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Abstract 
We are researching techniques for programming 

large-scale parallel machin,es for scientiJc com.pu- 
tation. We  use an intermediate-level language, 
MetaMP, that sits between High Performance Fortran 
(HPF) and low-level message passing. We  are devel- 
oping an efficient set of primitives in the intermediate 
language and we are investigating compilation meth- 
ods that can semi-automatically reason about parallel 
programs. The focus is on distributed memory h,ard- 
ware. Our work has many similarities with HPF ef- 
forts although our approach is aimed at sh,orter-term 
solutions. We  plan to keep the programmer centrally 
involved in the development and optiinizafion of the 
parallel program. 

1 Introduction 
This paper is concerned with programming large- 

scale parallel machines for scientific computation. Our 
approach is twofold: we are investigating compilation 
methods that can semi-automatically reason about 
parallel programs, and we are developing an efficient 
set of primitives that abstract distributed-memory 
hardware. 

A first version of such primitives has been devel- 
oped and is called MetaMP [I]. With t,his, the user 
writes a parallel SPMD program for a distributed 
memory computer, with explicit communication. The 
language explicitly supports common modes of broad- 
cast, block, guard strip, and random access commu- 
nications, which have been shown to be useful for a 
wide variety of algorithms [2]. Because the communi- 
cation is explicit, the MetaMP compiler need not be so 
aggressive, and the communication cost will be clear 
to  the user. The user has the option to  exploit novel 
and powerful parallel algorithms that have no sequen- 
tial counterpart and whose communication patterns 
are not obvious to  a compiler. 

We have exploited some techniques colnrnon in 
object-oriented programming, namely, self-describing 
data structures t o  implement the primitives. On 
the distributed-memory machine, each piece of a dis- 
tributed array structure is locally self-describing. The 
current version of MetaMP is based on C and compiles 
down to a commercially available parallel message- 
passing system, Express. 

Several realistic applications have been written in 
MetaMP. These include a parallel Multigrid solver for 

partial differential equations, an N-body gravity pro- 
gram, Gaussian elimination, and a cyclic Jacobi eigen- 
solver. hletaMP has similarities to  Hypertasking [3] 
and to systems such as Dino [4] and BLAZE [5]. 

Though MetaMP has several important advantages 
over writing prograrns directly in the message passing 
system, it is not a complete answer. Currently, pro- 
gramming in MetaAlP is manual and the user must 
carefully reason about the parallel program in order 
to avoid mistakes. Therefore, we are studying the fea- 
sibility of a "proof'' tool that can prove the equiv- 
alence of a MetaMP program and a certain sequen- 
tial program. Once correctness is achieved, the user 
would also like some guidance a s  to  performance. We 
plan a "perf' tool that will give a performance predic- 
tion of the parallel program using a linear performance 
model. We have already developed such a tool for our 
loop restructuring system, Tiny [6]. 

Our approach has many similarities with efforts 
to  define and implement High Performance Fortran 
(HPF) [7, 81. An essential difference is that we plan 
to keep the programmer centrally involved in the de- 
velopment and optimization of the parallel program. 
The optimizations used for distributed machines can 
be substantially different than those used for other 
computers, and knowledge of the communication pat- 
terns is necessary for efficient execution. Automatic 
compiler analysis can never replace or even approach 
manual program design, because compilers are nec- 
essarily restricted to  correctness-preserving optimiza- 
tions; users, on the other hand, can determine that 
a different formulation is equally correct. Successful 
parallel program development must consist of a non- 
trivial dzalogue between the user and the compilation 
system. The system can help pinpoint performance 
problems, aid in mechanical aspects of program de- 
sign, and help the user focus on algorithmic choices. 
Nonetheless, it is up to the user to  guide the system 
towards the parallel program. 

2 Interactive Programming Tools 
Given the parallel language MetaMP and its com- 

piler, a user will want t o  write correct but efficient par- 
a.lle1 algorithms. We envision three tools to  aid users 
drvelop and t<une parallel algorithms for MetaMP. 



for (i = 0 ;  i < H; ++i)t 
for (j = 0; j < I ;  ++j)C 

for (k = 0; k < L; ++k){ 
c[i] Cjl += ACil Ckl * BCkl [jl ; 

1 
> 

1 

Figure 1: Matrix multiplication loops. 

for (is = 0 ;  is < Sprocs C[*]C]S; ++is) S parallel $ 
for (ks = 0 ;  ks < $procs B[*I CIS; ++ks)i 

$ broadcast BC:ksl [I $ 
for (i=$lower CC: is] [I$; i<$upper CC:isl ClS;++i){ 

for (j = 0; j < I; ++j)C 
for (k=$lower BE: ksl CIS ;k<$upper BC: ks] $ ;++k){ 

CCil Cjl += ACil Ckl * BCkl Cjl; 
1 

3 
1 

1 
3 

for (is = 0 ;  is < Sprocs C[*]C]$; ++is){ 
for (i=$lower C[:is][]$;i<$upper CC:is][l$;++i){ 
for (j 3 0 ;  j < I; ++j){ 

for (ks = 0 ;  ks < Sprocs BC*] [I$; ++ks){ 
for (k=Sloser B[ : ks] [I $; k<$upper B[ : ksl [I $;++k) { 

CCilCjl += ACil Ckl * BCkl Cjl; 
3 

1 

Figure 2: Strip-mined version of Figure 1. 

