
Monads, Indexes and Transformations*

F r a n ~ o i s e Bellegardet and James Hook$
Pacific Software Research Center

Oregon Graduate Insti tute of Science & Technology
19600 N. W. von Neumann Drive

Beaverton, OR 97006-1999
{bellegar ,hook)bcse .ogi . edu

October 12, 1992

Abstract

The specification and derivation of substitution for the de Bruijn representation of X-
terms is used to illustrate programming with a function-sequence monad. The resulting
program is improved by automatable program transformation methods into an efficient
implementation that uses primitive machine arithmetic. These transformations illustrate
new techniques that assist the discovery of the arithmetic structure of the solution.

Introduction

Substitution is one of many problems in computer science that , once understood in one context,
is understood in all contexts. Why, then, must a different substitution function be written
for every abstract syntax implemented? This paper shows how to specify substitution once
and use the monadic structure of the specification t o instantiate it on different abstract syntax
structures. It also shows how to automatically derive an efficient implementation of substitution
from this very abstract specification.

Formal methods that support reasoning about free algebras from first principles based on
their inductive structure are theoretically attractive because they have simple and expressive

*Submitted to the Colloquium on Formal Approaches of Software Engineering, 1993.
tBellegarde is currently at Western Washington University, Bellingham, WA 98225.
$Both authors are supported in part by a grant from the NSF (CCR-9101721).

' 1 ~ within the scope of v in (2) are decremented in (3) because the X binding v was removed in
the contraction.

One way to characterize substitution with the de Bruijn representation is by a series of
functions, each to be applied in a different context. The first context is the body of the
contracted A. Here all references to the index 0 are to be replaced by the argument A . 0 1 while
all references to global variables are to be decremented:

Note that both right hand sides are terms, not simply integers1. In the second context, all
occurrences of 0 remain unchanged, references to index 1 are now to the argument and references
to indexes greater than 1 are global. All occurrences of free variables in the argument must be
incremented. This gives:

In this case, these are the only substitutions needed, but in general any number may be required.
The key to this development is to calculate this sequence of functions and then use a generic
recursion scheme, such as that provided by the map function, that has been specialized to select
the function from the family appropriate to the context.

The first thing to observe about the sequence is that its general shape is:

To make it exact it is necessa.ry to increment all global variables in a;n without incrementing
the local variables. This is done by another sequence of functions:

Observe that in the example a single application of fl to the body of all accounts for A . 0 1
being adjusted to X . 0 2. In general the f; are generated by:

'The coercion of numbers to terms implicit here will become explicit in the programs developed below.

Figure 1: Tree representations of Xu. (Xv . uv(Xw . uvw)) (Xz. zu).
Xu X

Figure 2: Representations of the contracted term.

So, assuming a map that applies a family of functions, the family of substitution functions,
(ao, 01,. . .), is given by the initial substitution, 00, and the recurrence:

Given the sequence of functions, (ao,ul , . . .), mapping indexes to terms, the map function
for sequences can be used to apply the sequence of substitution functions. This, however,
results in terms of terms, since every variable has replaced its index by a term. This is not
a problem, however, because the Term type constructor developed below is designed to be a
monad; monads ha.ve a polymorphic function, mult, which performs the requisite flattening.

2 Monads

A monad is a concept from category theory that has been used to provide structure to semantics[7]
and to specifications[lO]. In the computer science setting a monad is defined by a parametric
data type constructor, T , a.nd three polymorphic functions:

map : (a 4 p) -t T a -t TP
unit : a + T a

mult : TTa-t Ta

The map function is required to satisfy:

map id, = id^,

map (f 0 g) = map f 0 map g

The polymorphic functions unit and mult must satisfy:

mult, 0 una't~, = id^,

mult, o (map unit,) = ~ d ~ a

mult, o multT, = mult, 0 (map mult,)

A simple example of a monad is list. For lists, map is the familiar mapcar function of Lisp,
unit is the function that produces a singleton list, and mult is the concatenate function that
flattens a list of lists into a single list. Other examples of monads are given by Wadler[lO].

Several categorical concepts are implicit above. The functional programming category
has types as objects and (computable) functions as arrows. (Values are viewed as constant
functions-arrows from the one element type.) The requirements on map specify that the type
constructor T and the map function together define a functor. The polymorphic types of unit
and mult implicitly require them to be ncltural tmnsformations. The three laws given for them
are the monad laws.

