specification

Layout specs define a display's visual image on the screen. Each Layout spec holds a set of attributes

that determine graphical details such as foreground and background colors, text fonts, and spacing.

At present, the primitive components available for display images are text strings, bitmaps, lines, and

rectangles; different types of Layout specs exist for each of these primitives. A ComposerLayout is a

Layout spec that indicates a composition of ot,her Layout specs. Specific kinds of ComposerLayouts,

such as Above, Beside, and Around specs, specify how the display image is spatially composed from its

subparts.

A Correspondence spec is a Layout spec whose instances describe the visual representation for object

relationships. We say that a domain object x is relat,ed to a mnge object y if there is some message

in x's protocol that when sent to x returns y. A Correspondence is used to present a mapping from

a collection of domain objects to another collect.ion holding potential range objects with respect to a

particular message. An example is a mapping froill a set of Course objects to a set of Classroom objects,

where the domain and range objects are re1a.ted by the taught-in message. The visual representation for

a relationship may be in the form of lines connecting the displays of the related objects, or the displays

might be positioned next to each other to symbolize the relationship. Correspondence objects provide

an alternative t o the customary way of expressing relationships, which is t o nest the display of the range

object within the display of the domain object.

4.2.2 Classes for Behavioral Specification

An Interaction spec can reference Layout specs and define what changes will take place in the executor

counterparts for those Layout specs. In effect, an Interaction spec defines new images to replace the

present image of the display, or parts of it. There are three general kinds of behavior to be specified:

1) image changes based on user input, 2) image changes based on activity in the database, and 3) the

composition of the first two kinds to form more complex behavior.

Event Types and Response Actions

In general, behavior is expressed in terms of event types and event responses. Examples of events are

the arrival of data through input devices, the occurrence of a certain condition or state in a display

component (e.g., when a button is designated as being select,ed), or an update to some source object.

Events can be generated by user input, by database changes, or by Interaction executors.

An event response describes the action or sequence of actions that will take place whenever a certain

event occurs. The types of actions described in a.n 111tera.ction spec include: 1) updates t o a Layout

executor, 2) updates to its Interaction executor counterpart, which will affect the future behavior of the

display, or 3) the generation of internal events that will be forwarded to another Interaction executor.

A MatchMaker spec describes a response action that operates on a Layout or Interaction executor.

The operation is defined using in two p a r k the Matcher includes one or more templates defining the

arguments participating the operation, and the hlalter is a template defining the objects to be modified.

The Matcher includes a t most three templates: an Interaction template, a Layout template, and an

Event template. These templates are used to express that during display execution, the arguments for

the operation will come from within the Interaction executor, its Layout, or the event that triggered the

response action, respectively. A third component in a hlatchMaker spec is a map connecting the two

Matcher and Maker, which describes how data values or objects in the arguments are placed into the

modified objects, or are used in some computat,ion whose result is then placed in the modified objects.

To illustrate, the MatchMaker below defines an operation where the foreground and background

colors of a Layout executor are reversed. The underlined class names signify an object template is

being represented, rather than an instance of that class. The object tags in our notation (LA, FC, and

BC) represent the map connections in the MatchMaker; an object tag present in both the Matcher and

Maker represents a connection between the two.

Matcher:

Layout(attributes -*

LayoutAttribute LA:(forecolor - FC: Object

backcolor BC: Object))

Maker:

LayoutAttribute LA:(forecolor -+ BC: Object

backcolor + FC: Object)

In this example, the object tags in the Matcher specify the values from the Layout executor which

will be involved in the operation. The hlaker specifies that the Layo~t~Attribute executor bound to

object tag LA will be updated. Specifically, the f orecolor and backcolor fields of the LayoutAttribute

executor will be updated with the executors bound to tags BC and FC, thus reversing the background

and foreground colors of the Layout executor.

MatchMakers may optionally contain a computation component, specified by a ComputeAction spec.

