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Abstract

The ensemble dynamics of stochastic learning algorithms can be
studied using theoretical techniques from statistical physics� We
develop the equations of motion for the weight space probability
densities for stochastic learning algorithms� We discuss equilibria
in the di�usion approximation and provide expressions for special
cases of the LMS algorithm� The equilibrium densities are not in
general thermal �Gibbs� distributions in the objective function be
ing minimized� but rather depend upon an e�ective potential that
includes di�usion e�ects� Finally we present an exact analytical
expression for the time evolution of the density for a learning algo
rithm with weight updates proportional to the sign of the gradient�

� Introduction� Theoretical Framework

Stochastic learning algorithms involve weight updates of the form

��n � �� � ��n� � ��n�H���n�� x�n� � ���

where � � RI m is the vector of m weights� � is the learning rate� H��� � RI m is the
update function� and x�n� is the exemplar �input or input�target pair� presented



to the network at the nth iteration of the learning rule� Often the update function
is based on the gradient of a cost function H��� x� � ��E��� x� ���� We assume
that the exemplars are i�i�d� with underlying probability density 
�x��

We are interested in studying the time evolution and steady state behavior of
the weight space probability density P ��� n� for ensembles of networks trained by
stochastic learning� Stochastic process theory and classical statistical mechanics
provide tools for doing this� As we shall see� the ensemble behavior of stochas
tic learning algorithms is similar to that of di�usion processes in physical systems�
although signi�cant di�erences do exist�

��� Dynamics of the Weight Space Probability Density

Equation ��� de�nes a Markov process on the weight space� Given the particular
input x� the single timestep transition probability density for this process is a Dirac
delta function whose arguments satisfy the weight update ����

W ��� � � j x � � � � � � �� � �H��� � x � � � ���

From this conditional transition probability� we calculate the total single timestep
transition probability �Leen and Orr ����� Ritter and Schulten �����

W ��� � �� � h �� � � �� � �H���� x� � ix �
�

where h � � � ix denotes integration over the measure on the random variable x�

The time evolution of the density is given by the Kolmogorov equation

P ��� n � �� �

Z
d�� P ���� n� W ��� � �� � ���

which forms the basis for our dynamical description of the weight space probability
density ��

Stationary� or equilibrium� probability distributions are eigenfunctions of the tran
sition probability

Ps��� �

Z
d�� Ps��

��W ��� � ��� ���

It is particularly interesting to note that for problems in which there exists an
optimal weight �� such that

H���� x� � �� �x �

one stationary solution is a delta function at � � ��� An important class of such
examples are noisefree mapping problems for which weight values exist that realize
the desired mapping over all possible input�target pairs� For such problems� the
ensemble can settle into a sharp distribution at the optimal weights �for examples
see Leen and Orr ����� Orr and Leen ���
��

Although the Kolmogorov equation can be integrated numerically� we would like
to make further analytic progress� Towards this end we convert the Kolmogorov

�An alternative is to base the time evolution on a suitable master equation� Both
approaches give the same results�



equation into a di�erentialdi�erence equation by expanding �
� as a power series
in �� Since the transition probability is de�ned in the sense of generalized functions
�i�e� distributions�� the proper way to proceed is to smear ��� with a smooth test
function of compact support f��� to obtain

Z
d� f��� P ��� n� �� �

Z
d� d�� f��� P ���� n�W ��� � �� � ���

Next we use the transition probability �
� to perform the integration over � and
expand the resulting expression as a power series in �� Finally� we integrate by
parts to take derivatives o� f � dropping the surface terms� This results in a discrete
time version of the classic KramersMoyal expansion �Risken �����

P ���n� �� � P ���n� �

�X
i��

����i

i�

mX
j�����ji��

�i

��j� ��j� � � � ��ji

�
h�Hj� �Hj� � � � �Hjiix P ���n�

�
� ���

where Hja denotes the ja
th component of the mcomponent vector H�

In section 
� we present an algorithm for which the KramersMoyal expansion can
be explicitly summed� In general the full expansion is not analytically tractable�
and to make further analytic progress we will truncate it at second order to obtain
the FokkerPlanck equation�

��� The Fokker�Planck �Di�usion� Approximation

For small enough j�Hj� the KramersMoyal expansion ��� can be truncated to
second order to obtain a FokkerPlanck equation��

P ��� n� �� � P ��� n� �

��
�

��i
� Ai���P ��� n� � �

��

�

��

��i��j
� Bij���P ��� n� � � ���

In ���� and throughout the remainder of the paper� repeated indices are summed
over� In the FokkerPlanck approximation� only two coe�cients appear� Ai��� �
hHiix� called the drift vector� and Bij��� � hHiHjix� called the di�usion matrix�
The drift vector is simply the average update applied at �� Since the di�usion
coe�cients can be strongly dependent on the position in weight space� the equilib
rium densities will� in general� not be thermal �Gibbs� distributions in the potential
corresponding to hH��� x� ix� This is exempli�ed in our discussion of equilibrium
densities for the LMS algorithm in section ��� below��

�Radons et al� ������ independently derived a Fokker	Planck equation for backpropaga	
tion� Earlier� Ritter and Schulten ������ derived a Fokker	Planck equation �for Kohonen�s
self	ordering feature map� that is valid in the neighborhood of a local optimum�

�See �Leen and Orr ����� Orr and Leen ����� for further examples�



� Equilibrium Densities in the Fokker�Planck

Approximation

In equilibrium the probability density is stationary� P ��� n��� � P ��� n� � Ps����
so the FokkerPlanck equation ��� becomes

� � �
�

��i

Ji��� � �
�

��i

�
�Ai���Ps��� �

��

�

�

��j

� Bij���Ps��� �

�
� ���

Here� we have implicitly de�ned the probability density current J���� In equilib
rium� its divergence is zero�

If the drift and di�usion coe�cients satisfy potential conditions� then the equilibrium
current itself is zero and detailed balance is obtained� The potential conditions are
�Gardiner� �����

�Zk

��l
�

�Zl

��k
� �� where Zk��� � B��

ki ���

�
�

�

�

��j
Bij���� Ai���

�
� ����

Under these conditions the solution to ��� for the equilibrium density is�

Ps��� �
�

K
e
��F������ F��� �

Z
�

d�k Zk��� ����

where K is a normalization constant and F��� is called the e�ective potential�

In general� the potential conditions are not satis�ed for stochastic learning algo
rithms in multiple dimensions�� In this respect� stochastic learning di�ers from
most physical di�usion processes� However for LMS with inputs whose correlation
matrix is isotropic� the conditions are satis�ed and the equilibrium density can be
reduced to the quadrature in �����

��� Equilibrium Density for the LMS Algorithm

The best known online learning system is the LMS adaptive �lter� For the LMS
algorithm� the training examples consist of input�target pairs x�n� � fs�n�� t�n�g�
the model output is u�n� � � � s�n�� and the cost function is the squared error�

E��� x�n� � �
�

�
� t�n�� u�n� �� �

�

�
� t�n�� � � s�n� �� � ����

The resulting update equations �for constant learning rate �� are

��n� �� � ��n� � � � t�n�� � � s�n� � s�n� � ��
�

We assume that the training data are generated according to a �signal plus noise�
model�

t�n� � �� � s�n� � 	�n� � ����

where �� is the �true� weight vector and 	�n� is i�i�d� noise with mean zero and
variance ��� We denote the correlation matrix of the inputs s�n� by R and the

�For one	dimensional algorithms� the potential conditions are trivially satis�ed�



fourth order correlation tensor of the inputs by S� It is convenient to shift the
origin of coordinates in weight space and de�ne the weight error vector

v � � � ���

In terms of v� the weight update is

v�n� �� � v�n� � � � s�n� � v�n� � s�n� � � 	�n� s�n��

The drift vector and di�usion matrix are given by

Ai � �h sisj is vj � �Rij vj ����

and
Bij �

�
si sj sk sl vk vl � 	� si sj

�
s��

� Sijkl vk vl � ��Rij ����

respectively� Notice that the di�usion matrix is quadratic in v� Thus as we move
away from the global minimum at v � �� di�usive spreading of the probability
density is enhanced� Notice also that� in general� both terms of the di�usion matrix
contribute an anisotropy�

We further assume that the inputs are drawn from a zeromean Gaussian process�
This assumption allows us to appeal to the Gaussian moment factoring theorem
�Haykin� ����� p
��� to express the fourthorder correlation S in terms of R

Sijkl � Rij Rkl � RikRjl � RilRjk �

The di�usion matrix reduces to

B � � vT Rv � �� �R � � �Rv ��Rv �T � ����

To compute the e�ective potential ��� and ��� the di�usion matrix is inverted
using the ShermanMorrison formula �Press� ����� p���� As a �nal simpli�cation�
we assume that the input distribution is spherically symmetric� Thus

