
Three Monads for Continuations

Richard B. Kiebwtz, Borislav Agapiev, James Hook
Pacific Software Research Center

Oregon Graduate Institute
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CSIE 92-018

November 1992

Three Monads for Continuations *i

Richard B. Kieburtz Borislav Agapiev James Hook
Oregon Graduate Ins t i t u t e of Science & Technology

19600 N.W. von Neumann Dr.
Beaverton, OR 97006

e-mail : lastname(Pcse. o g i . edu

Technical Reprot CS/E 92-018

November 6, 1992

Abst rac t

We propose three monads that express the structure of different modes of continuation
semantics. The first is the familiar CPS semantics, the second is a semantics for languages
with first-class continuations, and in the third we have "composable contexts" that are
useful to express the semantics of backtracking such as occurs in the computations of logic
programs. The third structure is not actually a monad, as the left identity law fails for
reasons that we discuss.

Associated with each monad are certain morphisms that yield values from computa-
tions, or latent values. These morphisms are respectively, eval, the evaluator of applicative
expressions, call/cc, a meta-language analog of the call /cc control primitive of Scheme.
The monads, enriched with these inorphisms allow the expression of semantics of languages
with explicit control operators, semantics not expressible without the enrichments. In the
pre-monad, the semantics of such languages can be expressed without added enrichments.

The pre-monad supports the expression of context-dependent semantics for program
structures that use control co~lstrrlcts such as backtracking, context reentry, or Horn-clause
resolution. The paper illustrates its use by giving a semantics for a language that combines
functional and logic programming styles in an interesting way.

1 Introduction

One of the nice properties of a continuation semantics for a conventional programming language
is t ha t the order of evaluation in the object language call be described without imposing a n
order of evaluatiorl on the meta-language. Thus the semantics of the object language can reflect
i ts operational aspects although the semantics of the meta-language is purely denotational.

'The research reported here was supported in part by the National Science Foundation under grant No.
CCR-9101721.

+Submitted to Lisp and Symbolic Computation special issue on continuations.

Unfortunately, this property is lost as soon as first-class control constructs appear in the
object language. At that point, a continuation can no longer be considered to be an abstract
concept expressed only in the denotation of the language, but becomes the same concept
expressed both in the object language or the meta-language. We have wondered whether there
is a useful, higher-order concept in which to express a continuation-style semantics of languages
with first-class control that would enable the semantics to recover its purely denotational flavor.
This paper reports the results of our exploration. The higher-order concept is that of a context,
a concept that has been used in the literature for many years but which has not previously
been formalized in the way given here.

It would be very awkward to express the semantics of a programming language if the
functions that denote syntactic expressions did not compose uniformly. The motivation for
seeking a monadic fra.mework for semantics is that the monad laws guarantee that computations
that express latent values can be composed by the so-called I<leisli composition in the monad
[lo]. Moggi's thesis that "monads are everywhere" is that all kinds of compositional properties
found in semantic frameworks can be characterized by the appropriate monads, if one will only
look for them.

It is well known that a continuation semantics for an applicative language can be expressed
by functions in the monad of the CPS transformation. We shall take that monad as a starting
point and consider two additional structures, one a monad and the other almost a monad,
for reasons that will be discussed. The formal development of these structures is the topic of
Section 2.

The use of the (pre-)monad of composable contexts is illustrated by developing the semantics
for a language in which functional and logic programming styles are tightly connected and
which uses complex ba,cktracking control for its evaluation. The paper concludes with a brief
discussion of some issues in the semantics of languages with explicit control.

2 Monads capture semantic structure

Here we shall review the monad of the CPS-transformation, familiar from the work of Moggi
and others, then introduce two structures that ha.ve not been previously studied. One of these
is a monad of control alternatives, suggested by the call-with-current-continuation primitive of
the Scheme language. The monad of control alternatives captures the intuition that a latent
computation may either produce a value in its immediate context, or control may escape to
heaven-knows-where. The call/ cc primitive affords a means of specifying the context to which
a control escape must return.

More generally, the context of an evaluation might be bound dynamically or might itself be
the result of a calculation. The third structure considered is a pre-monad of composable con-
texts. This pre-monad provides continuations for control-alternative computations. There are
compelling reasons to conjecture that it provides the structure needed to formulate semantics
for the most general problems of programming with explicit control.

The object map of each monad, if expressed as a formula of propositional logic, forms the
hypothesis of a,n implica.tion from which one can derive full classical propositional logic. The

Curry-Howard analogy between intuitionistic propositions and types of the lambda calculus
is well-known. Less well-known is the analogy pointed out by Griffin [6] between classical
propositions and types of a computational calculus with first-class continuations, such as the
CBV calculus of Filinski [5] . The monads studied here offer three different bases for such a
calculus, analogously as the corresponding logic formulas offer three different ways to complete
axiom schemes for classical propositional logic.

