
Generating Programs by Reflection* 

James Hook, Richard B. Kieburtz, and Tim Sheardl 
Pacific Software Research Center 

Oregon Graduate Institute of Science & Technology 
19600 N.W. von Neumann Drive 

Beaverton, OR 97006-1999 
{hook,kieburtz,sheard}@cse.ogi.edu 

July 22, 1992 

Abstract 
Many algorithms derive their control from the inductive structure of a datatype. Poly- 

morphic functions that realize map, generalized iteration and primitive recursion over sum- 
of-products datatypes can be generated by meta-functions applied to  a type constructor's 
signature. Subject to a few easily checked restrictions, the type constructor of a freely 
constructed, sum-of-products datatype has the categorical structure of a monad. Func- 
tions derived from monadic datatypes have additional compositional properties useful in 
programming. 

Meta-functions to calculate the monadic functions of sum-of-products datatypes have 
been implemented in a reflective language, TRPL, and are duplicated in Standard ML. 
The language extensions needed to support type-safe, compile-time reflection in a typed 
language are discussed. 

As an example of program development, monads are used to  derive an implementation 
of A-calculus using de Bruijn indexing. In the derivation, a map function for the type of 
lambda-terms is modified with a "policy function" that captures the effects of variable bind- 
ing in the lambda calculus. The resulting algorithms depend only on the monad operations 
of the datatype and are independent of det,ails of the data structure, up to  the final step of 
term contraction. 

*A version of this paper has been submitted to  the Joztrnal of Functional Programming. 
+The  authors are supported in part by grants from the NSF (CCR-9101721), Tektronix, and OACIS. 



1 Introduction 

A great deal of programming consists of defining types for data structures, then writing pro- 
grams that traverse these structures either to  transform them or to  calculate values of other 
types. If these types are defined carefully, so as t.o possess a few general properties, then their 
traversal operations can be generated automatically, from very compact specifications. There 
are three classes of operations that fit this mold. 

1. Control Structures are given as abstract recursion schemes over types. An algorithm 
may be specified in terms of a parametric recursion scheme, independently of a particular 
datatype for which it may be instantiated. Certain properties of algorithms, such as 
termination, can be inferred from the parametric recursion scheme used. Two such control 
structures that we will describe are generalized primitive recursion and bounded iteration. 

2. Monads provide a structuring mechanism tha.t allows us to  synthesize well behaved 
programs. A monad consists of a type constructor, T, and a fixed set of polymorphic 
operations related by a few equational laws. These operations are generic building blocks 
for well typed programs. Monads have been found to precisely describe various pro- 
gramming notions such as datatypes, exceptions, sta.te, and continuations [Moggl]. The 
monad operations for a large class of types can be automatically generated. 

3. Distributive Morphisms translate multi-structured objects into related forms. Given 
two type constructors, S and T, it is often convenient to  have a polymorphic function 
dist with type T ( S ( a ) )  4 S(T(a) )  which obeys certain laws. For some useful data types 
such distribution functions can be automatically generated. 

In addition, the polymorphic traversal operators can provide control templates for data struc- 
ture traversal functions that are not polymorphic. 

4. Policy Functions are type-specific functional parameters that specialize polymorphic 
functions. Programs for many real application functions follow the same patterns of recur- 
sion found in generic control structures, but introduce local, type-specific, modifications 
that cannot be expressed in terms of polymorphic control structures. A mechanism that 
automates the specialization of these generic control structnres can be extremely useful. 

By programming in terms of generic operations that can be automatically generated, one can 
write program specifications that are considerably smaller and more abstract than customary 
executable specifications. Furthermore, such specifica.tions are surprisingly insulated from the 
details of the types supporting the data structures in the program. 

A programmer using this method will ca.refully define the data types required by the appli- 
cation, specify which operations over these types will be needed, and then "push a button" to  
generate these operations. In addition, a "generate and specialize'' paradigm is used to  capture 
those details not expressible a.s polymorphic functions. These operations are then composed to  
build the application program. 



Monads and distributive morphisms are particularly helpful in constructing these compo- 
sitions. The function-lifting operators of the monad can construct new functions whose types 
are agreeable to  composition where an original function was not. The distributive morphisms 
provide "glue" for compositions of functions genera.ted for monads corresponding to  compound 
types. 

1.1 Monads and program structure 

Monads, a class of structures found in category theory, have attracted the interest of an en- 
thusiastic group of advocates whose primary interests lie in programming methodology. When 
applied to  functional program specification, monads provide uniform, natural rules for semantic 
extensions and composition of program components. Monads can characterize entire classes of 
parameterized types. The utility of monads for computer science was independently discovered 
by Spivey, who found use for them in providing a uniform framework for operators on datatypes 
and for control exceptions [Spi90], and by Moggi, who finds in them a framework capable of 
describing a diverse variety of notions of computation[Mog91]. We find the monad structure 
useful because it provides a formal characterization of the algebra of functions over parametric 
types [Wad89, Maigl]. 

Wadler has argued that monads can be used directly in programming. He claims the 
polymorphic functions which are part of any monad can be used to  advantage as the building 
blocks of many programs[Wad92]. Use of these functions affords a high degree of design reuse. 
We seek to  take the idea of monadic functions as building blocks one step further, by generating 
instances of these generic functions as needed. 

In this paper we focus on monads that characterize a particular class of types: the freely 
generated, sum-of-products datatypes that are found in programming languages such as Stan- 
dard ML, Miranda, Hope and Haskell. These types have inductive rules for term introduction. 
Corresponding to  these rules are inductive control schemes for iterating over the structure of 
terms, or more generally, recursion schemes for these types. From a monadic characterization 
of such types, we shall define schematic functions that can be instantiated for any such type to  
yield a (terminating) recursion scheme for the type. 

1.2 Monads defined 

Monads are defined most generally in terms of categorical concepts. For our purposes, we shall 
fix the category to  be a ca.rtesian-closed one ivhose objects are types and whose arrows are 
functions. Having said that, we shall say no more about categories here. 

A monad is a cluadruple comprised of a. type co~lstructor T and three polymorphic functions: 

( T ,  map, unit. nazdlt) 



The three functions have typings 

Here, we have introduced a notational convention that will be used throughout the paper. When 
one of these function names is used apart from the monad definition, it may be superscripted 
with the name of the monad's type constructor and subscripted with a type name that (through 
the formulas above) indicates its typing. The superscript and subscript may be omitted when 
no confusion could arise. 

These functions are further required to obey certain equational laws. The two conditions 
determining map are that it must preserve identities and compositions of functions: 

Three more equations, called the monad lau~s, relate the three functions. 

mul& o = idT(a) 

mu~t;  o (mapT unit;) = idT(a) 
T T mult, o m ~ l t ~ ( ~ )  = mu16 o (mapT rnulg) 

in which the subscripts indicate the types of particular instances of the polymorphic functions. 
These equations ca.n be obtained by reading them from the following commutative diagrams: 

T2(a )  T ( a )  T~ ( a )  
mu ltT mu rtT 

T(Q) 



There are several other, equivalent definitions of monads, which we shall not explore here[Wad92, 
DKMSl]. 

The uni t  is a function that, given a value of type a,  constructs a 'singleton' value of type 
T(cr). The m a p  is a function that calculates a pointwise extension of any function f : cr + P 
to  a function over the elements of the constructed type, T(cr). The multiplier, mult, 'flattens' 
a value whose type is that of the constructor applied twice. The prototypical example of a 
multiplier for datatypes is reduce-append for a list type. It flattens a list of lists by catenating 
all of the component lists into a single one. 

In fact, one's intuition about monads never goes wrong when List is taken as an example 
of a type constructor. Its uni t  is the singleton list constructor, its m a p  is the familiar mapcar 
of Lisp, and its multiplier has been described above. However, by framing these functions in 
the structure of a monad, we are led to realize that they are just instances of a more general 
principal that can be applied to many other type constructors, as well as to  List. 

2 Programs from Datatypes 

This section describes how control structures, monad operations, and distributive morphisms 
can be generated from the details of a sum-of-products type definition. 

2.1 Sum-of-Products types 

A sum-of-products data type is defined by a recursive equation. Its left hand side consists of a 
type constructor applied to a p-tuple of distinct type varia.bles, and its right hand side consists 
of an explicitly tagged disjoint sum. Each disjunct of the sum is a product of types tagged by 
a unique data constructor. The tuple of types ( t tTl  x . . . x ti,,,) which denotes the domain of 
the ith data constructor, C;, is called the type signature of C;. The types we consider are freely 
generated by their data constructors, which is to say, there is no equational theory equating 
terms of the type that are tagged with distinct data constructors. 

Let T be a type constructor, {al,  . . . , a,) be a finite set of type variables, and {Cl, . . . , Cn), 
be a finite set of data constructors. To define the type constructor T we write a declaration of 
the form 

in which the type variables are universally quantified. The form of such a declaration is re- 
stricted to  assure that a type constructor application, T( t l ,  . . . , t p )  denotes a well-founded type. 
Each of the types t , ,  in the type signature of C,  is required to  he either: (1) T(a l ,  . . . , ap) ,  
or (2) one of {al, . . . ,a,), or (3) a type which does not depend npon T or on any of the type 
variables crl, . . . , a,. 1 

'These conditions are more restrictive than necessary. However, composite type constructions require addi- 
tional mechanism, some of which will be introduced in a later section, and mutually recursive type equations 
would require more complex restrictions to guarant,ee well-foundedness. 



Two examples of such type definitions, which a.re used as running examples, follow: 

List ( a )  = Cons(a x List (a ) )  I Nil 

Term(a, P) = Var(a) ( App(Term(a, P) x Term(a, P)) I x Term(a, P ) )  
The second defines a type which represents terms in the pure lambda calculus2. In Term(a, P) ,  
a is the type of names for free variables, and P is the type of abstracted names. 

2.2 Control structures 

Recursive control structures can be derived from the inductive definitions of sum-of-products 
types. We consider two such schemes here, itera.tion and primitive recursion. The iteration 
recursion scheme generalizes iteration over the natural numbers. We call such a recursion 
scheme a reduction. The primitive recursion scheme is slightly more general. 

2.2.1 The reduce operator 

Let T be a sum-of-products type constructor with n data constructors. The reduce func- 
tion for T is a function of 2 arguments. The first argument is a tuple of n functional argu- 
ments, called accumulators, ( fi ,  . . . , f,). The curried application redT ( fl, . . . , f,) has type 
T(a l ,  . . . ,a,) -+ w. The reduce function can be defined by n equations that give the mapping 
on terms constructed by ea.ch of the n data constructors. The general form is: 

redT ( f i ,  . . . , f n )  (Ci(z1, . . . , z m i ) )  = f;(el, . . . ,em,) 

redT ( fi, . . . , f,) z j  if z j  has type T(a l ,  . . . , ap)  where ej  = 
if x j  has any other type 

In case a constructor, Ci, is nullary, then f; takes the empty tuple as an argument. 
The types of the accumulator functions, (fl, . . . , f,), required by redT are determined by 

the following rules. For each data constructor, C;,  in the definition for T, if C; has the type 
(tiql x . . . x ti,,,) - T(a l ,  . . . ,a,) then the corresponding accunlulator has the typing 

w if t;,j = T ( a l ,  . . . , a,) where ai,j = 
t otherwise 

Returning to  the examples, the reduce function for List has a recursion scheme defined by two 
equations, 

21ts derivation is given in section 4.3.  



and the reduce function for Term satisfies the three equations 

2.2.2 The primitive recursion operator 

The primitive recursion control structure is more general than the reduction control structure 
in that its accumulating functions may access both the original and recursively transformed 
versions of its recursive arguments. We use the convention that if a data constructor, C;, has 
m arguments, r of which have type T (a l ,  . . . , a,), then the corresponding accumulator has m 
arguments, r of which are pairs. 

To specify prT we use the template: 

(xi, prT ( fi , . . . , f,) x j ) if xj has type T(a1, . . . , a,) where ej  = 
otherwise. 

For example, the primitive recursion function for List is defined by the two equations: 

2.3 Monad operations 

Not every sum-of-products type supports the structure of a monad. A few restrictions on the 
recursive type equation defining a type are needed. This section describes these restrictions 
and gives rules for generating the monad operations for a type meeting them. Appendix A 
contains a proof that the operations genera.ted from these rules obey the monad laws. 

2.3.1 The map operator 

Let T (a l ,  . . . , a,) be a sum-of-products type of n data constructors {C1,. . . , C,). The map 
for T(al ,  . . . ,a,) on a k  (designated as map:) is a function of two arguments with type (ak + 

P )  + T(a1, . . . , a,) 4 T(crl, . . . , a k - 1 ,  ,8, ak+l , .  . . , ap) .  It can be realized as a reduction by 
supplying the proper accumulating function a,rguments. 

map; f x = redT (gl, . . . , g,) x 



f yj if yj has type ak in which ej = 
yj if yj has any other type 

A function template defining map: by a set of recursive equations can be derived from the 
reduction template by using properties of redT: 

map: f sj if z j has type T ( a 1 ,  . . . , a p )  
if z j  has type a k  

if z j  has any other type 

The map for List satisfies two equations: 

mapList f Nil = Nil 

mapList f ( C o n s ( x ,  s s ) )  = Cons (f s ,  mapLiat f XS) 

For T e r m ( a ,  ,f?) there are two maps, one on a ,  and one on p. 

maplfiTm f ( V a r ( x ) )  = V a r ( f  2 )  

mnpTeTrn f ( ~ p p  ( x ,  y ) )  = AW ( m a p F r m  f $ 9  mapTerrn f Y) 
mapPTPn f ( A  b s ( s ,  y ) )  = Abs (z, mapPrm f Y )  

mapPTrn f ( V a r ( x ) )  = V a r ( x )  
Term f ( A p p ( z ,  y ) )  = App(map2 X ,  f y )  

f ( A  b s ( z ,  y ) )  = A b s ( f  z, m a p F T m  .f Y )  map2 

2.3.2 Zero and unit constructors 

If the data constructor, C,, is nullary then C Z  is called a zero constructor or a zero of T. In 
the examples above, Nil is the only zero constructor. 

