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Abstract 

One of the most basic analysis techniques in compilers is the iden- 
tification and optimization of loops. Three classical loop identification 
techniques are t o  find back edges in the dominator tree, t o  use interval 
analysis, and to use T I - T 2  analysis. Recent work has developed a new 
compiler intermediate form which uses the control dependence graph in- 
stead of the control flow graph to represent control relationships between 
program elements. The  control dependence graph can also be used to 
directly identify loops in a program. Here we show that  in some unstruc- 
tured programs, the loop nesting identified by the control dependence 
graph is different than that  identified by the classical methods; that  is, 
the control dependence graph will say that  there are two loops, L1 and 
L2, and that  L1 is nested within L2, while the other techniques will say 
that  L2 is nested within L1. This difference raises the question of which 
is the "right" definition, or if in fact the answer for such a program has a 
meaningful definition. 

1 Introduction 

Loop identification is one of the most basic compiler analysis methods used for 
optimization. Some language processors can survive using only syntactic loop 
identification, that is, only identifying the loops explicitly identified in the source 
program as loops (such as WHILE loops, REPEAT loops and FOR loops). This 
type of analysis would completely miss loops arising from explicit G O T 0  state- 
ments, such as: 

11: A(i) = B(i) t 1 
i = i + l  
if( i < 10 ) goto 11 

Most compiler researchers (and indeed most commercial compiler implementa- 
tions) use a flow graph representation of a program; for our purposes a flow 
graph is defined as follows: 
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Figure 1: Flow graph for a simple loop. 

A flow graph is the tuple G = ( V  , E , Entry , Exat), where V 
is a set of vertices corresponding to basic blocks, (alternatively, the 
vertices in Vmay correspond to statements or operations), E is a set 
of directed edges E = { (m,n) I m, n E Vand m is a flow predecessor 
of n ), Entry E V and Exit E V are distinguished vertices. We will 
write m + n to  mean there is an edge (m,n) E E. A path in a flow 
graph from vertex m to  vertex n is a length k sequence of vertices 
(vo, vl, vz, . . . , vk), with v, E V Qi, 0 5 i < k and vo = m and vk = n ,  
such that vo -t vl,  vl -, vz, . . . , v k - 1  -, vk. By convention, we say 
there is always a length-0 path from a vertex t o  itself. G is connected 
with a path from Entry to  any vertex n E V in G and with a path 
from any vertex n E V to Exit in G. 

The edge from Entry to  Exit is included to allow the algorithms for finding 
dominators, post-dominators and dominance frontiers work more simply Usually 
flow graphs are represented pictorially; Figure 1 shows the flow graph for the 
following program: 

L.l: A = . . .  
L.2: B = . . . 

if( B > 0 ) goto L.2 
L.3: C = .. . 

where block B.i in the figure corresponds to the basic block beginning at label 
L.i. We might be tempted to say that a loop in the program is a strongly 
connected region of the flow graph; that definition does not distinguish nested 
loops. Instead, the flow analysis techniques use a more precise definition of loop, 
as described in the following sections. 



Figure 2: Flow graph for a doubly nested loop. 

2 Five Sample Flow Graphs 
This paper compares the results of different control flow analysis techniques 
on certain flow graphs. This section gives several interesting flow graphs and 
predicts the questions that might be asked about them. The following sections 
will show how each analysis technique defines the loops in each flow graph. 
The first flow graph is the simple loop shown in Figure 1 ,  which we include for 
completeness; each of the analysis techniques will determine that such a flow 
graph includes a single loop comprising (B.2). 

The second flow graph is a simple doubly nested loop, shown in Figure 
2. This example is given to show how the different techniques handle nested 
loops. All of the techniques will find the two nested loops, with the inner loop 
comprising (B.31, and the outer loop comprising (B.2, B.3, B.4). 

The third flow graph is shown in Figure 3. This is an unstructured flow 
graph; there seems to be two loops in this graph, corresponding to the two back 
edges, but since they are improperly nested it is not immediately clear that one 
of the loops contains the other loop. Each of the flow analysis techniques does 
indeed find two loops in this flow graph, though the control dependence graph 
defines the inner and outer relationship differently than the classical techniques. 

The fourth flow graph is shown in Figure 4. Again there seems to be two 
loops in this flow graph, with the loop (B.1, B.2, B.3) contained within (B.1, 
B.2, B.3, B.4). We will find that the control dependence graph identifies two 
distinct loops, as we expect; interval analysis will identify only a single loop, 
however, while dominator tree back edge detection and T1-T2 analysis are am- 
biguous in this case. 

The final two flow graphs studied here are shown in Figure 5. The first flow 



Figure 3: Flow graph for an unstructured loop. 

Figure 4: Flow graph for loops with common header. 