2.1 Monads o f a cartesian-closed c a t e g o r y

As a model for programming language semantics, we assume an underlying cartesian-closed
category. The intended interpretation is that objects of the category correspond to types and
morphisms to functions. State is easily accommodated in such a model [l l , 101. We shall use
the following characterization of a monad [8]

Definition 1: A Kleisli t r iple (T, 17, (-)*) in a category V consists of

an object mapping function T : Obj(V) -. Obj(V),

a natural transformation called the unit , qx : X + T X ,

a natural extension operation that takes each morphism f : X -t TY to a morphism
f' : T X i T Y i n D .

These components of a monad must satisfy three laws:

Some authors write g @ f to express g* o f , calling this the ICleisli composition of g with f.
Laws (Kl) and (K2) express that the unit is respectively, a left and a right identity with
respect to Kleisli composition. Law (K3) expresses that the na.tural extension is associative
with respect to morphism composition, i.e. tha.t the Kleisli composition is associative. We shall
call a monad-like structure a pre-monad if it satisfies (K3) and (K2) but not (Kl).

A morphism k : X --+ Y of the underlying ca.tegory can be 'lifted' to a T-monadic morphism
by composition on the left with the unit of the monad, 72y o k : X 4 TY. Such morphisms are
called the proper , (or existing) morphisms of T. The natural extension of proper morphisms
provides a mapping of morphisms X - Y to T X --+ TY which together with the object
mapping function constitutes a functor T : 2) -, V. The more interesting morphisms of a
monad are those of types X -+ TY that are non-proper. For each of the monads we consider,
we shall be interested in the interpretation given to its non-proper morphisms.

2.2 What i s a monad f o r c o n t i n u a t i o n s ?

Each of the monadic structures studied here can be used to transform a direct semantics for the
X-calculus into a call-by-value semantics that uses continuations explicitly. As the language is

extended, we do not expect that every function will denote a proper morphism in the category.
Hence, functions given the type X + Y in the language will correspond to morphisms from X
to T Y in the category, i.e. they will map values to computations. Furthermore, an expression
representing a function value acquires a type T (X -t T Y) .

When Moggi introduced monads as a tool to structure semantics, he used a notation based
on let t o capture the distinction between computations and values. In Moggi's metalanguage
the call-by-value application rule is written:

Here [MI and I N] are computations of types T(X --+ TY) and TX, f and x are bound to the
values of type X + TY and X extracted from them and f x is the computation of type T Y
representing the result. This metalanguage is translated into the monadic framework above by
mapping letT v = C in B to (Xv.B)*C.

The interpreter below, called the Kleisli interpreter[3], is obtained from a standard direct
semantics. This semantics will be instantiated for each of the three monads discussed in the
paper. The symbol T represents a primitive function of type X - Y.

2.3 The "answers" object

A perplexing question has been how to characterize the object that is the codomain of all
continuations-the "a.nswersV object. Some guidance is provided by intuition:

r This object can be interpreted as a type that includes all observable data elements.
Elements of da.tatypes can be returned as ultimate answers at the top level of a program.

r Ultimate answers cannot be discriminated within a program, but only in the environment
in which a program is executed. Thus the "answers" object cannot be analyzed in the
object language.

r The class of continuations is rich enough to discriminate all observables. There is a t least
one continuation for each da.ta.type that is capa,ble of discriminating its elements.

We assume an underlying categorical structure in which to model computation by abstract
machines. Let C be a closed symmetric monoidal category with generator I and tensor @. An
exponent y X in C is designated by the infix notation X -o Z'. Suppose that C contains a

full subcategory V that is bicartesian, generated by (1, x, +). That is, the tensor product in
V becomes the cartesian product, D has a terminal object and it also has finite coproducts
and morphisms for distribution, d A , ~ , C : A x (B + C) -' (A x 3) -t (A x C), natural in A, B
and C, with the expected coherence conditions. This provides enough structure in 2) to model
datatypes, but we shall need more. V must have exponential objects that can be interpreted
as the function spaces whose elements are the denotations of programs.

In this framework, the "answers" object, according to our intuition, must satisfy the ax-
ioms:

VX E Obj(2)) there is a unique arrow hx : X 8 Ans -t Ans (11)
VX E Obj(D) there is a monic arrow KX : X + Ans (I2)

Axiom (11) expresses that Ans is really a type of ultimate answers that cannot be further
analyzed; axiom (I2) expresses that there is a continuation capable of fully discriminating the
elements of X . From (11) by exponentiation we obtain for each X E Obj(V) the unique arrow
S* : X - Ans 4 A ns which tells us that A ns -o Ans is a terminal object of 27. This observation
leads t o the following

Proposition: If A t2s E Obj(V) then V is a preorder category.