If the type signature ( t l  x . . . x t m U )  of a data constructor, Cu,  has exactly one type, t ; ,  
equal to  the kth type variable bound in the decla.ration of the type constructor, a k ,  then C ,  
is called a unit constructor of T on the bth type variable. We shall abbreviate this name as 
"a unit of T on k" and when T has only a single type pa.rameter we will often omit the k. In 
the case that C ,  is unary (there is no type other than crk in CU7s type signature), then Cu is 
called a perfect unit constructor of T on b .  Note that in general, there may be multiple unit 
constructors for any of the parameters of a. type constructor T. 

In the examples, Cons is a non-perfect unit constructor for List .  For the type constructor 
Term,  the data constructor Var is a perfect unit constructor on 1, and Abs is a non-perfect 
unit constructor on 2. 



2.3.3 Zero-based a n d  uni ta ry  t ypes  

A type constructor T is zero-basedif there is exactly one zero constructor and every term of the 
type embeds at least one instance of that zero. Equivalently, if T(a l ,  . . . , a p )  has a unique zero 
constructor C,, and each of the non-zero constructors, C;, has a type signature (tl x . . . x tni) ,  
in which at  least one of the component types t j  is T(crl, . . . , ap ) ,  then T is zero-based. In the 
examples above, List is zero-based since every list term embeds one occurrence of Nil .  

A type constructor T is unitary on k if there exists a unique polymorphic function of type 
a k  --+ T(a l ,  . . . , a,) that is linear in its argument. This requires that T has exactly one unit 
constructor, C, on I c ,  and can be satisfied in one of two ways. 

1. Either C, is a perfect unit constructor on k, or 

2. C, is a non-perfect unit constructor of T on k a,nd 

(a) T is zero-based, and 

(b) each type component, t , j  in the type signa,ture of C, is either ar, or is T ( a l ,  . . . , a,). 

Note that in general, a type may be unitary on ea.ch of its type variables. 

2.3.4 T h e  uni t  ope ra to r  

If T is a unitary type on k then the unit function for T :  of type c ~ k  + T(ak) ,  is defined to  be: 

unit:($) = C,(x) if C, is a perfect unit constructor for T, 

or if C, is not a perfect unit constructor, then 

x if yj has type crk 
where yj = 

C, if yj has type T (a l ,  .. . , ap )  

When T has only one type variable the subscript, k, will often be omitted. 
For the List example the non-perfect unit constructor, Cons, forms a unit function with 

the zero constructor, Nil, i.e. unitList(x) = Cons(z, Nil). Term is unitary on 1 because Var is 
a perfect unit constructor. On the other hand, Abs ca.nnot be used to  construct a unit function 
for terms on 2, since Abs is not a perfect unit collstructor and there is no zero constructor for 
Tern .  

2.3.5 Zero  replacement  

The third monad operator, mult, flattens 2-level monad structured values to  1-level monad 
structured values. For a unitary type with a perfect unit constructor, the flattening operation 
is obvious, but if the unit constructor is non-perfect, care must be taken that the flattening 
operation preserves structure as it embeds the second level monadic value as a substructure of 



the first. The function that does this is interesting in its own right and has many important 
properties. We call it a zero replacement function. 

Let T(a l ,  . . . ,a,) be a zero-based sum-of-products type. The right-biased, zero replace- 
ment for T is designated by the infix opera.tor, $ R .  We ca.11 (x eR y) a zero replacement, since it 
replaces the rightmost zero in x with y. The type of $$ is (T(al ,  . . . , a p )  x T(a l ,  . . . , a p ) )  -+ 

T(a l ,  . . . , a p )  and it is defined by the equations: 

x j  @: y if x j  is the rightmost parameter with type T (a l ,  . . . , ap)  where ej  = 
otherwise 

That is, for the rightmost argument of type T(a l  , . . . , a,) there is a recursive call to  the section ($z y), while all other arguments remain unchanged. 
In a similar fashion the left-biased zero replacement, $:, is defined by 

y x j  if x j  is the leftinost parameter wit>h type T(a l ,  . . . , a p )  
where ej  = 

otherwise 

Picking the leftmost or rightmost argument of C; with type T(a l .  . . . , ap )  builds zero replace- 
ment functions that combine their arguments in a linear fashion. This is an important property 
necessary for the multiplier (which will be built with zero replacements) to meet the second 
monad law. 

Of our two examples, only List is zero-based a.nd has a zero replacement function. Since 
the unit constructor Cons has only a single parameter of type List(a), the rightmost such 
parameter and the leftmost are the same. and thus a $pt b = b eLiSt L a. 

Nil $kSt ys = ys 

(Cons(x, 5s)) $pt ys = Cons(z, zs $fi"bt ys) 

We recognize from these equations that $Ed is the list append operator. Note that for 
natural numbers defined by the type equation N = 0 I S ( N ) ,  the addition operator is also a zero 
replacement. Important properties of zero repla.cement functions are that they are associative, 
and that they have the zero, C,, for both a. left. and right identity. These properties are proved 
in Appendix A. 



2.3.6 The multiplier operator 

Let T(a l ,  . . . ,a,) be a freely constructed sum-of-products type unitary on k. The multi- 
plier for T (a l ,  . . . , a p )  on the kth type varia'ble is a function of one argument, with type 

T (a l ,  . . . , T(a l ,  . . . , a,), ak+l,  . . . , a,)) - T(a l ,  . . . , a,) which converts a 2-level monadic 
value to  a simpler 1-level monadic value. 

The multiplier may be realized as a reduction. The tuple of accumulating functions required 
for the reduction is comprised of the corresponding data constructors, except that a linearizing 
function, link, substitutes for the unit constructor. The multiplier can be implemented by an 
equation of the form: 

where l i n p  is described below. 
If CU(t,,l, . . . , t j ,  . . . ,t,,mU) is a unit constructor, in which t j  is the unique argument with 

type ak,  and for all i # j ,  (if there are a.ny such) t i  has type T ( a l ,  . . . , ap) ,  then link? can be 
defined by 

All the arguments to  the left of the jth index are linked to  the j th argument with the 
left-biased zero replacement operator, and those arguments to  the right of the jth index are 
linked to  the j th argument with the right-biased zero replacement operator. If xj is the only 
argument, (i.e., C, is a perfect unit constructor), then l i n p  is the identity function. 

The linearizing function, link?, was contrived to  get a new T(a l ,  . . . , a p )  object from m 
objects of this type, where m is the arity of the unit constructor, C,. Think of l i n g  as an 
m-ary combining function for T ( a l ,  . . . ,a,) objects, which combines them in a linear, order- 
preserving fashion. The property that CZ is an identity for @, and $$, and the linearization 
property of $E and $; are necessary to prove the second monad law. 

Using properties of the reduce operator we can derive explicit equations for mult;. On 
terms tagged with the unit constructor for k. 

where x j  is the unique parameter with type c r k ,  t,he k th  type parameter of T. On terms tagged 
with other constructors, 

multr r j  if Xj has type T (a l ,  . . . , a p )  where e j  = 
otherwise 



Since List does not have a perfect unit we first define / inp i s t ,  then use it to define rnultList. 

linkJist ( x , ~ )  = z $fi l ist y 

multList x = redLi~t ( l i n e s t ,  (A() . Nil)  ) x 

Since Term has a perfect unit, its multiplier uses the identity function as a linearizing 
function. 

m ~ l t $ ' ~  x = redTeTm ( id ,  App, Abs)  x 

Using the properties of redTeTm, we calculate an explicit, recursive definition of m u l t p T m :  

m u l t p T m  ( V a r ( x ) )  = 5 

m u l t T T m  ( A p p ( x ,  y ) )  = ApP (mu1tpTm x ,  m u l t p T m  y)  

m u l t p T m  ( A b s ( s ,  y ) )  = Ab.s(x. multlTeTm y)  

2.3.7 Datatypes and monads 

Theorem 1 Let T be a freely constructed, sum-of-products type constructor. If T is unitary on 
its bth type argument then the quadruple ( ~ . n ? a ~ ~ . u n i t ~ , m u l t ~ )  has the structure of a monad. 

Proof is given in Appendix A. 

2.4 Distributive morphisms and composite monads 

Under certain conditions, monads can be composed to  form new monads. For the monads 
that correspond to  sum-of-products datatypes, the conditions needed for monad composition 
are that certain distributive morphisms exist. These morphisms are functions whose types are 
reminiscent of distributive laws for algebras. They provide the "glue" that joins the unit and 
mult of individual monads into the unit and mult of a co~nposite monad. However, the laws 
governing distributive morphisms are quite stringent. 

Let the type T ( a )  = R ( S ( a ) ) ,  where ( R ,  mapR,  unitR, multR) and ( S ,  maps,  units, rnults) 
are the monads of sum-of-products type constructors. In general R and S can be type con- 
structors of more than one type variable; this simply clutters the notation but does not affect 
the result in any material way. Then the S-distribution function for R ,  ? r i ,  is a function of one 
argument with type S ( R ( a ) )  - R ( S ( a ) ) ,  and wllicll satisfies[Bw85]: 

n i  o unitS = mapR units  
R 

(1) 
. r r i  o (maps  uni tR)  = unit 

S S 
(2) 

nz o mul tS  = ( m a p R  m u l t S )  o .rrg o ( m a p  ?rR) 

R R S  S 
(3) 

.rrz o (maps  mu1tR) = mu1t o (?)?up rR)  o HR (4) 



Proposition 2 Given monads (R, mapR, unitR, multR) and ( S ,  maps, units, mults) with a 
distribution morphism ng satisfying the above equations, the quadruple 

R S (RS, mapR o maps, unitR o unitS, (mapR rnults) o multR o (map RR)) 

is a monad. 

Proof is given in Appendix B. 
Unfortunately, it is not obvious how to construct a distributive morphism satisfying equa- 

tions (1-4) unless R is a particularly simple sum-of-products type3. We do not even know 
if such a function is computable, in general. The following section gives a construction for a 
distribution over products that is useful in the co~lst,ruction of a type distribution morphism 
for a restricted type constructor, R. 

2.4.1 Product distributions 

An n-ary product distribution function for T(crl, . . . , a p )  on k,  T:, is a function with type 
(T(a1 . . . Qk-1, PI, a k + l  . . . a p )  X . . . X T(a l  . . . a k - 1 ,  Pn, a k + l  . . . ap))  T (a l  . . . a k - 1 ,  (PI x 
. . . x P,), a k + l  . . .ap) .  It maps an n-tuple of T-objects to a T-object of n-tuples. 

Let T(a l ,  . . . , a p )  be unitary on k, with operations unit:, map:, and mult:, then the 
comprehension notation[WadSO] makes it particularly easy to  express the the n-ary product 
distribution function for T on k, rz. 

The comprehension notation is defined in terms of the fa.miliar monad operations. 

The notation (p; qs) denotes a sequence of (x; t 2 1 ; )  expressions, the first of which is p, with 
the rest being designated by qs. 

Note that r: could have been defined differently, as: 

or by any other equation which places the (a; - zi)'s in a different order. Note also that 
TT = mapT (Aa . a) which is the identity function. 

For example, let the type constructor Maybe [SpiSO] be defined by the equation 

Maybe(z) = Nothing 1 Just (x) 

3Similar observations have been made by the Charit,?. group [Fuk92]. 



The binary product distribution for Maybe, with type (Maybe(a) x Maybe(b)) + Maybe(a x b ) ,  
can be defined as: 

Maybe 
T2 (xl ,  22) = { (al,a2) 1 a1 +- xl;  a2 -2IMaYbe 

Translating the comprehension expression using the rules above, we get: 

Using the definitions of mapMaybe and multMaybe7 calculated using the rules of Sec. 2.3, this 
definition simplifies to  four explicit equations. 

Maybe 
T~ (Nothing, Nothing ) = Nothing 

Maybe 
T~ (Just (xl), Nothing) = Nothing 

T P y b e ( ~ o t h i n g ,  Just (Q)) = Nothing 
Maybe 

T (Just(xl), Just (x2)) = Just ((xI. x2)) 

2.4.2 T y p e  composition distributions 

Definition: A sum-of-products data type R(a)  such that every data constructor is a t  most 
unary in either of a or R(a )  (but cannot have both types in its signature) is said to  be linearly- 
constructed. 