2.1 Program Development 
While our experience with MetaMP has been wit,h 

algorithms written explicitly for t,his model, many par- 
allel programs are written by migrating or evolving 
sequential programs or shared-memory parallel pro- 
grams into a distributed memory program. Much of 
the migration process is creative, such as deciding how 
to distribute the data structures, while the rest of t,he 
process is mechanical, such as strip-mining, reordering 
and restructuring loops. We have ext,ensive experience 
with high-level loop restructuring, initially aimed at 
uncovering parallelism in sequential programs. In this 
context, we want to use the restruct,uring process to 
find an efficient form of a parallel program. 

For example, a distribut.ed matrix multiplication a.1- 
gorithm could have been derived through the follow- 
ing restructuring process. Start with the sequentia.1 
algorithm in Figure 1. Now suppose we decide t80 
block-distribute each of the three arrays in t,lie first 
dimension. The i and k loops need t,o be strip-mined, 
producing the program in Figure 2. One of the two 
strip loops (is or ks) must. correspond t,o t.he "paral- 
lel" loop; the user here chooses is, based on estilnation 
of the communication required and because it carries 
no dependence relations. In t,he MetahlP SPMD en- 
vironment, the "parallel" loop disappears, since the 
same program is executed by each processor and so 
the loop is implicitm, but for now we leave it in place. 
This version of the parallel program uses only local 
references for the C and A arrays, but must comn~uni- 
cate the B array; in fact processor ks must broadcast 
its portion of B for each iterat,ion of the ks loop. 

The frequency of the broadcasts can be reduced by 
moving the ks loop outwards, as in Figure 3; t,his is 
allowed by classical loop interchanging since neit,lier 

Figure 3: Loop int~rchanging to reduce communica- 
tions. 

t81ie j nor t,he i loop carry any dependence relations .-. 
191. 

A much more efficient distributed algorithm is de- 
rived, however, by rotating the ks loop with respect 
to  the (implicit) is loop [lo]. The order in which the 
ks blocks are executed is different for each processor: 

As can be seen from the table, each processor starts 
out using its local block of the B array, as indexed by 
ks. Loop rotation is legal in this case because the 
loop-carried dependence relations are for associative 
reduct,ions. Note t h i~ t  the parallel program does accu- 
mulate the result in a different order than the origi- 
nal sequential program, so may accumulate a different 
roundoff error. The communication is now nearest 
neighbor around a ring, signified in MetaMP by the 
roll primitive. Affer eliminating the implicit "par- 
allel" loop and changing to the notation of MetaMP, 
we have exactly the program given in [I] and shown 
in Figure 4. A set of pictures describing the parallel 
algorithm is given in Figure 5.  

The goals of the restructuring process were to  max- 
imize parallelism, minimize communication, and con- 
fine communication as much as possible to  efficient 
patterns Had the dependence relations prevented the 
rotation transformation, we could still use the r o l l  
pattern provided in MetaMP to execute the loop in 
wavefront fashion [lo]. 

This example deinonstrates the power and impor- 
tance of the restructuring process: the parallel pro- 
gram is not a simple distributed version of the original 
sequential algorithm, and the restructuring required 
and communication patterns used will not be discov- 
ered by automatic compilers. Moreover, the restruc- 
turing process is not a simple application of current 
parallel compiler optimization algorithms. New t r ans  
format ions are required, and the user must be "in the 
loop " 

processor 
is 
0 
1 
2 
3 

order 
ks 

7: 1: :: ; 
2, 3, 0, 1 
3, 01 1, 2 



$ processors pl  $ // ID mesh of  processors 
i n t  CCH] [I] ; $ array CCH: pi1 CII $ 
i n t  ACN] CL] ; S array ACII:pll CLI $ 
i n t  ELL] [I]; $ array B[L:pil [El $ 
main0 
C 

$ Alloc $ // Allocate dis tr ibuted arrays 
. . . / /  read i n  arrays,  i n i t  C t o  0 

f o r  (1=0; l<$procs BC*] CIS; ++1) I 
for  (i=O; i<N; ++ i )  ${$ $ dotline CC*] [I $ 

f o r  (j=O; j < I ;  ++j) C 
f o r  (k=O; k<L; ++k) ${$ $ donine BC*][l $ 

CCil Cjl += A C i l  Ckl * BCkl [jl ; 
$)$ 

1 
S)$ 
$ r o l l  BC*l Cl $ 

> 
. . . // write out C 

> 

Figure 4: m a t  .mp: A MetaMP program for t,he ma- 
trix multiplication algorithm of Figure .3. 

Figure 5: The first two (of the total of four) roll cy- 
cles for matrix multiplication on four processors. Ar- 
rows denote the direction of dataflow of B, tlie shading 
represents which partial rows of A are combining with 
which partial columns of B. Elements of the same shad- 
ing pattern are combined. "1" refers t80 the loop index 
1 in Figure 4. 