Proof: By (12) there is a monic arrow K X : X -+ Ans. Suppose .TI, xz : 1 4 X are two points
of X. Then XI, x2 are distinct if and only if KX o XI, KX o xz : 1 -+ Ans are distinct points of
Ans. However, if ,4128 E Obj(V) then it is easily shown that Ans has only a single point. For,
suppose h, h' : 1 i Ans. Then h o nl = S1 = h' o nl : 1 x Ans -+ Ans. Since 1 is terminal,
.rrl : 1 x Ans + 1 is epic and we have h = h' and hence, x1 = 2 2 .

If the category V is not to collapse to a preorder, then apparently Ans lies outside of V. We
offer the following construction for Ans, again motivated by the intuition that the "answers"
object is a sum of a.11 datatypes. Let Ans be defined as a limit of all finite coproducts,

Notice that V is a small category, finitely generated. However, Ails is not itself a small object;
it is the sum of all small sums. Thus there is no reason to expect this limit to exist in 2). It
lives in the host category, C. There are no arrows from this large object to the small objects of
V, hence no compositions of continuation arrows.

In the following sections, we shall use the symbol "-o" to designate exponentials in C and
((+ 77 to designate exponentia,ls in V, which is assumed to be cartesian-closed.

2.4 The continuation-passing monad

The functio~ls of CPS serna,ntics a,re captured in the m0na.d whose object function, unit and
natural extension opera.tion are:

T X = (X - o Ans) 4 Ans

qx = AxAc.c5

f* = Xt.Xc.t(Ax. fxc)
where f : X -+ TY

We call this the CPS monad. It has previously been called the monad of continuations [lo]
but, as we shall see, it is not the only interesting monadic structure that captures computation
with continuations. It is, however, the only one of the three structures studied here that results
in a "tail recursive" semantics.

In the propositions-as- types analogy bet ween intuitionistic propositional logic and the sim-
ply typed A-calculus, A-terms of type t correspond to proofs of the formula corresponding to
t in the logic. Closed lambda terms correspond to proofs of tautologies. Griffin [6] observed
that the analogy extends to one relating classical logic to a A-calculus extended with typed
continuations, and used the analogy to suggest types for control operators.

An "answers" object is analogous to the absurdity proposition of an intuitionistic logic [6].
An object T X is analogous to a double-negation proposition, T ~ X , in intuitionistic logic. The
formula 7 1 X + X, when added as an axiom scheme, yields classical logic. Analogous to this
formula would be morphisln evalx : T S -t X in the category D. For proper computations of
T it satisfies:

eval(Ac.cx) = x

Such a morphism ca.nnot be defined as a closed A-expression, i.e. it does not necessarily exist as
a consequence of the cartesian-closed property of 22. As a semantic framework, T + eval begs
the termination problem. Properties of programs inferred from a T + eval semantics are so-
called "partial correctness" properties, i.e. properties that hold of terminating computations,
but without guarantee of termination.

Intuitively, eval installs a computa.tion in a.n abstract machine, provides it with an initial
continutation, runs it, and extracts the answers. An eval specific to the SECD machine, for
example, would install the program a.s the control string along with an empty stack and dump,
run the machine until the control and dump were empty, then return the value at the top of the
stack. If the untyped A-calculus is used as the abstract machine, eval may be realized as the
function that provides the identity function (Az.x) as an initial continuation and returns the
resulting lambda term. When comparing this semantics to other A-calculus based treatments
of coi~trol opera.tors this speciaiized view of eval is illuminating. In particular, the notion of
"composable continuations" expressed in [2] is ba.sed upon an implicit a.ssumption that eval
exists as a morphism.

The CPS lnona,d internalizes as objects T X the morphisms that map X-accepting contin-
uations to final results. Such objects are sets of 'latent computations7 that provide semantics
for applicative expressions. If f' : X -+ Y is a morphism of Z?, then the proper morphism

f = o f ' : X - TY satisfies the equation

Non-proper morphisms of this monad are those whose codomain element may represent a com-
putation that discards the nominal result continuation and instead uses a different continuation
to effect a tail-call or to raise an exception, or which diverges.

2.5 The monad of control alternatives

The second monad we consider is motivated by the desire to provide semantics to expressions
abstracted on a continuation variable. The constituents of the monad are:

qx = x2.xc.x

f* = x s.Xc. f (s(Xx.c(f xc))) c
where f : X -+ S Y

As before, Ans is required to be an "answersn object, and a.n object (X -o Ans) is interpreted
as a type of X-accepting continuations.