Let R be a linearly-constructed type constructor with a product distribution4 and let the 
type T ( a )  = S(R(a)) ,  where S is any sum-of-products type (not necessarily unitary). (For a 
linearly constructed type, the arbitrary order in which elements a.re generated from type R(a)  
values in the product distribution function is moot, as each constituent of type R(a) contributes 
a t  most one element.) Then there is a straightforward construction of the S-distribution for R, 
In particular, if both R and S are also unitary, and hence correspond to  monads, then there is 
also a monad corresponding to T. In spite of the severe restriction on the form of R, there is 
a t  least one interesting example of such a. type constructor, namely Maybe. 

A construction for T A  can be given in terms of the function reds, 

if an accumulating function, f;, can be found for each data constructor, C;, of 5'. If C; is a 
zero constructor, C,, then fi () = unitR Cz.  If C; is not a zero constructor, but has type 
(al . . .a,,) -+ $(a)  then the the corresponding accumulating function, f;, can be defined as 

fi(xl . . . x,,) = m.apR C; (T:~ (el . . . em,)) 

'There are monadic types such as state transformers, which possess product distribution functions, but cannot 
be expressed as a sum-of-products type because they require a function spacr. (exponential) type. 



if aj is S (a )  i.e. e j  : R(S(a) )  
i fa j i scu  i . e . e j :R(a )  

unitR xj if aj is any other type 

For exa,mple, the type composition distribution function, n i& , , ,  is a function with type 
List(Alaybe(cr)) + Maybe(List(a)), and can be defined by using the reduction for lists, redList. 

where f  cons(^, XS) = ~ ~ a ~ ~ ~ y ~ ~  C O ~ S  (72Maybe(x, ZS)) 
= = Just (Nil) 

Maybe Appealing to  the definition of r2 from section 2.4.1 we see we can simplify the definition 
of fcOns to the four equations 

f cons (Nothing, Nothing) = Nothing 

fCons (Just (xi), Nothing) = Nothing 

f cons (Nothing, Just (x2))  = Nothing 

f cons  (Just (xl), Jzist(x2)) = Just ( C O ~ S ( . T I , X ~ ) )  

Intuitively ajf$b, yields Nothing if there are any Nothings in its argument, and otherwise yields 
Just(l), where I is a list composed of all the unexceptional elements in its argument. 

3 Meta-level Programming 

The theoretical framework developed in Section 2 offers results on the algebraic structure of 
data types that can be directly applied to transform specifications into software. For example, 
given any data type constructor T, the polymorphic function mapT can be synthesized algorith- 
mically by analyzing its signature [MFPSl]. In a programming language that incorporates both 
expression and type representations as first-class values, one can write a single meta-function, 
MAP, that when applied to a type constructor T, generates the function mapT. 

Here is how MAP is defined for a free, sum-of-products data type. A type constructor can 
be defined by a signature, z = ~ ,  with a set of free type mriables, {a l , .  . . , ap)  (where p > I) ,  as 

The signature corresponds directly to a data type definition in Standard ML, for instance. 
Meta-functions use the syntactic represent,ations of definitions as data and produce new defi- 
nitions as results. The meta-function 

MAP : Signature -+ Ident -. Int -+ Expr 

is applied to  a signature, an identifier and a.n integer index, k, to  produce a program defining 
a function map:. Here, Expr is the type of syntact,ic expressions in a programming language. 



The identifier argument is an internal name that will be used to  indicate the recursion variable 
in the program scheme. When an application of MAP is evaluated to  an expression, identifiers 
introduced in the expression a.re named so as to  avoid conflict with the identifier given for the 
recursion variable. The integer index, b, indicates which of the 1) type variables is the object 
of the map. 

To get the meaning of a recursive program, interpret it in the standard semantics of the 
programming language, obtaining a function of the specified type, 

mapT =def n ~ A P ( [ a l , .  . . , Q ~ ] c ~ )  "m" bO : ( c rk  + P )  -+ T(a1,.  . . , ak, . . . , ap)  -$ T(a1, .  . . ,P, . . . 

3.1 Specializing recursive programs 

Programs for real applications use type-specific functions as well a.s generic ones. A great many 
type-specific functions appear to  follow nearly the same recursion scheme as a generic map, 
reduce, or primitive recursion for some data. type, but differ in some detail. For instance, a 
function that filters elements from a list by a,pplving a test predicate q follows a recursion 
scheme much like that of mapList. Compa.ring 

mapLbt f Nil = Nil 
mapList f (Cons(x, xs)) = Cons( f x, mapList f xs) 

with 
fi1terList q Nil = Nil 

filterlist q ( ~ o n s ( x ,  XS)) = if q z then Cons(x, jilterList qxs)  
else ~ l t e 4 ~ "  q z s  

we notice that filterLiSt resembles mapList in its recursive control scheme except for the con- 
ditional expression that applies the policy predicate q : cr -+ Boo1 to  each list element. The 
predicate, unless trivial, is necessarily a type-specific function, thus f i ~ t e # ~ ~ ~ q  cannot be poly- 
morphic in a. 

Ordinarily, textual modification of an existing program scheme to obtain a new program 
is done with a text editor. All semantic properties of the old program, from its typing to  its 
termination, must be formally reestablished for the new one. We should like to  be able to 
restrict editing so that a generic function could be modified by embedding a policy function, 
yet at the same time, be assured that certain of its properties will be preserved. 

When generic functions are generated from schematic meta-functions applied to  signatures, 
there are many ways that modifications may be constrained. To provide a mechanism, modifi- 
cations are made with a syntactic difference operator, A : (Exp?. x (Expr x Expr)) --t Expr. 
The left component of its argument is the generic expression to  be modified. The right com- 
ponent of its argument is a pattern-activated rewrite rule to be applied to  the left component. 
The difference operator incorporates restrictions that determine applicability of the rewrite 
rule. 

For a rewrite rule to  be acceptable, both its sides must belong to  a common phylum in the 
syntax of the programming language, so that the syntactic correctness of an expression will 



be preserved under the rewrite. The difference operator, like other meta-functions, uses an 
abstract syntax representation of its arguments. With such a representation it is easy to  verify 
this syntactic constraint. The difference operator also invokes the type-inference mechanism 
of the programming language to  assure that well-typing of the recursion scheme is preserved 
by the rewrite. The type of the target expression of the rewrite must be an instance of the 
principal type of its pattern. 

The difference operator that we illustrate here applies only to  expressions that have the 
form of l e t  definitions. It adds the identifier defined in the l e t  form to the current lexical 
scope. Any other binding operators that may occur in the expression to be modified are treated 
as local bindings. The identifiers they introduce are renamed to  avoid possible capture of free 
variables that may occur in the target of the rewrite rule argument. 

However, neither syntactic correctness nor type preservation is a strong enough restriction 
t o  provide a sense in which a modified program uses a recursion scheme similar t o  the original 
one. To capture that aspect, we further require that the rewrite rule used by the difference 
operator must satisfy two conditions: 

(a) in any application of the recursion variable that occurs in the target, the T ( a l , . .  . , a,)- 
typed arguments of the application must be esact,ly those bound in the pattern, and 

(b) the resulting program will evaluate no more applications of the recursion variable than 
does the original. 

Condition (a) requires, for instance, that in a specialization of mapList, if an application of 
the recursion variable in the pattern, (m f xs) (where zs has type List(ct)), is replaced by an 
expression E in the target, that each occurrence of the recursion variable in E must be in an 
application of the form (m f'xs), differing from the form in the target only in that f' may differ 
from f .  

Condition (b) tells us that a recursion scheme can undergo weakening by the rewriting, 
but that its formal structure cannot be otherwise modified. Note that condition (b)  has not 
been stated as a. syntactic restriction on the number of occurrences of applications of the 
recursion variable. A target expression may duplicate such applications on the separate arms 
of a conditional, for instance, which increases the number of syntactic occurrences but will not 
increase the number of recursive applications that can be evaluated. The difference operator 
can enforce a syntactic restriction on the rewrite rule that is sufficient t o  assure these two 
conditions. These conditions guarantee that if the original program terminates, so will the 
modified program. 

To obtain a new program scheme that applies a policy function, we need to  specify a rewrite 
rule P : Expr i Expr x Expr and an expression for a policy function, z : Expr. The left-hand 
member of a rewrite rule is a pattern, possibly containing single occurrences of designated 
expression variables, and the right-hand member is a replacement expression that may contain 
occurrences of the expression variables introduced in the pattern. A modification of a target 
term occurs by replacing a subterm of the target matching the pattern with an instance of the 
replacement term, in which bindings to the espressioil variables are determined by the pattern 



match. If more than one subterm of the target is matched by the pattern, the modification is 
undefined. 

To calculate a more specialized function from a map, for instance, a modification rule is 

m : Identifier P : Expr -+ Expr x Expr z : Expr 
(MAP ([al, . . . , cr,]CT) m k)  A P(z)  : Expr 

Upon abstracting on the policy function variable and taking the semantics of the resulting 
expression, we get 

m : Identifier P : Expr -+ Expr x Expr 

modified-map; =def 0 ( X Z  . (MAP ([a1 , . . . , ap] CT) m k) A P(z)) 

As an example, this scheme can be zipplied to the List type constructor, specializing the re- 
cursion scheme for mapList to yield the function that filters a list with a test predicate. The 
recursion scheme for the List map is genera.ted from a.n a.pplication of MAP to the List signature, 

MAP ([a] c m 1 = let val rec nz. = 
X f . Xxs . case xs is 

hril + Nil 
I Cons(x,xd) + Cons(fx,mfxs')  

in m 

The text generated by elaboration of MAP ([a]xList) m 1 provides a programmer with a basis 
on which to  formulate a rewrite rule to effect a modification. A function to  filter a list can be 
defined in terms of the specialization scheme for modified-map, 

where P( )  = Co~zs (f x,  m f xs) 
I. i f f  x then Con.s(x, m f xs) 

else m f xs 

in which the wavy arrow specifies rewriting a.nd the parameter f : a -+ Boolis a test predicate. 
In this particular example, the modification is to the formation of a term in the Cons case, and 
does not require an additional policy function. 

It is worthwhile noting that although the mechanism of specializing a generic recursion 
scheme with a syntactic difference operation provides an intuitive way to  specify type-dependent 
functions, it is not the only way. For instance, the function used for our example could also be 
expressed directly in terms of the primitives of the monad of lists as 

filterList q = multList o mapList (Ax . if q x then unitList x else Nil) 

although this form will be unfamiliar to  almost all programmers. It is worth pointing out, 
however, that this definition is generic. If the zero-constructor were named uniformly for all 
types that have one, so that Nil in the above formula wa,s replaced by zeroList, then the formula 



would define a generic function fiEte7 for any unitary type constructor T that has a unique 
zero constructor, simply by replacing the superscript List by T. 

We have illustrated a mechanism for pattern-activated, constrained program editing. This 
mechanism offers several advantages over unconstrained text editing as a means for formulating 
recursive programs. 

It allows extensive reuse of schematic meta-functions for program generation, such as 
MAP, PR, RED. 

It affords a strict separation between control mechanisms, which include the intrinsic, 
polymorphic recursion schemes of inductively defined data types, and the type-specific 
policies that customize program schemes to applications. During program maintenance, 
intrinsic control schemes are seldom changed, but policy functions are changed frequently. 

Although the A-application of patt.erns modifies the intensional representation of a generic 
function, it can enforce syntactic constra.ints sufficient to guarantee preservation of im- 
portant general properties under the standard semantic interpretation of programming 
languages. These properties include typing in an ML type system and relative termina- 
tion. 

4 Example: The Lambda Calculator 

This section illustrates the synthesis methods presented in the previous sections by using them 
to develop algorithms to implement a A-calculus interpreter. In this development the program 
calculation steps are done by hand in S tandad  ML. La.ter, in Section 5, the same development 
will be used to  illustrate the automatic synthesis of programs. 

4.1 The problem 

The terms of the pure A-calculus are either va.riables, applications or abstractions. They are 
described by the grammar: 

M ..- . x variable 
I h l N  application 
I A x .  Ai abstraction 

Intuitively, the abstra,ction Ax . M  represent,^ t11a.t function of x that returns M. Function 
application is computed via substitution wit.11 the rule: 

Where b is a binary relation (reduction) and M [ N / x ]  denotes the substitution of N for x in 
M. The relation D is extended to allow a.ny subterm to be replaced by use of the /3 rule. 

Two A-terms are congruent if they differ only in the names of bound variables. For example, 
Ax . x and Ay . y are congruent. This is summarized by the rule 



( 4  (Ax . M) E Ay . M[y/x] provided y has no free occurrences in M 

The traditional treatments of the A-calculus used these syntactic rules and a subtle def- 
inition of substitution to calculate in the formal calculus[CF58, HS861. These methods can 
be implemented directly, but are complex and must do computations to  avoid variable name 
clashes. Even the simple test for congruence of two terms requires use of a binding environment 
(or symbol table). 

In the AUTOMATH project, de Bruijn developed a new way to  represent A-terms using indexes 
rather than variables[Bru72, Bru78, Bru801. The bound variable names are eliminated from 
abstractions; each variable occurrence is replaced by the number of A's between the occurrence 
and the A that binds it.5 For example, Ax. A y . xy is represented A. A .  1 0. In this representation 
congruence is simply identity. The complexity of substitution is also reduced since it is no longer 
necessary to  compare names of bound variables or compute new names. Implementations of 
de Bruijn's scheme are subtle since they require the delicate adjustment of indexes. 