Figure 5: Flow graphs for loops with internal exit. 

graph corresponds to a REPEAT UNTIL loop, and the second graph corre- 
sponds to a WHILE loop; each loop has an internal exit branch, with some code 
executed on the exit path (block B.4). The question here is whether block B.4 
is contained within the loop or not. We will see that the control dependence 
graph determines that B.4 is not part of the loop, even though its execution 
depends on the loop. 

3 Dominator Back Edge Method for Loop De- 
tection 

One of the classical methods to find loops in a flow graph and determine what 
vertices belong to the loop is to find back edges in the dominator tree. The 
dominator relationship is defined as follows: 

Given a flow graph G, a vertex m dominates a vertex n,  written 
m DOM n,  iff every path in G from Entry to n contains m. 

By convention, the dominator relationship is reflexive. Let DOM(n) be the set 
of nodes { m  I m DOM n).  The dominator relationship for a flow graph can 
be represented by a tree with vertices from V, rooted at Entry, such that m 
E DOM(n) iff nz = n or rn is an ancestor of n in the dominator tree [4]. The 
dominator trees for our sample flow graphs are given in Figures 6-9. Given 
the dominator tree, a back edge is an edge n -+ m E E such that rn DOM n. In 
other words, a back edge is one that goes from a vertex to one of its ancestors 
in the dominator tree. The back edges are listed in the following table for each 
flow graph: 



Figure 6: Dominator tree for the simple loop GI .  

Figure 7: Dominator tree for the doubly nested loops G2 and G3. 



Figure 8: Dominator tree for loops with common header in G4. 

Figure 9: Dominator trees for loops with internal exit in G5a and G5b. 



Back edge detection would try t o  define a loop for every back edge. The body 
of the loop contains the loop header, defined as the target of the back edge, and 
all vertices that can reach the back edge without going through the header. The 
loop headers and loop bodies for all graph except G4, as determined by back 
edge detection, are given in the table below: 

When two loops have different headers, the two loops are either disjoint or one 
is contained entirely within the other. In G2 we see that the loop headed by 
B.3 is contained in (nested in) the outer loop headed by B.2. In G3, we see that 
the loop headed by B.2 is nested in the loop headed by B.l ;  this is because the 
outer loop back edge can be reached by the path B.l -+ B.2 + B.3 4 B.4 + 

B.2 4 B.3 - B.1. 
One problem with this technique is the relative nesting levels of loops derived 

from back edges with the same loop header is not always clear. Graph G4 has 
two back edges with the same loop header, B.2. Taking the back edges one a t  
a time, the two loops found are: 

back edge header body 
B.2 - B.2 B.2 (B.2) 
B.3 + B.3 B.3 (B.3) 
B.4 + B.2 B.2 (B.2, B.3, B.4) 
B.4 - B.2 B.2 (B.2, B.3, B.4) 
B.3 + B.l B. l  (B.1, B.2, B.3, B.4) 
B.3 + B.l B.l (B.1, B.2, B.3) 
B.3 - B.l B.l  (B.1, B.2, B.3) 

- 

neither of which is contained totally within the other. We might look only at 
the edge B.4 B. 1, allowing the B.3 - B.l  edge as a path in that loop. Then 
this would generate the desired inner and outer loops: 

G1 
G2 

G3 

G5a 
G5b 

- 
G4 

However, an equally valid attempt would be to look only at the edge B.3 4 

B. l ,  allowing the B.4 -+ B.l edge as a path in that loop; this would generate 
the other inner/outer relationships the other way: 

back edge header body 
B.3 -+ B.l B.l  (B.1, B.2, B.3) 
B .4 -B . l  B.l {B. l ,B .2 ,B.4)  

G4 
back edge header body 
B . 3 4 B . 1  B.l (B. l ,B.2,B.3)  
B.4 -+ B.l B.l  (B.1, B.2, B.3, B.4) 



back edge header body 
G4 B.3 - B.l B.l  (B.1, B.2, B.3, B.4) 

B.4 - B.l  B.l  (B.1, B.2, B.4) 

One method used to disambiguate this problem is to treat this flow graph as a 
single loop with two back edges [I]. 

4 Interval Analysis for Loop Detection 
Another classical method to find loops is to  use interval analysis. An interval 
with header vertex n, denoted I(n), is the set of vertices 

where pred(m) is the set of vertices 

pred(m) = { p 1 p --+ m E E ) .  

A flow graph can be partitioned into disjoint intervals; the interval partition 
then induces a new flow graph, called the interval graph or I(G), whose vertices 
are the interval partitions of G, with entry vertex I(Eniry), and with edges I(m) 
+ I(n) where m + n E E and I(m) # I(n). The interval algorithm can then 
be run again on the interval graph, and so on, generating an interval graph 
sequence. Intuitively, an interval is a loop with some dangling edges. Outer 
loops will appear later in the interval graph sequence than inner loops. If the 
interval graph sequence terminates with a single node, then the flow graph is 
said to  be reducible. 

