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Abst rac t  

We propose three monads that express the structure of different modes of continuation 
semantics. The first is the familiar CPS semantics, the second is a semantics for languages 
with first-class continuations, and in the third we have "composable contexts" that are 
useful to express the semantics of backtracking such as occurs in the computations of logic 
programs. The third structure is not actually a monad, as the left identity law fails for 
reasons that we discuss. 

Associated with each monad are certain morphisms that yield values from computa- 
tions, or latent values. These morphisms are respectively, eval,  the evaluator of applicative 
expressions, call/cc, a meta-language analog of the call /cc control primitive of Scheme. 
The monads, enriched with these inorphisms allow the expression of semantics of languages 
with explicit control operators, semantics not expressible without the enrichments. In the 
pre-monad, the semantics of such languages can be expressed without added enrichments. 

The pre-monad supports the expression of context-dependent semantics for program 
structures that use control co~lstrrlcts such as backtracking, context reentry, or Horn-clause 
resolution. The paper illustrates its use by giving a semantics for a language that combines 
functional and logic programming styles in an interesting way. 

1 Introduction 

One of the  nice properties of a continuation semantics for a conventional programming language 
is t ha t  the  order of evaluation in the object language call be described without imposing a n  
order of evaluatiorl on the meta-language. Thus the  semantics of the  object language can reflect 
i ts  operational aspects although the semantics of the meta-language is purely denotational. 

'The research reported here was supported in part by the National Science Foundation under grant No. 
CCR-9101721. 
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Unfortunately, this property is lost as soon as first-class control constructs appear in the 
object language. At that point, a continuation can no longer be considered to  be an abstract 
concept expressed only in the denotation of the language, but becomes the same concept 
expressed both in the object language or the meta-language. We have wondered whether there 
is a useful, higher-order concept in which to express a continuation-style semantics of languages 
with first-class control that would enable the semantics to  recover its purely denotational flavor. 
This paper reports the results of our exploration. The higher-order concept is that of a context, 
a concept that has been used in the literature for many years but which has not previously 
been formalized in the way given here. 

It would be very awkward to  express the semantics of a programming language if the 
functions that denote syntactic expressions did not compose uniformly. The motivation for 
seeking a monadic fra.mework for semantics is that the monad laws guarantee that computations 
that express latent values can be composed by the so-called I<leisli composition in the monad 
[lo]. Moggi's thesis that "monads are everywhere" is that all kinds of compositional properties 
found in semantic frameworks can be characterized by the appropriate monads, if one will only 
look for them. 

It is well known that a continuation semantics for an applicative language can be expressed 
by functions in the monad of the CPS transformation. We shall take that monad as a starting 
point and consider two additional structures, one a monad and the other almost a monad, 
for reasons that will be discussed. The formal development of these structures is the topic of 
Section 2. 

The use of the (pre-)monad of composable contexts is illustrated by developing the semantics 
for a language in which functional and logic programming styles are tightly connected and 
which uses complex ba,cktracking control for its evaluation. The paper concludes with a brief 
discussion of some issues in the semantics of languages with explicit control. 

2 Monads capture semantic structure 

Here we shall review the monad of the CPS-transformation, familiar from the work of Moggi 
and others, then introduce two structures that ha.ve not been previously studied. One of these 
is a monad of control alternatives, suggested by the call-with-current-continuation primitive of 
the Scheme language. The monad of control alternatives captures the intuition that a latent 
computation may either produce a value in its immediate context, or control may escape to  
heaven-knows-where. The call/ cc primitive affords a means of specifying the context to which 
a control escape must return. 

More generally, the context of an evaluation might be bound dynamically or might itself be 
the result of a calculation. The third structure considered is a pre-monad of composable con- 
texts. This pre-monad provides continuations for control-alternative computations. There are 
compelling reasons to  conjecture that it provides the structure needed to  formulate semantics 
for the most general problems of programming with explicit control. 

The object map of each monad, if expressed as a formula of propositional logic, forms the 
hypothesis of a,n implica.tion from which one can derive full classical propositional logic. The 



Curry-Howard analogy between intuitionistic propositions and types of the lambda calculus 
is well-known. Less well-known is the analogy pointed out by Griffin [6] between classical 
propositions and types of a computational calculus with first-class continuations, such as the 
CBV calculus of Filinski [ 5 ] .  The monads studied here offer three different bases for such a 
calculus, analogously as the corresponding logic formulas offer three different ways to  complete 
axiom schemes for classical propositional logic. 