This section presents algorithms for computing the de Bruijn representation from a more 
traditional representation and for substitution using the de Bruijn representation. This devel- 
opment illustrates the use of monads in program development. 

4.2 Maybe types 

The monadic type constructor Maybe defined in Section 2.4 was introduced originally by Spivey 
to  simulate exceptions in a pure functional language[Spi90]. Under the translation, a function 
that either returns an i n t  or raises an exception is converted to  a function that always returns 
an int Maybe (note that in Standard hlIL type constructor application is written in postfix). 
If the function would have raised the exception then it returns the value Nothing. If it would 
have returned an integer, say 17, it returns J u s t  17. 

When using a monad, T ,  to  develop algorithms it is often natural to  lift functions from 
a + T ( p )  to  T (a )  -+ T(P) so that they ca.n be composed. This is called the natural extension 
(or "Kleisli star") of a function; it can be defined in ternls of mapT and the multiplier. In SML 
this is written: 

fun extension f = mult o (map f); 

The blackboard syntax for extension is a superscripted +, e.g. f*. An alternative characteriza- 
tion of monads may be given directly in terms of the natural extension. 

Although it is not strictly necessa.ry, we will include the natural extension in the monads 
generated in this section. An implementatioll of Maybe types is given as an SML structure 
definition in Figure 1. Note that funct,ions in this structure can be mechanically calculated 
from the data type declaration. 

4.3 The Term datatype 

The problem is to  produce an implementa.tion of terms, and ultimately terms with de Bruijn 
indexes. The first thing we need is a pornmetric type constructor-monads over a constant 

'The de Bruijn index may be t , l~ongl~t  of as an "environment pointer" index in a stack based interpreter. 



structure Maybe = 
struct 

datatype 'a Maybe = Nothing I Just of 'a; 
val unit = Just 
fun map f Nothing = Nothing 

I map f (Just a) = Just(f a); 
fun mult Nothing = Nothing 

I mult (Just a) = a; 
fun extension f = mult o (map f) ; 

end ; 

Figure 1: An SML implementation of the Monad operations for Spivey's Maybe type. 

type are not of obvious utility. Since variables seem to be "where the action is" we use the 
following as our first approximation: 

datatype 'a Term-0 = Var of 'a 
I App of 'a Term-0 * 'a Term-0 
I Abs of 'a * 'a Term-0 

This structure is sufficiently general to  include bot.11 the surface syntax (string Term-0) and 
the de Bruijn representation (int Term-0). Since Term-0 is a sum-of-products type it is 
straightforward to  calculate map and reduce combinators. The type fails to  be unitary, how- 
ever, since both Var and Abs are unit constructors. Thus this formulation of Term-0 does not 
support the monadic operators. 

To recover the monadic structure, we separa.te the types of free and bound variables, yielding 
the ( ' a, ' b)Term type introduced in Section 2: 

datatype ('a,'b)Term = Var of 'a 
I App of ('a,'b)~erm * ('a,'b)~erm 
I Abs of 'b * ('a,'b)~erm 

This supports an even more faithful de Brnijn encoding, (int ,triv)~erm~, as well as the 
surface syntax (string, string) Term. 

In the program development the names map-free a,nd map-bound are used for the combi- 
nators mappr" and rnnp~ ' "  defined in Section 2.3.1. 

'Because we are using un i t  to name an operation of the monad we have used t r i v  as the name of the one 
element type in ML. This differs from the official definition where this type is called u n i t .  This is done strictly 
for readability; Standard ML would not be confused because type identifiers and value identifiers come from 
distinct name spaces. 



fun map-free f (Var a) = Var (f a) 
I map-free f (App(a,b)) = App(map-free f a,map-free f b) 
( map-free f (Abs (x,a)) = Abs(x,map-free f a) ; 

fun map-bound f (Var a) = Var a 
I map-bound f (App(a,b)) = App(map,bound f a,map-bound f b) 
I map-bound f (Abs(x,a)) = Abs(f x,map,bound f a) ; 

val unit = Var; 

fun mult (Var t) = t 
I mult (App(a,b)) = App(mu1t a, mult b) 
I mult (Abs(x,a)) = Abs(x,mult a) ; 

fun extension f = mult o (map f); 

Figure 2: Map and m0na.d functions for ( ' a, ' b)Term. 

The map and natural extension functions a.re given in Figure 2. Note that the argument 
type of the natural extension, ' a -> ( 'a, ' b)Term, is suggestive of a substitution function, i.e. 
it associates terms with va.riables. We will ultimately use a version of the natural extension to  
compute the action of a substitution on a term. 

4.4 Policy functions 

Even though ( ' a, ' b) Term is a monad as a function of ' a, the straightforward monad operations 
are not helpful in operating on A-terms. The problem is that they do not reflect the critical 
role of variable binding in terms. To remedy this, we make a small change to  the map-free 
function to  specialize it to the domain. We introduce a. policy function, Z, that transforms the 
function being mapped, based on the value of the function and the name of the bound variable. 
This transformation is applied to the function being mapped every time map is invoked on 
the body of an abstraction. That is, the function, f, is transformed by Z whenever it is to  be 
applied in the scope of a new bound variable. 

The new function, map-with-policy, is defined below. Note that this function is essentially 
the original map-free function augmented with an additional functional parameter, 2, that is 
applied to  f and x in the application case. 



fun map-with-policy Z f (Var a) = Var (f a) 
I map-with-policy Z f (App(a,b)) = App(map-with-policy Z f a, 

map-with-policy Z f b) 
I map-with-policy Z f (Abs(x,a)) = Abs(x,map-with-policy Z ( Z  f x) a); 

Given a policy function, Z, of type: 

: ('a -> 'b) -> 'c -> 'a -> 'b 

the function map-with-policy Z has the sa,me type as map-f ree, i.e. 

('a -> 'b) -> ('a,'c)Term -> ('b,'c)Term 

The derivation of map-with-policy from map-f ree can be expressed with the A operation 
discussed in Section 3. The rewrite rule, P, is: 

The function definition would then be: 

map-with-policy Z = [[(MAP ( [ a ,  p] xTerm) "mn 1) A P(z)] 

The specialized map function may be transformed into a specialized natural extension func- 
tion, extension-with-policy, by imitating the origina.1 definition of extension. In SML we 
can define this by: 

fun extension-with-policy Z f = mult o (map-with-policy Z f); 

It seems clear that for arbitrary Z the monad axioms will not hold for this operation. This 
does not appear to be necessary since we do not exploit the monad laws explicitly in the 
following development. 

4.5 Conversion to de Bruijn representation 

The first illustration of the use of these techniques is the construction of a function that yields 
the de Bruijn representation of a term given in surfa.ce syntax. The algorithm walks the argu- 
ment term using map-with-policy. During the traversal it constructs a function associating 
variable names with indexes. 

The initial association must be everywhere undefined. To represent this we use the Maybe 
monad of Figure 1. The initial association is: 

fn - => Nothing : string -> int Maybe 

When the map enters an abstraction, say Abs ("x" ,a), with an existing association function, 
f ,  we want to  extend the association by defining it to  be 0 on "x". Since there is now one more 
abstraction separating the current term from the definitions of all previously defined variables, 
the association should yield 1 + f ( y )  for all identifiers distinct from "x". This transformation 
is expressed in the function extend-association in the code fragment below. 



fun extend-association f x 
= fn y => if x = ythen 0 else l+(f y); 

val extend-association : (string -> int) -> string -> (string -> int) 

However, to  be consistent with the type of the initial association function we must lift the 
result t o  int Maybe instead of int. For the constant 0 this is trivial, we just use the unit for 
the Maybe type. Otherwise we use the map from the Maybe type7 to  lift the successor function, 
making it applicable to  (f y). 

fun extend-association f x 
= fn y => if x = y then unit 0 else map (fn x => 1+x) (f y) ; 

val extend-association : (string -> int Maybe) -> string -> (string -> int Maybe) 

This policy function, together with the initial associa,tion function, is used with map-with-policy 
t o  give the core of the conversion: 

val var-to-index = map-with-policy extend-association (fn - => Nothing) 

This fragment has the type (string, string)Term -> (int Maybe, string)~erm.~ This 
has two problems: (1) bound variables are still strings, a.nd (2) we have int Maybe instead of 
int . 

The first problem is easily solved by composing var-to-index on the left with map-bound 
(fn , => 0) to  remove all traces of va.riable names. The second problem requires a special 
function to  "distribute" the type coi~structors, i.e. to convert (int Maybe, triv)Term to  (int , 
triv)Term Maybe. Intuitively this transformation yields Nothing if there are any Nothing's 
in the argument and otherwise yields Just t for a term t : (int , triv)Term. The function 
witnessing this distributive property is called distribute-Maybe; it is calculated using the 
techniques of Section 2.4. This construction is applicable because Term is a sum-of-products 
type and Maybe is a linearly-constructed monad possessing a product distribution function. 
The code for distribute-Maybe is given in Figure 3. 

The final code for the conversion to  de Bruijn form is: 

val de-Bruijn = distribute-Maybe 
o (map-bound (fn - => 0 ) )  
o var-to-index 

val de-Bruijn : (string,string)~erm ->  (int,triv)Term Maybe 

Note that the detadls of the data structure are only referred to  in the generic functions for 
manipulating the monad. They do not appea.r in the code specific t o  computing the de Bruijn 
indexes. 

'In the actual code this dependence on Maybe types is made explicit by referencing the Maybe structure. 
8Actually the type is not this specific. The three occurrences of string are replaced by "a, denoting an 

arbitrary equality type. 



functor Enrich-Maybe (M:Maybe) = 
struct 

open M; 
val tau-1 = map (fn x=>x) ; 
fun tau-2(xl,x2) 

= extension (fn a1 => map (fn a2 => (al,a2)) x2) xl; 
end ; 

structure E-Maybe = Enrich-Maybe (Maybe); 

val distribute-Maybe 
= let fun var-f x = E-Maybe-map Var (E-Maybe.tau-1 x) 

fun abs-f (y , M) 
= E-Maybe.map Abs (E-Maybe.tau-2 (E-Maybe.unit y,M)) 

fun app-f ( M y  N) 
= E-Maybe .map App (E-Maybe. tau-2 (M,N)) 

in reduce (var-f , app-f , abs-f) 
end 

Figure 3: Standard ML code for distribute Maybe. 



4.6 Substitution 

A substitution is a function from variables to  terms. The application of a substitution to  a term 
(or the action of a substitution on a term) is the natural extension of a substitution. That is, it 
is the function from terms to  terms obtained by applying the substitution to  the free variables 
occurring within a term while otherwise preserving its structure. 

Since contraction is our motivating example, we illustrate the substitution application op- 
eration (apply-substitution) with the substitution used in ,f?-contraction. The definition of 
substitution application developed below is parametric in the substitution applied. 

To implement p-contraction it is necessary to  replace a variable of index 0 by a term in any 
context. For example, consider: 

Xy . (Xz . zy(Xv . z))(Au . y) 

which is represented: 
A . ( A .  0 1 (A . l))(A -1) 

The subexpression (Az . zy(Av . z))(Xu . y) is a redex, it contracts to  (Xu. y)y(Xv. Xu. y), which 
is represented (A. l)O(X . A. 2). Note that the two occurrences of z are represented by both a 0 
and a 1 before the contraction, the y in Xu. y becomes both a 1 and a 2 in the representation 
of the contracted term, and the index of the other occurrence of y decreases from 1 to  0. This 
decrement of the index of y is required beca,use the lambda binding z is no longer present in 
the term. 

Since the initial goal is to replace 0 by N and decrement all indexes of free variables we 
define the initial substitution as follows: 

val sigma-0 = fn x => if x = 0 then N else unit x-1; 

val sigma-0 : int -> (int, triv)Term 

Because substitution application interacts with abstractions, the extension of the substi- 
tution must be modified appropriately. This requires extension-with-policy. The most 
general type of extension-with-policy is given in Sect.ion 4.4. Here we specialize its type to 
de Bruijn substitutions: 

val extension-with-policy : 
((int -> (int,triv)Term) -> triv -> (int -> (int,triv)Term)) 
-> (int -> (int,triv)Term) -> (int,triv)Term -> (int,triv)Term 

The key to  the development is the construction of the first argument to  extension-with-policy, 
the policy function transf orm-substitution. For the second argument we use the initial sub- 
stitution sigma-0. This gives the initial outline: 

extension-with-policy transform~substitution sigma-0 
: (int,triv)Term -> (int,triv)Term 



4.6.1 Transforming the substitution 

The policy function transf orm-subst itut ion must have the type: 

transform-substitution : (int -> (int,triv)Term) -> triv -> (int -> (int,triv)Term) 

It will generate a series of substitutions, uo, 01, . . ., which will be applied in the contexts corre- 
sponding to  the nested abstractions in the term. The basic properties of this series are: 

U ; + ~ O  = Var 0 

~ ; + ~ ( n  + 1) x =:a; n 

That is, the variable bound in the current context is not involved in the substitution; the 
variables with non-zero index should be treated as their predecessors were in the surrounding 
context. 