The properties of an interval include that each interval has a unique header 
vertex, and the header dominates all vertices in the interval. If there is an 
edge x --+ h from some vertex x to the header h, then that interval includes a 
loop. The interval graph sequence for our sample flow graphs are given in the 
table below; those intervals that correspond to loops are noted with an asterisk. 
Note that the problem of multiple back edges ending on the same header is well 
defined with interval analysis. 



G1 {Entry,B.l) {B.2,B.3)* { Exit) 

G2 

I(G2) 

/I G5a I {Entry) {B.l,B.2,B.3,B.4,B.5}* {Exit) 

{Entry,B.l} (B.2) {B.3}* (B.4) {Exit) 
{Entry,B.l) {B.2,B.3,B.4)* {Exit) 

G3 
I(G3) 

1 G5b I {Entry) {B.l,B.2,B.3,B.4,B.5)* {Exit) 

{Entry} P . 1 )  {B.2,B.3,B.4}* {Exit) 
{Entry) {B.lIB.2,B.3,B.4}* {Exit) 

Interval analysis does not explicitly define the body of a loop, so similar tech- 
niques as used in dominator back edge detection could be used. Interval analysis 
finds the same loops as  back edge detection, with the same inner/outer relation- 
ship (see G3), except for graph G4. With back edge detection, this case (multiple 
back edges to the same loop header) was ambiguous; with interval analysis, this 
is unambiguously defined as a single interval, and thus is treated as a single 
loop. 

4.1 TI-T2 Analysis 

T1-T2 analysis is another method to "parse" a flow graph; it reduces a flow 
graph by the repeated application of the two transformations: 

T1 if n is a node with a loop edge n -+ n, delete that edge. 

T2 if there is a node n with a unique predecessor m, delete the edge m --t n and 
the node n ,  merge the successors of the two nodes (making all successors 
of n be successors of m). 

Intuitively, inner loops will be reduced by the T1  transformation before outer 
loops. TI-T2 analysis gives the same results as interval analysis except for graph 
G4. In that case, depending on the order of the transformations, the analysis 
might find two loops nested one way, two loops nested the other way, or only 
one loop, as shown in Figures 10-12. 

5 Control Dependence for Loop Detection 
A relatively new method to represent the conditions controlling execution of 
vertices in the program graph is the control dependence relationship [3]. To 
understand control dependence we must first define the postdominator relation. 



Exit z 

Exit @ 

Figure 10: TI-T2 analysis of graph G4 finding two nested loops. 
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Figure 11: TI-T2 analysis of graph G4 finding two loops nested other way. 
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Figure 12: TI-T2 analysis of graph G4 finding a single loop. 



Figure 13: Post-dominator tree for the simple loop GI .  

We say that a vertex n postdominates a version m, written n PDOM m, if n 
appears on every path from m to Exit. Like the dominator relationship, the 
postdominator relationship is reflexive and transitive, and can be represented 
in a postdominator tree. Cytron et a1 [2] explain that the postdominator rela- 
tionship is the same as  the dominator relationship of the reverse control flow 
graph (reversing each edge in the control flow graph), and they show an efficient 
method to find control dependences from the postdominator tree. 

A vertex n is control dependent on another vertex m, if there is a length 
k > 0 path from a m to n such that n postdominates every vertex after rn 
on the path, and either n = m or n does not postdominate m. Note that a 
vertex can be control dependent on itself. The control dependence relationship 
can be represented by a directed graph, called the control dependence graph. 
The only control dependence predecessors are those vertices that conditionally 
choose one of two (or more) successor paths in the program. Each arc in the 
graph is labelled to  indicate whether the successor vertex is on the True or False 
path (integer labels would be used if there were more than two successor paths). 
The post-dominator trees for the sample flow graphs are given in Figures 13-16. 

A cycle in the control dependence graph corresponds to a loop in the pro- 
gram. The control dependence cycle corresponds to  the condition that a loop 
exit can decide to exit the loop or continue execution execution of the loop only 
if the previous loop exit (perhaps from an earlier iteration of the loop) has not 
already decided to exit the loop. The body of a loop is control dependent upon 
the dependence cycle. Nested loops appear as disjoint cycles, with the inner 
loop cycle control dependent upon the outer loop cycle. The control depen- 
dence graphs for the first two simple example flow graphs are shown in Figures 



Figure 14: Post-dominator tree for the doubly nested loops G2 and G3. 

Figure 15: Post-dominator tree for loops with common header in G4. 



Figure 16: Post-dominator trees for loops with internal exit in G5a and G5b. 

Figure 17: Control dependence graph for the simple loop GI .  

