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Abstract 

The specification and derivation of substitution for the de Bruijn representation of X- 
terms is used to illustrate programming with a function-sequence monad. The resulting 
program is improved by automatable program transformation methods into an efficient 
implementation that uses primitive machine arithmetic. These transformations illustrate 
new techniques that assist the discovery of the arithmetic structure of the solution. 

Introduction 

Substitution is one of many problems in computer science that ,  once understood in one context, 
is understood in all contexts. Why, then, must a different substitution function be written 
for every abstract syntax implemented? This paper shows how to  specify substitution once 
and use the monadic structure of the specification t o  instantiate it on different abstract syntax 
structures. It also shows how to  automatically derive an efficient implementation of substitution 
from this very abstract specification. 

Formal methods that  support reasoning about free algebras from first principles based on 
their inductive structure are theoretically attractive because they have simple and expressive 
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' 1 ~  within the scope of v in (2) are decremented in (3) because the X binding v was removed in 
the contraction. 

One way to characterize substitution with the de Bruijn representation is by a series of 
functions, each to  be applied in a different context. The first context is the body of the 
contracted A. Here all references to the index 0 are to be replaced by the argument A .  0 1 while 
all references to  global variables are to be decremented: 

Note that both right hand sides are terms, not simply integers1. In the second context, all 
occurrences of 0 remain unchanged, references to index 1 are now to the argument and references 
to indexes greater than 1 are global. All occurrences of free variables in the argument must be 
incremented. This gives: 

In this case, these are the only substitutions needed, but in general any number may be required. 
The key to this development is to calculate this sequence of functions and then use a generic 
recursion scheme, such as that provided by the map function, that has been specialized to select 
the function from the family appropriate to  the context. 

The first thing to observe about the sequence is that its general shape is: 

To make it exact it is necessa.ry to increment all global variables in a;n without incrementing 
the local variables. This is done by another sequence of functions: 

Observe that in the example a single application of fl to the body of all accounts for A .  0 1 
being adjusted to X . 0 2. In general the f; are generated by: 

'The coercion of numbers to terms implicit here will become explicit in the programs developed below. 



Figure 1: Tree representations of Xu.  (Xv . uv(Xw . uvw)) (Xz.  zu). 
Xu X 

Figure 2: Representations of the contracted term. 



So, assuming a map that applies a family of functions, the family of substitution functions, 
(ao, 01,. . .), is given by the initial substitution, 00, and the recurrence: 

Given the sequence of functions, (ao,ul , .  . .), mapping indexes to terms, the map function 
for sequences can be used to  apply the sequence of substitution functions. This, however, 
results in terms of terms, since every variable has replaced its index by a term. This is not 
a problem, however, because the Term type constructor developed below is designed to  be a 
monad; monads ha.ve a polymorphic function, mult, which performs the requisite flattening. 

2 Monads 

A monad is a concept from category theory that has been used to  provide structure to  semantics[7] 
and to  specifications[lO]. In the computer science setting a monad is defined by a parametric 
data type constructor, T ,  a.nd three polymorphic functions: 

map : ( a  4 p )  -t T a  -t TP 
unit : a + T a  

mult : TTa-t Ta 

The map function is required to  satisfy: 

map id, =  id^, 

map (f 0 g )  = map f 0 map g 

The polymorphic functions unit and mult must satisfy: 

mult, 0 una't~, =  id^, 

mult, o (map unit,) = ~ d ~ a  

mult, o multT, = mult, 0 (map mult,) 

A simple example of a monad is list. For lists, map is the familiar mapcar function of Lisp, 
unit is the function that produces a singleton list, and mult is the concatenate function that 
flattens a list of lists into a single list. Other examples of monads are given by Wadler[lO]. 

Several categorical concepts are implicit above. The functional programming category 
has types as objects and (computable) functions as arrows. (Values are viewed as constant 
functions-arrows from the one element type.) The requirements on map specify that the type 
constructor T and the map function together define a functor. The polymorphic types of unit 
and mult implicitly require them to be ncltural tmnsformations. The three laws given for them 
are the monad laws. 



Monads have been used to  structure specifications (and semantics) because it is often pos- 
sible to  characterize interesting facets of a specification as a monad. Algorithms to  exploit the 
particular facet may frequently be expressed in terms of the map, unit and muZt functions with 
no explicit details of the type constructors. Finally, the many facets are brought together by 
composing the type constructors. 