Note, however, that the correspondence indicated by x is not exact. Since the term being 
substituted is now in the context of an additional a,bstraction, all indexes representing bindings 
outside the term need to  be incremented. This suggestsg: 

u;+l(n + 1) = map-free s.ncc(a;(n)) 

But this use of map-free would increment variables bound within u;(n) as well as the global 
occurrences, so a policy specific version of map must be used instead. In this context the 
specific type of map-with-policy is: 

map-with-policy : ((int -> int) -> triv -> (int -> int)) 
-> (int -> int) 
-> (int,triv)Tem -> (int,triv)Term 

We call the policy function that specializes this map transform-index. The successor function 
is the initial function to 'be mapped. Assuming this transformation, the final form of the 
constraint on u,+l is: 

~ ; + ~ ( n  + 1) = map-with-policy transf om-index succ(u;(n)) 

This sequence is generated by the function: 

Xu . An. map-with-policy transf orm-index succ(u;(n)) 

To adapt this function to the type scheme required by extension-with-policy a dummy 
parameter of type triv is added, yielding the SAIL definition of transform-substitution: 

fun transform-substitution sigma (0:triv) 
= fn n => if n = 0 then unit n 

else map-with-policy transform-index (fn n => n+l) (sigma (n-1)); 

fun transform~substitution : (int -> (int,triv)Term) -> triv 
-> int -> (int,triv)Term 

'The function succ  represent,^ the successor ft~nction, f n  x => x+l in SMI,. 



fun apply-substitution sigma-0 M 
= let fun succ x = x+l 

fun transf orm-index f (0  : triv) 
= fn n => if n = 0 then n else l+f(n-I) 

fun transform-substitution sigma (0:triv) 
= fn n => if n = 0 then unit 0 

else map-with-policy transform-index succ (sigma (n-I)) 
in extension-with-policy transform~substitution sigma-0 M 
end ; 

Figure 4: SML code for substitution function using monadic operators. Note that there is no 
reference to  the specific constructors of the Term datatype. 

4.6.2 Transforming indexes 

Like the substitution operation, the index adjustment is achieved by a family of functions, 
fo, fi, . . .. They satisfy: 

fon = n + 1 

This is equivalent to  the recursive pattern: 

This recurrence suggests the SML definition of transf orm-index below. The "dummy" argu- 
ment of type triv is dictated by the type scheme. 

fun transform-index f (0:triv) 
= fn n => if n = 0 then 0 else 1 + f(n-1); 

val transform-index : (int -> int) -> triv -> int -> int 

These pieces are combined in the definition of apply-substitution in Figure 4. The substitu- 
tion application function is expressed without a.ny explicit mention of the constructor functions 
for the Term datatype. 



4.7 Contraction 

We complete the derivation of the lambda calculator by defining a function, contract, which 
reduces the leftmost outermost redex in a term, i.e. it performs exactly one step of a normal 
order reduction. Many other reductions can be specified. Since contract explicitly identifies 
reducible expressions (redexes) it will ma.ke explicit reference to  the datatype constructors. 

The first design issue we address is what control combinator we need. Consider the leftmost 
outermost contraction of MN. Suppose that both M and N contain redexes and that M' and 
N' are their respective reduced terms. To build the reduced term for MN we use M' but 
ignore N'. (This is because we specified that we should do exactly one step and M is to  the 
left of N.) The only recursion combinator that gives access to  both the original N and the 
value of the recursive function on M (A4') is the primitive recursion operator, prTem, defined 
in Section 2.2.2; here it is written primitive-recursion. 

In the Term type, to define a function of type ( ' a, 'c)Term -> 'b by primitive recursion 
we need functions of the following types: 

var-f : 'a -> 'b 

app-f : (('a,'c)Term * 'b) * (('a,'c)Term * 'b) -> 'b 
abs-f : 'c * (('a,'c)Term * 'b) -> 'b 

In our specific task of defining reduction, the first. cut assigns int t o  'a, (int ,triv)Term to  
'b, and triv to  'c. However, as soon as we consider var-f we are forced to  ask "What do we 
return for normal forms?" Here again it is natural to  use the Maybe type, interpreting Nothing 
as "the argument is normal" and Just t as "the argument reduces in one step to  t." This 
requires 'b to be a.n (int ,triv)Term Maybe. Since variables are always irreducible, var-f is 
simply the constant function returning Nothing. 

The complete definition of contract is given in Figure 5. 

4.8 Reuse 

In the development of the substitution and conversion functions we did not use any details of 
the Term datatype. This allows extensive code reuse whenever the datatype is extended, so 
long as the monadic properties are not changed[Wad92]. To illustrate this, consider extending 
the A-calculus terms with boolean constants and the conditional. The following productions 
would be added to  the syntax: 

M ..- . true Boolean constant 

I false 
I if M then No else N1 conditional 

This is reflected in the Term datatype by the declarations: 

datatype ('a,'b)~erm = . . .  
I True 
1 False 
I Cond of ('a,'b)~erm * ('a,'b)Tem 

* ('a,'b)Term 



fun contract t 
= let fun var-contract - = Nothing 

fun app-contract ((Abs(x ,MI, -1, (N,-)) (* explicit redex *) 
= let fun sigma-0 n = if n = 0 then N (* 0 I-> N *) 

else unit (n-1) (* decrement globals *) 

in 
Just (apply-substitution sigma-0 M) 

end 
I app-contract ((-,Just a) , (b, -1 (* function term reduced *) 

= Just (App(a,b)) 
I app-contract ((a,Nothing) , (- ,Just b)) (* only arg reduced *) 

= Just (App(a,b) 
I app-contract ((- ,Nothing), (-,Nothing)) (* Normal subterm *) 

= Nothing 
fun abs-contract (x,(-,a)) 

= Maybe.extension (fn a => Just(~bs(x,a))) a 
in primitive-recursion (var-contract, app-contract, abs-contract) t 
end ; 

Figure 5: Contraction function for beta reduction 



Using the techniques of Section 2 we ca.n verify that this is still a sum-of-products type and a 
monad in 'a. New reduction functions, map functions, multipliers and units can be automati- 
cally generated. Applying the method of Section 3.1, the sa'me A-modification may be applied 
t o  the new map-free function to yield map-with-policy and extension,with,policy func- 
tions for the new Term type. These automatically generated functions encapsulate all of the 
information about the type needed by the substitution and conversion functions. Thus, the 
substitution and conversion functions can be reused without modification. 

The contraction function, however, cannot be reused directly because it is dependent on the 
primitive recursion combinator, the type of which reflects the deta.ils of the datatype. Since the 
contraction function is the only place where the semantics of terms is expressed, it is natural 
that it would require change. 

Adding let to  the language illustrates a.nother interesting point. As for the Boolean constants 
and conditional, the releva.nt properties of the Term type are preserved and all combinators 
can be automatically generated. The rewrite rule used to define map-with-policy, however, 
cannot be reused beca,use let is a binding operator. Just as it is necessary t o  modify the code 
expressing the semantics, it is necessary to specify nontrivial binding structure. 

In both of these examples, monadic programming has distilled the non-automatable pro- 
gramming tasks to specifying just that informa.tion relevant to the abstraction that is captured 
by the program. Wadler presents many more examples illustrating this point. His X-calculus 
implementation is significa,ntly different from ours beca.use it is based on an environment model 
rather than rewriting. The approach ta.ken here was selected because it illustrates the use of 
policy functions, which are not required in the environment model. 

5 Program generation using reflection 

We have argued that from the structure of datatypes we can infer equational properties of 
polymorphic functions that provide the control schemes for programs over these types. In the 
last section, a program was derived by following this principle. In the present section, we shall 
demonstrate how compile-time reflection can be used to build program generation capability 
into a language such as SML. thereby enabling automatic generation of many of the functions 
needed for an application. 

Reflection is the "magic" that turns data into programs. Compile-time reflection allows 
user written functions to access data calculated during compilation to  construct program rep- 
resentations. These representations are then transformed, by reflection, into the programs they 
represent. Essentially, compile-time reflection allows data calculated by compile-time evalua- 
tion t o  be type-checked and submitted to the compiler itself, to  be turned into object code and 
integrated with the rest of the compiler's output. 

To use the generation paradigm, a program consists of a series of top-level declarations some 
of which may contain reflection directives. Reflection directives recursively apply the compiler 
to  data (in the form of abstract syntax) produced by compile-time evaluation. 

For example, the monad operations for a ,?laybe type could be incorporated in an application 
program by including the declaration for the dfuybe type constructor and providing reflection 



directives to  generate functions realizing these operations, as shown below. 

Maybe(x) = Nothing I Just (x) ; 

val  reduce-maybe = ~ e f l e c t ( e )  => (REDUCE (sigma e "Maybe")); 
val  unit-maybe = Reflect(e)  => (UNIT (Sigma e l l~aybe")  0 ) ;  
val  map-maybe = Reflect(e)  => (MAP (Sigma e t t ~ a y b e l l )  0 ) ;  
val mult-maybe = Reflect(e1 => (MULT (sigma e "Maybe") 0 ) ;  

The reflect directive is one of several interfaces between compile-time functions and the 
compiler that we have experimented with in the language TRPL (Typed, Reflective Program- 
ming Language)[SheSO]. It has the form Reflect (el  => exp, where e is the name of a variable, 
which is bound by the compiler to  the current compiler environment a t  the time the reflect 
directive is executed. The scope of this binding is the body, exp, which can be any expres- 
sion with type abstract syntax. The variable bound by reflect has type environment which 
is an abstract data type. Using this environment, compile time operations may access type 
information computable by the type checker, or stored in the compiler's symbol table. 

In the example above each directive expands, as a predefined macro, into the appropri- 
ate function. The function Sigma (which corresponds to  zT in Section 3) extracts from the 
environment, e ,  a representation of the type definition of the Maybe type. 

Normal SML declaration processing goes through three stages: parsing, elaboration, and 
evalzlation [MTHSO]. Parsing constructs abstract syntax from the textual input. Elaboration 
performs type checking and performs symbol table updates. Evaluation obtains the value of 
the construct and updates the store. 

The elaboration of a reflection directive is special, and involves three steps. First the 
body of the reflection is elaborated in a new environment where the bound variable has type 
environment. The system expects the body to have the type of abstract syntax. The second 
step involves the evaluation of a successfully elaborated body. This is done in a new environment 
where the bound variable is bound to the current compiler environment. This evaluation 
produces new abstract syntax. The third and final step is the elaboration of the new abstract 
syntax, which (like a macro) replaces the reflection directive. 

In this section we describe the details of this process. There are three necessary ingredients 
for supporting compile-time reflection in a language. 

Self representation. There must be a standard representation in the language for each 
facet of the language. We do this by making public the predefined types that comprise 
the abstract syntax trees of all program elements. Users can then build representations of 
program facets like types, expressions, and declarations just as they can with any other 
datatype. 

Reflection. Reflection is the ability to calculate representations of new functions, type 
definitions, or other declarations and interpret them as if they were written directly by the 
programmer. This allows generator-ba.sed systems to generate definitions or declarations, 
supplementing the ones supplied by application programmers, and to  use them as part 
of the application solution. 



a StaticaEly checkable and reifiable types. A meta-programming system for a typed lan- 
guage must have the ability to  statically infer the types of expressions, to extract type 
information from the compiler's symbol table, and to manipulate this type information 
as data. This allows type information to  guide the generation processlo. 

5.1 Self representation in a reflective language 

Let us introduce several sum-of-products types used to represent a.bstract syntax trees for parts 
of SML programs. These types are a simplification of the types one might actually use in a 
complete implementation but are sufficiently rich to explain the generation paradigm without 
introducing unnecessary complication. 

A simplified abstract syntax for expressio~ls is: 

datatype ('a,'b)erep = 
Id of 'a 

1 Iconst of int 
I Bconst of boo1 
1 Sconstofstring 
1 App of ('a,'b)erep * ('a,'b)erep 
1 Tupleof (('a,'b)erep)list 
1 Abs of 'b * ('a,'b)erep 
1 Letrec of 'b * ('a,'b)erep * ('a, 'b)erep 
I Case of ('a,'b)erep * (('a,'b)erep * ('a,'b)erep) list; 

type exp-rep = (string,string)erep; 

For example, a ca.se expression consists of an argument expression and a list of (pattern, action) 
pairs to match against the argument. As a.n example of the construction of representations 
consider the expression (here given in concrete syntax): 

case x of Nil => 0 I Cons(a,m) => 1 

and its representation in abstract syntax: 

Case( Id("xl') , 
[ ( Id("Nill'), Iconst (0) 1, 

( ~ ~ ~ ( I d ( " C o n s " )  ,Tuple([Id("a") , 1 d ( " m 1 ,  Iconst(1) ) 1 ) 

Types can also be represented by a sum-of-products type. Consider the (simplified) type 
representation for SML types below. 

