
MetaMP Approach to Parallel Programming

Steve W. Otto and Michael Wolfe

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006- 1999 USA

Technical Report No. CS/E 92-016

August 1992

Published in: "Frontiers ' 92 : Frontiers of Massively Parallel Computation" - I E E E .

The MetaMP Approach to Parallel Programming

Steve W. Otto Michael Wolfe

Computer Science and Engineering
Oregon Gra,duate Institute

Beaverton, OR 97006

Computer Science and Engineering
Oregon Graduate Institute

Beaverton, OR 97006

Abstract
We are researching techniques for programming

large-scale parallel machin,es for scientiJc com.pu-
tation. We use an intermediate-level language,
MetaMP, that sits between High Performance Fortran
(HPF) and low-level message passing. We are devel-
oping an efficient set of primitives in the intermediate
language and we are investigating compilation meth-
ods that can semi-automatically reason about parallel
programs. The focus is on distributed memory h,ard-
ware. Our work has many similarities with HPF ef-
forts although our approach is aimed at sh,orter-term
solutions. We plan to keep the programmer centrally
involved in the development and optiinizafion of the
parallel program.

1 Introduction
This paper is concerned with programming large-

scale parallel machines for scientific computation. Our
approach is twofold: we are investigating compilation
methods that can semi-automatically reason about
parallel programs, and we are developing an efficient
set of primitives that abstract distributed-memory
hardware.

A first version of such primitives has been devel-
oped and is called MetaMP [I]. With t,his, the user
writes a parallel SPMD program for a distributed
memory computer, with explicit communication. The
language explicitly supports common modes of broad-
cast, block, guard strip, and random access commu-
nications, which have been shown to be useful for a
wide variety of algorithms [2]. Because the communi-
cation is explicit, the MetaMP compiler need not be so
aggressive, and the communication cost will be clear
to the user. The user has the option to exploit novel
and powerful parallel algorithms that have no sequen-
tial counterpart and whose communication patterns
are not obvious to a compiler.

We have exploited some techniques colnrnon in
object-oriented programming, namely, self-describing
data structures t o implement the primitives. On
the distributed-memory machine, each piece of a dis-
tributed array structure is locally self-describing. The
current version of MetaMP is based on C and compiles
down to a commercially available parallel message-
passing system, Express.

Several realistic applications have been written in
MetaMP. These include a parallel Multigrid solver for

partial differential equations, an N-body gravity pro-
gram, Gaussian elimination, and a cyclic Jacobi eigen-
solver. hletaMP has similarities to Hypertasking [3]
and to systems such as Dino [4] and BLAZE [5].

Though MetaMP has several important advantages
over writing prograrns directly in the message passing
system, it is not a complete answer. Currently, pro-
gramming in MetaAlP is manual and the user must
carefully reason about the parallel program in order
to avoid mistakes. Therefore, we are studying the fea-
sibility of a "proof'' tool that can prove the equiv-
alence of a MetaMP program and a certain sequen-
tial program. Once correctness is achieved, the user
would also like some guidance a s to performance. We
plan a "perf' tool that will give a performance predic-
tion of the parallel program using a linear performance
model. We have already developed such a tool for our
loop restructuring system, Tiny [6].

Our approach has many similarities with efforts
to define and implement High Performance Fortran
(HPF) [7, 81. An essential difference is that we plan
to keep the programmer centrally involved in the de-
velopment and optimization of the parallel program.
The optimizations used for distributed machines can
be substantially different than those used for other
computers, and knowledge of the communication pat-
terns is necessary for efficient execution. Automatic
compiler analysis can never replace or even approach
manual program design, because compilers are nec-
essarily restricted to correctness-preserving optimiza-
tions; users, on the other hand, can determine that
a different formulation is equally correct. Successful
parallel program development must consist of a non-
trivial dzalogue between the user and the compilation
system. The system can help pinpoint performance
problems, aid in mechanical aspects of program de-
sign, and help the user focus on algorithmic choices.
Nonetheless, it is up to the user to guide the system
towards the parallel program.