3 The term monad 

The development in Section 1 suggests that the specification of the substitution operation will 
be straightforward in a monadic data type with an appropriate map. To be monadic, the data 
type must be parametric. The following simple type declaration is sufficient2: 

datatype Term(a) = Var(a) 
( A bs( Term(a)) 
I App( Term(a) t Term(a)) 

Using techniques developed in earlier work, it is possible to  automatically generate map, 
mult and unit functions for this type realizing a monadic structure[5]. Unfortunately, the map 
function obtained with those techniques does not work with families of functions. 

To accomnlodate the function sequences a new category, FUNSEQ, is used. The objects are 
data types, as before, but the morphisms are sequences of functions (formally HoM(A, B) = 
( B ~ ) ~ ) .  Identities are constant sequences of identities from the underlying category; composi- 
tion is pointwise, i.e. ( fi)iEw o ( g i ) i E w  = (f; o gi);Ew. 

The map function for Term exploits the new structure by shifting the series of functions 
whenever it enters a new context. Its definition is given as a functional program: 

"ap(f07fl , . . . ) (varx)  = var((f0,f1, . . . )~)  
map (fo9 fl,. . .) (Abs t)  = Abs(map(f1,f2,...)t) 
map (fo, f l ,  . . .) (App(t, t')) = App(map (fo, f l ,  . . .) t7 map (fo, f l ,  . . .I t ')  

It is easily verified that (Term, map) satisfy the categorical definition of a functor. 
Looking at these definitions, it is clear how to insert an ordinary function or value into the 

category, and it is straightforward to insert the families of functions needed for the example by 
giving the initial element of the sequence and the functional that generates all others. However, 
it is also necessary to define the mapping that pulls a computation from FUNSEQ back into 
the category of functional programs. This is accomplished by simply taking the first element 
of the function sequence. Thus, one way to  realize the map function of FUNSEQ in a functional 
programming setting is wit11 the map-with-policy function introduced in Hook, Kieburtz and 
S heard[5]: 

map-with-policy Z f ( Vur x) = Var( fx )  
map-laith-policy Z f ( A  b s  t) = A bs(map-with-policy Z ( Z  f )  t) 
map-with-policy Z f ( App(t, t')) = App( map-with-policy Z f t ,  

map-with-policy Z f t') 

2This is a simplified form of the Term data type in Hook, Kieburtz and Sheard[S]. 



fun apply_substitution a0 M 
= let fun succ x = x + 1 

fun transform-index f 
= A n . i f n = O t h e n n e l s e l +  f ( n - 1 )  

fun transform-substitution a 
= An. if n  = 0 then unit 0  

else map-with-policy transform-index succ (a(n - 1 ) )  
in mult(map-with-policy transform-substitution a0 M )  
end 

Figure 3: Substitution function 

In this encoding Z is the functional that generates the sequence and f is the seed value. That 
is, 

(naap ( f ,  Z f ,  Z2 f ,  . . .))O = map-with-policy Z f 

Note the projection of the first element from the family of functions on the left hand side 
indicated by the subscript 0. 

The name map-with-policy refers to the notion of policy function introduced by Kieburtz[6, 
51. It refers to  a type-specific function, such as Z above, that is embedded into the program 
for a general polymorphic operator to  produce a specialized, monomorphic operator using a 
similar control scheme. 

The unit and nault functions a.utoma.tica,lly generated for Term can be lifted to  FUNSEQ. 
Their definitions are: 

unit = Var 

mul t (Varx)  = x 
mult (Abs t )  = Abs(mult t )  
nzult (App(t,  t ')) = App(mu1t t ,  mult t ') 

Simple inductions show that they satisfy the monad laws. 
With these definitions in place the complete definition of substitution is given in Figure 3. 

Note that the algorithm makes no explicit mention of the data constructors. It only uses the 
informa.tion about the type implicit in the definition of map-with-policy, unit and mult. 

4 Transformation to a first-order set of equations 

To obtain a practical algorithm, the substitution function apply-substitution in Figure 3 must 
be made more efficient. This section shows how this transformation can be done automatically. 



Program transformation systems operate on systems of first-order equations. To apply them 
to the specification of substitution the higher-order facets must be translated into first-order 
structures. A partial evaluation system is used to  accomplish this. 

The software allowing a complete automatic transformation is not yet written. The trans- 
formations below have been performed with the Schism partial evaluator [4] and the Astre 
program transformation system [I], which are not yet integrated and do not use the same 
language. 