''Lisplike languages accommodate self representatioi~ by list structures and reflection via the eval func- 
tion [RS84], but unfortunately they do not provide static type information. This severely limits the  use of the 
generation paradigm in Lisp-like languages unless users esplicitlp supply type information. 



datatype 'a trep = 
Freevrep of 'a 

I Intrep 
I Boolrep 
I Stringrep 
I Tuplerep of ('a trep) list 
I Funrepof 'atrep * 'atrep 
1 Parametricrep of 'a trep * string 
I Unionrep of (string * ('a trep) list) list; 

type type-rep = string trep; 

Declarations of types and functions also have represent.ations. We give a sum-of-products type 
for a simplified declaration representation: 

datatype decl-rep = 
FunDecl of string * string list * exp-rep 

I TypeDecl of string list * string * type-rep; 
The type declaration given in concrete synta.x as: 

datatype 'a list = Nil 1 Cons of 'a * 'a list 
can be represented in the abstract syntax a.s: 

TypeDecl( ["a"] , "list", 
Unionrep( [("nil", [I 1 , 

(''cons" , [Freevrep ( 'la'') , 
~arametricre~(~reevrep("a") ,"list")] )I 1) ; 

Readers will recognize that these representations are merely the compiler's abstract syntax 
types made public. 

5.2 Reflection: using representations to generate code 

To illustrate the generation of code we develop a generator that takes a representation of a type 
declaration (our encoding of a type's signature) as input and produces the representation of a 
the map function for that type as output. We provide a concrete realization of the algorithms 
from Section 2.3.1 as compile-time functions. 

Recall the template for the map function: 

mapk f z j  if xj ha.s type T(al  . . . a j )  
if xj has type crk 

if z j  11a.s any other type 



The compile-time algorithm must provide a functional equation for each of the constructors 
in the type declaration. The implementation described below encodes this set of equations as 
a stylized recursive function definition. For example, the map generator applied to  the l i s t  
datatype would generate the representa.tion of the following expression. 

l e t  v a l  r e c  l ist-map = ( f n  f  1 => ( fn  y2 => case y2 of 
n i l  => n i l  

I cons ( ~ 1 ~ x 2 )  => cons ( f l  xl , l ist ,map f l  x2)))  
i n  l ist-map 

We say that such a representation is a function definition in generated form. 
As specified in the template, given a.n expression, x h  an argument to  the constructor, C;, 

we must compute a new expression which is either an application of the mapping function 
fname,  a recursive call to mapname, or the expression, x k  unchanged, depending upon the 
type of the x_k argument, xh typ .  This can be encoded concretely by the ML function: 

fun maprule map-name f -name a-ktyp rectyp (x-k,x-ktyp) = 
i f  x-ktyp = a-ktyp 

then  App (f -name, x-k) 
e l s e  ( i f  x-ktyp = rectyp 

then App (App (map-name , f  -name) ,x_k) 
e l s e  x-k) ; 

Given a constructor, constr ,  and a list, nametype-pairs, of (name,type) pairs, it is possible 
t o  construct a concrete representation of a single equation in the map's definition by a pair 
of exprep's.  The type component in the ith pair is the type of the ith argument of constr ,  
specified in its declaration. The name component of the ith pair is an arbitrary unique name 
representing the corresponding pattern variable. Such a pair is turned into a clause in a case 
expression. This is done with the function map-eqn. 

fun map-eqn(constr,nametype-pairs ,mapname ,fname, a-ktyp , rectyp)  = 
( cons t r - ca l l  (cons t r  , (map (f n ( a ,  -1 => a) nametype-pairs) , 

cons t r - ca l l ( cons t r ,  map (maprule mapname fname a-ktyp rectyp)  
nametype-pairs) ) ;  

where the cons t r -ca l l  function builds an applica.tion of the data constructor to  its arguments if 
the list of arguments is not null, or returns a.n identifier representing a nullary data constructor 
if it is. 

fun cons t r - ca l l  (cname,Cl) = cname 
I cons t r - ca l l  (cname , l )  = ~ p p  (cname , ~ u p l e ( l )  ) ; 

The final step in the process is to construct a generated form expression defining the map 
for a type, given that types declaration representation as input,. This is a concrete realization 
of the meta-function MAP from Section 3. 



fun MAP (~~~e~ecl(free,name ,unionrep(l))) mapname pos = 
let val mapname-exp = Id(mapname1; 

val fname = newname "f" ; 
val f-exp = Id("fl'); 
val argname = newname "y"; 
val freev = Freevrep (nth(free,pos)) ; 
val rectyp = Parametricrep(tupletype(map Freevrep free),name); 
val eqnfun = (fn (constr,typs) => 

let val args = iota 1 (length typs) 
(fn n => Id("xl' (makestring n))) ; 

val pairs = zip args typs; 
val constr-exp = Id(constr) 

in map-eqn(constr-exp ,pairs ,mapname_exp ,f - e x  freevrectyp end) 
in Letrec (mapname, 

Abs(fname,Abs(argname,Case(Id(argname),map eqnfun I))), 
Id (mapname) ) 

end ; 

Given a type declaration, with free variable list, free, a name for the new map function, 
mapname, and a parameter pos, indicating the position of the the free variable for which the 
map is t o  be constructed, the algorithm proceeds by generating an expression with that  name, 
mapname-exp. It then builds type representations for the free variable type, freev, and for 
the recursive type, rectype, and builds a function which will be mapped over each pair of 
constructors and type lists in the type declaration. This function. eqnfun, will return a pair of 
expressions representing the pattern-action pair of a case clause. The function, eqnfun builds 
a list of pairs each consisting of an arbitrary name ( a  pattern variable) paired with a type from 
that  data  constructor's signature, and passes this list t o  the map-eqn function defined earlier. 

As described in Section 3 the final step in the the generation paradigm is t o  interpret the 
output of the MAP meta-operator in the standard semantics of the language. This is done by 
the compiler directive Reflect, which applies reflection. Thus the declaration: 

val map-list = Reflect(e) => (MAP (Sigma e "~aybe") "m" 0); 

is equivalent t o  the generated form: 

val map-list = let val rec m = 
(fn fl => (fn y2 => 

case y2 of 
nil => nil 

I cons (xl,x2) => cons (fl xl,m fl x2))) 
in m; 



5.3 Patterns and representations 

Representations are tedious to  construct since they require the use of data constructors, whose 
names only the most devoted user will remember. In addition, the representation of a program 
is, in general, much larger than the program itself. To alleviate these problems a reflective 
language should provide pattern based access to  the self representation available in the language. 
The operator, EXP, provides such pattern based access. In TRPL, EXP(x) is an expression of 
type expxep, whose value is the representation of x. For example: 

The EXP operator can be used to  build all representations built only from ground terms. To 
provide more expressive power it is desirable to use compile-time variables in syntactic patterns. 
Such variables can be placed in expression patterns using the tilde (-) as a prefix to  indicate a 
syntax variable. 

Variables in patterns can be used to construct new representations from other representa- 
tions, or to  distinguish representations in a pattern matching construct, such as case. For ex- 
ample if the variable, x, had as its value the representation of some expression, then EXP(f ("x)) 
has as its value the the representation of f applied to that representation. 

Patterns with variables can be used in case  statement.^ to specify program transformations 
in a compact way. For exa.mple 

case e of 
EXP(("x) + 0) => x 

I EXP(0 + ("XI) => x 
I EXP((-x) * 1) => x 
I EXP(1 * ("XI)  => x 
1 other => other; 

encodes the transformation embodying the identities n: + 0 = x and x * 1 = x. 
To simplify nota.tion we use the abbrevia.tion: 

PAT( p l  ==> a l ,  . . .  , pn ==> an ) = 
( fn  x => case x of EXP(p1) => EXP(a1) 1 . . . 1 EXP(pn) => ~ x P ( a n )  1 other => x ) 

Thus the transformation embodying the identities .7: + 0 = x and x t 1 = x is abbreviated as 
follows: 



The EXP and PAT operators delineate the boundary between the meta-language used to  encode 
program representations, and the object language.ll. 

5.4 Policy functions 

As outlined in Section 3.1, polymorphic functions can be specialized by applying syntactic 
difference operators to  their representations. The patterns introduced in the previous section 
make it easy to  specify such syntactic difference operators as rewrite rules. 

The delta operator takes a.n expression in generated form ant1 a rewrite rule that tells how 
to transform it, returning the transformed expression in generated form. 

fun delta (Letrec(v,e,b)) tf = Letrec(v, e ,transf o m  b tf) ; 

where (transform b tf) applies the transformation specified in tf to  b in a hygienic manner, 
renaming bound variables where appropriate to avoid variable ca,pture [KFFD86]. 

The transformation of the map for lists into the filter function for lists can be specified as: 

val filter = Reflect(e1 => 
(delta (MAP (Sigma e "list") "mtl 1) 

~ ~ ~ ( C o n s ( - f  "x, m 'f "xs) 
==> if "f "x then Cons ("x, m "f 'xs) else m "f "xs)) ; 

in which the operator symbol "==>" separates the two sides of the rewrite rule. The term 
(MAP (Sigma e "list") "m" 1) will espand into generated form, as described earlier, and 
the delta operator will transform it to a representation of: 

let val rec m = 
(fn fl => (fn y2 => 

case y2 of 
nil => nil 

I cons (xl,x2) => if fl xl then cons(x1, m fl x2) else m fl x2 )) 
in m; 

The function map-with-policy of Section 4.3 ca.n he generated in a similar manner from the 
specifica.tion: 

''In TRPL there are representation patterns for all the self representation constructs. In fact pattern based 
access to self representation is implemented using abstract syntax macros, one of the other interfaces, and is not 
a builtin feature. 



val  map-with-policy = (fn z => Reflect(e1 => 
(de l ta  (MAP (Sigma e "Term") "m" 1) 

p~T(Abs("x, m 'f "y) 
==> Abs("x, m ( z  "f "x) "y))))  ; 

The policy function parameter, z, which is bound in the definition of map-with-policy, is a 
free variable of the de l ta  transformation. 

6 Conclusions 

Recursive definition and higher order functions provide powerful mechanisms for specifying 
programs but they do not impose much structure on the form of programs that may be ex- 
pressed. In this paper, we have explored some aspects of monads associated with datatypes as a 
means for structured program synthesis. The control structure most obviously associated with 
a datatype is its structural induction, or slightly more generally, its primitive recursion. When 
these concepts are generalized from the type of natural numbers to  arbitrary sum-of-products 
datatypes, they account for the control in a wide range of algorithms. 

While such observations are not new, they suggest another idea. An internal represen- 
tation of a datatype signature, in the form of abstract syntax, provides the data needed by 
a generic algorithm that calculates the definition of a recursive function realizing generalized 
induction (redT) or primitive recursion for the given datatype, T. Other researchers have re- 
cently advocated the concept of "categorical programming" [Hag87, CS921, in which control 
schemes, represented as combinators, are derived from the structure of free datatypes. This 
is analogous t o  "extracting" the computational content of datatypes as they are defined in a 
second-order logic such as System F [Gir'i'l]. Here we have taken this concept in a slightly dif- 
ferent direction. Rather than programming directly in terms of the combinators derived from 
specific datatypes, we specify families of programs, using a small number of type-parametric 
meta-functions. These meta-functions are themselves programs that analyze the intensional 
representations of datatypes (their signatures) to generate concrete, type-specific programs. 
This mode of specification helps to structure the development of programs. Similar ideas for 
program development are implicit in the work of Meijer, Fokkinga and Paterson [MFPSl], 
although less emphasis is given to  monadic structure. 

The recursive control schemes represented in programs generated from datatypes have wider 
application than the generic functions for which they are derived. Similar control schemes are 
found in more specialized algorithms that also analyze values of a given datatype, T. This has 
led us to propose a new technique for program scheme modification by pattern-directed rewrit- 
ing. It allows well- understood control schemes to  be applied to  develop specialized algorithms 
that are not strictly instances of a generic function. This is a new form of program-scheme 
reuse. To be able to edit program text in such a way that specific semantic properties are 
preserved is a goal we have long wished to attain. This formalized editing technique deserves 
additional trials to determine what improvements are needed in the program designer's inter- 
face, and tools must be developed to support it. Also remaining to  be explored is how to 
link the incremental change of programs by restricted term rewriting t o  a programming logic. 



We should like to  be able to  make and verify assertions about programs expressed as generic 
functions that have been altered by incremental modification. 

To implement the program generation that has been described, compile-time reflection is 
essential. This capability allows text generated by partial evaluation (including meta-function 
applications) to  be compiled into program components. In particular, it allows datatype def- 
initions to  be interpreted for their computational content as well as templates for storage 
structures. Unlike reflection in untyped languages, compile-time reflection in a typed language 
is type-safe, as the type-checking phase of a compiler is never bypassed. 

There are reasons to believe that type-parametric program generation can be accompa- 
nied by type-parametric program transformation to  produce efficient, automatically-generated 
software. Parametricity results, such as the promotion theorem for proving equalities of homo- 
morphisms [Ma189], can also be interpreted to  yield term rewriting rules (directed equations) 
that can accomplish program transformations such as fusion and deforestation [Wad88]. This 
is a topic of further research. 

The reader may ask how the structure of monads is essential t o  the program derivation 
methodology that has been illustrated here, as it has not been overtly used by others. The 
answer is that monad structure leads to a calculus of programs in each datatype. The calculus 
of lists has been extensively used in the systematic derivation of programs [Bir86, Bir881 but has 
only recently been generalized [MFP91]. The essentials of a program calculus are the monoidal 
algebras induced by the function composition operator and the (left and right) identity function. 
When we have a monad for a particular type constructor, T, there is a synthetic composition 
and identities in which the structure imposed by any constructed type, T ( a ) ,  is accounted for 
implicitly, and does not need to  be specified explicitly. These synthetic components can be 
calculated for each new datatype that satisfies the restrictions needed to  satisfy the monad 
laws. Further, Wadler [Wad921 points out that closely related structures share similarly related 
algorithms. When an algorithm is parameterized on a monad, it can have multiple instances, 
each obtained by binding a new monad as its parameter (as the s t r u c t  argument of an SML 
func tor ,  for instance). 