14 and 15. The labels on control dependence arcs are omitted if the label is 
"T", to  reduce clutter. In these two cases we get exactly the loops we expect; 
in G2 we see the two loops, with loop B.3 and vertex B.2 nested within the loop 
controlled by B.4. 

The control dependence graph for G3, however, gives us our first surprise. 
This graph is shown in Figure 16. Here we see the two loops we expected, con- 
trolled by B.4 and B.3. However, the outer loop is controlled by B.4; the inner 
loop is controlled by B.3 and contains B.l  and B.2. This is exactly opposite 
of the inner/outer loop relationship found by the classical methods; this differ- 
ence raises the question of whether the control dependence definition might be 
incorrect. 

Flow graph G4 could be defined as having one or two loops by classical 
methods; the control dependence graph (in Figure 17) unambiguously shows 



Figure 18: Control dependence graph for the doubly nested loops in G2. 

Figure 19: Control dependence graph for the improperly nested loops in G3. 



Figure 20: Control dependence graph for loops with common header in G4. 

two nested loops, exactly as our intuition would expect. The inner loops is 
controlled by B.2, and contains B.3 and B . l ;  note that B.3 is control dependent 
only on B.2. This example shows a strength of the control dependence graph; 
it is precise even when loops share headers, when classical methods can be 
ambiguous. At this point we should examine our intuitive definitions of inner 
and outer loops. Given two nested loops, we expect that the inner loop will 
iterate several times for each iteration of the outer loop. In general, depending 
on the iteration condition, the inner loop may iteration only once or even zero 
times for some or all iterations of the outer loop; nonetheless, when the inner 
loop exits, it gets another chance to execute when the outer loop iterates. Thus, 
iteration of the inner loop "depends" on the outer loop iterating. The control 
dependence graph appears to capture this intuitive definition more precisely. 

The question about flow graphs G5a and G5b is whether vertex B.4 belongs 
t o  the loop. Note that syntactically, that vertex may come from a basic block 
that is lexically scoped within the loop or not. In both graphs, shown in Figure 
18, vertex B.4 does depend on the control dependence cycle defining the loop 
(note that the control dependence cycle comprises two vertices in both graphs). 
In both cases, however, B.4 depends on B.2 with a "False" label (the exit label 
of the loop). Depending on the application, we could define B.4 to  be part of the 
loop, due to the dependence on the loop dependence cycle, or we could define 
B.4 t o  be outside of the loop, since it  depends only on an exit label of the loop 
dependence cycle. We believe the proper definition is the latter; the code could 
be treated as  a loop with a CASE or SWITCH statement choosing which exit 
code to  execute when the loop exits. This definition can be easily supported by 
the control dependence graph. 



Figure 21: Control dependence graphs for loops with internal exit in G5a and 
G5b. 

6 Summary 

The control dependence graph, a new formal representation of the conditions 
that control execution of statements and blocks in a program, has been used 
as a basis of many scalar optimizations as well as the discovery of parallelism 
in sequential programs. One point to consider when adopting a new formalism 
is how it  defines standard control constructs compared to other methods. We 
have compared how the control dependence graph defines loops, especially how 
it  defines inner and outer loops, compared to the classical methods of back edge 
detection and interval analysis. We found that in one flow graph, the control 
dependence graph defines inner and outer loops unambiguously when classical 
methods are somewhat ambiguous; in another flow graph, the control depen- 
dence graph defines inner and outer loops differently from the classical methods. 
These differences arise in unstructured cases where our intuitive definition of in- 
ner and outer loop is not so easy to  apply. It is disconcerting that the control 
dependence definition of loop can be different from the classical definition of 
loop. It raises the question of the valid it,^ of the control dependence graph, or 
of the validity of the definition of a "natural loop" of a program. Nonetheless, 
we prefer the definition from the control dependence graph over that of classical 
methods. 

Experiments are needed (and are underway) to  determine whether the dif- 
ferences appear in actual programs. This likely will depend on the programming 
language and application domain; our expectations are that few programs will 
exhibit the flow graphs that cause the problems shown here. If this bears out, 
any loop detection algorithm should be considered sufficient. 

References 

[I] A. V. Aho, R. Sethi, and J .  D. Ullman. Compilers: Principles, Techniques, 



and Tools. Addison-Wesley, Reading, MA, 1976. 

[2] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Ken- 
neth Zadeck. An efficient method of computing static single assignment 
form. In Conf. Record 16th Annual ACM Symp. on Principles of Program- 
ming Languages, pages 25-35, Austin, TX,  January 1989. 

[3] Jeanne Ferrante, Karl J .  Ottenstein, and Joe D. Warren. The program 
dependence graph and its use in optimization. A CM Trans. on Programming 
Languages and Systems, 9(3):319-349, July 1987. 

[4] Matthew S. Hecht. Flow Analysis of Compuier Programs. North Holland, 
New York, 1977. 


