
Flow Graph Anomalies: What's in a Loop?

Michael Wore

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 92-012

February 1991

Flow Graph Anomalies: What's in a Loop?

Michael Wolfe"

February 28, 1991

Abstract

One of the most basic analysis techniques in compilers is the iden-
tification and optimization of loops. Three classical loop identification
techniques are t o find back edges in the dominator tree, t o use interval
analysis, and to use T I - T 2 analysis. Recent work has developed a new
compiler intermediate form which uses the control dependence graph in-
stead of the control flow graph to represent control relationships between
program elements. The control dependence graph can also be used to
directly identify loops in a program. Here we show that in some unstruc-
tured programs, the loop nesting identified by the control dependence
graph is different than that identified by the classical methods; that is,
the control dependence graph will say that there are two loops, L1 and
L2, and that L1 is nested within L2, while the other techniques will say
that L2 is nested within L1. This difference raises the question of which
is the "right" definition, or if in fact the answer for such a program has a
meaningful definition.

1 Introduction

Loop identification is one of the most basic compiler analysis methods used for
optimization. Some language processors can survive using only syntactic loop
identification, that is, only identifying the loops explicitly identified in the source
program as loops (such as WHILE loops, REPEAT loops and FOR loops). This
type of analysis would completely miss loops arising from explicit G O T 0 state-
ments, such as:

11: A(i) = B(i) t 1
i = i + l
if(i < 10) goto 11

Most compiler researchers (and indeed most commercial compiler implementa-
tions) use a flow graph representation of a program; for our purposes a flow
graph is defined as follows:

'Supported by NSF Grant CCR-8906909 and by DARPA Grant MDA972-88-J-1004.

1

Figure 1: Flow graph for a simple loop.

A flow graph is the tuple G = (V , E , Entry , Exat), where V
is a set of vertices corresponding to basic blocks, (alternatively, the
vertices in Vmay correspond to statements or operations), E is a set
of directed edges E = { (m,n) I m, n E Vand m is a flow predecessor
of n), Entry E V and Exit E V are distinguished vertices. We will
write m + n to mean there is an edge (m,n) E E. A path in a flow
graph from vertex m to vertex n is a length k sequence of vertices
(vo, vl, vz, . . . , vk), with v, E V Qi, 0 5 i < k and vo = m and vk = n ,
such that vo -t vl, vl -, vz, . . . , v k - 1 -, vk. By convention, we say
there is always a length-0 path from a vertex t o itself. G is connected
with a path from Entry to any vertex n E V in G and with a path
from any vertex n E V to Exit in G.

The edge from Entry to Exit is included to allow the algorithms for finding
dominators, post-dominators and dominance frontiers work more simply Usually
flow graphs are represented pictorially; Figure 1 shows the flow graph for the
following program:

L.l: A = . . .
L.2: B = . . .

if(B > 0) goto L.2
L.3: C = .. .

where block B.i in the figure corresponds to the basic block beginning at label
L.i. We might be tempted to say that a loop in the program is a strongly
connected region of the flow graph; that definition does not distinguish nested
loops. Instead, the flow analysis techniques use a more precise definition of loop,
as described in the following sections.

Figure 2: Flow graph for a doubly nested loop.

2 Five Sample Flow Graphs
This paper compares the results of different control flow analysis techniques
on certain flow graphs. This section gives several interesting flow graphs and
predicts the questions that might be asked about them. The following sections
will show how each analysis technique defines the loops in each flow graph.
The first flow graph is the simple loop shown in Figure 1 , which we include for
completeness; each of the analysis techniques will determine that such a flow
graph includes a single loop comprising (B.2).

The second flow graph is a simple doubly nested loop, shown in Figure
2. This example is given to show how the different techniques handle nested
loops. All of the techniques will find the two nested loops, with the inner loop
comprising (B.31, and the outer loop comprising (B.2, B.3, B.4).

The third flow graph is shown in Figure 3. This is an unstructured flow
graph; there seems to be two loops in this graph, corresponding to the two back
edges, but since they are improperly nested it is not immediately clear that one
of the loops contains the other loop. Each of the flow analysis techniques does
indeed find two loops in this flow graph, though the control dependence graph
defines the inner and outer relationship differently than the classical techniques.

The fourth flow graph is shown in Figure 4. Again there seems to be two
loops in this flow graph, with the loop (B.1, B.2, B.3) contained within (B.1,
B.2, B.3, B.4). We will find that the control dependence graph identifies two
distinct loops, as we expect; interval analysis will identify only a single loop,
however, while dominator tree back edge detection and T1-T2 analysis are am-
biguous in this case.