2 Interactive Programming Tools
Given the parallel language MetaMP and its com-

piler, a user will want t o write correct but efficient par-
a.lle1 algorithms. We envision three tools to aid users
drvelop and t<une parallel algorithms for MetaMP.

for (i = 0 ; i < H; ++i)t
for (j = 0; j < I ; ++j)C

for (k = 0; k < L; ++k){
c[i] Cjl += ACil Ckl * BCkl [jl ;

1
>

1

Figure 1: Matrix multiplication loops.

for (is = 0 ; is < Sprocs C[*]C]S; ++is) S parallel $
for (ks = 0 ; ks < $procs B[*I CIS; ++ks)i

$ broadcast BC:ksl [I $
for (i=$lower CC: is] [I$; i<$upper CC:isl ClS;++i){

for (j = 0; j < I; ++j)C
for (k=$lower BE: ksl CIS ;k<$upper BC: ks] $;++k){

CCil Cjl += ACil Ckl * BCkl Cjl;
1

3
1

1
3

for (is = 0 ; is < Sprocs C[*]C]$; ++is){
for (i=$lower C[:is][]$;i<$upper CC:is][l$;++i){
for (j 3 0 ; j < I; ++j){

for (ks = 0 ; ks < Sprocs BC*] [I$; ++ks){
for (k=Sloser B[: ks] [I $; k<$upper B[: ksl [I $;++k) {

CCilCjl += ACil Ckl * BCkl Cjl;
3

1

Figure 2: Strip-mined version of Figure 1.

2.1 Program Development
While our experience with MetaMP has been wit,h

algorithms written explicitly for t,his model, many par-
allel programs are written by migrating or evolving
sequential programs or shared-memory parallel pro-
grams into a distributed memory program. Much of
the migration process is creative, such as deciding how
to distribute the data structures, while the rest of t,he
process is mechanical, such as strip-mining, reordering
and restructuring loops. We have ext,ensive experience
with high-level loop restructuring, initially aimed at
uncovering parallelism in sequential programs. In this
context, we want to use the restruct,uring process to
find an efficient form of a parallel program.

For example, a distribut.ed matrix multiplication a.1-
gorithm could have been derived through the follow-
ing restructuring process. Start with the sequentia.1
algorithm in Figure 1. Now suppose we decide t80
block-distribute each of the three arrays in t,lie first
dimension. The i and k loops need t,o be strip-mined,
producing the program in Figure 2. One of the two
strip loops (is or ks) must. correspond t,o t.he "paral-
lel" loop; the user here chooses is, based on estilnation
of the communication required and because it carries
no dependence relations. In t,he MetahlP SPMD en-
vironment, the "parallel" loop disappears, since the
same program is executed by each processor and so
the loop is implicitm, but for now we leave it in place.
This version of the parallel program uses only local
references for the C and A arrays, but must comn~uni-
cate the B array; in fact processor ks must broadcast
its portion of B for each iterat,ion of the ks loop.

The frequency of the broadcasts can be reduced by
moving the ks loop outwards, as in Figure 3; t,his is
allowed by classical loop interchanging since neit,lier

Figure 3: Loop int~rchanging to reduce communica-
tions.

t81ie j nor t,he i loop carry any dependence relations .-.
191.

A much more efficient distributed algorithm is de-
rived, however, by rotating the ks loop with respect
to the (implicit) is loop [lo]. The order in which the
ks blocks are executed is different for each processor:

As can be seen from the table, each processor starts
out using its local block of the B array, as indexed by
ks. Loop rotation is legal in this case because the
loop-carried dependence relations are for associative
reduct,ions. Note t h i~ t the parallel program does accu-
mulate the result in a different order than the origi-
nal sequential program, so may accumulate a different
roundoff error. The communication is now nearest
neighbor around a ring, signified in MetaMP by the
roll primitive. Affer eliminating the implicit "par-
allel" loop and changing to the notation of MetaMP,
we have exactly the program given in [I] and shown
in Figure 4. A set of pictures describing the parallel
algorithm is given in Figure 5.

The goals of the restructuring process were to max-
imize parallelism, minimize communication, and con-
fine communication as much as possible to efficient
patterns Had the dependence relations prevented the
rotation transformation, we could still use the r o l l
pattern provided in MetaMP to execute the loop in
wavefront fashion [lo].