A ComputeAction holds a name associated with a block of code that must be registered with the runtime

system, where it is kept in a table called the Computation Library. The ComputeAction also defines the

values or the locations of the arguments to the computation block. An argument location is specified by

a reference into the Matcher. Similarly, the ComputeAction specifies the location for the computation's

result, using a reference into the Maker template.

Another type of activity described in Interaction specs is the change in a display's format during its

execution, expressed through a combination of specs. A ChoiceMap spec defines the set of alternative

formats, while a FormatAction determines how an alternative is selected. The concept of interpret-

ing specifications to execute format changes is based on an earlier system, the Smalltalk Interaction

Generator [Maier86].

A ChoiceMap holds a dictionary that maps a lead value to a particular format alternative. The

ChoiceMap also defines which alternative to use when the executors for a display are initially generated,

either by a direct reference to the desired alternative, or indicating a subpart of the source object, whose

value will be the lead value used to select an alternative. The change in format is specified using a

FormatAction spec, which describes a response action in an event mapping. A FormatAction defines a

computation or database message whose result produces a lead value into the ChoiceMap's dictionary.

The different format alternatives may share subcomponents specs; for example, they may arrange

the same subcomponents in different ways, or they may differ only in t.he graphics that connect the

subcomponents. Thus, there is an opportunity for re-using executors a t runtime if the subcomponents

of a format alternative is shared with one for which executors have already been generated.

Interaction Classes

The Interaction subclasses provide a framework in which to structure or organize the collection of events

and event responses that make up a display's behavior. Each Interaction spec holds a mapping from

expected event types to the responses for events of a given type. There a,re three main Interaction

subclasses, described below.

ImageOp specs group together the events and responses of interaction techniques such as menu

buttons or gauges. The responses they describe consist mainly of updates to Layout executors.

DBConnect specs cover behavior that reflects the activity in the database source objects, as well

as behavior where the display initiates operations on database objects. Their event mappings hold

event types related to changes in source objects. The response actions in DBConnect specs specify

how the information on database changes is used in updating Layout executors. A response action in

a DBConnect spec may also be a Message.4clior~ spec, n,hicli holds the name of a data.base message to

send to a source object, plus the location of any arguments required.

Coordinator specs group the events that define the communication and data transfer among several

ImageOp or DBConnect specs. Thus, Coordina.t,ors describe the behavior of a complex interaction

technique, e.g., a panel of radio buttons, by composing the behaviors of basic interaction techniques.

A Coordinator holds a collection of sub-Interaction specs whose executors will be communicating at

runtime. The event mapping of a Coordinator specifies which sub-Interaction executor will receive

internal events of a particular type. Coordinator specs can also be used t o compose a collection of

DBConnects as well as a combination of DBConnects and ImageOps.

4.3 Addressing Desired Features

We point out characteristics of the Outlines and the system architecture that address the desired features

set forth in Section 2.

Support for and adva.ntages of using a behavioral database model:

a Within the system architecture, the Source-Update Manager obtains the information that the

displays require to reflect the source objects' state, including information on changes to an object's

connections t o other objects.

a MessageAction specs express how the source objects are to be manipulated through the displays.

a Information about how to display database objects is also within the database, and becomes part

of the objects' semantics, as opposed to being isolated in individual applications. As a result, the

ability to display objects becomes another aspect of data management.

Support for specification of display responses to database changes:

a Through the use of Paths, Outlines can refer to specific parts of a source object, allowing the

specification to indicate how the subparts of a display are mapped to the objects' subparts.

a DBConnects specify how updates in source objects will affect the Layout executors that draw

the screen images. The ways in which the Layout executors can be affected are not limited to

the replacement of basic values; e.g., updating text strings. The updated values may be used as

arguments for some computation whose results in turn are able to affect various aspects of Layout

objects, such as colors or the positioning of display elements.

The Correspondence specs provide the ability to associate some graphics or other display aspects

with the semantic relationships among the source objects. This capability gives the display designer

more flexibility in presenting object structure.

Support for dynamic representation:

a FormatActions are used to describe the possible formats of a display, the conditions for switching

between formats, and in some cases, the criteria for choosing among several possible formats.

a The Display Generator serves to rebuild displays according to directions in the FormatAction

objects during the execution of the display.