2.1 Monads o f  a cartesian-closed c a t e g o r y  

As a model for programming language semantics, we assume an underlying cartesian-closed 
category. The intended interpretation is that objects of the category correspond to  types and 
morphisms to  functions. State is easily accommodated in such a model [ l l ,  101. We shall use 
the following characterization of a monad [8] 

Definition 1: A Kleisli t r iple  (T, 17, ( -)*) in a category V consists of 

an object mapping function T : Obj(V) -. Obj(V), 

a natural transformation called the unit ,  qx : X + T X ,  

a natural extension operation that takes each morphism f : X -t TY to a morphism 
f' : T X i T Y  i n D .  

These components of a monad must satisfy three laws: 

Some authors write g @ f to  express g* o f ,  calling this the ICleisli composition of g with f. 
Laws (Kl )  and (K2) express that the unit is respectively, a left and a right identity with 
respect to  Kleisli composition. Law (K3) expresses that the na.tural extension is associative 
with respect to morphism composition, i.e. tha.t the Kleisli composition is associative. We shall 
call a monad-like structure a pre-monad if it satisfies (K3) and (K2) but not (Kl).  

A morphism k : X --+ Y of the underlying ca.tegory can be 'lifted' to  a T-monadic morphism 
by composition on the left with the unit of the monad, 72y o k : X 4 TY. Such morphisms are 
called the proper ,  (or existing) morphisms of T. The natural extension of proper morphisms 
provides a mapping of morphisms X - Y to T X  --+ TY which together with the object 
mapping function constitutes a functor T : 2) -, V. The more interesting morphisms of a 
monad are those of types X -+ TY that are non-proper. For each of the monads we consider, 
we shall be interested in the interpretation given to its non-proper morphisms. 

2.2 What i s  a monad f o r  c o n t i n u a t i o n s ?  

Each of the monadic structures studied here can be used to  transform a direct semantics for the 
X-calculus into a call-by-value semantics that uses continuations explicitly. As the language is 



extended, we do not expect that every function will denote a proper morphism in the category. 
Hence, functions given the type X + Y in the language will correspond to morphisms from X 
to  T Y  in the category, i.e. they will map values to  computations. Furthermore, an expression 
representing a function value acquires a type T ( X  -t T Y ) .  

When Moggi introduced monads as a tool to  structure semantics, he used a notation based 
on let t o  capture the distinction between computations and values. In Moggi's metalanguage 
the call-by-value application rule is written: 

Here [MI  and I N ]  are computations of types T(X --+ TY) and TX, f and x are bound to  the 
values of type X + TY and X extracted from them and f x  is the computation of type T Y  
representing the result. This metalanguage is translated into the monadic framework above by 
mapping letT v = C in B to  (Xv.B)*C. 

The interpreter below, called the Kleisli interpreter[3], is obtained from a standard direct 
semantics. This semantics will be instantiated for each of the three monads discussed in the 
paper. The symbol T represents a primitive function of type X - Y. 

2.3 The "answers" object 

A perplexing question has been how to characterize the object that is the codomain of all 
continuations-the "a.nswersV object. Some guidance is provided by intuition: 

r This object can be interpreted as a type that includes all observable data elements. 
Elements of da.tatypes can be returned as ultimate answers at the top level of a program. 

r Ultimate answers cannot be discriminated within a program, but only in the environment 
in which a program is executed. Thus the "answers" object cannot be analyzed in the 
object language. 

r The class of continuations is rich enough to  discriminate all observables. There is a t  least 
one continuation for each da.ta.type that is capa,ble of discriminating its elements. 

We assume an underlying categorical structure in which to model computation by abstract 
machines. Let C be a closed symmetric monoidal category with generator I and tensor @. An 
exponent y X  in C is designated by the infix notation X -o Z'. Suppose that C contains a 



full subcategory V that is bicartesian, generated by (1, x, +). That is, the tensor product in 
V becomes the cartesian product, D has a terminal object and it also has finite coproducts 
and morphisms for distribution, d A , ~ , C  : A x (B + C) -' (A x 3) -t ( A  x C), natural in A, B 
and C, with the expected coherence conditions. This provides enough structure in 2) to  model 
datatypes, but we shall need more. V must have exponential objects that can be interpreted 
as the function spaces whose elements are the denotations of programs. 

In this framework, the "answers" object, according to  our intuition, must satisfy the ax- 
ioms: 

VX E Obj(2)) there is a unique arrow hx : X 8 Ans -t Ans (11) 
VX E Obj(D) there is a monic arrow KX : X + Ans (I2) 

Axiom (11) expresses that Ans is really a type of ultimate answers that cannot be further 
analyzed; axiom (I2) expresses that there is a continuation capable of fully discriminating the 
elements of X .  From (11) by exponentiation we obtain for each X E Obj(V) the unique arrow 
S* : X - Ans 4 A ns which tells us that A ns -o Ans is a terminal object of 27. This observation 
leads t o  the following 

Proposition: If A t2s E Obj(V) then V is a preorder category. 