4.1 Transformation of the map-with-policy operator 

The first step is to  rewrite the program using the map-with-policy operator for the type Term(a) 
as a system of first-order functions. A partial evaluator such as Schism [4] can be used to spe- 
cialize higher-order functions decreasing their order level. For example, consider the particular 
function go in the example in Section 1, and the call apply-substitution (TO. A partial evaluator 
produces a program tha.t does not contain apply-substitution in its full generality; it specializes 
the definition of apply-substitution for the particular constant (TO. This specialization, called 
apply- substitution^^^, does not have a function as an argument, so it is first-order. 

Unfortunately, this technique is insufficient for processing calls of map-with-policy, which is 
called twice in the program in Figure 3. The specialization of map-with-policy for a particular 
policy function K and seed function go gives the following function Mwp-g: 

The function Mwp-g has a function as an argument. But if it is specialized for a particular 
function go, the pa.rtial evaJua.tor ha.s to  specialize the internal call Mwp-g(Ii g, t ) ;  it loops on 
this attempt. Fortunately, the partial evaluator is able to  detect this circumstance, allowiilg 
it to  select another technique. The alternative technique transla.t,es the higher-order functions 
into a system of first-order functions. This sta.ndard encoding, which is due to  Reynolds [8], is 
outlined below. 

1. The first step constructs a data type that encodes how the higher-order arguments are 
manipulated and applied. In this case the functions to be encoded are go and K g. For 
the constant function, go, a constant C is introduced as a summand in the data type Func. 
The argument Ii g cannot be encoded by a simple constant value because it contains g 
as a free variable. Since g is a higher-order parameter, it will already be represented by 
a value of type Func. Hence the new constructor, F, representing the application of I<, 
must 11a.ve type Func -+ Func. This gives the data type Func 

datatype Func = C 
I F(Func). 

The introduction of the data type Func is a rediscovery of the sequence of functions 
go,gl,. . . because it encodes each function in the family. The function go is encoded by 
C, and the function g3, for example, is encoded by F(F(F(C)) ) ,  which is written F3. 



2. The functions appearing as actual arguments are replaced by their encodings. The argu- 
ment functions do not exist anymore-they are replaced by first-order data. In the call 
Mwp-g (go, M) ,  go is no longer a function but a first-order value, (go] , of type Func. The 
definition of Mwp-g leads to the new function Mwp-g': 

But since [gl is not a function, the application [gl (n) is nonsense. 

3. To make sense of the applications of functional parameters in the orignal programs "appli- 
cation" functions are introduced. Specifically the function apply-g, defined below, decodes 
applications of the form [gl (n) . 

Note that apply-g is a first-order function because its argument, 191, is an element of the 
type Func. The partial evaluator unfolds the definition of the policy function K to  get 
a first-order expression of apply-g(F(rg]), n). The definition of Mwp-g' can be completed 
into: 

hfwp-gl( rg1, Var(n)) = Var(apply-g( [gl ,n ) )  
Mu'~-g'(rgl,Abs(t)) = Abs(Mwp-g'(F(Igl),t)) 
Mwp-g'( rg1, APP(~, t')) = APP(MwP-~'( 191 t), MWP-g'( rg1, t')) 

Recall that this encoding is done with respect to  a specific call of map-with-policy Z go M. 
In the program in Figure 3 there are two such calls, map-with-policy transform-indexsucc(a(n- 
1)) and map-with-policy transform-substitution a. M. If the partial evaluator succeeds in the 
transformation of equation (4), then the new functions corresponding to Mwp-g and apply-g 
will constitute a, first,-order program equivalent to the functions generated by map-with-policy. 
This step of the transformation can be automated using a pa.rtia1 evaluator like Schism. 