The intuitionistic formula analogous to an object S X is 1 X =+ X , which in classical logic is
abbreviated as X V X. A morphism S X -+ X can be interpreted as evaluating a computation
that might produce a value of type X in two different ways, either by a direct evaluation,
ignoring the continuation argument, or by invoking the argument continuation. The analogy
with a disjunctive formula of logic hints that SX may be related to a disjoint sum, X + X.
This is indeed the case, provided there is added to the set of monad morphisms a constructor
Ax : Ans --+ X , called 'abort' [4]. Then we ca.n define

inl = = Xx.Xc.x

inr = Xx.Xc.A(cx)

The discriminator is
case(s, f , g) = Ac. f (s (Ax.c(g x c))) c

in which s : S X , f : X - Y and g : X i Y. Notice the similarity in form between the
discriminator and the natural extension of a function in the monad S.

j* = Xs.case(s, f , f) .

It is informative to compare this formulation with Griffin's construction of disjunctive types
[6] in the CPS monad. Tha.t construction requires the explicit addition of both the operator
A and of Felleisen's control operator [4], C, while in the monad S we need add only A as an
explicit operator. However, since A is conventionally defined in terms of C, independent axioms
are needed for A if it is to be defined without C. We propose the following axioms:

cr(A(cx)) = cx provided x : X, c, c' : X -o Ans. (Al l
Xc. f (A (c z)) c =s,y AC.X provided x : X , f : X - SX. (A21

Axiom (Al) says that continuations are strict and (A2) says that functions are strict in the
meta-language. Care must be taken to ensure that the axioms do not entail collapse of the
category. Even a slight generalization of (A2) causes collapse. We have not proved soundness
for (Al) and (A2) as given above, but neither have we been able to show that they cause
collapse in a cartesian-closed category.

Abbreviating As.case(s, f ,g) as [f,g], it is now easy to check that the following properties
of sums hold:

[f , s l o in l = f [f, 91 0 inr = g [u* o inl, u* o inr] = u*

Note that a general categorical coproduct would require the stronger property [uo inl, uo in4 = u
in which the codomain of u is arbitrary. This sum is a true coproduct if and only if S is a full
functor from the category 2) to itself.

Additionally, one can simply postulate a constructor that iiljects expressions of type S X
into a A-calculus. The introduction rule is

Although call/cc cannot be expressed as a closed formula in the lambda-calculus, it is closely
related to morphisms of the monad S . It is a. st,ructure function for initial S-algebras, and
satisfies the equation:

17; o call/ccx = idsx

The operational explanation of call/cc is that when applied to an abstraction, Ac.e, it binds
the abstra.ction va.ria.ble, c, to the current continuation. Any subexpression of the form ce' is
interpreted as a 'throw' of the value of expression e' to the bound continuation.

But what if the va.lue of e' is itself constructed with call/cc? The semantics of composite
expressions in this monad are explained by the Kleisli composition. This is composition of the
natural extension in the monad S of morphisms that may produce either normal values (proper
morphisms) or may abort with an alterna,tive continuation.

In Scheme, call/cc has been lifted from its status as a semantic operator of the meta-
language to become a syntactic operator of the programming language. The Kleisli interpreter
for the monad S can be extended to account for this language construct:

To complete the analogy with formulae of logic, note tha.t the logical formula (i X + X) +
X is Peirce's law, also sufficient to yield full classical logic when added to intuitionistic logic
as an axiom scheme. This formula corresponds to the type of call/ccx : S X + X.

2.6 The pre-monad of composable contexts

The third structure is intended to provide a complete founda.tion for a semantics of logic
programs, or of a laaguage with first-class control primitives. This structure is a composite of
the two previous ones, with constituents:

R = T(SX) = (((X -o Ans) -t X) -o Aizs) -o Ans

qx = o rli = Xx.Ah.h(Ac.x)

f * = Ar.Ah.r(As. f AX. f xh))h)
where f : X + RY

This structure is not a monad, as the left identity law (K l) fails, but it is a pre-monad. The
left identity law would be provable if elements of type SX were restricted to those constructed
by application of q$, but then the monad R would be isomorphic to the CPS monad. We
conjecture that the left identity law may also be provable in a category without fixpoints, which
would imply that it is connected with the uniform termination problem for R-computations.