R � r I �

where I denotes the identity matrix�

Together these assumptions insure detailed balance� and we can integrate ���� in
closed form� In �gure �� we compare the e�ective potential F�v� �for �D LMS�
with the potential corresponding to the quadratic cost function�

v

Fig��� E�ective potential �dashed curve� and cost function �solid curve� for �	D LMS�

The spatial dependence of the the di�usion coe�cient forces the e�ective potential
to soften relative to the cost function for large jvj� This accentuates the tails of the
distribution relative to a gaussian�



The equilibrium density is

Ps�v� �
�

K

�
� �


r

��
jvj�

��� ��m

�
� �

�r� �
� ����

where� as before� m and K denote the dimension of the weight vector and the
normalization constant for the density respectively� For a ��D �lter� the equilibrium
density can be found in closed form without assuming Gaussian input data� We
�nd

Ps�v� �
�

K

�
� �

S

r ��
v�
��� �� r

� S �
� ����

With gaussian inputs �for which S � 
r�� ���� properly reduces to ���� with m � ��

The equilibrium densities ���� and ���� are clearly not gaussian� however in the limit
of very small �r they reduce to gaussian distributions with variance ������ Figure
� shows a comparison between the theoretical result and a histogram of �������
values of v generated by simulation with � � ������ and �� � ���� The input data
were drawn from a zeromean Gaussian distribution with r � ����

-0.2 -0.1 0.0 0.1 0.2
v

Fig��� Equilibrium density for �	D LMS

� An Exactly Summable Model

As in the case of LMS learning above� stochastic gradient descent algorithms update
weights based on an instantaneous estimate of the gradient of some average cost
function E��� � h E��� x� ix� That is� the update is given by

Hi��� x� � �
�

��i
E��� x��

An alternative is to increment or decrement each weight by a �xed amount depend
ing only on the sign of �E���i� We formulated this alternative update rule because
it avoids a common problem for sigmoidal networks� getting stuck on �	at spots� or
�plateaus�� The standard gradient descent update rule yields very slow movement
on plateaus� while second order methods such as gaussnewton can be unstable�
The signofgradient update rule su�ers from neither of these problems��

�The use of the sign of the gradient has been suggested previously in the stochastic
approximation literature by Fabian ����� and in the neural network literature by Derthick
�������



If at each iteration one chooses a weight at random for updating� then the Kramers
Moyal expansion can be exactly summed� Thus at each iteration we �� choose a
weight �i and an exemplar x at random� and �� update �i with

Hi��� x� � � sign

�
�E��� x�n� �

��i

�
� ����

With this update rule� Hj � �� or � and HiHj � �ij �or ��� All of the coe�cients
hHiHjHk � � � ix in the KramersMoyal expansion ��� vanish unless i � j � k � � � ��
The remaining series can be summed by breaking it into odd and even parts� This
leaves

P ��� n� �� � P ���n� �

�
�

�m

mX
j��

f P �� � �j � n�Aj�� � �j�� P �� � �j� n�Aj�� � �j� g

�
�

�m

mX
j��

f P �� � �j � n�Bjj�� � �j�� �P ���n�Bjj���

� P ��� �j� n�Bjj�� � �j� g ����

where �j denotes a displacement along �j a distance �� Aj��� � hHj��� x� ix� and
Bjj��� �

�
H�

j ��� x�
�
x
� Note that Bjj��� � � unless H��� x� � �� for all x� in

which case Bjj��� � �� Although exact� ���� curiously has the form of a second
order �nite di�erence approximation to the FokkerPlanck equation with diagonal
di�usion matrix� This form is understandable� since the dynamics ���� restrict the
weight values � to a hypercubic lattice with cell length � and generate only nearest
neighbor interactions�
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Fig��� Sequence of densities for the XOR problem

As an example� �gure 
 shows the cost function evaluated along a �D slice through
the weight space for the XOR problem� Along this line are local and global minima
at v � � and v � � respectively� Also shown is the probability density �vertical
lines�� The sequence shows the spreading of the density from its initialization at
the local minimum� and its eventual collection at the global minimum�



� Discussion

A theoretical approach that focuses on the dynamics of the weight space probability
density� as we do here� provides powerful tools to extend understanding of stochastic
search� Both transient and equilibrium behavior can be studied using these tools�
We expect that knowledge of equilibrium weight space distributions can be used in
conjunctionwith theories of generalization �e�g� Moody� ����� to assess the in	uence
of stochastic search on prediction error� Characterization of transient phenomena
should facilitate the design and evaluation of search strategies such as data batching
and adaptive learning rate schedules� Transient phenomena are treated in greater
depth in the companion paper in this volume �Orr and Leen� ���
��
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