Proof: By (12) there is a monic arrow K X  : X -+ Ans. Suppose .TI, xz : 1 4 X are two points 
of X. Then XI, x2 are distinct if and only if KX o XI, KX o xz : 1 -+ Ans are distinct points of 
Ans. However, if ,4128 E Obj(V) then it is easily shown that Ans has only a single point. For, 
suppose h, h' : 1 i Ans. Then h o nl = S1 = h' o nl : 1 x Ans -+ Ans. Since 1 is terminal, 
.rrl : 1 x Ans + 1 is epic and we have h = h' and hence, x1 = 2 2 .  

If the category V is not to  collapse to  a preorder, then apparently Ans lies outside of V. We 
offer the following construction for Ans, again motivated by the intuition that the "answers" 
object is a sum of a.11 datatypes. Let Ans be defined as a limit of all finite coproducts, 

Notice that V is a small category, finitely generated. However, Ails is not itself a small object; 
it is the sum of all small sums. Thus there is no reason to expect this limit to  exist in 2). It 
lives in the host category, C. There are no arrows from this large object to  the small objects of 
V, hence no compositions of continuation arrows. 

In the following sections, we shall use the symbol "-o" to designate exponentials in C and 
((+ 77 to designate exponentia,ls in V, which is assumed to  be cartesian-closed. 

2.4 The continuation-passing monad 

The functio~ls of CPS serna,ntics a,re captured in the m0na.d whose object function, unit and 
natural extension opera.tion are: 

T X  = ( X - o  Ans) 4 Ans 



qx = AxAc.c5 

f* = Xt.Xc.t(Ax. fxc) 
where f : X -+ TY 

We call this the CPS monad. It has previously been called the monad of continuations [lo] 
but, as we shall see, it is not the only interesting monadic structure that captures computation 
with continuations. It is, however, the only one of the three structures studied here that results 
in a "tail recursive" semantics. 

In the propositions-as- types analogy bet ween intuitionistic propositional logic and the sim- 
ply typed A-calculus, A-terms of type t correspond to  proofs of the formula corresponding to  
t in the logic. Closed lambda terms correspond to  proofs of tautologies. Griffin [6] observed 
that the analogy extends to one relating classical logic to a A-calculus extended with typed 
continuations, and used the analogy to suggest types for control operators. 

An "answers" object is analogous to the absurdity proposition of an intuitionistic logic [6]. 
An object T X  is analogous to  a double-negation proposition, T ~ X ,  in intuitionistic logic. The 
formula 7 1 X  + X, when added as an axiom scheme, yields classical logic. Analogous to this 
formula would be morphisln evalx : T S  -t X  in the category D. For proper computations of 
T it satisfies: 

eval(Ac.cx) = x 

Such a morphism ca.nnot be defined as a closed A-expression, i.e. it does not necessarily exist as 
a consequence of the cartesian-closed property of 22. As a semantic framework, T  + eval begs 
the termination problem. Properties of programs inferred from a T  + eval semantics are so- 
called "partial correctness" properties, i.e. properties that hold of terminating computations, 
but without guarantee of termination. 

Intuitively, eval installs a computa.tion in a.n abstract machine, provides it with an initial 
continutation, runs it, and extracts the answers. An eval specific to  the SECD machine, for 
example, would install the program a.s the control string along with an empty stack and dump, 
run the machine until the control and dump were empty, then return the value at the top of the 
stack. If the untyped A-calculus is used as the abstract machine, eval may be realized as the 
function that provides the identity function (Az.x) as an initial continuation and returns the 
resulting lambda term. When comparing this semantics to other A-calculus based treatments 
of coi~trol opera.tors this speciaiized view of eval is illuminating. In particular, the notion of 
"composable continuations" expressed in [2] is ba.sed upon an implicit a.ssumption that eval 
exists as a morphism. 

The CPS lnona,d internalizes as objects T X  the morphisms that map X-accepting contin- 
uations to final results. Such objects are sets of 'latent computations7 that provide semantics 
for applicative expressions. If f' : X -+ Y is a morphism of Z?, then the proper morphism 

f = o f '  : X - TY satisfies the equation 

Non-proper morphisms of this monad are those whose codomain element may represent a com- 
putation that discards the nominal result continuation and instead uses a different continuation 
to  effect a tail-call or to raise an exception, or which diverges. 