4.2 Application to apply-substitution 

Using the preceding techniques, the function apply-substitution is successfully transformed into 
the first-order progra,m in Figure 4. The da.ta type Subst and the data type Fseq are introduced 
using the techniques above for the encodings of transform-index and tmnsfornz-substitution. 

datatype Subst = SO 
I SUBST(Subst) 

datatype Fseq = SUCC 
I FSEQ( Fseq) 



fun apply~.substitution~uo(M) 
= l e t  fun 

apply- f ( SUCC,  n )  = ~ ( n )  
I app ly - f (FSEQ( f ) , n )  = i f n  = OthenO 

e l s e s ( a p p l y - f ( f , n  - 1)) 
fun 
MWP-f ( f V a r ( n ) )  = Var( apply-f ( f 7 n?? 
I MWP-f ( f ,  A bs( t ) )  = Abs( MWP-f (FSEQ(f  1, t ) )  
I M w p - f ( f , A p p ( t , t f ) )  = APP(MWP-f(f,t),Mwp-f(f,tJ)) 
fun 
~ P P ~ Y - ~ ( S O ,  n )  = a o ( n )  
I apply-a(SUBST(a),  n)  = i f  n = 0 then uni t (0)  

e l s e  Mwp- f (SUCC, (apply-u(a, n - 1 ) ) )  
fun 
Mwp-a(a, Var( n)  ) = Var(app1y-o(u, n ) )  
I Mwp-a(a, A bs( t ) )  = A bs(Mwp-a(SUBS7(a) ,  t ) )  
1 Mwp-a(a, App( t ,  t ' ) )  = App(Mwp-a(a,  t ) ,  Mwp-a(a, t ' ) )  

in mult (Mwp-(o)(SO, M ) )  
e n d  

Figure 4: First-order Program 



These two data types are isomorphic to the data type Nu@ which can be implemented 
efficiently in the hardware. However, the specialized function Mwp-a does not exploit the 
efficient implementation since it uses the (essentially unary) representation of the data type 
instead. Thus, the function apply-a must peel off all of the data constructors each time Mwp-a 
is applied to Var(n). For example, after three levels of abstraction, a3 is represented by 
SUBST(SUBST(SUBST(S0))). (The same is also true of the function Mwp-f.) To eliminate 
this inefficiency, which was present in the calling behavior of the original specification, the data 
types Svbst and Fseq must be changed to the uniform data type Nat. This transformation can 
be performed automatically by Astre. Ultimately the explicit use of Nut will facilitate the use 
of primitive arithmetic in the program. 

5 Simple transformations 

The following two simple transformations are performed automatically by Astre after introduc- 
ing new function symbols. The first one introduces indexes to count the level of abstractions. 
The second replaces the composition of Mwp with the function nzult by a single function. The 
order of these transforll~ations does not matter; they can be done simultaneously. 

For technical reasons recursive definitions of the form: 

g(n) = if n = 0 then el else e2 

are manipulated more effectively by Astre in the equivalent form: 

The notation e[el/x] denotes the substitution of expression e' for x in e. This restriction of 
the form of equations ensures the termination of the rewriting used by Astre to unfold the 
definition of g. 

5.1 Introduction of indexes 

The isomorphism between the automatically generated type Subst and the natural numbers is 
made explicit by introducing the function iso-a : Nut -t Subst: 

fun iso-a(s(i)) = SUBST(iso-a(i)) 
I iso-a(0) = SO 

The functions apply-a and Mu~p-a are replaced by the new functions a(i ,  n) (for a;(n)) and 
Mwp-a', respectively. These functions sa.tisfy: 

fun a( i ,  n) = apply-a(iso-a(i), n) 

Mwp-a' : Nat * Nut -t Ternz(Nat) 

hfwp-al(i, n) = Mwp-a(iso-o(i), n) 

3The constructors for the data type Nat are 0 and s, i.e. datatype Nat = 0 ) s (Nat ) .  



fun apply-substitution-uo(M) 
= let fun 

f ( 0 ,  n )  = ~ ( n )  
I f ( s ( i l 7 0 )  = 0 
I f ( s ( i ) ,  s ( n ) )  = s ( f  (i, n ) )  
fun 
Mwp- f l ( i ,  V a r ( n ) )  = Var( f  (i, n) )  
I Mwp- f ' ( i ,  Abs( t ) )  = Abs(Mwp- f ' ( s ( i ) ,  t ) )  
I Murp- f l ( i ,  App( t ,  t ' ) )  = App(Mu?p- f l ( i ,  t ) ,  Mwp- f l ( i ,  t ' ) )  
fun 
4 0 ,  n )  = ao(n )  
I 4 s ( i > ,  4 = uni t (0)  
I d s ( i ) , s ( n ) )  = Mwp-f ' (O,a( i ,n ) )  
fun 
Mwp-at(i, V a r ( n ) )  = Var (u ( i ,  n ) )  
I : Mwp-ol(i ,  Abs ( t ) )  = Abs(Mwp-ul(s( i ) ,  t ) )  
I Mwp-al(i ,  App( t ,  t ' ) )  = App(Mwp-al( i ,  t ) ,  M w p a 1 ( i ,  t ' ) )  

in rnult(hfwp-al(O, M)) 
end 

Figure 5: Program with indexes 

Using these new equations, the Astre system implements the data type Subst using the data 
type Nut. New functions to implement the data type Fseq using Nut are also provided to the 
Astre system which then gives the program in Figure 5. The program in Figure 5 does not 
improve the performance of the progra,m in Figure 4. However, its explicit use of numbers is 
key to  the improvements presented in the next section. 