This example deinonstrates the power and impor-
tance of the restructuring process: the parallel pro-
gram is not a simple distributed version of the original
sequential algorithm, and the restructuring required
and communication patterns used will not be discov-
ered by automatic compilers. Moreover, the restruc-
turing process is not a simple application of current
parallel compiler optimization algorithms. New t r ans
format ions are required, and the user must be "in the
loop "

processor
is
0
1
2
3

order
ks

7: 1: :: ;
2, 3, 0, 1
3, 01 1, 2

$ processors pl $ // ID mesh of processors
i n t CCH] [I] ; $ array CCH: pi1 CII $
i n t ACN] CL] ; S array ACII:pll CLI $
i n t ELL] [I]; $ array B[L:pil [El $
main0
C

$ Alloc $ // Allocate dis tr ibuted arrays
. . . / / read i n arrays, i n i t C t o 0

f o r (1=0; l<$procs BC*] CIS; ++1) I
for (i=O; i<N; ++ i) ${$ $ dotline CC*] [I $

f o r (j=O; j < I ; ++j) C
f o r (k=O; k<L; ++k) ${$ $ donine BC*][l $

CCil Cjl += A C i l Ckl * BCkl [jl ;
$)$

1
S)$
$ r o l l BC*l Cl $

>
. . . // write out C

>

Figure 4: m a t .mp: A MetaMP program for t,he ma-
trix multiplication algorithm of Figure .3.

Figure 5: The first two (of the total of four) roll cy-
cles for matrix multiplication on four processors. Ar-
rows denote the direction of dataflow of B, tlie shading
represents which partial rows of A are combining with
which partial columns of B. Elements of the same shad-
ing pattern are combined. "1" refers t80 the loop index
1 in Figure 4.

2.2 Correctness
In MetaMP, proving correctness of the parallel pro-

gram is complicated by the addition of explicit com-
munication statements. Such a parallel program may
have no simple sequential counterpart, and so it is im-
possible to use the HPF approach, where erasing the
data distribution and parallel syntax gives an equiva-
lent scalar program, which can then be debugged. Let
us define the natural sequeniialiraiion of a MetaMP
program as the same algorithm with one processor.
We are designing analysis algorithms that will be en-
coded in a tool to find the essential differences between
the parallel MetaMP program and its natural sequen-
tial counterpart. The key will be to point out to the
user where the parallel program will differ from the
scalar program; this will not necessarily be an error,
but will inform the user where the programs exhibit
essential differences that may lead to numerically dif-
ferent results. The basic idea is similar to that pro-
posed by the PTOOL project 111, but our effort is I focused on parallel programs wit explicit communica-
tion. Dependence analysis for the parallel program is
complicated by the fact that the parallel program only
preserves dependence between processors when there
is explicit communication. In MetaMP, the analysis is
feasible since the coinmunication patterns are explicit
in the program and known to the compiler.

A good example of this is Gauss-Seidel relaxation
[2]. In the parallel case this is typically written so a s
to minimize the nuniber of communication calls. This
implies that some of the values coming from remote
processors may be old - that is, to minimize commu-
nications we have violated a dependence relation. A
Jacobi solver doesn't have this problem since it ex-
plicitly uses values only from the previous iteration,
but on tlie other hand it does not converge as rapidly
as Gauss-Seidel. The typical parallel implementation
of Gauss-Seidel is a mixed relaxation, and does not
correspond to the sequential program; yet since it can
converge faster and uses less memory than strict Ja-
cobi, and uses less communication than strict parallel
Gauss-Seidel, it has measurable advantages.

For this t,ype of program, our analysis tool will
determine that the natural sequential program has
loop-carried dependence relations. The parallel pro-
gram can only satisfy interprocessor dependence rela-
tions at conlmunication points; thus the parallel pro-
gram satisfies the dependence relations only within
each processor domain. Between processors, the de-
pendence relations are carried by the communication
statements. This d~fference will be presented to the
user, who can then determine that, yes, in fact the
parallel program is different but nonetheless correct
(converges to the same values).

Note that to be useful, this analysis will be signifi-
cantly different than simple dependence analysis. One
of the lessons learned from the PTOOL project was
that if the user is swamped with voluminous depen-
dence information, potential problems will be hidden
and often missed. 111 the matrix multiplication analy-
sis, for example, the tool must understand associative
reductions and the reordering implied by the loop ro-
tation.

Floating Point Ops
n/6 + nA2/2 + 11-313
Memory Ops
- n/6 + 3*n-212 + 2*na3/3

Stride-1 in inner loop
- n/3 + ne3/3

Non-stride-1 in inner loop
5*n/6 + n - 2 + 11-316
Invariant in inner loop
- 2*n/3 + n-212 + 11-316

Parsed ch
*Count Rowwise Colwise Write Msgs Quit Xcape

Figure 6: Operation counts assuming C-like array lay-
out.