2.5 The monad of control alternatives 

The second monad we consider is motivated by the desire to  provide semantics to  expressions 
abstracted on a continuation variable. The constituents of the monad are: 

qx = x2.xc.x 

f* = x s.Xc. f (s(Xx.c( f xc))) c 
where f : X -+ S Y  

As before, Ans is required to  be an "answersn object, and a.n object (X -o Ans) is interpreted 
as a type of X-accepting continuations. 

The intuitionistic formula analogous to an object S X  is 1 X  =+ X ,  which in classical logic is 
abbreviated as X V X. A morphism S X  -+ X can be interpreted as evaluating a computation 
that might produce a value of type X in two different ways, either by a direct evaluation, 
ignoring the continuation argument, or by invoking the argument continuation. The analogy 
with a disjunctive formula of logic hints that SX may be related to  a disjoint sum, X + X. 
This is indeed the case, provided there is added to  the set of monad morphisms a constructor 
Ax : Ans --+ X ,  called 'abort' [4]. Then we ca.n define 

inl = = Xx.Xc.x 

inr = Xx.Xc.A(cx) 

The discriminator is 
case(s, f ,  g) = Ac. f (s (  Ax.c(g x c))) c 

in which s : S X ,  f : X - Y and g : X i Y. Notice the similarity in form between the 
discriminator and the natural extension of a function in the monad S. 

j* = Xs.case(s, f ,  f ) .  

It is informative to  compare this formulation with Griffin's construction of disjunctive types 
[6] in the CPS monad. Tha.t construction requires the explicit addition of both the operator 
A and of Felleisen's control operator [4], C, while in the monad S we need add only A as an 
explicit operator. However, since A is conventionally defined in terms of C, independent axioms 
are needed for A if it is to  be defined without C. We propose the following axioms: 

cr(A(cx)) = cx provided x : X, c, c' : X -o Ans. (Al l  
Xc. f ( A ( c z ) ) c  =s,y AC.X provided x : X ,  f : X - SX.  (A21 

Axiom (Al)  says that continuations are strict and (A2) says that functions are strict in the 
meta-language. Care must be taken to ensure that the axioms do not entail collapse of the 
category. Even a slight generalization of (A2) causes collapse. We have not proved soundness 
for (Al )  and (A2) as given above, but neither have we been able to show that they cause 
collapse in a cartesian-closed category. 



Abbreviating As.case(s, f ,g )  as [f,g], it is now easy to  check that the following properties 
of sums hold: 

[ f , s l o in l  = f [f, 91 0 inr  = g [u* o inl, u* o inr] = u* 

Note that a general categorical coproduct would require the stronger property [uo inl, uo in4 = u 
in which the codomain of u is arbitrary. This sum is a true coproduct if and only if S is a full 
functor from the category 2) to  itself. 

Additionally, one can simply postulate a constructor that iiljects expressions of type S X  
into a A-calculus. The introduction rule is 

Although call/cc cannot be expressed as a closed formula in the lambda-calculus, it is closely 
related to  morphisms of the monad S .  It is a. st,ructure function for initial S-algebras, and 
satisfies the equation: 

17; o call/ccx = idsx 

The operational explanation of call/cc is that when applied to an abstraction, Ac.e, it binds 
the abstra.ction va.ria.ble, c, to the current continuation. Any subexpression of the form ce' is 
interpreted as a 'throw' of the value of expression e' to the bound continuation. 

But what if the va.lue of e' is itself constructed with call/cc? The semantics of composite 
expressions in this monad are explained by the Kleisli composition. This is composition of the 
natural extension in the monad S of morphisms that may produce either normal values (proper 
morphisms) or may abort with an alterna,tive continuation. 

In Scheme, call/cc has been lifted from its status as a semantic operator of the meta- 
language to  become a syntactic operator of the programming language. The Kleisli interpreter 
for the monad S can be extended to account for this language construct: 

To complete the analogy with formulae of logic, note tha.t the logical formula ( i X  + X )  + 
X is Peirce's law, also sufficient to yield full classical logic when added to intuitionistic logic 
as an axiom scheme. This formula corresponds to the type of call/ccx : S X  + X. 

2.6 The pre-monad of composable contexts 

The third structure is intended to  provide a complete founda.tion for a semantics of logic 
programs, or of a laaguage with first-class control primitives. This structure is a composite of 
the two previous ones, with constituents: 

R = T(SX)  = (((X -o Ans) -t X )  -o Aizs) -o Ans 

qx = o rli = Xx.Ah.h(Ac.x) 

f * = Ar.Ah.r(As. f  AX. f xh))h) 
where  f : X + RY 



This structure is not a monad, as the left identity law ( K l )  fails, but it is a pre-monad. The 
left identity law would be provable if elements of type SX were restricted to  those constructed 
by application of q$, but then the monad R would be isomorphic to the CPS monad. We 
conjecture that the left identity law may also be provable in a category without fixpoints, which 
would imply that it is connected with the uniform termination problem for R-computations. 