4.4 Example Outline Specification

A small example is given here to provide a more concrete picture of the specs in an Outline. This Outline

defines a display for a Course object, showing its title and number of credit hours (see Figure 2). Each

boxed area containing a data value is to be highlighted by switching the foreground and background

colors whenever the cursor enters it. Another beha.vior within the display is that a mouse click within the

Around

J.
Above

Beside

defer'Ib: 'StringBox'
subsource:

#('creditHrs')

Figure 2: Sample Display and Layout Specification

Around
I Imageop 1

mylayout:
Layoutstring eventMap:

string: Evenme('enterLayout') --> reverseColors MatchMaker
EvenQpe('1eaveLayout') --> reversecolors MatchMaker
EvenQpe('buttonC1ick') --> InternalEvent('se1ected')

' DBConnect \ mylayout;
eventMap:

Eventll)pe('dbChangel, newklue) -->
insertStringUlue MatchMaker

sourcePtr: ,
L

FieldPath
#(

Figure 3: Outline for StringBox Display

Credits subdisplay causes the value there to be incremented, modulo some maximum allowable number

of hours.

Figure 2 also shows the basic structure for the Out,line's Layout spec. (Layout attributes have been

omitted for simplicity.) The arrows in the diagram indicate the subcomponents for a ComposerLayout.

The two subdisplays holding the data values are generated from a separate Outline named StringBox, as

specified by the Deferments. Deferments are defined with two parameters: def e r T o holds the name of

the Outline to use for the subdisplay and s u b s o u r c e indicates which object subpart should be displayed.

The Layout and Interaction specs for the StringBox Outline are shown in Figure 3. Within the

context of a LayoutString, a Path determines which data value from the source object is to be inserted

into the Layout executor at runtime. The behavioral specification for the Outline consists of two parts:

An ImageOp specifies the highlighting behavior and the response for a mouse click via the three

associations in the event mapping.

eventMap:
InternalEvent'I)p$selected', sender: defer2) -->

forward to DBConnect

eventMap:
InternalEvent~pe('selected', sender: defer2) -->

MessageAction(WmcrCredits)

Figure 4: Interaction Objects for Course Outline

Amnnd Coordinator Source Object:

~ b o v e

p e s i d e Beside
. /\

DBConnect title: 'American History'

Figure 5: Source Object and Runtime Objects for Course Display

A DBConnect defines the connection between the LayoutString spec and the source object being

displayed. Its event mapping specifies that when an arriving event indicates a change in the source

object, the new value (carried in the event) is placed into the s t r i n g field of the LayoutString

executor.

The behavior portion for the Course Outline (Figure 4) must specify that the number of credit hours

of the Course is incremented when the Credits subdisplay has been selected with a mouse click. The

Coordinator's event mapping states that at runtime, the 'selected' event from the that subdisplay will

be forwarded to the DBConnect executor that holds a reference to the Course object. The DBConnect

spec specifies that the response to this internal event will be to send a database message that updates

the number of credit hours.

Figure 5 shows the basic structure for the runtime executors generated from the Course outline. The

Deferments in the Course Outline are replaced with executors generated from the StringBox Outline.

Paths in the DBConnect specs are replaced with references to the source objects, which are needed to

send database messages to those source objects.

5 Summary and Current Implementation

To summarize, we have designed the specification fralllework and runtime architecture of ODDS to meet

the desired features set forth in Section 2. ODDS provides mechanisms for interacting with a behavioral

database model to manipulate source objects and to obtain information for semantic feedback. The

Path, DBConnect, Coordinator, and Correspondence specs are particularly useful in specifying complex

display responses to database changes. Dynamic representation is s~ppor t~ed through the FormatAction

specs and the execution of format changes by the Display Generator.

We have devised a sample set of displays which will be specified and generated through ODDS,

so that we may evaluate the expressiveness of the specification classes as well as the performance and

resource usage of the runtime system. We also plan to examine the extent to which Outlines are reused

through Deferments or by borrowing Layout and Interaction specs from existing Outlines.

