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Abstract 

One of the more common tests for data dependence is Banerjee's In- 
equalities, which can easily be used to compute direction vectors. Baner- 
jee recently extended his test to handle triangular loop limits. A simple 
method can be used to find direction vectors. This note studies the simple 
method, showing that it is often not very precise. 

1 Introduction 

One often-cited data dependence test is Banerjee's Inequalities [2, 41. This test 
discovers whether there is a real solution to the dependence equation within 
the loop limits, given that the loop limits themselves are known and invariant. 
Most compiler implementations require more information than just whether 
the dependence equation has a solution; often the solution is characterized by 
a dependence distance or direction vector. Banerjee's Inequalities are easily 
extended to find dependence given a direction vector, still assuming that the loop 
limits are known and invariant [l, 10, 121. When the loop limits are unknown, 
all competent implementations of this test assume unbounded loops and find 
the correct conservative result. However, the test was less than adequate when 
the loop limits were triangular, meaning the limits of the inner loop depended 
on the outer loop index. 

Kennedy first studied how to extend Banerjee's Inequalities to  handle tri- 
angular loop limits in simple common cases [7]. Banerjee's recent monograph 
generalizes this case to  handle any triangular loop limits [3]. However, this does 
not explain how to derive the necessary direction vector information. 

This short note explains one method that could be used to derive direction 
vector information by using false triangular loop limits. A second, more complex 
method, essentially re-deriving the bounds based on the direction vectors, is also 
summarized. We show by example that neither is very precise. 



2 Data Dependence 

The general form of a dependence problem is shown in the following nested loop: 

f o r  Il = Il t o  u l  do 
f o r  I2 = l2 t o  u2 do 

for Id = Id t o  ud do 
. . .  ACfl(Il,I2, . . . ,  Id),f2(Ilr12, . . .  rId)r...rfs(Ilr12r...,Id)l 
. .  ACgl(I1,Iz , . . - ,  Id),g2(Il ,I2,- . .  ,Id),...,gs(Il,I2,...,Id)] 

endf o r  

endf or  
endf o r  

The loop has the characteristics: 

There are d nested loops with index  variables 11, 12, . . . , I d .  

The array A for which dependence is being tested has s dimensions; each 
of the two references therefore has s subscript expressions expressed as 
functions of the loop index variables, shown above as f l ,  gl ,  f2,  92, . . . , 
f s ,  ss. 

The subscript expressions are classified into the following categories: 

- constant, if the entire expression reduces to a simple constant value: 

- linear, if the expression is a linear combination of the surrounding 
loop index variables with known constant coefficients: 

- nonlinear, if the expression contains other quantities. 

The loops have lower and upper limit expressions, I t ,  u l ,  12, u2, . . . , Id, 
ud that may also be classified as constant, linear or nonlinear. 

Here we assume the loops are normalized to  have a step of one [4]. 

The dependence problem is to find whether there are values of the loop index 
variables, namely 

I ,  2 ,  . - . , d ,  and jl, j 2 ,  . . . , j d  

that satisfy all the following constraints simultaneously: 



i l ,  jl, i2, j2, . . . , i d ,  jd are all integer, 

fs( i l ,  i2, . . . , id )  = gs(j l ,  j 2 ,  . - . , jd) 

Additionally, the dependence relation can be characterized with distance 
or direction information. The dependence distance is a vector, defined as 
(dl, d2, . . . , dd), where dk is defined as jk - ik if the value is constant for all 
jk, ik that satisfy the dependence conditions above, and dk is unknown other- 
wise (typically written "*"). The dependence direction is a vector, defined as 
(el, 62,. . . , Bd), where Bk is one of the relations {<, =, >) if the relation ikek j k  

holds for all ik, jk that satisfy the dependence conditions, and Bk is unknown 
otherwise (in the most general case, Bk may also be one of { I ,  >, #}, or is 
likewise written "*" when it  is unknown). 