An object RX is a space of computations that take SX-expecting continuations to  final 
results. We call an SX-accepting continuation an X-expecting context. A context supplies its 
SX-typed argument with both an X-expecting continuation for a result produced by normal 
evaluation and a second continuation of the same type for use if the evaluation aborts. Thus 
an aborted computation need not escape to  the 'top level', but may backtrack. Aborting 
a computation with an altermte continuation is equivalent to  continuing the computation 
in another context. This intuition is summa.rized in the CPS transformation of SX-typed 
expressions: 

[inl h = h(in2 x )  

[inr xIT h = ho(inI x) 

where [-Ir denotes the Kleisli interpreter instantiated on the monad T and ho is a context 
constant, or initial context. (There is no closed A-term of type S X  -o Ans.) 

A semantics of either applicative or relational expressions built with this monad allows 
contexts to  be composed incrementally. Incremental composition of continuations was not 
possible in either of the monads T or S ,  because continuations do not compose as ordinary 
functions. It is possible in R, because higher-order continuations are available as contexts. 
The Kleisli composition in R allows context abstractions to  occur as arguments of functions, 
in effect subsuming higher-order CPS transformations. 

3 Semantics of F+L-a functional language with Horn-clause 
logic 

To illustrate the use of the pre-monad R, we shall give a semantics for a language that integrates 
functional and logic programming styles. In this language, expressions may be qualified by a 
declarative proposition involving existentially quantified varhbles. A qualified expression has a 
value if there is a valuation for the existential varia,bles that satisfies the constraint imposed by 
the proposition. Since any such va1ua.tion is sufficient, expressions a.re multi-valued. However, 
valuations may be ca1cula.ted in a particular order by imposing aa order of evaluation on 
applicative expressions, and a search strategy for satisfaction of logical constraints. F+L uses 
normal-order evaluation and depth-first search. 

What makes this 1a.nguage different from other attempts to  combine logic and functional 
programming is (1) that logical variables are first-class and (2) that arbitrary expressions (of 
non-functional types) ca.n be used as arguments of a predica.te. In the presence of first-class 
logical variables, the constraints imposed upon variables are not necessarily restricted to  the 
qualification clause in which a variable is introduced. Additional constraints may be imposed by 
the context into which a va.ria,ble is pa,ssed. If a, variable is passed as an argument to  a function, 



it may also be required to  satisfy constraints implicit in the declaration of the function's body. 
An applicative expression may produce a multi-value as its result, by returning an unconstrained 
logical variable. This liberal treatment of logical variables has been adopted in F+L so that 
the language does not sacrifice completeness of its logic fragment, other than by specialization 
of its search strategy, which can be viewed as an implementation decision. 

Continuation semantics in the CPS monad is not a convenient formalism in which to  express 
the meaning of F+L. Although it is possible to  express the backtracking control implied by 
alternate clauses defining a predicate, it is not easy to  express nested backtracking control. 
Simple backtracking requires only a.n abort primitive together with multiple continuations. 
The continuation alternatives are tried in sequence until one of them does not abort. However, 
when constraints can be composed dynamically as well as statically (a  consequence of first-class 
logical variables), it is necessary to  express a composition of dyna.mic contexts that cannot be 
easily expressed with continuations. Continuations are not composable. 

The monad R 11a.s the mechanism needed to represent the required composition. We shall 
give a semantics for the kernel of F+L. The kernel, called Mini-F+L, has as its core a polymor- 
phically typed functional pr~gra~mming language with lazy e~alua~tion rules, pattern-matching 
syntax and local definitions, i.e. let expressions. To this is added predicate definitions in the 
form of Horn clauses, and qualified expressions, whose form is 

let P(xl ,  . . . , xk, ek+l,. . . ,en)  var XI, .  . . , x, in e 

where P is a predicate symbol. The variables declared in a var clause are existentially quanti- 
fied. The existentially qua.ntified variables and the expressions e k + ~ , .  . . , en must each have an 
equality type. 