Monads have been used to structure specifications (and semantics) because it is often pos-
sible to characterize interesting facets of a specification as a monad. Algorithms to exploit the
particular facet may frequently be expressed in terms of the map, unit and muZt functions with
no explicit details of the type constructors. Finally, the many facets are brought together by
composing the type constructors.

3 The term monad

The development in Section 1 suggests that the specification of the substitution operation will
be straightforward in a monadic data type with an appropriate map. To be monadic, the data
type must be parametric. The following simple type declaration is sufficient2:

datatype Term(a) = Var(a)
(A bs(Term(a))
I App(Term(a) t Term(a))

Using techniques developed in earlier work, it is possible to automatically generate map,
mult and unit functions for this type realizing a monadic structure[5]. Unfortunately, the map
function obtained with those techniques does not work with families of functions.

To accomnlodate the function sequences a new category, FUNSEQ, is used. The objects are
data types, as before, but the morphisms are sequences of functions (formally HoM(A, B) =
(B ~) ~) . Identities are constant sequences of identities from the underlying category; composi-
tion is pointwise, i.e. (fi)iEw o (g i) i E w = (f; o gi);Ew.

The map function for Term exploits the new structure by shifting the series of functions
whenever it enters a new context. Its definition is given as a functional program:

"ap(f07fl , . . .) (varx) = var((f0,f1, . . .)~)
map (fo9 fl,. . .) (Abs t) = Abs(map(f1,f2,...)t)
map (fo, f l , . . .) (App(t, t')) = App(map (fo, f l , . . .) t7 map (fo, f l , . . .I t ')

It is easily verified that (Term, map) satisfy the categorical definition of a functor.
Looking at these definitions, it is clear how to insert an ordinary function or value into the

category, and it is straightforward to insert the families of functions needed for the example by
giving the initial element of the sequence and the functional that generates all others. However,
it is also necessary to define the mapping that pulls a computation from FUNSEQ back into
the category of functional programs. This is accomplished by simply taking the first element
of the function sequence. Thus, one way to realize the map function of FUNSEQ in a functional
programming setting is wit11 the map-with-policy function introduced in Hook, Kieburtz and
S heard[5]:

map-with-policy Z f (Vur x) = Var(fx)
map-laith-policy Z f (A b s t) = A bs(map-with-policy Z (Z f) t)
map-with-policy Z f (App(t, t')) = App(map-with-policy Z f t ,

map-with-policy Z f t')

2This is a simplified form of the Term data type in Hook, Kieburtz and Sheard[S].

fun apply_substitution a0 M
= let fun succ x = x + 1

fun transform-index f
= A n . i f n = O t h e n n e l s e l + f (n - 1)

fun transform-substitution a
= An. if n = 0 then unit 0

else map-with-policy transform-index succ (a(n - 1))
in mult(map-with-policy transform-substitution a0 M)
end

Figure 3: Substitution function

In this encoding Z is the functional that generates the sequence and f is the seed value. That
is,

(naap (f , Z f , Z2 f , . . .))O = map-with-policy Z f

Note the projection of the first element from the family of functions on the left hand side
indicated by the subscript 0.

The name map-with-policy refers to the notion of policy function introduced by Kieburtz[6,
51. It refers to a type-specific function, such as Z above, that is embedded into the program
for a general polymorphic operator to produce a specialized, monomorphic operator using a
similar control scheme.

The unit and nault functions a.utoma.tica,lly generated for Term can be lifted to FUNSEQ.
Their definitions are:

unit = Var

mul t (Varx) = x
mult (Abs t) = Abs(mult t)
nzult (App(t, t ')) = App(mu1t t , mult t ')

Simple inductions show that they satisfy the monad laws.
With these definitions in place the complete definition of substitution is given in Figure 3.

Note that the algorithm makes no explicit mention of the data constructors. It only uses the
informa.tion about the type implicit in the definition of map-with-policy, unit and mult.

4 Transformation to a first-order set of equations

To obtain a practical algorithm, the substitution function apply-substitution in Figure 3 must
be made more efficient. This section shows how this transformation can be done automatically.