5.2 Composition step 

The transformation continues with a simple (a.utomatic) step that replaces the composition 
of mult with Mwp-o' by a single function. * This is accomplished by introducing a function 
symbol, Ewp, which is equated to the con~position of mult with Mwp-a': 

4This composition is oft.en called the Iileisli s tar  or natural extension. Ewp is a mnemonic for extension with 
policy. 



fun apply-substitution-uo(M) 
= let fun 

f (0, n)  = ~ ( n )  
I f (s(i),O) = 0 
I f (s(i), s(n))  = s ( f  (i,  4 )  
fun 
Mwp(i, Var(n)) = Var( f (i, n)) 
I Mwp(i, Abs(t)) = Abs(Mwp(s(i), t ))  
( Mwp(i, App(t, t '))  = App(Mwp(i, t ) ,  Mwp(i, t')) 
fun 
~ ( 0 ,  n) = oo(n) 
I a(s(i>,  n) = unit(0) 
I o(s(i>,s(n))  = Mwp(0, a( i ,  n)) 
fun 
Ewp(i, Var(n)) = a ( i ,  n) 

I Ewp(i, Abs(t)) = Abs(Ewp(s(i), t)) 
I Ewp(i, App(t, t')) = APP(EwP(~, t) ,  Ewdi ,  t')) 

in Ewp(0, M)) 
end 

Figure 6: Composed Program 

Astre gives the program in Figure 6 which uses neither mult, nor Mwp-a' (in the figure, Mu~p-f' 
has been renamed Alu~p to simplify the nomenclature). 

6 Transformation of the sequence of the a functions 

The tra.nsformatjons in this section exploit the arithmetic arguments introduced above to  re- 
place then expensive and redundant recursive calculations in a and Ewp with index arithmetic. 

The function a(Q,  n) of the program in Figure 6 is a rediscovery of the series of functions 
a;(n) of Section 1. To further refine this program a specific instance of apply-substitution a0 
must be specified. In what follours, the substitution function 00, needed for the contraction 
described in Section 1, is used to illustrate the specialization. Recall that uo replaces variables 
of index 0 with the term A .  0 1, which is represented by Abs(App(Var(O), Var(1))). 



Unfolding the above equations yields a complete definition of u(i, n ) :  

a(0,O) = Abs(App( Var(O), Var (1 ) ) )  

a ( 0 ,  s ( n ) )  = uni t (n)  

a ( s ( i ) ,  0 )  = unit(0)  

a ( s ( i ) ,  s ( n ) )  = Mwp(0, 4, n ) )  ( 5 )  

Since the equational program is complete with respect to  Nut * Nut, the computation of any 
instance of a ( i ,  n )  results in a ground constructor term. For example, a ( 4 , 2 )  yields: 

a(s(s(s (s (0)) ) )7  s ( s ( 0 ) ) )  + ( 6 )  

MwP(O, a(s(s(s (O))) ,  s ( 0 ) ) )  + (7) 

Mwp(O7 Mzup(O7 a(s(s(0))7 0 ) ) )  + 

Alwp(0, Mwp(0, V a r ( 0 ) ) )  + 

M ~ ~ P ( O ,  V a r ( f  (0 ,O)))  -, 

V a r ( f  ( 0 ,  f (0,O))) 

V a r ( f  ( 0 ,  s ( 0 ) ) )  

V a r ( s ( s ( 0 ) ) )  

Rewrites ( 6 )  and (7) are unfoldings by equation (5). Computation of any instance of a(i,  n) 
by naturals can begin with unfoldings using equation (5) until a subterm, a(u ,  v ) ,  in which u 
andlor v  are equal to  0 is obtained. 