An object RX is a space of computations that take SX-expecting continuations to final
results. We call an SX-accepting continuation an X-expecting context. A context supplies its
SX-typed argument with both an X-expecting continuation for a result produced by normal
evaluation and a second continuation of the same type for use if the evaluation aborts. Thus
an aborted computation need not escape to the 'top level', but may backtrack. Aborting
a computation with an altermte continuation is equivalent to continuing the computation
in another context. This intuition is summa.rized in the CPS transformation of SX-typed
expressions:

[inl h = h(in2 x)

[inr xIT h = ho(inI x)

where [-Ir denotes the Kleisli interpreter instantiated on the monad T and ho is a context
constant, or initial context. (There is no closed A-term of type S X -o Ans.)

A semantics of either applicative or relational expressions built with this monad allows
contexts to be composed incrementally. Incremental composition of continuations was not
possible in either of the monads T or S , because continuations do not compose as ordinary
functions. It is possible in R, because higher-order continuations are available as contexts.
The Kleisli composition in R allows context abstractions to occur as arguments of functions,
in effect subsuming higher-order CPS transformations.

3 Semantics of F+L-a functional language with Horn-clause
logic

To illustrate the use of the pre-monad R, we shall give a semantics for a language that integrates
functional and logic programming styles. In this language, expressions may be qualified by a
declarative proposition involving existentially quantified varhbles. A qualified expression has a
value if there is a valuation for the existential varia,bles that satisfies the constraint imposed by
the proposition. Since any such va1ua.tion is sufficient, expressions a.re multi-valued. However,
valuations may be ca1cula.ted in a particular order by imposing aa order of evaluation on
applicative expressions, and a search strategy for satisfaction of logical constraints. F+L uses
normal-order evaluation and depth-first search.

What makes this 1a.nguage different from other attempts to combine logic and functional
programming is (1) that logical variables are first-class and (2) that arbitrary expressions (of
non-functional types) ca.n be used as arguments of a predica.te. In the presence of first-class
logical variables, the constraints imposed upon variables are not necessarily restricted to the
qualification clause in which a variable is introduced. Additional constraints may be imposed by
the context into which a va.ria,ble is pa,ssed. If a, variable is passed as an argument to a function,

it may also be required to satisfy constraints implicit in the declaration of the function's body.
An applicative expression may produce a multi-value as its result, by returning an unconstrained
logical variable. This liberal treatment of logical variables has been adopted in F+L so that
the language does not sacrifice completeness of its logic fragment, other than by specialization
of its search strategy, which can be viewed as an implementation decision.

Continuation semantics in the CPS monad is not a convenient formalism in which to express
the meaning of F+L. Although it is possible to express the backtracking control implied by
alternate clauses defining a predicate, it is not easy to express nested backtracking control.
Simple backtracking requires only a.n abort primitive together with multiple continuations.
The continuation alternatives are tried in sequence until one of them does not abort. However,
when constraints can be composed dynamically as well as statically (a consequence of first-class
logical variables), it is necessary to express a composition of dyna.mic contexts that cannot be
easily expressed with continuations. Continuations are not composable.

The monad R 11a.s the mechanism needed to represent the required composition. We shall
give a semantics for the kernel of F+L. The kernel, called Mini-F+L, has as its core a polymor-
phically typed functional pr~gra~mming language with lazy e~alua~tion rules, pattern-matching
syntax and local definitions, i.e. let expressions. To this is added predicate definitions in the
form of Horn clauses, and qualified expressions, whose form is

let P(xl , . . . , xk, ek+l,. . . ,en) var XI, . . . , x, in e

where P is a predicate symbol. The variables declared in a var clause are existentially quanti-
fied. The existentially qua.ntified variables and the expressions e k + ~ , . . . , en must each have an
equality type.

Informally, the value of a qualified expression is a value of the subject expression together
with a satisfying valuation for its existential variables. A satisfying valuation is computed
by depth-first sea.rch of the Horn cla.use definitions for a proof of the qualifying proposi-
tion. Since existential variables may also have occurrences within the propositional part of
a qualified expression nested within the subject expression e, it is not assured that every
proof of P(xl , . . . , xk, ek+l,. . . , en) will produce a satisfying valuation. A satisfying valua-
tion must satisfy all propositions in which the existential variables occur. When a proof of
P (x l , . . . , xk, ek+l,. . . , en) fails to produce a satisfying valuation, it may be that backtracking
to find additional proofs will yield a valuation that is satisfying.

If there were no possibility of multiple occurrences of a, variable in the expressions of Mini-
F+L, then a call-by-name semantics would suffice. In a call-by-name semantics, the environ-
ment of a computation would be a set of equations for the existential variables. Actually this
set would be a set of sets of equations, for the use of multiple clauses in the definition of a
predicate symbol will give rise to an independent set of equations for each clause. To avoid
inconsistency in the valuation of different occurrences of a particular variable, the choices made
among multiple clauses in arriving at a value for each instance of a variable would need to be
recorded along with its value. This makes a call-by-need strategy more attractive, because the
consistency problem can be circumvented while at the same time avoiding possible recalculation
of valuation at different occurrences of the same variable.