Informally, the value of a qualified expression is a value of the subject expression together 
with a satisfying valuation for its existential variables. A satisfying valuation is computed 
by depth-first sea.rch of the Horn cla.use definitions for a proof of the qualifying proposi- 
tion. Since existential variables may also have occurrences within the propositional part of 
a qualified expression nested within the subject expression e, it is not assured that every 
proof of P(xl ,  . . . , xk, ek+l,. . . , en) will produce a satisfying valuation. A satisfying valua- 
tion must satisfy all propositions in which the existential variables occur. When a proof of 
P ( x l , .  . . , xk, ek+l,. . . , en) fails to  produce a satisfying valuation, it may be that backtracking 
to  find additional proofs will yield a valuation that is satisfying. 

If there were no possibility of multiple occurrences of a, variable in the expressions of Mini- 
F+L, then a call-by-name semantics would suffice. In a call-by-name semantics, the environ- 
ment of a computation would be a set of equations for the existential variables. Actually this 
set would be a set of sets of equations, for the use of multiple clauses in the definition of a 
predicate symbol will give rise to an independent set of equations for each clause. To avoid 
inconsistency in the valuation of different occurrences of a particular variable, the choices made 
among multiple clauses in arriving at a value for each instance of a variable would need to  be 
recorded along with its value. This makes a call-by-need strategy more attractive, because the 
consistency problem can be circumvented while at the same time avoiding possible recalculation 
of valuation at different occurrences of the same variable. 



In a call-by-need semantics, variables are bound to  values in a state component, a store, 
which must be updated whenever a value binding is made. One aspect of the call-by-name 
semantics remains, however. When two previously unbound variables are equated, the "value" 
binding for each of them should be a thunk which will examine a store argument a t  the other 
variable's name to  find its binding. To obtain uniformity, it is necessary that all value bindings 
in the store must become thunks. 

Bindings to  actual values must be distinguishable in the store from the initial "value" given 
to  an unbound variable. We indicate this distinction by tags u (for unbound) and v (for value). 
Thus the bindings that would correspond to  equations 

u = 3  ti! = (unbound) x = y  

are 
{u:Acr.(v,3), w:Xu. (u ,w) ,  x : A u . u y u ,  y : A u . u x u }  

where u : Store and 

Store = Identifier+(Store+ Value) 

Notice that the bindings for the identified variables x and y form a cycle. Thus, recursive use 
of this store to search for a binding for either of these variables would not terminate. 

3.1 Syntax of the expression language 

A Mini-F+L program consists of definitions of logic predicates followed by an expression. The 
syntax of expressions is: 

Expr ::= Ident 

I Expr Expr 

1 "A" Ident . Expr 

I "T" Expr 

( let Goal var Ident-list in Expr 

( let Goal in Expr 

where an mything-list is a, nonempty list of a.nythings. The va.riables introduced in a var clause 
are implicitly existelltially quantified and their scope extends over the preceding Goal and the 
following Expr. A God is a. conjunctioll of one or more propositions, each formed by applying a 
defined predicate letter to a. sequence of expressions. Predicate letters have arities and typings 
fixed by their definitions. The syntax and semantics of the logic fra.gment of Mini-F+L will be 
given later. 



3.2 Semantics of Mini-F+L 

The semantic functions for Mini-F+L are typed as: 

& : Expr-, Store -+ R(Va1uexStore) 

C : Prop -. Store -t R( Valuex Store) 

V : Ident-list -t Store -+ Store 

The semantics of the (abbreviated) expression language is given below. Rules (app), (abs) 
and (strict) are calculated by the Kleisli interpreter. 

(var) & [x] a h  = h (Ac.a x (a[x w Aot.(u, x)]), a )  

(app) C [el ez] a h  = C [el] a (As1.C [e2] a (Asz. 
let ( f t ,  at) = sl (A( f ,  a).& [ e z ]  a   AS.^ (S (Ax.f x h)) h)) 
in  f' (s2 (Ax. f' x h)) h)) 

(abs) C [Ax.e] a h  = h (Ac.(A(u, a').& [e] (at[x H Aa.(v, v)]))) 

(strict) & 1x1 a 11 = h (Ac.A(b, a').Ah'.ht (Act. case b is 

(u, 2) * A(c(T 6)) 

I (v, a )  =+- a,  0')) 

(qual) & [let q i n  e var xs] a h  = C [q] (V[xsl) o )  (As.£ [e] (S (Xut.& [e] a'h)) h) 

(ezt) V [  XI, 22. .  . x,] a = V [  22,. . .x,] (a[x AU'.U'XI at]) 

The rule for existentially quantified va.riables, (ext), updates a st,ore with a binding that forms 
an elementary cycle for each new variable. It does this in order that variables with no actual 
value bindings ca,n ea.sily be bound into cyclic sea.rch pa.ths in the store. However, this means 
that unless other steps were taken, an attempt to query a store for the binding of an as-yet- 
unbound existential variable would result in an infinite, cyclic search. 