This suggests a target program of the form: 

a ( i ,  n )  = if i > n then el 
else if i = n then ez 
else es 

where e l ,  ea, and es are expressions. The transformation will be beneficial if these expressions 
are efficient. This step introduces a form of function definition by a conditional (instead of 
structural induction) that violates the technical restriction on programs used to  assure termi- 
nation of rewriting as required by the Astre system. Presently, Astre does not perform this part 
of the transformation. Moreover, the transformation does not directly generate the conditional; 
instead it generates the complete definition: 

6.1 First transformation step 

The general strategy of the two transformation steps that follow is to  discover arithmetic 
operations implicit in the recursion structure of programs. The first step in this process is a 
definition that makes the iteration structure of functions explicit. 



Definition 1 Let x be a variable of type a ,  let y; be a term of type Pi for each i = 1,  - .  . , n, 
and let cp be a function of type P1 * . . . * a * - .  . * Pn -t a. The function $3 of type Nut * ( P I  * 
- * a * . - . * pn) + a is defined by: 

Y(~(~),(YI,...,x,...,Y~)) = v(~l,...,+(k,(yl,...,~,...,y~)),.-.,y~) 

P ( O , ( ~ l , . . . , x , . . . , y n ) )  = x 

Proposition 1 

Proof: By induction on k. 0 

An immediate consequence of Definition 1 is 

where x : /31*. . -*a*. . .* ,&.  
Having made the iteration structure of functions explicit, the next theorem helps program 

transformations exploit that structure. To simplify the exposition, consider the case in which 
cp : a -+ a. In this case $3 : Nut t a --+ a and @(k,  n )  = v k ( x ) ,  where pk denotes k applications 
of c p .  Suppose now that f : Nut * Nut -t a satisfies the equation: f ( s ( i ) ,  s ( n ) )  = F( f ( i ,  n));  
then f ( 4 , 7 )  = p4( f (0 ,3))  = $3(4, f ( O , 3 ) ) .  More generally, f ( i  + k ,  n + k )  = @ ( k ,  f (i, n)) ,  which 
is the result expressed by Theorem 1. 

Theorem 1 Assume f of type Nutn 4 a, let y; be a t e r n  of type Pi for each i = I , .  .- ,  n, and 
let 9 be a function of type PI * . . . * cr * - . . * Pn -+ a.  The following are equivalent: 

Proof: That 1 implies 2 is obvious by instantiating k to 1. The converse is proved 
by induction on k .  

To apply this theorem to equation ( 5 ) ,  let MwpO(x) be Mwp(0, x )  and introduce the equation: 

M%O(k, u(i ,  n ) ) )  = u(i + k, n + k )  

This gives the equational definition of u(i,  n ) :  



This definition is equivalent to  the program below, which is of the form described at the 
beginning of this section: 

a( i ,  n) = if i > n then el 
else if i = n then e2 
else e3 

where 

6.2 Second transformation step 

The second transformation step transforms the expressions el ,  e2 and e3. The definition of - 
MwpO of type Term -, Term, obtained by Definition 1, refers to  the (inefficient) function 
Mwp0. To get an efficient program an alternative (but equivalent) definition of MGO that 
does not refer to  MwpO must be generated. Theorem 2 addresses this issue. 

To introduce Theorem 2, consider the function upto. Informally, upto(i, n) = [i, i+ 1,. . - , n]. 
The function upto satisfies the equation upto(s(i), s(n)) = map s upto(i, n). Let m a p s  be the 
specialization of the definition of map by s: 

map-s [I = [I 
map-s x :: xs = s(x) :: (map-s xs) 

The opera.tors [I a.nd :: a.re the constructors of the data type List(a). By Theorem I, 

( m a p s )  (k ,  upto(i, n)) =   map-^)^ (upto(i, n)) = upto(i + k, n + k) 

Theorem 2 will yield the following recursive definition of (that is of m@-s); it does 
not refer to  map-s. 

(map-sIk [I = [I 
( m ~ p - s ) ~  x :: xs = sk(x) :: ( ( m ~ p - s ) ~  xs) 

Note, in this definition is the function being defined. It is to  be regarded atomically; 
m a p s  is neither defined nor referred to. 

Theorem 2 Let yi be a term of type Pi for each i = 1, - .  ., n, let y be a function of type 
p,*...*cxa*... * ,/3, - a, and let C be a constructor of type a. The following are equivalent: 



Proof: That 1 implies 2 is obvious by instanciating k t o  1. The converse is proved 
by induction on k .  