The prototype implementation for ODDS is near completion. The specification classes and corre-

sponding executor classes describe in this paper have been implemented and used to produce a number

of the test displays. One of the remaining tasks is implementing mechanisms to set and use the default

Outline for a class. Another area requiring further work is the set of services available to application

programs. Currently, the runtime system serves only one application at a time. Additional services to

provide to the application include controlling the visibility of displays and arranging for certain appli-

cation procedures to be invoked from Interaction executors.

References

[Anderson861 T.L. Anderson, E.F. Ecklund, Jr . , and D. Maier, "PROTEUS: Objectifying the

DBMS User Interface", Proceedings of the International Workshop on Object-Oriented

Database Systerns, ed. D. Dittrich and U. Dayal, Pacific Grove, California, September,

1986.

[Bass901 L. Bass, E. Hardy, R. Little, and R. Seacord, "In~rement~al Development of User Inter-
faces", Engineering the Hum,an-Computer I~~ter face, A. Cockton, ed., North Holland,

1990.

[Bry ceSO] D. Bryce and R. Hull, "SNAP: A Graphics-Based Schema Manager", Readings in

Object-Oriented Database Systems, ed. S. Zdonik and D. Maier, Morgan Kaufmann

Publishers, 1990.

[Butterworth911 P. Butterworth, A. Otis, and J . Stein, "The Gemstone Object Database Management

System", Communications of the AC111, Vol. 34, No.10, October 1991.

[Deuxg 11 0 . Deux et. al., "The 0 2 System", Co~nnzunicaiions of the ACM, Vol. 34, No.10,

October 1991.

[Garrett 821 M. Garrett and J. Foley, "Graphics Programming Using a Database System", ACM

Transactions on Graphics, April 1982.

[Goldman851 I<. Goldman, S. Goldman, P.I<anellakis, and S. Zdonik, "ISIS: Interface for a Semantic

Information System", Proceedings of ACM-SIGMOD 1985 International Conference

on Management of Data, Austin, Texas, May 1985.

[Green851 M. Green, "Design Notations and User Interface Management Systems", User Inter-

face Management Systems, Eurographics, 1985.

E. Hutchins, J. Hollan, D. Norman, "Direct Manipulation Interfaces", User Centered

System Design, ed. D. Norman and S. Draper, Lawrence Erlbaum Associates, Inc.,

1986.

S. Hudson and R. Icing, "Semantic Feedback in the Higgens UIMS", IEEE Transac-

tions of Software Engineering, Vol. 14, No. 8, August 1988.

D. Ingalls, S. Wallace, Y. Chow, F. Ludolph, K. Doyle, "Fabrik: A Visual Program-

ming Environment", OOPSLA '88 Proceedings, September 1988.

E. Laenens, F.Staes and D. Vermeir, "Browsing a la carte in Object-Oriented

Databases", The Computer Journal, August 1989.

J . Larson, "A Visual Approach to Browsing in a Database Environment", IEEE Com-

puter, June 1986.

M.K. Leong, S. Sam, and D. Narasimhalu, "Towards a Visual Language for an Object-

Oriented Multi-Media Database System", Visual Database Systems, ed. T. L. Kunii,

Elsevier Science Publishers, 1989.

D. Maier, P. Nordquist and M. Grossman, "Displaying Database Objects", First Inter-

national Conference on Exped Database Systems, Charleston, South Carolina, April

1986; also OGI Technical Report CSE-86-001.

B. Myers, ed., "The Garnet Compendium: Collected Papers, 1989-1990n, CMU-CS-

90- 154, Carnegie Mellon University, August 1990.

L. Rowe, "Database Representations for Programs", Proceedings of 1989 ACM SIG-

MOD Workshop on Software CAD Databases, Napa, California, February 1989.

D. Schmidt, "From Object-Oriented Database Systems to High Productivity Software

Development Environments", OGI Technical Report, July 1990.