Program transformation systems operate on systems of first-order equations. To apply them
to the specification of substitution the higher-order facets must be translated into first-order
structures. A partial evaluation system is used to accomplish this.

The software allowing a complete automatic transformation is not yet written. The trans-
formations below have been performed with the Schism partial evaluator [4] and the Astre
program transformation system [I], which are not yet integrated and do not use the same
language.

4.1 Transformation of the map-with-policy operator

The first step is to rewrite the program using the map-with-policy operator for the type Term(a)
as a system of first-order functions. A partial evaluator such as Schism [4] can be used to spe-
cialize higher-order functions decreasing their order level. For example, consider the particular
function go in the example in Section 1, and the call apply-substitution (TO. A partial evaluator
produces a program tha.t does not contain apply-substitution in its full generality; it specializes
the definition of apply-substitution for the particular constant (TO. This specialization, called
apply- substitution^^^, does not have a function as an argument, so it is first-order.

Unfortunately, this technique is insufficient for processing calls of map-with-policy, which is
called twice in the program in Figure 3. The specialization of map-with-policy for a particular
policy function K and seed function go gives the following function Mwp-g:

The function Mwp-g has a function as an argument. But if it is specialized for a particular
function go, the pa.rtial evaJua.tor ha.s to specialize the internal call Mwp-g(Ii g, t) ; it loops on
this attempt. Fortunately, the partial evaluator is able to detect this circumstance, allowiilg
it to select another technique. The alternative technique transla.t,es the higher-order functions
into a system of first-order functions. This sta.ndard encoding, which is due to Reynolds [8], is
outlined below.

1. The first step constructs a data type that encodes how the higher-order arguments are
manipulated and applied. In this case the functions to be encoded are go and K g. For
the constant function, go, a constant C is introduced as a summand in the data type Func.
The argument Ii g cannot be encoded by a simple constant value because it contains g
as a free variable. Since g is a higher-order parameter, it will already be represented by
a value of type Func. Hence the new constructor, F, representing the application of I<,
must 11a.ve type Func -+ Func. This gives the data type Func

datatype Func = C
I F(Func).

The introduction of the data type Func is a rediscovery of the sequence of functions
go,gl,. . . because it encodes each function in the family. The function go is encoded by
C, and the function g3, for example, is encoded by F(F(F(C))) , which is written F3.

2. The functions appearing as actual arguments are replaced by their encodings. The argu-
ment functions do not exist anymore-they are replaced by first-order data. In the call
Mwp-g (go, M) , go is no longer a function but a first-order value, (go] , of type Func. The
definition of Mwp-g leads to the new function Mwp-g':

But since [gl is not a function, the application [gl (n) is nonsense.

3. To make sense of the applications of functional parameters in the orignal programs "appli-
cation" functions are introduced. Specifically the function apply-g, defined below, decodes
applications of the form [gl (n) .

Note that apply-g is a first-order function because its argument, 191, is an element of the
type Func. The partial evaluator unfolds the definition of the policy function K to get
a first-order expression of apply-g(F(rg]), n). The definition of Mwp-g' can be completed
into:

hfwp-gl(rg1, Var(n)) = Var(apply-g([gl ,n))
Mu'~-g'(rgl,Abs(t)) = Abs(Mwp-g'(F(Igl),t))
Mwp-g'(rg1, APP(~, t')) = APP(MwP-~'(191 t), MWP-g'(rg1, t'))

Recall that this encoding is done with respect to a specific call of map-with-policy Z go M.
In the program in Figure 3 there are two such calls, map-with-policy transform-indexsucc(a(n-
1)) and map-with-policy transform-substitution a. M. If the partial evaluator succeeds in the
transformation of equation (4), then the new functions corresponding to Mwp-g and apply-g
will constitute a, first,-order program equivalent to the functions generated by map-with-policy.
This step of the transformation can be automated using a pa.rtia1 evaluator like Schism.