If C is a constructor of arity zero, Theorem 2 degenerates to  the two equations p(yl ,  . a ,  C ,  . . - , y,) = 
C and @(k,  ( y l ,  . . a ,  C, . . , y,.= C .  

To apply this result to  MwpO, recall that MwpO(x) = Mwp(0, x )  and that: 

Mwp(i, Var (n ) )  = Var( f ( i ,  n ) )  
Mwp(i, Abs( t ) )  = Abs(Mwp(s(i) ,  t ) )  
Mwp(i, App(t ,  t ' ) )  = App(Mwp(i, t ) ,  Mwp(i, t')). 

Introduction of the specializations f o (x )  = f (O ,x ) ,  and Mwpl(x )  = Mwp(1, X )  allows the 
application of Theorem 2, producing: 

MTP0(k,  Var (n ) )  = ~ a r ( z ( k ,  n ) )  
~ T ~ o ( k ,  ~ b s ( t ) )  = A ~ S ( M ; ~ I ( ~ ,  t ) )  
MY~O(~, ~ p p ( s ,  t ) )  = A ~ ( M ; ~ O ( A ,  31, MY~O(~, t) ) .  

- 
It is easy t o  show that fo = S because f ( 0 ,  x )  = s ( x ) ,  and that i ( b ,  a )  = a + k b y  induction on 
k .  Therefore 

~ Y p f l k ,  Var fn ) )  = ~ u r ( f ; ; ( k ,  n ) )  

= V a r ( i ( k ,  n ) )  

= Var(n  + k ) .  

Although this appears to  have progressed, it is incomplete because MTpl  is still defined in 
terms of Mwpl. Attempts to  define MYPl by this method, however, will require the function 
h 

Mwp2; this would continue forever. Fortunately, there is another way in which Theorem 1 may 
be applied to  equa,tion ( 5 ) ,  yielding the equation: 

MGp(k, (O,a(i,  n ) ) )  = o ( i  t k ,  n t t) 

Applying the same transformation as above produces: 

a ( i ,  n )  = if i  > n then el 
else if i  = n then e2 

else e3 

where 

e l  = un i t (n )  

e2 = zp(i, (0, Abs(App( Var(O), Var (1 ) ) ) ) )  
e3 = unit ( n  - 1) .  



Application of Theorem 2 produces a recursive definition of ~q~ that does not refer to  Mwp: 

M;P(~, (i, Var(n) ) )  = ~ a r ( f ( k ,  ( i ,  n ) ) )  (8) 

ftGdk, ( i ,  A P P ( ~ ,  t ) ) )  = A P P ( ~ P ( ~ ,  ( i ,  s ) ) ,  f tGdk ,  (4  2))) 

&p(k, (i, Abs( t ) ) )  = ~ b s ( & ~ ( k ,  ( s ( i ) ,  t ) ) )  

The transformation is not yet finished. Equation (8) remains to  be improved by finding a 
recursive definition of f̂  that does not refer to  the function f .  

6.3 Transformation of f^ 
Recall the equations for f :  

Applying Theorem 2 to  equation (11)  yields: 

This suggests attempting a conditional definition for j. Using equations (9), ( l o ) ,  ( l l ) ,  Theo- 
rem 2,  Theorel11 1, a.nd Definition 1  produces: 

f ( k ,  ( 0 ,  s ( n ) ) )  = s(S(k ,  n ) )  = s ( n  + k )  

f ( k ,  ( s ( i ) ,  0 ) )  = 0  

f ( k ,  (070))  = k  

Applying Theorem 1 to Equation (12)  gives: 

Applying that to  equa.tions ( 1 3 ) ,  (14), (15) produces 

This equational definition is equivalent to  the program: 

f ( k ,  ( i ,  n ) )  = i f  i > n  then n  
else if i = n  then n  + k  
else n + k  



fun apply-substitution-ao(M) 
- - 

let fun 
zp(k, ( i ,  Var(n))) = if i > n then Var(n) else Var(n + k )  