The final two flow graphs studied here are shown in Figure 5. The first flow

Figure 3: Flow graph for an unstructured loop.

Figure 4: Flow graph for loops with common header.

Figure 5: Flow graphs for loops with internal exit.

graph corresponds to a REPEAT UNTIL loop, and the second graph corre-
sponds to a WHILE loop; each loop has an internal exit branch, with some code
executed on the exit path (block B.4). The question here is whether block B.4
is contained within the loop or not. We will see that the control dependence
graph determines that B.4 is not part of the loop, even though its execution
depends on the loop.

3 Dominator Back Edge Method for Loop De-
tection

One of the classical methods to find loops in a flow graph and determine what
vertices belong to the loop is to find back edges in the dominator tree. The
dominator relationship is defined as follows:

Given a flow graph G, a vertex m dominates a vertex n, written
m DOM n, iff every path in G from Entry to n contains m.

By convention, the dominator relationship is reflexive. Let DOM(n) be the set
of nodes { m I m DOM n). The dominator relationship for a flow graph can
be represented by a tree with vertices from V, rooted at Entry, such that m
E DOM(n) iff nz = n or rn is an ancestor of n in the dominator tree [4]. The
dominator trees for our sample flow graphs are given in Figures 6-9. Given
the dominator tree, a back edge is an edge n -+ m E E such that rn DOM n. In
other words, a back edge is one that goes from a vertex to one of its ancestors
in the dominator tree. The back edges are listed in the following table for each
flow graph:

Figure 6: Dominator tree for the simple loop GI .

Figure 7: Dominator tree for the doubly nested loops G2 and G3.

Figure 8: Dominator tree for loops with common header in G4.

Figure 9: Dominator trees for loops with internal exit in G5a and G5b.

Back edge detection would try t o define a loop for every back edge. The body
of the loop contains the loop header, defined as the target of the back edge, and
all vertices that can reach the back edge without going through the header. The
loop headers and loop bodies for all graph except G4, as determined by back
edge detection, are given in the table below:

When two loops have different headers, the two loops are either disjoint or one
is contained entirely within the other. In G2 we see that the loop headed by
B.3 is contained in (nested in) the outer loop headed by B.2. In G3, we see that
the loop headed by B.2 is nested in the loop headed by B.l ; this is because the
outer loop back edge can be reached by the path B.l -+ B.2 + B.3 4 B.4 +

B.2 4 B.3 - B.1.
One problem with this technique is the relative nesting levels of loops derived

from back edges with the same loop header is not always clear. Graph G4 has
two back edges with the same loop header, B.2. Taking the back edges one a t
a time, the two loops found are:

back edge header body
B.2 - B.2 B.2 (B.2)
B.3 + B.3 B.3 (B.3)
B.4 + B.2 B.2 (B.2, B.3, B.4)
B.4 - B.2 B.2 (B.2, B.3, B.4)
B.3 + B.l B. l (B.1, B.2, B.3, B.4)
B.3 + B.l B.l (B.1, B.2, B.3)
B.3 - B.l B.l (B.1, B.2, B.3)

-

neither of which is contained totally within the other. We might look only at
the edge B.4 B. 1, allowing the B.3 - B.l edge as a path in that loop. Then
this would generate the desired inner and outer loops:

G1
G2

G3

G5a
G5b

-
G4

However, an equally valid attempt would be to look only at the edge B.3 4

B. l , allowing the B.4 -+ B.l edge as a path in that loop; this would generate
the other inner/outer relationships the other way:

back edge header body
B.3 -+ B.l B.l (B.1, B.2, B.3)
B .4 -B . l B.l {B. l ,B .2 ,B.4)

G4
back edge header body
B . 3 4 B . 1 B.l (B. l ,B.2,B.3)
B.4 -+ B.l B.l (B.1, B.2, B.3, B.4)

back edge header body
G4 B.3 - B.l B.l (B.1, B.2, B.3, B.4)

B.4 - B.l B.l (B.1, B.2, B.4)

One method used to disambiguate this problem is to treat this flow graph as a
single loop with two back edges [I].

4 Interval Analysis for Loop Detection
Another classical method to find loops is to use interval analysis. An interval
with header vertex n, denoted I(n), is the set of vertices

where pred(m) is the set of vertices

pred(m) = { p 1 p --+ m E E) .

A flow graph can be partitioned into disjoint intervals; the interval partition
then induces a new flow graph, called the interval graph or I(G), whose vertices
are the interval partitions of G, with entry vertex I(Eniry), and with edges I(m)
+ I(n) where m + n E E and I(m) # I(n). The interval algorithm can then
be run again on the interval graph, and so on, generating an interval graph
sequence. Intuitively, an interval is a loop with some dangling edges. Outer
loops will appear later in the interval graph sequence than inner loops. If the
interval graph sequence terminates with a single node, then the flow graph is
said to be reducible.