4.2 Application to apply-substitution

Using the preceding techniques, the function apply-substitution is successfully transformed into
the first-order progra,m in Figure 4. The da.ta type Subst and the data type Fseq are introduced
using the techniques above for the encodings of transform-index and tmnsfornz-substitution.

datatype Subst = SO
I SUBST(Subst)

datatype Fseq = SUCC
I FSEQ(Fseq)

fun apply~.substitution~uo(M)
= l e t fun

apply- f (SUCC, n) = ~ (n)
I app ly - f (FSEQ(f) , n) = i f n = OthenO

e l s e s (a p p l y - f (f , n - 1))
fun
MWP-f (f V a r (n)) = Var(apply-f (f 7 n??
I MWP-f (f , A bs(t)) = Abs(MWP-f (FSEQ(f 1, t))
I M w p - f (f , A p p (t , t f)) = APP(MWP-f(f,t),Mwp-f(f,tJ))
fun
~ P P ~ Y - ~ (S O , n) = a o (n)
I apply-a(SUBST(a), n) = i f n = 0 then uni t (0)

e l s e Mwp- f (SUCC, (apply-u(a, n - 1)))
fun
Mwp-a(a, Var(n)) = Var(app1y-o(u, n))
I Mwp-a(a, A bs(t)) = A bs(Mwp-a(SUBS7(a) , t))
1 Mwp-a(a, App(t , t ')) = App(Mwp-a(a, t) , Mwp-a(a, t '))

in mult (Mwp-(o)(SO, M))
e n d

Figure 4: First-order Program

These two data types are isomorphic to the data type Nu@ which can be implemented
efficiently in the hardware. However, the specialized function Mwp-a does not exploit the
efficient implementation since it uses the (essentially unary) representation of the data type
instead. Thus, the function apply-a must peel off all of the data constructors each time Mwp-a
is applied to Var(n). For example, after three levels of abstraction, a3 is represented by
SUBST(SUBST(SUBST(S0))). (The same is also true of the function Mwp-f.) To eliminate
this inefficiency, which was present in the calling behavior of the original specification, the data
types Svbst and Fseq must be changed to the uniform data type Nat. This transformation can
be performed automatically by Astre. Ultimately the explicit use of Nut will facilitate the use
of primitive arithmetic in the program.

5 Simple transformations

The following two simple transformations are performed automatically by Astre after introduc-
ing new function symbols. The first one introduces indexes to count the level of abstractions.
The second replaces the composition of Mwp with the function nzult by a single function. The
order of these transforll~ations does not matter; they can be done simultaneously.

For technical reasons recursive definitions of the form:

g(n) = if n = 0 then el else e2

are manipulated more effectively by Astre in the equivalent form:

The notation e[el/x] denotes the substitution of expression e' for x in e. This restriction of
the form of equations ensures the termination of the rewriting used by Astre to unfold the
definition of g.

5.1 Introduction of indexes

The isomorphism between the automatically generated type Subst and the natural numbers is
made explicit by introducing the function iso-a : Nut -t Subst:

fun iso-a(s(i)) = SUBST(iso-a(i))
I iso-a(0) = SO

The functions apply-a and Mu~p-a are replaced by the new functions a(i , n) (for a;(n)) and
Mwp-a', respectively. These functions sa.tisfy:

fun a(i , n) = apply-a(iso-a(i), n)

Mwp-a' : Nat * Nut -t Ternz(Nat)

hfwp-al(i, n) = Mwp-a(iso-o(i), n)

3The constructors for the data type Nat are 0 and s, i.e. datatype Nat = 0) s (Nat) .

fun apply-substitution-uo(M)
= let fun

f (0 , n) = ~ (n)
I f (s (i l 7 0) = 0
I f (s (i) , s (n)) = s (f (i, n))
fun
Mwp- f l (i , V a r (n)) = Var(f (i, n))
I Mwp- f ' (i , Abs(t)) = Abs(Mwp- f ' (s (i) , t))
I Murp- f l (i , App(t , t ')) = App(Mu?p- f l (i , t) , Mwp- f l (i , t '))
fun
4 0 , n) = ao(n)
I 4 s (i > , 4 = uni t (0)
I d s (i) , s (n)) = Mwp-f ' (O,a(i ,n))
fun
Mwp-at(i, V a r (n)) = Var (u (i , n))
I : Mwp-ol(i , Abs (t)) = Abs(Mwp-ul(s(i) , t))
I Mwp-al(i , App(t , t ')) = App(Mwp-al(i , t) , M w p a 1 (i , t '))

in rnult(hfwp-al(O, M))
end

Figure 5: Program with indexes

Using these new equations, the Astre system implements the data type Subst using the data
type Nut. New functions to implement the data type Fseq using Nut are also provided to the
Astre system which then gives the program in Figure 5. The program in Figure 5 does not
improve the performance of the progra,m in Figure 4. However, its explicit use of numbers is
key to the improvements presented in the next section.