In a call-by-need semantics, variables are bound to values in a state component, a store,
which must be updated whenever a value binding is made. One aspect of the call-by-name
semantics remains, however. When two previously unbound variables are equated, the "value"
binding for each of them should be a thunk which will examine a store argument a t the other
variable's name to find its binding. To obtain uniformity, it is necessary that all value bindings
in the store must become thunks.

Bindings to actual values must be distinguishable in the store from the initial "value" given
to an unbound variable. We indicate this distinction by tags u (for unbound) and v (for value).
Thus the bindings that would correspond to equations

u = 3 ti! = (unbound) x = y

are
{u:Acr.(v,3), w:Xu. (u ,w) , x : A u . u y u , y : A u . u x u }

where u : Store and

Store = Identifier+(Store+ Value)

Notice that the bindings for the identified variables x and y form a cycle. Thus, recursive use
of this store to search for a binding for either of these variables would not terminate.

3.1 Syntax of the expression language

A Mini-F+L program consists of definitions of logic predicates followed by an expression. The
syntax of expressions is:

Expr ::= Ident

I Expr Expr

1 "A" Ident . Expr

I "T" Expr

(let Goal var Ident-list in Expr

(let Goal in Expr

where an mything-list is a, nonempty list of a.nythings. The va.riables introduced in a var clause
are implicitly existelltially quantified and their scope extends over the preceding Goal and the
following Expr. A God is a. conjunctioll of one or more propositions, each formed by applying a
defined predicate letter to a. sequence of expressions. Predicate letters have arities and typings
fixed by their definitions. The syntax and semantics of the logic fra.gment of Mini-F+L will be
given later.

3.2 Semantics of Mini-F+L

The semantic functions for Mini-F+L are typed as:

& : Expr-, Store -+ R(Va1uexStore)

C : Prop -. Store -t R(Valuex Store)

V : Ident-list -t Store -+ Store

The semantics of the (abbreviated) expression language is given below. Rules (app), (abs)
and (strict) are calculated by the Kleisli interpreter.

(var) & [x] a h = h (Ac.a x (a[x w Aot.(u, x)]), a)

(app) C [el ez] a h = C [el] a (As1.C [e2] a (Asz.
let (f t , at) = sl (A(f , a).& [e z] a AS.^ (S (Ax.f x h)) h))
in f' (s2 (Ax. f' x h)) h))

(abs) C [Ax.e] a h = h (Ac.(A(u, a').& [e] (at[x H Aa.(v, v)])))

(strict) & 1x1 a 11 = h (Ac.A(b, a').Ah'.ht (Act. case b is

(u, 2) * A(c(T 6))

I (v, a) =+- a, 0'))

(qual) & [let q i n e var xs] a h = C [q] (V[xsl) o) (As.£ [e] (S (Xut.& [e] a'h)) h)

(ezt) V [XI, 22. . . x,] a = V [22,. . .x,] (a[x AU'.U'XI at])

The rule for existentially quantified va.riables, (ext), updates a st,ore with a binding that forms
an elementary cycle for each new variable. It does this in order that variables with no actual
value bindings ca,n ea.sily be bound into cyclic sea.rch pa.ths in the store. However, this means
that unless other steps were taken, an attempt to query a store for the binding of an as-yet-
unbound existential variable would result in an infinite, cyclic search.

The rule (var) applies the binding of a variable x in a store to the store updated so that
if queried for its binding for x, it will return (u, z). The tag u indicates that x has no proper
value. In the query a x , if the original store, a , contains a proper d u e binding for x, that value
will be returned. However, if a does not contain a proper binding for x, then it will eventually
query the updated store for its binding for x. This avoids cyclic sea.rch. The technique is due
to Gary Lindstroin 171.

The rule (strict) contains a check that the argument of a strict operator has a proper value.
If not, the computa.tion invokes the backtrack continuation provided by the context.

In the rule for a qualified expression, (qual), evaluation of the proposition q furnishes a
satisfying binding in the store variable. The context for q is the expression e, which receives
the store it needs for evaluation from q. It provides an esplicit backtracking continuation for
q, namely the continua.tion willing to retry the evaluation of e if given a new store.

3.2.1 A value comparison function

A semantic function that compares the values of two expressions given as arguments is funda-
mental to a computational logic. This function also binds variables to values by updating the
store in case one of its arguments is a variable with no proper value.