The properties of an interval include that each interval has a unique header
vertex, and the header dominates all vertices in the interval. If there is an
edge x --+ h from some vertex x to the header h, then that interval includes a
loop. The interval graph sequence for our sample flow graphs are given in the
table below; those intervals that correspond to loops are noted with an asterisk.
Note that the problem of multiple back edges ending on the same header is well
defined with interval analysis.

G1 {Entry,B.l) {B.2,B.3)* { Exit)

G2

I(G2)

/I G5a I {Entry) {B.l,B.2,B.3,B.4,B.5}* {Exit)

{Entry,B.l} (B.2) {B.3}* (B.4) {Exit)
{Entry,B.l) {B.2,B.3,B.4)* {Exit)

G3
I(G3)

1 G5b I {Entry) {B.l,B.2,B.3,B.4,B.5)* {Exit)

{Entry} P . 1) {B.2,B.3,B.4}* {Exit)
{Entry) {B.lIB.2,B.3,B.4}* {Exit)

Interval analysis does not explicitly define the body of a loop, so similar tech-
niques as used in dominator back edge detection could be used. Interval analysis
finds the same loops as back edge detection, with the same inner/outer relation-
ship (see G3), except for graph G4. With back edge detection, this case (multiple
back edges to the same loop header) was ambiguous; with interval analysis, this
is unambiguously defined as a single interval, and thus is treated as a single
loop.

4.1 TI-T2 Analysis

T1-T2 analysis is another method to "parse" a flow graph; it reduces a flow
graph by the repeated application of the two transformations:

T1 if n is a node with a loop edge n -+ n, delete that edge.

T2 if there is a node n with a unique predecessor m, delete the edge m --t n and
the node n , merge the successors of the two nodes (making all successors
of n be successors of m).

Intuitively, inner loops will be reduced by the T1 transformation before outer
loops. TI-T2 analysis gives the same results as interval analysis except for graph
G4. In that case, depending on the order of the transformations, the analysis
might find two loops nested one way, two loops nested the other way, or only
one loop, as shown in Figures 10-12.

5 Control Dependence for Loop Detection
A relatively new method to represent the conditions controlling execution of
vertices in the program graph is the control dependence relationship [3]. To
understand control dependence we must first define the postdominator relation.

Exit z

Exit @

Figure 10: TI-T2 analysis of graph G4 finding two nested loops.

-@
Exit

Figure 11: TI-T2 analysis of graph G4 finding two loops nested other way.

W@ 8.2 r2(B@ 0.2' WE@ 8.2"

8.3

8.4 Exit

Exit Exit

Figure 12: TI-T2 analysis of graph G4 finding a single loop.

Figure 13: Post-dominator tree for the simple loop GI .

We say that a vertex n postdominates a version m, written n PDOM m, if n
appears on every path from m to Exit. Like the dominator relationship, the
postdominator relationship is reflexive and transitive, and can be represented
in a postdominator tree. Cytron et a1 [2] explain that the postdominator rela-
tionship is the same as the dominator relationship of the reverse control flow
graph (reversing each edge in the control flow graph), and they show an efficient
method to find control dependences from the postdominator tree.

A vertex n is control dependent on another vertex m, if there is a length
k > 0 path from a m to n such that n postdominates every vertex after rn
on the path, and either n = m or n does not postdominate m. Note that a
vertex can be control dependent on itself. The control dependence relationship
can be represented by a directed graph, called the control dependence graph.
The only control dependence predecessors are those vertices that conditionally
choose one of two (or more) successor paths in the program. Each arc in the
graph is labelled to indicate whether the successor vertex is on the True or False
path (integer labels would be used if there were more than two successor paths).
The post-dominator trees for the sample flow graphs are given in Figures 13-16.

A cycle in the control dependence graph corresponds to a loop in the pro-
gram. The control dependence cycle corresponds to the condition that a loop
exit can decide to exit the loop or continue execution execution of the loop only
if the previous loop exit (perhaps from an earlier iteration of the loop) has not
already decided to exit the loop. The body of a loop is control dependent upon
the dependence cycle. Nested loops appear as disjoint cycles, with the inner
loop cycle control dependent upon the outer loop cycle. The control depen-
dence graphs for the first two simple example flow graphs are shown in Figures

Figure 14: Post-dominator tree for the doubly nested loops G2 and G3.

Figure 15: Post-dominator tree for loops with common header in G4.