2.3 Performance
One of the main reasons tha t vectorizing compil-

ers have proven successful is tha t the user can easily
predict the performance of the generat,ed code by look-
ing a t the report of the vectorized loops. We take the
same approach, keeping the user "in the loop" for crit-
ical performance tuning. Our approa.ch is based on a.
linear performance model, where the performance of
the system is modeled on the counts and coefficients
of certain critical parameters of the algorithm.

We have already demonstrated the feasibility of
symbolically counting critical ~ a r a m e t ~ e r s in an algo-
r i thm in the Tiny program restructuring tool. As an
example, a Cholesky decomposition program was a.u-
tomatically, symbolically analyzed t.o count the fre-
quency of the following parameters:

Floating Point Ops - floating point additions and
multiplications

Memory Ops - total array element loads and
stores

Stride-1 in inner loop - loads/stores tha.t are t,o
consecutive array elements in memory.

Non-stride-1 in inner loop - loa.ds/stores wit,h
stride > 1.

Invariant in inner loop - loads/stores invariant in
inner loop.

Other counts are also made, bu t d o not apply in this
example. Assuming a C-like rowwise storage order,
the counts are as shown in Figure 6 (this figure is
taken from a screen d u m p of Tiny).

Wi th this technology we can count frequency of
different communication operations as well as proces-
sor activity. This performance prediction module can
be built into the restructuring tool to provide instant
feedback on the benefits of t.he optimiza.t,ion process.

and Technology, 1991. This preprint is electroni-
cally available (in Postscript) via anonymous ftp from
cse . ogi . edu, in directory pub/tech-reports.

[2] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,
and D. Walker. Solving Problems on Concurrent Pro-
cessors, volume 1. Prentice Hall, Englewood Cliffs,
NJ, 1988.

[3] M. Baber. Hypertasking support for dynamically re-
distributable and resizable arrays on the iPSC. In The
Sixth Conference on Hypercube Concurrent Comput-
ers and Applications, pages 59-66. IEEE Computer
Society Press, 1991.

[4] M. Rosing, R.B. Schnabel, and R. Weaver. Dino:
Summary and examples. In The Third Conference on
Hypercube Conc~rrrent Computers and Applications.
ACM Press, 1988.

[5] P. hlehrotra and J. Van Rosendale. The BLAZE lan-
guage: A parallel language for scientific programming.
Parallel Computing, 5(3):339-61, 1987.

[GI Michael Wolfe. The Tiny loop restructuring research
tool. In Proc. 1991 International Conf. on Parallel
Processing, volulne 11, pages 46-53, St. Charles, IL,
August 1991. Perm State Press.

[TI G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Icremer, C. Tseng, and M. Wu. Fortran D lan-
guage specification. Technical Report Rice COMP
TR90-141, Dept of Computer Science, Rice Univer-
sity. 1990.

[8] B. Chapman, P. Mehrotra, and H. Zima. Vienna For-
tran - a Fortran language extension for distributed
memory systems. In J. Saltz and P. Mehrotra, edi-
tors. Languages, Compilers, and Run-time Environ-
ments for Distributed Memory Machines. Elsevier
Press, 1992.

[g] John R. Allen and Ken Kennedy. Automatic loop
interchange. In Proc. SIGPLAN '84 Symp. on Com-
~ i l e r Construction, pages 233-246, Montreal, Canada,
June 1984.

[lo] Michael Wolfe. Loop rotation. In David Gelern-
ter, Alexandru Nicolau, and David A. Padua, editors,
Languages and Compilers for Parallel Computing, Re-
search Monographs in Parallel and Distributed Com-
puting, pages 531-553. MIT Press, Boston, 1990.

[ll] J. R . Allen, Donn Baumgartner, Ken Kennedy, and
Allan Porterfield. PTOOL: A semi-automatic parallel
programming assistant. In Kai Hwang, Steven M. Ja-
cobs, and Earl I:. Swartzlander, editors, Proc. 1986
Intel-natzonal Conf. on Parallel Processing, pages
164-170. St. Charles, IL, August 1986.

References
[I] S.W. Otto. MetaMP: A higher level abstraction

for message-passing programming. Technical Report
CS/E 91-003, Oregon Graduate Institute of Science