There is additional program structure to  be gotten from the analysis of datatypes. Gener- 
alized terminating recursion schemes are analogous to  course-of-values induction schemes for 
particular datatypes. These too, may be amenable to calculation by the application of suit- 
able meta-functions. However, termination cannot be guaranteed by the type safety of such 
functions (in a decidable type system); instead, there will be proof obligations to  be fulfilled to  
assure termination. This too, is a topic of current research. 

Finally, we point out the challenge to determine whether there are more general conditions 
than the one we have proposed that will allow type-distribution morphisms to  be calculated, 
and thus support the composition of datatype monads. 

A Appendix: Proofs of Properties 

In this section we prove some properties of the ft~nctions we have defined. We reiterate here a 
set of numbered equations for our templates. 



reduce ( fl . . . f n )  C ; ( x l  . . . x,,) = f,(el . . . en,) 

reduce ( f l  . . . f n )  xk if xk has type T ( a l  . . . a f )  
where ek = 

if xk has any other type 

map f C ,  = C z  

map  f C; (x l  . . . x,,) = C;(el . . . en, ) 

map f  xk if xk has type T ( a l  . . . a f )  
if xk has type ak 
if xk ha.s any other type 

y  @L xl; if xk is the leftmost para.meter with type T ( a l  
where ek = 

otherwise 

C Z @ ~ y = y  

Ci(x1 . . xn, )  @R Y = C;(el  - . , en,)  

xk @R y  if xk is the rightmost parameter with type T(a1  . . . a f )  
where ek = 

otherwise 

link xl . . . x; . . . x ,  = X I  C T ~ L  . . . x; . . . CBR x ,  (12) 
where x; is the unique parameter with type ak 

mul t  x  = reduce C1  . . . l ink, .  . . C ,  .7: (13)  

mul t  C z  = C, (14)  

mul t  CU(xl  . . . 2; . . . x,,) = ( m u l t  2 1 )  CBL . . ,xi . . . CBR ( m u l t  x,,) (15)  
where x; is the unique pa.rameter with type ak 

mul t  C i ( x l ,  x;! . . . x m i )  = Ci(e1 . . . e,,,) (16)  
mul t  .z'k if xk has type T ( a l  . . . a f )  

where C ;  # C ,  and ek = 
otherwise 



A.1 Proof that $ L  and @R are associative 

To show w eR ( x  $R y )  = (w  eR x )  $ R  y perform a proof by induction on the structure of w. 
Either w is the zero, C,, or it is constructed by some other constructor C;. 

Base case: w = C, 
Prove: Cz $R ( x  $R y )  = (Cz $R 2 )  @R Y 

Induction step: w = C;(tl . . . zmt) 
Assume: zp $R  ( x  $R  y )  = ( z p  @R X )  @R Y 

where z: is the rightmost parameter with type T(a i  . . . a f )  
Prove: Ci(t l  . . . zm,) $R  ( X  $R Y )  = (Ci(t1 - . . ~ m , )  @R 3~ Y 

In a similar fashion to show w $L (x @ L  y )  = ( w  @L x) $A y perform a proof by induction 
on the structure of y.  The proof is similar and is omitted. 

A.2 Proof that C, is left and right identity for $L and $R 

For $ L  the zero constructor C, is a right identity by definition. To show C, $ L  y = y proceed 
by induction on y. 

Base case: y = Cz 

Induction step: y = Ct(zl . . . zm,) 
Assume: C, $ L  z f  = 2: 

where zf is the leftmost parameter of type T(al . . . af) 
Prove: C, &IL Ci (q  . . . t,,) = C,(ZI  . . . zml) 

Cz $L Ci(z1 . - .  Z m ; )  

= C,(xl . . . (C, @L zF )  . . . z,;) by (9) 
= Ci(zl . . . z t  . . . tm,) by hypothesis 
= Ci(zl . . . zmi) 



The proof that C ,  is a left and right identity for $R  is similar and is omitted. 

A.3 Proof that the multiplier distributes over zero replacements 

Assume the j th argument, z j ,  is the unique argument of the unit constructor Cu(zl  . . . zj . . . zm,) 
with type ar,, and that their exists at  least one argument to  the right of zj with type T ( a l  ... a j ) ,  
and the rightmost of these is called z,,, then mul t (w  $R  b) = ( m u l t  w) $R ( m u l t  b). This 
is proved by induction over the structure of w.  The proof will have two induction steps, the 
first when w is constructed by the unit constructor, and the second when w is constructed by 
a non-unit constructor. 

r Base Case: w = C z  
Prove: mul t (C ,  $R b) = (mul t  C,) $R (mul t  b) 

mul t (C ,  @R b) 
= mult  b by (10)  
= C ,  @R ( m u l t  b)  by (10)  
= ( m u l t  C,) $R (mul t  b) by (14)  

r Induction Step Case 1: 20 is constructed by a non-unit constructor, and is written as: 
C z ( z l  . . . z,,), where no z, has type nk. Let z y  be the rightmost parameter with type 
T ( a l  . . .  a j ) .  
Assume: mult  (z? $R b) = (mul t  a?) $R (mul t  b) 
Prove: mult  (C2(z l  . . . z,,) $R b) = ( m u l t  C,(z l  . . . z,, )) 6 4 ~  ( m u l t  b) 

mul t (Ci(z l  . . . zm,) $R  b )  
= m ~ l t ( C ~ ( z ~  . . . (2: $R b) . . a z,, )) by (11)  
= Ci(el  . . . ( m u l t  (z,R $R b ) )  . . . em,)  by (16) 
= Ci(el . . . ( ( m u l t  z?) $R  ( m u l t  6 ) )  . . . emt)  by hyp 
= C,(el . . . (mul t  z?) . . . em,) $R  (mul t  b) by (11)  
= ( m u l t  C,(z l  . . . z m Z ) )  $R  ( m u l t  b )  by (16) 

a Induction step Case 2: w is constructed by the unit constructor C,, and is written as: 
Cu(zl  . . . zJ . . . z,,), where z, has type nk. and z,,, is the rightmost parameter of type 
T ( a l  . . . a j ) .  
Assume: mult (zmu $R b) = (mul t  z,,) $R (mul t  b) 
Prove: mult (Cu(z l  . . . zj . . . z,,) @ R  b) = (inult Cu(z l  . . . ~j . . . zm,))  $R ( m u l t  b) 



m u l t ( C u ( z l  . .., zj . . . zm,) $R b )  
= mult(C,(z l  . . . zj . . . ( zm ,  @R b ) )  by (11 )  
= ( m u l t  z l )  $L  . . .zj . . . $ ~ ( m u l t  ( zm ,  $R  b ) )  by ( 1 5 )  
= ( m u i t  zl ) $ L  . . .zj . . . C B R ( ( ~ U ~ ~  zm,) @ R  (mult b ) )  by h~~ 
= ( ( m u l t  z l )  $ L  . . .zj . . . $ ~ ( m u E t  z,,)) B R  ( m u l t  b )  by assoc @ R ? @ L  

= (mzllt  CU(z l  . . . zj . . . z,, )) $R ( m u l t  b )  by ( I 5 )  

The theorem that m u l t ( w  $L b)  = ( m u l t  w )  $ L  ( m u l t  b)  assumes the existence of at least 
one parameter of the unit constructor, Cu(sl . . . zj . . . z,,), of type T ( a l  . . . a j )  to the left of 
zj .  It proceeds by induction over b. It is similar and is omitted. 

A.4 Proof that the Multiplier distributes over link 

To show that mul t (1 ink  x l  . . . x,) = (1in.b ( inu l t  zl) . . . ( m u l t  x,)) perform a case analysis 
on the structure of the unit constructor C,. 

a If C ,  is a perfect unit, then l i nk  is t,he identity function, so: 

m u l t ( l i n k  x l )  = l ink(mu1t  x l )  
mu l t ( i d  x l )  = id(mu1t  x l )  
m u l t  X I  = m u l t  x1 

a If Cu is not a perfect unit, then T must ha.ve a, zero, C,, and support zero replacement 
functions, eL,and $R  

Prove: mul t (1 ink  zl . . . zj . . . z,,) = l i nk  (rn,ult q) . . . ( m u l t  z j )  . . . ( m u l t  z,,) 

m u l t ( l i n k  zl . . . zj . . . zm,) 
= m u l t ( z l  C I L  . . .zj . . . $R z,,) by ( 1 2 )  
= ( m u l t  z l )  $ L  . . .(muZt z j )  . . . C ~ R  ( m a l t  z m u )  by mult distributes over @ R ,  @L 
= l i n k  ( m u l t  z l )  . . . ( m u l t  z j )  . . . ( m u l t  z,,) by ( 1 2 )  

A.5 The monad laws 

A monad is characterized by the three laws 

m u l t  o un i t  = i d  

m u l t  o ( m a p  u n i t )  = i d  

m u l t  o m u l t  = m u l t  o ( m a p  m u l t )  

We will prove each in turn to demonstrate that the triple (map ,un i t ,mu l t )  on ah imposes the 
structure of a monad on any unitary on ak sum-of-products type. 



1. To prove the first monad law, mult o unit = i d ,  we will show mult(unit x )  = x. 

mult(unit x )  = x 
= mult(Cu(C, . . . x . . . C,)) by definition of unit 
= ( m d t  C,) $L  . . .X . . . $R  ( m d t  C z )  by (I5) 
= C, $L  . . .x . . . oplusR C, by (14) 
= x . . .  $RC,  by C, is identity of $L  

= x by C, is identity of $R 

2. To prove the second monad law, mult o (map unit) = id, we will show mult(map unit x) = 
x by cases on the structure of the unit constructor for T .  

(a)  T has a perfect unit, C,, then the link function is identity. We will do a proof by 
induction on structure of x. The base case in this induction will be x constructed 
by the unit constructor. 

Base case: x = Cu(m) 
Prove: mult(map unit C,(m)) = C,(m) 

mult(map unit C,(m)) 
= muZt(Cu(unit m ) )  by (7) 
= (unit m) by (15) 
= C U ( ~ )  by definition of unit 

Induction step: x = C;(zl . . . z,,,) 
Assume: for all z; with type T(nl . . . n f ) ,  mult(map unit z;) = z; 
Prove: muEt(map unit C;(zl . . . z m C ) )  = Ci(zl . . . z,,) 

mult(map unit Ca(z1 . . . z,,)) 
= mult(Ci(el . . . e,,)) 

map unit zk if zk ha.s type T(aZl . . . a j )  
where e k  = 

otherwise 

mult (m.ap unit zk )  if zk has type T(al  . . . af ) 
where ek  = 

otherwise by (16) 

zk if 21, has type T(nl  . . . a j )  where er, = 
zk otherwise 

(b) T does not have a perfect unit,. Thus T must have a zero, C,, and support zero 
replacement functions, eL,and $R. Lie mill prove mult(map unit x )  = x by 



induction on x. The base case will be x constructed by the zero C,. There will be 
two induction steps, one if x is constructed by the unit constructor, and second if x 
is constructed by any non-unit, non-zero constructor. 

Base case: x = C, 
Prove: mult(map unit C z )  = C, 

mult(map unit C z )  
= mult C,  by (6) 
= C, by (14) 

Induction step Case 1: x is constructed by the unit constructor. We will ex- 
press x as C,(zl . . . zk . . . z,, ) where 21; is the unique argument of type ak, and 
for all j # k, zj has type T(al  . . . a f  ). 

Assume: mult(map unit zj) = sj 
Prove: mult(map unit Cu(zl . . . z k  . . . z,,)) = C,(Z~  . . . zk . . . Zm,) 

mult(map unit C,(zl . . . zk . . . z,,)) 
= mult(CU((map unit z l )  . . . (unit zk) . . . (map unit z,,))) by (7) 
= (muEt(map unit z l ) )  $L . . .(unit zk) . . . $~(mu l t (map  unit zm,)) by (15) 
= zl $L . . .(unit zk) . . . $R zmU by ~ Y P  
= z1 $ L  . . .Cu(Cz . . . zk . . . C z )  . . . $ R  z,, by def unit 
= Cu((zl  $L . . .Cr) . . . ~k . . . C z )  . . . $R ~ m ,  by (9) 
= Cu((zl $ L  . . .Cz) . . . ~k . . (Cz  . . . @R ~ m , ) )  by ( I 1 )  
= Cu(zl . . . ZI, . . . (C,  . . . $RZ,,)) by (8) 
= CU(z1 . . . zk . . .zm,) by (10) 

r Induction step Case 2: x is not constructed by the unit constructor thus it can 
be expressed as: C;(zl . . . z,,) 
Assume: for all z; with type T(al . . . a f ) ,  mult(map unit t i )  = ti 
Prove: mult(map unit C;(zl . . . z , ~ ) )  = C,(zl . . . z,,) 



mult(map unit Ci(zl . . . z,,)) 
= mult(C;(el . . . em,)) 

map unit zl; if zk has type T(al . . . a f )  
where ek = 

otherwise 

mult (m.ap unit zk) if zk has type T(al . . . a f )  
where ek = 

otherwise by (16) 

zl; if zl; has type T ( a l  . . . a f )  
where el; = 

z k  otherwise 

3. To prove the third monad law, mult o nzult = mult o (map mult), we will prove 
mult (mult x) = mult (map mult 2 )  b y  a case analysis on the structure of the unit 
constructor for T .  