In a concrete example, the dependence relation for the loop 

f o r  Il = I t o  3 do 
f o r  I2 = 1 t o  10 do 

endf o r  
endf o r  



has solutions at 

Thus, the dependence distance vector is (1, *), since j l  - il is always 1, while 
j2 - i2 has values that range from 1 to 5, so is not constant. The dependence 
direction vector is (<, <), since il < j l  and i2 < jz is always true for dependence 
solutions. 

3 Overview of Banerjee's Test 

Banerjee's Inequalities applies when the subscript expressions are all linear, as 
defined above. It proceeds by ignoring condition 1 above, namely it detects 
whether there are real (not integer) solutions to the dependence equation. Also, 
it only applies to  a single dependence equation. Since in the general case, there 
are d dependence equations, one of (at least) four heuristics is used to  help this 
problem. 

The dependence equations can be solved separately and the results inter- 
sected to find any dependence [lo, 111. 

In many cases, the subscript expressions use disjoint sets of index variables 
(as in the example above). In such cases, the dependence equations are 
said to be separable; it has been shown that solving separable dependence 
equations independently and combining the results gives an exact result 

PI. 
In order t o  find only simultaneous solutions, the d subscript expressions 
can be linearized into the single addressing function for the array access [4, 
51. This will result in a single dependence equation, but it has been shown 
that this is not as exact in all cases as solving the dependence equations 
separately [12]. A compromise is to solve each dependence separately and 
also solve the linearized dependence equation. 

By noticing that a solution to  the original dependence equations must also 
solve any linear combination of the dependence equations, we can choose 



some linear combination that gives certain advantageous properties. The 
Lambda Test chooses linear combinations such that in certain common 
circumstances, a simultaneous solution to  all dependence equations can 
be proven [8]. 

Note that none of these heuristics guarantee an integer solution within the loop 
limits. 

Given a single dependence equation from linear subscript expressions, the 
dependence equation for dimension rn looks like: 

Banerjee's Test effectively reassociates this to look like: 

which is equivalent to  

Banerjee's Inequalities then finds lower and upper bounds for each of the d terms 
in the summation, such that 

The lower and upper bound depended on the coefficients (fm,k,g,,k) and the 
loop limits (lk , uk). Thus we have 

which gives 
d 

If either of these two inequalities does not hold, then the t,wo array references 
must be independent. 

The first extension to Banerjee's formulation was to compute different lower 
and upper bounds based on a direction vector element for that dimension. Thus, 
to  test for direction vector (el,  Bz,  . . . , Bd), the test would find d lower and upper 
bounds such that 

L B : ~  5 fm,kik - gm,lcjk L u B f k  
Note that the lower and upper bound depend now on the coefficients, the loop 
limits, and the corresponding direction vector [12]. The summation and the rest 
of the test would proceed as before. 



4 Triangular Banerjee Inequality 
The original Banerjee Inequalities assumed the loop limits were invariant. In 
many common cases, the lower or upper limits of the loop depend on outer 
loop indices, in particular they are often l inear in the same sense that subscript 
expressions are linear. Thus a linear upper loop limit is expressed as 

Banerjee's algorithm for dependence testing with these t r iangular  loop limits 
computes lower and upper bounds with an algorithm like the following: 

1. Given a dependence equation like 

2. Rename variables as follows: 

coefficients index 
old new old new 
gm,o - f m , ~  a0 

fm,l a1 i l  hl  

-gm, 1 a2 jl h2 

fm,2 a3 iz  h3 

-9m,2 a4 j 2  h4 

fm,d a 2 d - 1  id h2d-1 

-Sm,d a 2 d  jd h 2 d  

This changes the dependence equation to: 

The loop limit coefficients are used to fill in the limit matrices such that 
~h 5 h 5 ~h a s  follows: 



and similarly for the upper limit coefficients. Note that because of the 
way the coefficients are numbered, the coefficient matrices L and U will 
have zeroes in the odd numbered columns of the even numbered rows, and 
vice versa (except for the zero column). 