5.2 Composition step

The transformation continues with a simple (a.utomatic) step that replaces the composition
of mult with Mwp-o' by a single function. * This is accomplished by introducing a function
symbol, Ewp, which is equated to the con~position of mult with Mwp-a':

4This composition is oft.en called the Iileisli s tar or natural extension. Ewp is a mnemonic for extension with
policy.

fun apply-substitution-uo(M)
= let fun

f (0, n) = ~ (n)
I f (s(i),O) = 0
I f (s(i), s(n)) = s (f (i, 4)
fun
Mwp(i, Var(n)) = Var(f (i, n))
I Mwp(i, Abs(t)) = Abs(Mwp(s(i), t))
(Mwp(i, App(t, t ')) = App(Mwp(i, t) , Mwp(i, t'))
fun
~ (0 , n) = oo(n)
I a(s(i>, n) = unit(0)
I o(s(i>,s(n)) = Mwp(0, a(i , n))
fun
Ewp(i, Var(n)) = a (i , n)

I Ewp(i, Abs(t)) = Abs(Ewp(s(i), t))
I Ewp(i, App(t, t')) = APP(EwP(~, t) , Ewdi , t'))

in Ewp(0, M))
end

Figure 6: Composed Program

Astre gives the program in Figure 6 which uses neither mult, nor Mwp-a' (in the figure, Mu~p-f'
has been renamed Alu~p to simplify the nomenclature).

6 Transformation of the sequence of the a functions

The tra.nsformatjons in this section exploit the arithmetic arguments introduced above to re-
place then expensive and redundant recursive calculations in a and Ewp with index arithmetic.

The function a(Q, n) of the program in Figure 6 is a rediscovery of the series of functions
a;(n) of Section 1. To further refine this program a specific instance of apply-substitution a0
must be specified. In what follours, the substitution function 00, needed for the contraction
described in Section 1, is used to illustrate the specialization. Recall that uo replaces variables
of index 0 with the term A . 0 1, which is represented by Abs(App(Var(O), Var(1))).

Unfolding the above equations yields a complete definition of u(i, n) :

a(0,O) = Abs(App(Var(O), Var (1)))

a (0 , s (n)) = uni t (n)

a (s (i) , 0) = unit(0)

a (s (i) , s (n)) = Mwp(0, 4, n)) (5)

Since the equational program is complete with respect to Nut * Nut, the computation of any
instance of a (i , n) results in a ground constructor term. For example, a (4 , 2) yields:

a(s(s(s (s (0))))7 s (s (0))) + (6)

MwP(O, a(s(s(s (O))) , s (0))) + (7)

Mwp(O7 Mzup(O7 a(s(s(0))7 0))) +

Alwp(0, Mwp(0, V a r (0))) +

M ~ ~ P (O , V a r (f (0 ,O))) -,

V a r (f (0 , f (0,O)))

V a r (f (0 , s (0)))

V a r (s (s (0)))

Rewrites (6) and (7) are unfoldings by equation (5). Computation of any instance of a(i, n)
by naturals can begin with unfoldings using equation (5) until a subterm, a(u , v) , in which u
andlor v are equal to 0 is obtained.

This suggests a target program of the form:

a (i , n) = if i > n then el
else if i = n then ez
else es

where e l , ea, and es are expressions. The transformation will be beneficial if these expressions
are efficient. This step introduces a form of function definition by a conditional (instead of
structural induction) that violates the technical restriction on programs used to assure termi-
nation of rewriting as required by the Astre system. Presently, Astre does not perform this part
of the transformation. Moreover, the transformation does not directly generate the conditional;
instead it generates the complete definition:

6.1 First transformation step

The general strategy of the two transformation steps that follow is to discover arithmetic
operations implicit in the recursion structure of programs. The first step in this process is a
definition that makes the iteration structure of functions explicit.