(a) If T has a perfect unit, C,, then it has exactly one argument, and the link function 
for T is the identity function. In this case let x = C,(n). 

Prove: mult (mult C,(a)) = mult (map mult C,(a)) 

mult (mult C,(a)) 
= mult ( a )  by (15) 
= mult C,(mult a) by (15) 
= mult (map mult C,(a)) by (7) 

(b) If T is not a perfect unit, then there exists a zero, C,, and a zero replacement func- 
tions, $L, $ R ,  and we will prove mult (m,ult x)  = mult (map mult x)  by induction 
on x. We will have a base case and two induction step cases, one for when x is 
constructed by the unit const.ructor, and one for when x is constructed by any other 
non-unit constructor. 

Base case x = C, 

Prove: mult (mult C,) = mult ( m a p  nzult C,) 

mult (mult C,) 
= mult ( C, ) by (14) 
= mult (m.ap mult C, ) by (6) 



Induction step, Case 1: x is not constructed by the unit constructor. let x = 
C;(z l  . . . zmi)  Assume: for a.U zr: with type T(al  . . . a f ) ,  mult (mult q) = 
mult (map mult zk )  
Prove: mult (mult Ci(z l  . . . z,,)) = mult (map mult C;(zl  . . . z,,)) 

mult (mult C;(zl . . . zmi)) 
= mult(C;(el . . . e m , ) )  

mult zr, if zk has type T(al  . . . a f )  
where e k  = 

otherwise 

= C;(el . . . e m % )  
mult (mult zk ) if zh has type T(al  . . . a f )  

where el; = otherwise by (16) 

= Ci(el . . .  em,) 
mult (m.ap mult zk) if zr, has type T(al  . . . a f )  

where ek = otherwise by ~ Y P  

= mult C;(el . . .em,) 
(map mult zk )  if zk has type T(al  . . . a f )  

where ek = otherwise 

= mult (map mult C;(el . . . em,) )  
zk if zk has type T(al  . . . a j )  where el; = 
zk otherwise 

= mult (map mult C;(zl . . . zmt )) 

Induction step, Case 2: x is constructed by the unit constructor, C,, let x be 
expressed as C,(zl . . . zr, . . . z,,) where zk is the unique argument with type 
ak, and for all j + k, zj has type T(a l  . . . a f ) .  

Assume: mult (mult t j )  = mult (map mult t j )  
Prove: mult (mult C,(zl . . . zr: . . . z,,)) = mult (map mult Cu(zl . . .zk . . .z,,)) 

mult (mult Cu(zl . . . zr, . . . zmU))  
mult ((muit z l)  $L . . .zl, . . . $ ~ ( n ? ? l l t  zm,)) by ( I 5 )  
(malt (mult 2,)) $L . . .(mult zk) . . . a ~ ( m u l t  (mult z,,)) by distributivity 
(mult (map mult z l ) )  $ L  . . .(muit zk) . . . @ ~ ( m u l t  (map mult zm,)) by ~ Y P  
mult Cu((map mult z l )  B L  . . .(mult z k )  . . .  map mult z,,)) by (15) 
mult Cu((map mult zl) $ L  . . .(mult zk) . . .  map mult z,,)) by (15) 
mult (map mult Cu(zl $ L  . . .:k . . . @ R = ~ , ) )  by (7) 



B Proof of the composite monad construction 

Given monads (72, R, rlR, pR) and (S, S, rlS, ,uS)12 with a distribution morphism, nz ,  with 
type S(R((w)) -t R(S((w)), satisfying the following equations 

the quadruple (RS ,  R o S, vR o rlS, R(pS) o pR o ~ ( 7 i g ) )  is a monad. To prove this, the three 
monad laws: 

instantiated with the definitions for the composite maps, units, and multipliers, need to be 
proven. For reference, in the proofs below, we state a. nunlber of facts, all of which are conse- 
quences of the naturality of y ,  and ng. 

Because the maps for R and S (R,S) a.re functors, they preserve both identities, and 
compositions. Thus R(id) = id, and R(f )  o R(g) = R(f o g). In the proofs below when 
one of these laws is used, it is justified by the fu,nctoriality of R. If we have a law, called N, say 
f o g = h, then we justify R( f )  o R(g) = R(hJ by invoking N under R. 

1. Proof of first monad law for composite mona.ds: / r R S  o rlRS = id 

121n this section we use R,  qR,  and pR for m(xpR, u n i t H ,  and mvltR 



(21) 
(17) under R 

(28) 
1st monad law for S under RR 
functoriality of RR 

1st monad law for R 

2. Proof of second monad law for composite monads: pRS o RS(qRS) = id 

R($) o pR o ~ ( n g )  o RS(qR o rls) 
= R($) o ,uR o R(?ri) o RS(qR) o Rs (qS)  by functoriality of RS 
= R ( [ L ~ )  o ,uR o R(n5 o S(qR)) o R,S(qs) by functoriality of R 
= R(pS)  0 pR o R ( ~ ~ )  0 ~ ~ ( 1 7 ~ )  by (18) 
= R ( p S )  o id o RS(qS)  by 2nd monad law for R 
= R(pS )  0 RS(qs) 
= R(ps 0 s ( q S ) )  by functoriality of R 
= R(id) b y  2nd monad law for S 
= id by functoriality of R 

3. Proof of third monad law for composite monads: pRS o ,uRS = RS(pRS)  

pRS 0 pRS 

= R(pS )  o ,uR o R(?rz) o R(pS)  o pR o ~ ( w i )  by 
= R(pS )  o ,uR o R((RpS)  o n i  o S ( T ~ ) )  o pR o R ( n i )  by 
= R($) 0 ,uR o ( R R ~ ~ )  o R ( T ~ )  o R S ( T ~ )  0 pR o R ( T ~ )  by 
= R(@) o R ( ~ ~ )  o pR o ~ ( r g )  o RS(~I-i) 0 pR 0 R ( T ~ )  by 
= R(pS )  o RS(pS)  o pR o ~ ( n i )  o R,S(?rz) o ,uR o R ( T ~ )  by 
= R(@) o RS(pS)  o ,uR o R(T;) o pR o R R S ( T ~ )  o ~ ( n g )  by 
= ~( ,2 )  o R S ( , ~ )  o pR o pR o RR(T;) o RRS(n2)  o R(T;) by 
= R(,uS) o R S ( , ~ ~ )  o pR o R(,uR) o RR(ns )  o RRS(nz )  o R(nj$) by 
= R(pS )  o pR o RR(pS)  o R(,uR) o RR(n5) o R R S ( T ~ )  o ~ ( n g )  by 
= R(pS)  o ,uR o RR(pS)  o R (pR)  o RR(ng) o R ( R S ( T ~ )  o n i )  by 
= R(pS )  o pR o RR(,uS) o R(pR)  o RR(n;) o R(n2 o , S R ( T ~ ) )  by 
= R(pS)  o ,uR o RR(pS)  o R(,uR) 0 RR(n2) o R(n2) o RSR(ng) by 
= R(pS)  o ,uR o RR(pS)  o R ( n i )  o RbS(pR) o RSR(ng)  by 
= R(pS )  o pR o R(ng) o RSR(pS)  o RS(,uR) o RSR(n2) by 
= R(pS )  o / r R  o R ( n i )  o RS (R(pS )  o p R  o R(T~)) by 
= RS(pRS)  by 

definition 
(19) under R 
functoriality of R 

(22) 
3rd monad law for S under R 

(23) 
(25) 
3rd monad law for R 

(24) 
functoriality of R 

(26) 
functoriality of R 
(20) under R 
(27) under R 
functoriality of RS 
definition 



References 

[Bir86] Richard S. Bird. An introduction to  the theory of lists. In M. Broy, editor, Logic 
of Programming and Calculi of Discrete Design, volume 36 of NATO Series F. 
Springer-Verlag, 1986. 

[Bid81 Richard S. Bird. Lectures on constructive functional programming. In M. Broy, 
editor, Constructive Methods in  Computing Science, volume 52 of NATO Series F. 
Springer-Verlag, 1988. 

[Bru72] N. G. de Bruijn. Lambda calculus nota.tion with nameless dummies, a tool for 
automatic formula manipulation, with application to  the Church-Rosser theorem. 
Indagaciones Mathematische, 34:381-392, 1972. Also appeared in the Proceedings 
of the Koninklijke Nederla.ndse Akademie van Wetenschappen, Amsterdam, series 
A, 75(5). 

[Bru78] N. G. de Bruijn. Lambda calculus with namefree formulas involving symbols that 
represent reference transforming mappings. In Proceedings of the Koninklijke Neder- 
Eandse Akaemie van Wetenschappen, pages 348-356, Amsterdam, series A, volume 
81(3), September 1978. 

[Bru80] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and J. R. 
Hindley, editors, To  H. B. Curry: Essays on Combincrtory Logic, Lambda Calculus 
and Formalism. Academic Press, New York, 1980. 

[BW85] M. Barr and C. Wells. Toposes. Triples and Theories. Springer-Verlag, New York, 
1985. 

[CF58] H. B. Curry and R. Feys. Conabinatory Logic, volume I. North-Holland, Amsterdam, 
1958. 

[CS92] J. R. B. Cockett and D. Spencer. Strong categorical datatypes. In R. A. G. Seely, 
editor, International Meeting on Category Theory, 1991. AMS, 1992. 

[DI<M91] Olivier Danvy, Jiirgen Koslowski, and Ka.roline Malmkjzr. Compiling monads. 
Technical R.eport CIS-92-3, I<ansas State University, Manhattan, Kansas, December 
1991. 

[Fuk92] Tom Fukushima. Monads in Charity. Unpublished manuscript, May 1992. 

[Gir71] J.-Y. Girard. Une extension de l'interprbtation fontionnelle de Godel B l'analyse, et 
son application B. l'dimination des coupures dans l'analyse et la thQorie des types. 
In J. E. Fenstad, editor, Second Scandinavian Logic Symposium, pages 63-92, Am- 
sterdam, 1971. North-Holland. 

[Hag871 T. Hagino. A Categorical Progranznzirzg Language. PhD thesis, University of Edin- 
burgh, 1987. 



[HS86] J .  Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and A- 
calculus. Cambridge University Press, Cambridge, 1986. 

[KFFD86] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hy- 
genic macros. In 1986 ACM Conference on Lisp and Functional Programming, pages 
151-159,1986. 

[Maigl] Harry G. Mairson. Outline of a proof theory of parametricity. In Proc. of 5th ACM 
Conf. on Functional Programming Languages and Computer Architecture, volume 
523 of Lecture Notes in Com.puter Science, pages 313-327. Springer-Verlag, August 
1991. 

[Ma1891 Grant Malcolm. Homomorphisms and promotability. In J. L. A. van de Snep- 
scheut, editor, Mathematics of Progrclnz Construction, volume 375 of Lecture Notes 
in Computer Science, pages 33.5-347. Springer-Verlag, June 1989. 

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with 
bananas, lenses, envelopes a.nd ba.rbed wire. In Proc. of 5th ACM Conf. on Func- 
tional Programming Languages and Computer Architecture, volume 523 of Lecture 
Notes in Computer Science, pa.ges 124-144. Springer-Verlag, August 1991. 

[Moggl] Eugenio Moggi. Notions of computations and monads. Information and Computa- 
tion, 93(1):55-92, July 1991. 

[MTHSO] Robin Milner, Mads Tofte, and Robert Ha,rper. The Definition of Standard ML. 
MIT Press, Cambridge, Massachusetts, 1990. 

[RS84] Jim des Rivieres and Brian Ca,ntwell Smith. The implementation of procedurally 
reflective languages. In Proceedings of the 1954 Lisp and Functional Programming 
Conference. ACM, 1984. 

[Shego] Timothy Sheard. A user's guide t o  TRPL: A compile-time reflective programming 
language. Technical Report 90-109, Computer and Information Sciences, University 
of Massachusetts, Amherst, 1990. 

[Spi9O] Mike Spivey. A functional theory of exceptions. Science of Computer Programming, 
14:25-42, 1990. 

[Wad881 Philip Wadler. Deforestation: Transforming programs t o  eliminate trees. In 
ESOP788, volume 300 of Lecture ;Votes in Computer Science, pages 344-358. 
Springer-Verlag, March 1988. 

[Wad891 Philip Wadler. Theorems for free! In Proc. of 4th ACM Conf. on Functional 
Programming Languages and Conxperter ilrchitecture, pages 347-359. ACM Press, 
September 1989. 



[Wadgo] Philip Wadler. Comprehending mona.ds. In Proc. 1990 ACM Conference on Lisp 
and Functional Programming, pages 61-78, 1990. 

[Wad921 Philip Iiadler. The essence of functional programming. In Conference Record of 
the Nineteenth Annual ACA! Symposium on Principles of Programming Languages. 
ACM Press, January 1992. 