Figure 16: Post-dominator trees for loops with internal exit in G5a and G5b.

Figure 17: Control dependence graph for the simple loop GI .

14 and 15. The labels on control dependence arcs are omitted if the label is
"T", to reduce clutter. In these two cases we get exactly the loops we expect;
in G2 we see the two loops, with loop B.3 and vertex B.2 nested within the loop
controlled by B.4.

The control dependence graph for G3, however, gives us our first surprise.
This graph is shown in Figure 16. Here we see the two loops we expected, con-
trolled by B.4 and B.3. However, the outer loop is controlled by B.4; the inner
loop is controlled by B.3 and contains B.l and B.2. This is exactly opposite
of the inner/outer loop relationship found by the classical methods; this differ-
ence raises the question of whether the control dependence definition might be
incorrect.

Flow graph G4 could be defined as having one or two loops by classical
methods; the control dependence graph (in Figure 17) unambiguously shows

Figure 18: Control dependence graph for the doubly nested loops in G2.

Figure 19: Control dependence graph for the improperly nested loops in G3.

Figure 20: Control dependence graph for loops with common header in G4.

two nested loops, exactly as our intuition would expect. The inner loops is
controlled by B.2, and contains B.3 and B . l ; note that B.3 is control dependent
only on B.2. This example shows a strength of the control dependence graph;
it is precise even when loops share headers, when classical methods can be
ambiguous. At this point we should examine our intuitive definitions of inner
and outer loops. Given two nested loops, we expect that the inner loop will
iterate several times for each iteration of the outer loop. In general, depending
on the iteration condition, the inner loop may iteration only once or even zero
times for some or all iterations of the outer loop; nonetheless, when the inner
loop exits, it gets another chance to execute when the outer loop iterates. Thus,
iteration of the inner loop "depends" on the outer loop iterating. The control
dependence graph appears to capture this intuitive definition more precisely.

The question about flow graphs G5a and G5b is whether vertex B.4 belongs
t o the loop. Note that syntactically, that vertex may come from a basic block
that is lexically scoped within the loop or not. In both graphs, shown in Figure
18, vertex B.4 does depend on the control dependence cycle defining the loop
(note that the control dependence cycle comprises two vertices in both graphs).
In both cases, however, B.4 depends on B.2 with a "False" label (the exit label
of the loop). Depending on the application, we could define B.4 to be part of the
loop, due to the dependence on the loop dependence cycle, or we could define
B.4 t o be outside of the loop, since it depends only on an exit label of the loop
dependence cycle. We believe the proper definition is the latter; the code could
be treated as a loop with a CASE or SWITCH statement choosing which exit
code to execute when the loop exits. This definition can be easily supported by
the control dependence graph.

Figure 21: Control dependence graphs for loops with internal exit in G5a and
G5b.

6 Summary

The control dependence graph, a new formal representation of the conditions
that control execution of statements and blocks in a program, has been used
as a basis of many scalar optimizations as well as the discovery of parallelism
in sequential programs. One point to consider when adopting a new formalism
is how it defines standard control constructs compared to other methods. We
have compared how the control dependence graph defines loops, especially how
it defines inner and outer loops, compared to the classical methods of back edge
detection and interval analysis. We found that in one flow graph, the control
dependence graph defines inner and outer loops unambiguously when classical
methods are somewhat ambiguous; in another flow graph, the control depen-
dence graph defines inner and outer loops differently from the classical methods.
These differences arise in unstructured cases where our intuitive definition of in-
ner and outer loop is not so easy to apply. It is disconcerting that the control
dependence definition of loop can be different from the classical definition of
loop. It raises the question of the valid it,^ of the control dependence graph, or
of the validity of the definition of a "natural loop" of a program. Nonetheless,
we prefer the definition from the control dependence graph over that of classical
methods.

Experiments are needed (and are underway) to determine whether the dif-
ferences appear in actual programs. This likely will depend on the programming
language and application domain; our expectations are that few programs will
exhibit the flow graphs that cause the problems shown here. If this bears out,
any loop detection algorithm should be considered sufficient.

References

[I] A. V. Aho, R. Sethi, and J . D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, Reading, MA, 1976.

[2] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Ken-
neth Zadeck. An efficient method of computing static single assignment
form. In Conf. Record 16th Annual ACM Symp. on Principles of Program-
ming Languages, pages 25-35, Austin, TX, January 1989.

[3] Jeanne Ferrante, Karl J . Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. A CM Trans. on Programming
Languages and Systems, 9(3):319-349, July 1987.

[4] Matthew S. Hecht. Flow Analysis of Compuier Programs. North Holland,
New York, 1977.