Definition 1 Let x be a variable of type a , let y; be a term of type Pi for each i = 1, - . . , n,
and let cp be a function of type P1 * . . . * a * - . . * Pn -t a. The function $3 of type Nut * (P I *
- * a * . - . * pn) + a is defined by:

Y(~(~),(YI,...,x,...,Y~)) = v(~l,...,+(k,(yl,...,~,...,y~)),.-.,y~)

P (O , (~ l , . . . , x , . . . , y n)) = x

Proposition 1

Proof: By induction on k. 0

An immediate consequence of Definition 1 is

where x : /31*. . -*a*. . .* ,&.
Having made the iteration structure of functions explicit, the next theorem helps program

transformations exploit that structure. To simplify the exposition, consider the case in which
cp : a -+ a. In this case $3 : Nut t a --+ a and @(k, n) = v k (x) , where pk denotes k applications
of c p . Suppose now that f : Nut * Nut -t a satisfies the equation: f (s (i) , s (n)) = F(f (i , n));
then f (4 , 7) = p4(f (0 ,3)) = $3(4, f (O , 3)) . More generally, f (i + k , n + k) = @ (k , f (i, n)) , which
is the result expressed by Theorem 1.

Theorem 1 Assume f of type Nutn 4 a, let y; be a t e r n of type Pi for each i = I , . .- , n, and
let 9 be a function of type PI * . . . * cr * - . . * Pn -+ a. The following are equivalent:

Proof: That 1 implies 2 is obvious by instantiating k to 1. The converse is proved
by induction on k .

To apply this theorem to equation (5) , let MwpO(x) be Mwp(0, x) and introduce the equation:

M%O(k, u(i , n))) = u(i + k, n + k)

This gives the equational definition of u(i, n) :

This definition is equivalent to the program below, which is of the form described at the
beginning of this section:

a(i , n) = if i > n then el
else if i = n then e2
else e3

where

6.2 Second transformation step

The second transformation step transforms the expressions el , e2 and e3. The definition of -
MwpO of type Term -, Term, obtained by Definition 1, refers to the (inefficient) function
Mwp0. To get an efficient program an alternative (but equivalent) definition of MGO that
does not refer to MwpO must be generated. Theorem 2 addresses this issue.

To introduce Theorem 2, consider the function upto. Informally, upto(i, n) = [i, i+ 1,. . - , n].
The function upto satisfies the equation upto(s(i), s(n)) = map s upto(i, n). Let m a p s be the
specialization of the definition of map by s:

map-s [I = [I
map-s x :: xs = s(x) :: (map-s xs)

The opera.tors [I a.nd :: a.re the constructors of the data type List(a). By Theorem I,

(m a p s) (k , upto(i, n)) = map-^)^ (upto(i, n)) = upto(i + k, n + k)

Theorem 2 will yield the following recursive definition of (that is of m@-s); it does
not refer to map-s.

(map-sIk [I = [I
(m ~ p - s) ~ x :: xs = sk(x) :: ((m ~ p - s) ~ xs)

Note, in this definition is the function being defined. It is to be regarded atomically;
m a p s is neither defined nor referred to.

Theorem 2 Let yi be a term of type Pi for each i = 1, - . ., n, let y be a function of type
p,*...*cxa*... * ,/3, - a, and let C be a constructor of type a. The following are equivalent:

Proof: That 1 implies 2 is obvious by instanciating k t o 1. The converse is proved
by induction on k .

If C is a constructor of arity zero, Theorem 2 degenerates to the two equations p(yl , . a , C , . . - , y,) =
C and @(k, (y l , . . a , C, . . , y,.= C .

To apply this result to MwpO, recall that MwpO(x) = Mwp(0, x) and that:

Mwp(i, Var (n)) = Var(f (i , n))
Mwp(i, Abs(t)) = Abs(Mwp(s(i) , t))
Mwp(i, App(t , t ')) = App(Mwp(i, t) , Mwp(i, t')).

Introduction of the specializations f o (x) = f (O ,x) , and Mwpl(x) = Mwp(1, X) allows the
application of Theorem 2, producing:

MTP0(k, Var (n)) = ~ a r (z (k , n))
~ T ~ o (k , ~ b s (t)) = A ~ S (M ; ~ I (~ , t))
MY~O(~, ~ p p (s , t)) = A ~ (M ; ~ O (A , 31, MY~O(~, t)) .