I & & k ,  ( i ,  Abs(t))) = A b s ( G P ( k ,  (s(i), t ) ) )  
I G p ( k ,  ( i ,  App(t, t ' )))  = A p p ( G d k ,  ( i , t ) ) ,  G p ( k ,  ( i ,  t ' )))  
fun 
~ ( i ,  n )  = if i > n then unit(n) 

else if i = n then ~^zu~( i ,  (0, Abs(App(Irar(O), Var(1))))) 
else unit(n - 1) 

fun 
Ewp(i, Var(n)) = u( i ,n )  
I Etup(i, A bs(t)) = A bs( Ewp(s(i), t ) )  
I Ewp(i, App(t, t ' ) )  = App(Ewp(i, t ) ,  Ewp(i, t')) 

in Ewp(0, h l ) )  
end 

Figure 7: Final result 

The program simplifies to: 

f(k, ( i , n ) )  = if i > n then n else n f k 

By unfolding f̂  and by a well known property of i f .  . then . . . else . . a,  equation (8) becomes: 

h z p ( k ,  ( i ,  Var(n))) = if i > n then Var(n) else Var(n + k )  

Including the transformed form of a ,  which comes from above, produces the program in Figure 7 
which does not perform redundant computations for ui and f;. The transformation involved 
in this section has been done manually. However the transformation process is systematic and 
involves equational rea.soning using Theorem 1 a,nd Theorem 2. It shows implicitly how to 
automatically transform a. function of type Nat * Nat + Nut into a more efficient conditional 
form. 

7 Directions 

The paper has presented a clearly motivated and correct specification for a subtle representation 
of A-terms, the implementation of which has, in the second authors experience, been prone to  



"off by one errors." It has taken this abstract specification, with its extensive use of higher- 
order concepts, reduced it to  a first-order program, introduced index arithmetic and produced 
an efficient algorithm that exploits computer arithmetic. 

This development illustra.tes several new techniques. First, it makes the monadic structure 
in the development of the specification explicit by showing that it is a monad in FUNSEQ. It 
supports this structure with new program transformation techniques which allow the implicit 
use of arithmetic to be "rediscovered" formally. Finally, it demonstrates the feasibility of 
integrating tools for monadic programming and specification, which tend to  be higher-order, 
with relatively standard program transformation technology, which is strictly first-order. The 
importance of partial evaluation technology in bridging this gap cannot be overstated. 

7.1 Technology 

Currently our technology is a tower of Babble. Automatic support for monadic programming, 
including automatic program generation, exists in TRPL, a 1angua.ge developed by Sheard[9,5]. 
Hook uses Standard ML for examples of monadic program development because its module 
system is the most able to  express the structure of the monads. The partial evaluator, Schism, 
uses its own (typed) dialect of Scheme as its object language. ASTRE, Bellegarde's program 
transformation system, is written in CAML. It uses a very simple first-order language as its 
object language. 

In this environment, claims tha.t the development is automatable mean that we have au- 
tomated the process "piecewise", translating between the formalisms in a nearly mechanical 
fashion. It is, of course, our vision that one day these tools will all work in concert, allowing a 
development to  proceed from specification to  efficient realization with human intervention only 
when necessary. 

7.2 Reuse 

Although this paper has focused on the A-calculus, the specification can be applied to  virtually 
any abstract syntax with a regular binding structure provided its type can be expressed as a 
monad and the appropriate definition of map-with-policy can be given. For example, adding 
boolean constants and a conditional has no effect on the specification of substitution and 
only changes map-with-policy by defining it to apply f recursively on the components of the 
conditional without applying 2. Adding let is also trivial; again, no changes need to be made to  
the specification of substitution-only to map- with-policy . In this case, map- with-policy must 
apply Z to  f when it enters the component in which the bound variable has been introduced. 
This ability to  reuse specifications is one of the strongest arguments for the adoption of monads 
as a tool to structure program specification and development. 

But what about the tra.nsformations? Can we reuse program improvements? Here we 
have less experience, however the decisions that are required to improve programs for the 
different scena,rios outlined above are substantially the same. It appears that a transformation 
system that records its development may be able to  replay the development and obtain similar 
improvements. 



7.3 Application to more complex types 

In earlier work more complicated types have been investigated. In particular, the following 
version of the Term type, which allows for a standard representation of variable names, was 
used: 

datatype Term(a, ,B) = Var(a) 
I Abs(P, T e r m ( 4 )  
I APP( Term(% P) * Term(% P I )  

In this representation Ax. x would be represented 

The techniques presented here all apply to this more general case, but the explanations 
are somewhat more involved. For example, instead of using a category where morphisms are 
sequences of functions indexed by numbers, a category of trees of functions indexed by sequences 
of elements from an arbitrary type must be used. Similarly, the data. types introduced to  encode 
the higher-order function applications become more complex. 
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