Comp (el, e2) a h =
& [ell a (As. h(Ac. let (wl, a') = s c in
case wl is

(u , x) + E [e2j ol(Xs. h(Ac. let (w2, a"). = s c in
case w2 is

(u ,y) =$ (w2, al[x - Xa.aya , y Ao.axa])
I (v, a) * (w2, ~ ' [z ++ XU.W~])))

1 (v ,") + & [e2] ~'(Xs.h(Xc. let (w~,u") . = s c in
case w2 is

(u , Y) * (POI, U'[Y - Xu. ~ 1 1)
((v, a') + if a = a' then (wl, dl)

else A(c(sc))))))

In the first case instance, el ha.s evaluated to an unbound logical variable, x. (Note that x may
be bound to other unbound variables.) There are two subcases. If the evaluation of e2 equals
(u, y), then y is also an unbound existential variable. In this case, the bindings of x and y are
exchanged in the updated store, creating a single, cyclic lookup path that includes both x and
y, along with any other variables to which either has previously been bound. Otherwise, e2
evaluates to a. proper value which is bound to x in the updated store. The updated store is
made available for use in evaluating further instances of x.

The second case instance is one in which el has a proper value in the store. Again there
are two subcases. The expression e2, with which the value of el is to be compared, may be
an unbound variable or it may have a proper value. If e;! evaluates to an unbound variable, y,
then the result upda.tes the store to include a binding for y. If e2 has a proper value which is
equal to the value of e l , the comparison succeeds with no change to the store; otherwise the
comparison fails by invoking the backtracking continuation supplied by tlie context, h. This is
indicated by an application of the abort primitive, A.

The reader will notice the reseillblance of Comp to a unification algorithm. The resemblance
is, of course, not accidental. Unification has been internalized in the semantics of Mini-F+L,
However, the only remnant of symbolic interpretation associated with Comp is value-tagging
in the store where existential variables are bound, to distinguish actual values from unbound
variable names, or locations.

3.2.2 Semantics of the logic fragment

The logic fragment of Mini-F+L consists of predicate declarations whose syntax is

Def ::= Clause-list

Clause ::= Head .
1 Head :- Goal-list .

Head ::= Ident (Pat-list)

Goal ::= Ident (Expr-list)

Pat ::= Expr

A pattern (Pat) has the syntax of an expression restricted to va.riables and data constructors.
The identifiers of 11ea.d~ and atomic goals are predicate symbols. All occurrences of a particular
predicate symbol must be consistent with respect to arity.

There is a distinguished predica.te symbol, EQ, that is given a, sta.ndard computational
interpretation. Its definition is the fact,

and its interpretation is
L [[EQ (el, e2)D ah = Camp (el, e2) a h

For evaluation, ea.ch FfL predica,te de~lara~tion is translated to a logically equivalent form
in which the body (sequence of goals) of each clause consists of independent goals, conjoined
with dependency collstraints expressed explicitly as equality propositions [I]. The translation
linearizes each clause. A clause is rewritten to eliminate every repeated occurrence of a variable
in its head or within its body. Repeated occurrences are replaced by new existential variables
and an EQ atom is introduced as a constraint, to require that the same value must be bound
to the introduced variable as to the one whose occurrence it replaces. After linearization, the
residual clause has the following properties:

No variable occurs inore than once in the head of a clause;

No variable occurs more than once in the residual body;

The set of variables occurring in the Eq constraints is a subset of those that occur in the
residual clause.

The clause as rewritten, with the generated EQ constraints conjoined to its body, is logically
equivalent to the original clause. The motivation for this normalization of clauses is to simplify
constraints so that they can be calculated by pairwise compa.risons.

An informal presentation of the translation rules is:

head:- . . . Q(..X..) A . . . A R(..X..) . . . =j

head:- . . .Q(.,lr..) A . . . A R(..17..). . . A EQ (X,Y) var Y.

An atomic goal also translates into a sequence of EQ constraints. Given a goal P(el, . . . , en),
create a fresh instance of the definition of P , that is, a copy of the clauses that constitute the
definiton of P, in which the variables occurring in the head are replaced by fresh variables
X I , . . . , x,. The head is P(pl , . . . ,p,). Then the goal is translated to

To satisfy the goal by sequential trial of the clauses for P, first replace the head, P(pl, . . . ,pn),
by the right-hand side of the first clause and seek a satisfying binding for the variables. If that
fails, replace the head in the goal by the right-hand side of the second clause and try again,
continuing to try each cla.use in turn until either the goal is satisfied or no more clauses remain
to be tried.