2.2 Correctness 
In MetaMP, proving correctness of the parallel pro- 

gram is complicated by the addition of explicit com- 
munication statements. Such a parallel program may 
have no simple sequential counterpart, and so it is im- 
possible to use the HPF approach, where erasing the 
data distribution and parallel syntax gives an equiva- 
lent scalar program, which can then be debugged. Let 
us define the natural sequeniialiraiion of a MetaMP 
program as the same algorithm with one processor. 
We are designing analysis algorithms that will be en- 
coded in a tool to find the essential differences between 
the parallel MetaMP program and its natural sequen- 
tial counterpart. The key will be to  point out to the 
user where the parallel program will differ from the 
scalar program; this will not necessarily be an error, 
but will inform the user where the programs exhibit 
essential differences that may lead to  numerically dif- 
ferent results. The basic idea is similar to that pro- 
posed by the PTOOL project 111, but our effort is I focused on parallel programs wit explicit communica- 
tion. Dependence analysis for the parallel program is 
complicated by the fact that the parallel program only 
preserves dependence between processors when there 
is explicit communication. In MetaMP, the analysis is 
feasible since the coinmunication patterns are explicit 
in the program and known to the compiler. 

A good example of this is Gauss-Seidel relaxation 
[2]. In the parallel case this is typically written so a s  
to minimize the nuniber of communication calls. This 
implies that some of the values coming from remote 
processors may be old - that is, to  minimize commu- 
nications we have violated a dependence relation. A 
Jacobi solver doesn't have this problem since it ex- 
plicitly uses values only from the previous iteration, 
but on tlie other hand it does not converge as rapidly 
as Gauss-Seidel. The typical parallel implementation 
of Gauss-Seidel is a mixed relaxation, and does not 
correspond to the sequential program; yet since it can 
converge faster and uses less memory than strict Ja- 
cobi, and uses less communication than strict parallel 
Gauss-Seidel, it has measurable advantages. 

For this t,ype of program, our analysis tool will 
determine that the natural sequential program has 
loop-carried dependence relations. The parallel pro- 
gram can only satisfy interprocessor dependence rela- 
tions at conlmunication points; thus the parallel pro- 
gram satisfies the dependence relations only within 
each processor domain. Between processors, the de- 
pendence relations are carried by the communication 
statements. This d~fference will be presented to the 
user, who can then determine that, yes, in fact the 
parallel program is different but nonetheless correct 
(converges to the same values). 

Note that to be useful, this analysis will be signifi- 
cantly different than simple dependence analysis. One 
of the lessons learned from the PTOOL project was 
that if the user is swamped with voluminous depen- 
dence information, potential problems will be hidden 
and often missed. 111 the matrix multiplication analy- 
sis, for example, the tool must understand associative 
reductions and the reordering implied by the loop ro- 
tation. 



Floating Point Ops 
n/6 + nA2/2 + 11-313 
Memory Ops 
- n/6 + 3*n-212 + 2*na3/3 

Stride-1 in inner loop 
- n/3 + ne3/3 

Non-stride-1 in inner loop 
5*n/6 + n - 2  + 11-316 
Invariant in inner loop 
- 2*n/3 + n-212 + 11-316 

Parsed ch 
*Count Rowwise Colwise Write Msgs Quit Xcape 

Figure 6: Operation counts assuming C-like array lay- 
out.  

2.3 Performance 
One of the  main  reasons tha t  vectorizing compil- 

ers have proven successful is tha t  the user can easily 
predict the  performance of the  generat,ed code by look- 
ing a t  the  report of the vectorized loops. We take the 
same approach, keeping the  user "in the  loop" for crit- 
ical performance tuning. Our approa.ch is based on a. 
linear performance model, where the  performance of 
the  system is modeled on the  counts and coefficients 
of certain critical parameters of the  algorithm. 

We have already demonstrated the feasibility of 
symbolically counting critical ~ a r a m e t ~ e r s  in an  algo- 
r i thm in the  Tiny program restructuring tool. As an 
example, a Cholesky decomposition program was a.u- 
tomatically, symbolically analyzed t.o count the  fre- 
quency of the  following parameters: 

Floating Point  Ops  - floating point additions and 
multiplications 

Memory Ops  - total  array element loads and 
stores 

Stride-1 in inner loop - loads/stores tha.t are t,o 
consecutive array elements in memory. 

Non-stride-1 in inner loop - loa.ds/stores wit,h 
stride > 1. 

Invariant in inner loop - loads/stores invariant in 
inner loop. 

Other counts are also made,  bu t  d o  not apply in this 
example. Assuming a C-like rowwise storage order, 
the counts are as shown in Figure 6 (this figure is 
taken from a screen d u m p  of Tiny). 

Wi th  this technology we can count frequency of 
different communication operations as well as proces- 
sor activity. This performance prediction module can 
be  built into the restructuring tool to  provide instant 
feedback on the benefits of t.he optimiza.t,ion process. 
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