The rule (var) applies the binding of a variable x in a store to  the store updated so that 
if queried for its binding for x, it will return (u,  z). The tag u indicates that x has no proper 
value. In the query a x ,  if the original store, a ,  contains a proper d u e  binding for x, that value 
will be returned. However, if a does not contain a proper binding for x,  then it will eventually 
query the updated store for its binding for x. This avoids cyclic sea.rch. The technique is due 
to  Gary Lindstroin 171. 

The rule (strict) contains a check that the argument of a strict operator has a proper value. 
If not, the computa.tion invokes the backtrack continuation provided by the context. 

In the rule for a qualified expression, (qual), evaluation of the proposition q furnishes a 
satisfying binding in the store variable. The context for q is the expression e, which receives 
the store it needs for evaluation from q. It provides an esplicit backtracking continuation for 
q, namely the continua.tion willing to  retry the evaluation of e if given a new store. 



3.2.1 A value comparison function 

A semantic function that compares the values of two expressions given as arguments is funda- 
mental to a computational logic. This function also binds variables to  values by updating the 
store in case one of its arguments is a variable with no proper value. 

Comp (el, e2) a h = 
& [ell a (As. h(Ac. let (wl, a') = s c in 
case wl is 

(u ,  x)  + E [e2j ol(Xs. h(Ac. let (w2, a"). = s c in 
case w2 is 

(u ,y)  =$ (w2, al[x - Xa.aya ,  y Ao.axa]) 
I (v, a) * (w2, ~ ' [ z  ++ XU.W~]))) 

1 (v ," )  + & [e2] ~'(Xs.h(Xc. let (w~,u") .  = s c  in 
case w2 is 

(u ,  Y) * (POI, U'[Y - Xu. ~ 1 1 )  
( (v, a') + if a = a' then (wl, dl) 

else A(c(sc)))))) 

In the first case instance, el ha.s evaluated to  an unbound logical variable, x. (Note that x may 
be bound to other unbound variables.) There are two subcases. If the evaluation of e2 equals 
(u, y), then y is also an unbound existential variable. In this case, the bindings of x and y are 
exchanged in the updated store, creating a single, cyclic lookup path that includes both x and 
y, along with any other variables to which either has previously been bound. Otherwise, e2 
evaluates to  a. proper value which is bound to x in the updated store. The updated store is 
made available for use in evaluating further instances of x. 

The second case instance is one in which el has a proper value in the store. Again there 
are two subcases. The expression e2, with which the value of el is to  be compared, may be 
an unbound variable or it may have a proper value. If e;! evaluates to  an unbound variable, y, 
then the result upda.tes the store to  include a binding for y. If e2 has a proper value which is 
equal to  the value of e l ,  the comparison succeeds with no change to the store; otherwise the 
comparison fails by invoking the backtracking continuation supplied by tlie context, h. This is 
indicated by an application of the abort primitive, A. 

The reader will notice the reseillblance of Comp to a unification algorithm. The resemblance 
is, of course, not accidental. Unification has been internalized in the semantics of Mini-F+L, 
However, the only remnant of symbolic interpretation associated with Comp is value-tagging 
in the store where existential variables are bound, to distinguish actual values from unbound 
variable names, or locations. 

3.2.2 Semantics of the logic fragment 

The logic fragment of Mini-F+L consists of predicate declarations whose syntax is 



Def ::= Clause-list 

Clause ::= Head . 
1 Head :- Goal-list . 

Head ::= Ident ( Pat-list ) 

Goal ::= Ident ( Expr-list ) 

Pat ::= Expr 

A pattern (Pat) has the syntax of an expression restricted to  va.riables and data constructors. 
The identifiers of 11ea.d~ and atomic goals are predicate symbols. All occurrences of a particular 
predicate symbol must be consistent with respect to  arity. 

There is a distinguished predica.te symbol, EQ, that is given a, sta.ndard computational 
interpretation. Its definition is the fact, 

and its interpretation is 
L [[EQ (el, e2)D ah  = Camp (el, e2) a h 

For evaluation, ea.ch FfL predica,te de~lara~tion is translated to  a logically equivalent form 
in which the body (sequence of goals) of each clause consists of independent goals, conjoined 
with dependency collstraints expressed explicitly as equality propositions [I]. The translation 
linearizes each clause. A clause is rewritten to  eliminate every repeated occurrence of a variable 
in its head or within its body. Repeated occurrences are replaced by new existential variables 
and an EQ atom is introduced as a constraint, to  require that the same value must be bound 
to  the introduced variable as to the one whose occurrence it replaces. After linearization, the 
residual clause has the following properties: 

No variable occurs inore than once in the head of a clause; 

No variable occurs more than once in the residual body; 

The set of variables occurring in the Eq constraints is a subset of those that occur in the 
residual clause. 