3. Set n = 2d. 

4. Set b; = ak, 1 5 k 5 2d, and b; = 0. 

5. Set c; = a k ,  1 5 k 5 2d, and c; = 0. 

6. Based on the values of b:, c: and the loop limit coefficients Ln,o, . . . , Ln,n-l, 
Cn - 1 compute new values bE-', bT-l ,  . . ., b:~: and c ~ - ' , c ~ - ' ,  . . . , ,-,, such 

that 
n-1 n 

and 

7. Set n =  n -  1. 

8. If n > 0, go to step 6; otherwise go to  step 9. 

9. By transitivity, b: < x;=l akhk < 4 .  Test whether b: 5 a0 and a0 5 c:. 
If either of these inequalities fails, the references are independent. 

5 Simple Example 
Given the loop: 

for Il = 1 to 10 do 
for I2 = I to 11-I do 

~ ( I ~ - 2 1 ~ + 2 2 )  = . . .  
. . . =  A(-I1 + I 2  + 14) . . . 

Algebraically, the dependence equation can be written: 

or, filling in the coefficients 



subject t o  the constraints that 

and similarly for j l ,  j2; again, filling in the coefficients, we have: 

Banerjee's triangular algorithm renames these variables to  give the depen- 

which is filled out to  

subject to  the constraints that 

and I , \  

which gives 



The algorithm proceeds by iteratively computing b and c coefficient vectors, 
such that 

n d n 

At step n, the new vector b;,ll is computed from the old values of b$n-l, b:, 
and the limit coefficients Ln,l:n-l and Un,l:,-l as follows: 

If b: > 0, set b;:;Ll = b;;,n-l + b: x Ln , l :n -~ .  

If b: < 0, set b;,Ll = b;,,-l + b: x Un,l:n-1. 

and similarly for c .  Banerjee defines the positive part and negative part of a real 
number x, written x+ and x-, respectively, as: 

Using these definitions, the computation of b and c simplifies to: 

In this example, the b and c coefficients are computed as follows 

Thus the left hand side of the dependence equation is bounded by -7 and 17; 
since the right hand side -8 does not lie within these bounds, the two references 
must be independent. 

6 Adding Direction Vector Constraints 
A simple method to use a direction vector constraint for this dependence test 
is to  replace one (or more) of the loop limits with an appropriate non-strict 
inequality. For instance, if we wish to test for dependence with a (<) direction 
in the outermost loop, we want to  enforce the inequality hl  < h2 ,  since these 
are the renamed indices for that loop. Because we are only interested in integer 



solutions, we can simplify this to hl + 1 5 ha .  In general, to test for a (<) 
direction for loop at level I ,  we want to  enforce h21-l + 1 5 h21. The triangular 
Banerjee algorithm can utilize this information by replacing the lower limit for 
h21 by the appropriate coefficients. 

For example, take the slightly modified example: 

for Il = 1 to 10 do 
for I2 = 1 to 11-1 do 

A(Il - 2 1 ~  $ 2 0 )  = . . . 
. . .= A(-Il  + I2 + 14)  . . . 

The algebraic form of the dependence equation, after renaming, is: 

Using the direction vector hierarchy [5], the compiler would first test for depen- 
dence without any direction vector constraints, equivalent to  a (*, *) direction. 
The triangular Banerjee test finds the same bounds as before, namely -7 and 
17, so the compiler must refine one of the dependence directions. Suppose the 
compiler chooses to  refine the inner loop direction, so it should testing for de- 
pendence with a (*, <) direction. The (<) for the inner loop means that the 
compiler should enforce h3 + 1 < h 4 .  It can do this by modifying the the fourth 
row of the L limit matrix to: 

With the modified loop limit, the b and c coefficients are computed as follows 

There is some freedom of choice here; we could alternatively have chosen t o  
rearrange the matrices and change the upper limit of hs to  be h4 - 1. In that 



case, the dependence equation would be: 

with the limits: 

Now the computed b and c coefficients are: 

2 + l h l  + lh2 - 3h4 < -7 5 -2 + lh l  + lh2 - lh4 
5 + lh l  - 2h2 < -7 5 -3 + lh l  + lh2 

-15 + lh l  - < -7 5 7 + lh l  
- 14 2 -7 5 17 

The difference between the computed bounds, -14 : 17 and -7 : 16, is po- 
tentially significant. In both cases this test will assume dependence with (<) 
direction, since -7 does lie within the limits. However, there actually is no such 
dependence. The values taken by the left hand subscript Il - 212 + 21 are: 



is 8. However, the algorithm doesn't get a chance to  take advantage of tighter 
limits placed on the solution space by other limits. In this case, the value of -7 
is reached when hs has value 9. 