-
It is easy t o show that fo = S because f (0 , x) = s (x) , and that i (b , a) = a + k b y induction on
k . Therefore

~ Y p f l k , Var fn)) = ~ u r (f ; ; (k , n))

= V a r (i (k , n))

= Var(n + k) .

Although this appears to have progressed, it is incomplete because MTpl is still defined in
terms of Mwpl. Attempts to define MYPl by this method, however, will require the function
h

Mwp2; this would continue forever. Fortunately, there is another way in which Theorem 1 may
be applied to equa,tion (5) , yielding the equation:

MGp(k, (O,a(i, n))) = o (i t k , n t t)

Applying the same transformation as above produces:

a (i , n) = if i > n then el
else if i = n then e2

else e3

where

e l = un i t (n)

e2 = zp(i, (0, Abs(App(Var(O), Var (1)))))
e3 = unit (n - 1) .

Application of Theorem 2 produces a recursive definition of ~q~ that does not refer to Mwp:

M;P(~, (i, Var(n))) = ~ a r (f (k , (i , n))) (8)

ftGdk, (i , A P P (~ , t))) = A P P (~ P (~ , (i , s)) , f tGdk , (4 2)))

&p(k, (i, Abs(t))) = ~ b s (& ~ (k , (s (i) , t)))

The transformation is not yet finished. Equation (8) remains to be improved by finding a
recursive definition of f̂ that does not refer to the function f .

6.3 Transformation of f^
Recall the equations for f :

Applying Theorem 2 to equation (11) yields:

This suggests attempting a conditional definition for j. Using equations (9), (l o) , (l l) , Theo-
rem 2, Theorel11 1, a.nd Definition 1 produces:

f (k , (0 , s (n))) = s(S(k , n)) = s (n + k)

f (k , (s (i) , 0)) = 0

f (k , (070)) = k

Applying Theorem 1 to Equation (12) gives:

Applying that to equa.tions (1 3) , (14), (15) produces

This equational definition is equivalent to the program:

f (k , (i , n)) = i f i > n then n
else if i = n then n + k
else n + k

fun apply-substitution-ao(M)
- -

let fun
zp(k, (i , Var(n))) = if i > n then Var(n) else Var(n + k)

I & & k , (i , Abs(t))) = A b s (G P (k , (s(i), t)))
I G p (k , (i , App(t, t '))) = A p p (G d k , (i , t)) , G p (k , (i , t ')))
fun
~ (i , n) = if i > n then unit(n)

else if i = n then ~^zu~(i , (0, Abs(App(Irar(O), Var(1)))))
else unit(n - 1)

fun
Ewp(i, Var(n)) = u(i ,n)
I Etup(i, A bs(t)) = A bs(Ewp(s(i), t))
I Ewp(i, App(t, t ')) = App(Ewp(i, t) , Ewp(i, t'))

in Ewp(0, h l))
end

Figure 7: Final result

The program simplifies to:

f(k, (i , n)) = if i > n then n else n f k

By unfolding f̂ and by a well known property of i f . . then . . . else . . a, equation (8) becomes:

h z p (k , (i , Var(n))) = if i > n then Var(n) else Var(n + k)

Including the transformed form of a , which comes from above, produces the program in Figure 7
which does not perform redundant computations for ui and f;. The transformation involved
in this section has been done manually. However the transformation process is systematic and
involves equational rea.soning using Theorem 1 a,nd Theorem 2. It shows implicitly how to
automatically transform a. function of type Nat * Nat + Nut into a more efficient conditional
form.

7 Directions

The paper has presented a clearly motivated and correct specification for a subtle representation
of A-terms, the implementation of which has, in the second authors experience, been prone to

"off by one errors." It has taken this abstract specification, with its extensive use of higher-
order concepts, reduced it to a first-order program, introduced index arithmetic and produced
an efficient algorithm that exploits computer arithmetic.

This development illustra.tes several new techniques. First, it makes the monadic structure
in the development of the specification explicit by showing that it is a monad in FUNSEQ. It
supports this structure with new program transformation techniques which allow the implicit
use of arithmetic to be "rediscovered" formally. Finally, it demonstrates the feasibility of
integrating tools for monadic programming and specification, which tend to be higher-order,
with relatively standard program transformation technology, which is strictly first-order. The
importance of partial evaluation technology in bridging this gap cannot be overstated.