Notice that in this description of a solution procedure, there are only two kinds of steps:
(1) elaboration of atomic goals by the clauses they represent, and (2) calculation of a satisfying
binding. The second step applies the comparison function when an atomic goal is an instance of
the EQ predicate. This procedure calculates a satisfying binding incrementally, using pairwise
comparisons. Conlparisons corresponding to distinct atomic EQ goals may be performed in an
arbitrary order chosen to optiillize performance, or may be concurrent. The order in which
alternate clauses are tried in seeking to satisfy a propositional goal is also arbitrary, but it
should be sequential if the economy of depth-first search is desired.

The following semantic rules formalize the preceding description of an operational semantics
for calculating a satisfying binding by depth-first construction of a deduction tree.

(conjunct)

(disjunct)

L [g ~ , 92% u h = C [glJ a (As.h (Ac. let (-, a l) = s c in C (Ig2]] u1 h))

LC: [~11 (~12% a h = C [ell] a (As. h (Xc. s (A(-, al).L [c12J ah)))

In the rule (conjunct), the first goal is evaluated for its updated store, which is propagated to
the second goal. The backtrack continuation, in case either goal fails to be satisfied, is that
provided by the context h.

In the rule (disjunct), the first cla.use is tried a,nd if successful, the store it calculates is
passed to the context. If unsuccessful, the explicit backtra.ck continuation provided is that
which discards t,he store on which t,he ca.lcula,tion fa,iled, a.nd tries the second clause, restoring
the original store.

4 Conclusions

By relying on the structure of monads to enforce compositionality, we have been led to propose
a new formulation of continuation semantics that appears to solve some problems in the deno-
tation of programming languages with explicit control primitives. The use of context semantics
for languages that involve backtracking or other means for abstraction of context restores the
purely denotational property of the semantics that was mentioned in the introduction to this
paper. The reader will ha.ve noticed that the higher-order, context semantics are even less

intuitive than are continuation semantics and are not suggested as a formalism for simpler
programming languages.

In the pre-monad of composable contexts, the left identity law, (Kl), fails, hence R is not
a monad and the Kleisli composition cannot be assured. This fact would seem to caU into
question the whole approach if it had no further explanation. However, we conjecture that
the failure of the left identity law is connected with the termination problem. If restricted to
provably terminating computations, the left identity law appears to hold. This makes intuitive
sense, for the semantics in the monad R are capable of accounting for computation of an
expression relative t o all contexts. The Kleisli composition must be valid not only locally, but
with respect to all contexts in which the composed expressions may be evaluated. Since it
is undecidable whether an arbitrary expression may or ma.y not terminate, it is undecidable
whether an arbitrary computation will reach its context.

Another approach uses order-enriched categories to provide a framework for the semantics of
a rich variety of programming languages [9]. There too, the axioms of adjunction are weakened
to those of pre-adjunction because of the termination problem for arbitrary computations. We
have not yet explored the relation between that framework and the one presented here.

5 Acknowledgements

We wish to thank the program committee of the workshop for the interest shown in this work
by several pages of technical comments. We are particularly grateful to Olivier Danvy, Jiirgen
Koslowski, Andrzej Filinksi and Robin Cockett for helpful and stimulating discussions. Philip
Wadler's critique of aa earlier version of our work was also very useful in the preparation of
this paper.

References

[I] Borislav Agapiev. Logic Programming-a Functional Approwh. PhD thesis, Oregon Grad-
uate Institute, April 1992.

[2] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proc. 1990 ACM Conference
on Lisp and Functio~zul Progranzmiizg, pages 151-160, June 1990.

[3] Olivier Danvy, Jiirgen Koslowski, and Karoline Malmkjzr. Compiling monads. Technical
Report CIS-92-3, I<ansas State University, Manhattan, Kansas, December 1991.

[4] Matthias Felleisen, Da.nie1 Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactic
theory of sequential control. Theoretical Computer Science, 52(3):205-237, 1987.

[5] Andrzej Filinski. Declarative Continuations and Categorical Duality. M.s. thesis, Com-
puter Science Department, University of Copenhagen, July 1939.

[6] Timothy Griffin. A formulae-as-types notion of control. In Conference Record of the
Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages
47-58, January 1990.

[7] Gary Lindstrom. Implementing logical variables on a graph reduction architecture. In
Joseph Fasel and Robert M. Keller, editors, Graph Reduction, volume 279 of Lecture Notes
in Computer Science, pages 382-400. Springer-Verlag, September 1986.

[8] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[9] C. E. Martin, C. A. R. Hoare, and He Jifeng. Pre-adjunctions in order-enriched categories.
Mathematical Structures in Computer Science, 1(2):141-158, July 1991.

[lo] Eugenio Moggi. Notions of computations and monads. Information and Computation,
93(1):55-92, July 1991.

[ll] Philip Wadler. Comprehending monads. In Proc. 1990 ACM Conference on Lisp and
Functional Progran2172ing, pages 61-78, 1990.