7 Alternate Method 

An alternate method to add direction vector constraints t o  the triangular Baner- 
jee test is to  derive bounds algebraically, as was done for the rectangular test 
[lo, 121. Suppose, for instance, we wanted to test for a (<) direction a t  loop nest 
level I ;  we would be looking at and hzl, where we must enforce hzr-1 < ha1 
or h21-1 5 hZ1 - 1. Let p = 21 - 1 and q - 21. The derivation uses the inequality 
chain: 

I P S  hp < 9 L uq 
0 < h P P  5 h - 1  5 u q - l p - 1  

By example, the derivation of the lower bound proceeds as follows: 

Again, imprecision arises because the upper limit up and the lower limit 1, do 
not figure into the bound. By contrast, with rectangular loop limits, up is the 
same as up;  with triangular limits, if up depends on hl ,  uq will depend instead 
on ha, the corresponding loop index. 

What conclusions can we make? This dependence test is not particularly 
well suited for direction vector calculations. The problem is the inability t o  
take into account more than one lower or upper limit on a loop index. Other 
dependence tests, a la the Power Test [13] or the Stanford Sieve [9], seem more 
well suited to this task. 

References 

[I] John R. Allen and Ken Kennedy. Automatic translation of Fortran pro- 
grams to vector form. ACM Trans. on Programming Languages and Sys- 
tems, 9(4):491-542, October 1987. 

[2] Utpal Banerjee. Data dependence in ordinary programs. M.S. thesis 
UIUCDCS-R-76-837, Univ. Illinois, Dept. Computer Science, November 
1976. 



[3] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Aca- 
demic Publishers, Norwell, MA, 1988. 

[4] Utpal Banerjee, Shyh-Ching Chen, David J .  Kuck, and Ross A. Towle. 
Time and parallel processor bounds for Fortran-like loops. IEEE Trans. 
on Computers, C-28(9):660-670, September 1979. 

[5] Michael Burke and Ron Cytron. Interprocedural dependence analysis and 
parallelization. In Proc. SIGPLAN '86 Symp. on Compiler Construction, 
pages 162-175, Palo Alto, CA, June 1986. 

[6] David Callahan. Dependence testing in PFC: Weak separability. Tech- 
nical Report Supercomputer Software Newsletter #2, Rice Univ., Dept. 
Computer Science, August 1986. 

[7] Ken Kennedy. Triangular Banerjee inequality. Technical Report Super- 
computer Software Newsletter #8, Rice Univ., Dept. Computer Science, 
October 1986. 

[8] Zhiyuan Li, Pen-Chung Yew, and Chuan-Qi Zhu. An efficient data de- 
pendence analysis for parallelizing compilers. IEEE Trans. Parallel and 
Distributed Systems, 1(1):26-34, January 1990. 

[9] Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Efficient and exact 
data dependence analysis. In Proc. A CM SIGPLAN '91 Conference on 
Programming Language Design and Implementation, pages 1-14, Toronto, 
June 1991. 

[lo] Michael Wolfe. Optimizing supercompilers for supercomputers. PhD Dis- 
sertation UIUCDCS-R-82-1105, Univ. Illinois, Dept. Computer Science, 
October 1982. (available from Univ. Microfilms Inc., document 83-03027). 

[ l l ]  Michael Wolfe. Optimizing Supercompilers for Supercomputers. Research 
Monographs in Parallel and Distributed Computing. Pitman Publishing, 
London, 1989. (also available from MIT Press). 

[12] Michael Wolfe and Utpal Banerjee. Data dependence and its application to  
parallel processing. International J. Parallel Programming, 16(2):137-178, 
April 1987. 

[13] Michael Wolfe and Chau-Wen Tseng. The Power test for data dependence. 
IEEE Trans. Parallel and Distributed Systems, 1991. (accepted for publi- 
cation). 