The clause as rewritten, with the generated EQ constraints conjoined to its body, is logically 
equivalent to the original clause. The motivation for this normalization of clauses is to  simplify 
constraints so that they can be calculated by pairwise compa.risons. 

An informal presentation of the translation rules is: 

head:- . . . Q(..X..) A . . . A R(..X..) . . . =j 

head:- . . .Q(.,lr..) A . . . A R(..17..). . . A EQ (X,Y) var Y. 



An atomic goal also translates into a sequence of EQ constraints. Given a goal P(el,  . . . , en), 
create a fresh instance of the definition of P ,  that is, a copy of the clauses that constitute the 
definiton of P, in which the variables occurring in the head are replaced by fresh variables 
X I , .  . . , x,. The head is P(pl , .  . . ,p,). Then the goal is translated to  

To satisfy the goal by sequential trial of the clauses for P, first replace the head, P(pl,  . . . ,pn), 
by the right-hand side of the first clause and seek a satisfying binding for the variables. If that 
fails, replace the head in the goal by the right-hand side of the second clause and try again, 
continuing to  try each cla.use in turn until either the goal is satisfied or no more clauses remain 
to  be tried. 

Notice that in this description of a solution procedure, there are only two kinds of steps: 
(1) elaboration of atomic goals by the clauses they represent, and (2) calculation of a satisfying 
binding. The second step applies the comparison function when an atomic goal is an instance of 
the EQ predicate. This procedure calculates a satisfying binding incrementally, using pairwise 
comparisons. Conlparisons corresponding to  distinct atomic EQ goals may be performed in an 
arbitrary order chosen to  optiillize performance, or may be concurrent. The order in which 
alternate clauses are tried in seeking to satisfy a propositional goal is also arbitrary, but it 
should be sequential if the economy of depth-first search is desired. 

The following semantic rules formalize the preceding description of an operational semantics 
for calculating a satisfying binding by depth-first construction of a deduction tree. 

(conjunct) 

(disjunct) 

L [ g ~ ,  92% u h = C [glJ a (As.h (Ac. let ( -, a l )  = s c in C (Ig2]] u1 h) )  

LC: [~11 ( ~12% a h  = C [ell] a (As. h (Xc. s (A( -, al).L [c12J ah) ) )  

In the rule (conjunct), the first goal is evaluated for its updated store, which is propagated to  
the second goal. The backtrack continuation, in case either goal fails to be satisfied, is that 
provided by the context h. 

In the rule (disjunct), the first cla.use is tried a,nd if successful, the store it calculates is 
passed to  the context. If unsuccessful, the explicit backtra.ck continuation provided is that 
which discards t,he store on which t,he ca.lcula,tion fa,iled, a.nd tries the second clause, restoring 
the original store. 

4 Conclusions 

By relying on the structure of monads to enforce compositionality, we have been led to  propose 
a new formulation of continuation semantics that appears to solve some problems in the deno- 
tation of programming languages with explicit control primitives. The use of context semantics 
for languages that involve backtracking or other means for abstraction of context restores the 
purely denotational property of the semantics that was mentioned in the introduction to  this 
paper. The reader will ha.ve noticed that the higher-order, context semantics are even less 



intuitive than are continuation semantics and are not suggested as a formalism for simpler 
programming languages. 

In the pre-monad of composable contexts, the left identity law, (Kl),  fails, hence R is not 
a monad and the Kleisli composition cannot be assured. This fact would seem to caU into 
question the whole approach if it had no further explanation. However, we conjecture that 
the failure of the left identity law is connected with the termination problem. If restricted to  
provably terminating computations, the left identity law appears to  hold. This makes intuitive 
sense, for the semantics in the monad R are capable of accounting for computation of an 
expression relative t o  all contexts. The Kleisli composition must be valid not only locally, but 
with respect to  all contexts in which the composed expressions may be evaluated. Since it 
is undecidable whether an arbitrary expression may or ma.y not terminate, it is undecidable 
whether an arbitrary computation will reach its context. 

Another approach uses order-enriched categories to  provide a framework for the semantics of 
a rich variety of programming languages [9]. There too, the axioms of adjunction are weakened 
to  those of pre-adjunction because of the termination problem for arbitrary computations. We 
have not yet explored the relation between that framework and the one presented here. 
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