7.1 Technology

Currently our technology is a tower of Babble. Automatic support for monadic programming,
including automatic program generation, exists in TRPL, a 1angua.ge developed by Sheard[9,5].
Hook uses Standard ML for examples of monadic program development because its module
system is the most able to express the structure of the monads. The partial evaluator, Schism,
uses its own (typed) dialect of Scheme as its object language. ASTRE, Bellegarde's program
transformation system, is written in CAML. It uses a very simple first-order language as its
object language.

In this environment, claims tha.t the development is automatable mean that we have au-
tomated the process "piecewise", translating between the formalisms in a nearly mechanical
fashion. It is, of course, our vision that one day these tools will all work in concert, allowing a
development to proceed from specification to efficient realization with human intervention only
when necessary.

7.2 Reuse

Although this paper has focused on the A-calculus, the specification can be applied to virtually
any abstract syntax with a regular binding structure provided its type can be expressed as a
monad and the appropriate definition of map-with-policy can be given. For example, adding
boolean constants and a conditional has no effect on the specification of substitution and
only changes map-with-policy by defining it to apply f recursively on the components of the
conditional without applying 2. Adding let is also trivial; again, no changes need to be made to
the specification of substitution-only to map- with-policy . In this case, map- with-policy must
apply Z to f when it enters the component in which the bound variable has been introduced.
This ability to reuse specifications is one of the strongest arguments for the adoption of monads
as a tool to structure program specification and development.

But what about the tra.nsformations? Can we reuse program improvements? Here we
have less experience, however the decisions that are required to improve programs for the
different scena,rios outlined above are substantially the same. It appears that a transformation
system that records its development may be able to replay the development and obtain similar
improvements.

7.3 Application to more complex types

In earlier work more complicated types have been investigated. In particular, the following
version of the Term type, which allows for a standard representation of variable names, was
used:

datatype Term(a, ,B) = Var(a)
I Abs(P, T e r m (4)
I APP(Term(% P) * Term(% P I)

In this representation Ax. x would be represented

The techniques presented here all apply to this more general case, but the explanations
are somewhat more involved. For example, instead of using a category where morphisms are
sequences of functions indexed by numbers, a category of trees of functions indexed by sequences
of elements from an arbitrary type must be used. Similarly, the data. types introduced to encode
the higher-order function applications become more complex.

References

[I] Fran~oise Bellegarde. Program transformation and rewriting. In Proceedings of the fourth
conference on Rewriting Techniques and Applications, volume 488 of Lecture Notes in
Computer Science, pages 226-239, Berlin, 1991. Springer-Verlag.

[2] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application t o the Church-Rosser theorem. Indagaciones
Mathematische, 34:381-392, 1972. Also appeared in the Proceedings of the Koninklijke
Nederlandse Akademie van Wetenschappen, Amsterdam, series A, 75(5).

[3] N. G. de Bruijn. La.mbda calculus with namefree formulas involving symbols that represent
reference transforming ma.ppings. In Proceedings of the I(onink1ijke Nederlandse Akaemie
van Wetenschappen, pages 348-356, Amsterdam, series A, volume 81(3), September 1978.

[4] Charles Consel. The Schism Manual, version 2.0. Technical report, Department of Com-
puter Science and Engineering, Oregon Gra.duate Institute, 1992.

[5] James Hook, R.icha.rd Kieburtz, a.nd Tim Sheard. Generating programs by reflection. Tech-
nical Report 92-015, Department of Computer Science and Engineering, Oregon Graduate
Institute, July 1992.

[GI Richard B. Iiieburtz. A generic specification of prettyprinters. Technical Report CSE-
91-020, Depa,rtment of Computer Science and Engineering, Oregon Graduate Institute,
1991.

[7] Eugenio Moggi. Notions of computations and monads, July 1991.

[8] John C. Reynolds. Definitional interpreters for higher-order programming languages. In
ACM National Conference, pages 717-740. ACM, 1972.

[9] Timothy Sheard. A user's guide to TRPL: A compile-time reflective programming lan-
guage. Technical Report 90-109, Computer and Information Sciences, University of Mas-
sachusetts, Amherst, 1990.

[lo] Philip Wadler. The essence of functional programming. In Conference Record of the Nine-
teenth Annual ACM Symposium on Principles of Progmmming Languages. ACM Press,
January 1992.

