
In Advances in Neural Information Processing Systems �� Giles� Hanson� and Cowan �eds���
Morgan Kaufmann� San Mateo� CA� �����

Weight Space Probability Densities

in Stochastic Learning�

II� Transients and Basin Hopping Times

Genevieve B� Orr and Todd K� Leen
Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology

���

 N�W� von Neumann Drive
Beaverton� OR ��

������

Abstract

In stochastic learning� weights are random variables whose time
evolution is governed by a Markov process� At each time�step�
n� the weights can be described by a probability density function
P ��� n	� We summarize the theory of the time evolution of P � and
give graphical examples of the time evolution that contrast the
behavior of stochastic learning with true gradient descent �batch
learning	� Finally� we use the formalism to obtain predictions of the
time required for noise�induced hopping between basins of di�erent
optima� We compare the theoretical predictions with simulations
of large ensembles of networks for simple problems in supervised
and unsupervised learning�

� Weight�Space Probability Densities

Despite the recent application of convergence theorems from stochastic approxima�
tion theory to neural network learning �Oja ���
� White ����	 there remain out�
standing questions about the search dynamics in stochastic learning� For example�
the convergence theorems do not tell us to which of several optima the algorithm



is likely to converge�� Also� while it is widely recognized that the intrinsic noise
in the weight update can move the system out of sub�optimal local minima �for a
graphical example� see Darken and Moody ����	� there have been no theoretical
predictions of the time required to escape from local optima� or of its dependence
on learning rates�

In order to more fully understand the dynamics of stochastic search� we study the
weight�space probability density and its time evolution� In this paper we summarize
a theoretical framework that describes this time evolution� We graphically portray
the motion of the density for examples that contrast stochastic and batch learning�
Finally we use the theory to predict the statistical distribution of times required for
escape from local optima� We compare the theoretical results with simulations for
simple examples in supervised and unsupervised learning�

� Stochastic Learning and Noisy Maps

��� Motion of the Probability Density

We consider stochastic learning algorithms of the form

��n � �	 � ��n	 � �H���n	� x�n	 � ��	

where ��n	 � RI m is the weight� x�n	 is the data exemplar input to the algorithm at
time�step n� � is the learning rate� and H� � � � � � RI m is the weight update function�
The exemplars x�n	 can be either inputs or� in the case of supervised learning�
input�target pairs� We assume that the x�n	 are i�i�d� with density 	�x	� Angled
brackets h � � � ix denote averaging over this density� In what follows� the learning
rate will be held constant�

The learning algorithm ��	 is a noisy map on �� The weights are thus random
variables described by the probability density function P ��� n	� The time evolution
of this density is given by the Kolmogorov equation

P ��� n � �	 �

Z
d�� P ���� n	 W ��� � �	 �
	

where the single time�step transition probability is given by �Leen and Orr ���
�
Leen and Moody ����	

W ��� � �	 � h ��� � �� � �H���� x � 	 ix ��	

and �� � � � 	 is the Dirac delta function�

The Kolmogorov equation can be recast as a di�erential�di�erence equation by
expanding the transition probability ��	 as a power series in �� This gives a Kramers�
Moyal expansion �Leen and Orr ���
� Leen and Moody ����	

�However Kushner ������ has proved convergence to global optima for stochastic
approximation algorithms with added Gaussian noise subject to logarithmic annealing
schedules�
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where �j� andHj� are the j
th
� component of weight� and weight update� respectively�

Truncating ��	 to second order in � leaves a Fokker�Planck equation� that is valid for
small j�H j� The drift coe�cient hH ix is simply the average update� It is important
to note that the di�usion coe�cients�

�
Hj�Hj�

�
x
� can be strongly dependent on

location in the weight�space� This spatial dependence in�uences both equilibria
and transient phenomena� In section ��� we will use both the Kolmogorov equation
�
	� and the Fokker�Planck equation to track the time evolution of network ensemble
densities�

��� First Passage Times

Our discussion of basin hopping will use the notion of the �rst passage time �Gar�
diner� ���
	� the time required for a network initialized at �� to �rst pass into an
��neighborhood D of a global or local optimum �� �see Figure �	� The �rst passage
time is a random variable� Its distribution function P�n���	 is the probability that
a network initialized at �� makes its �rst passage into D at the nth iteration of the
learning rule�
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Figure �� Sample search path�

To arrive at an expression for P�n���	� we �rst examine the probability of passing
from the initial weight �� to the weight � after n iterations� This probability can
be expressed as

P ��� n j ��� 
	 �

Z
d�� P ��� n j ��� �	W ��� � �� 	� ��	

Substituting the single time�step transition probability ��	 into the above expres�
sion� integrating over ��� and making use of the time�shift invariance of the system�

we �nd
P ��� n j ��� 
	 � h P ��� n� � j �� � �H���� x	� 
	 ix � ��	

Next� let G�n���	 denote the probability that a network initialized at �� has not
passed into the region D by the nth iteration� We obtain G�n���	 by integrating
P ��� n j ��� 
	 over weights � not in D�

G�n���	 �

Z
Dc

d� P ��� n j ��� 
	 ��	

�See �Ritter and Schulten ����� and �Radons et al� ���
� for independent derivations�
�With our assumptions of a constant learning rate � and stationary sam�

ple density ��x�� the system is time�shift invariant� Mathematically stated�
P ���n j ��� m� � P ���n� � j ���m � ��



whereDc is the complement ofD� Substituting equation ��	 into ��	 and integrating
over � we obtain the recursion

G�n���	 � h G�n� ���� � �H��� � x � 	 ix � ��	

Before any learning takes place� none of the networks in the ensemble have entered
D� Thus the initial condition for G is

G�
���	 � � � �� � Dc � ��	

Networks that have entered D are removed from the ensemble �i�e� �D is an ab�
sorbing boundary	� Thus G satis�es the boundary condition

G�n���	 � 
 � �� � D � ��
	

Finally� the probability that the network has not passed into the region D on or
before iteration n � � minus the probability the network has not passed into D
on or before iteration n is simply the probability that the network has passed into
D exactly at iteration n� This is just the probability for �rst passage into D at
time�step n� Thus

P�n���	 � G�n� ����	 � G�n���	 � ���	

Finally the recursion ��	 for G can be expanded in a power series in � to obtain the
backward Kramers�Moyal equation

G�n��� � G�n� ���� �
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Truncation to second order in � results in the backward Fokker�Planck equation� In
section ��
 we will use both the full recursion ��	 and the Fokker�Planck approxi�
mation to ��
	 to predict basin hopping times in stochastic learning�

� Backpropagation and Competitive Nets

We apply the above formalism to study the time evolution of the probability density
for simple backpropagation and competitive learning problems� We give graphical
examples of the time evolution of the weight space density� and calculate times for
passage from local to global optima�

��� Densities for the XOR Problem

Feed�forward networks trained to solve the XOR problem provide an example of
supervised learning with well�characterized local optima �Lisboa and Perantonis�
����	� We use a 
�input� 
�hidden� ��output network �� weights	 trained by stochas�
tic gradient descent on the cross�entropy error function in Lisboa and Perantonis
�����	� For computational tractability� we reduce the state space dimension by



constraining the search to one� or two�dimensional subspaces of the weight space�
To provide global optima at �nite weight values� the output targets are set to � and
�� �� with � �� ��

Figure 
a shows the cost function evaluated along a line in the weight space� This
line� parameterized by v� is chosen to pass through a global optimum at v � 
�
and a local optimum at v � ��
 � In this one�dimensional slice� another local
optimum occurs at v � ��
� � Figure 
b shows the evolution of P �v� n	 obtained by
numerical integration of the Fokker�Planck equation� Figure 
c shows the evolution
of P �v� n	 estimated by simulation of �
�


 networks� each receiving a di�erent
random sequence of the four input�target patterns� Initially the density is peaked
up about the local optimum at v � ��
�� At intermediate times� there is a spike of
density at the local optimum at v � ��
� This spike is narrow since the di�usion
coe�cient is small there� At late times the density collects at the global optimum�
We note that for the learning rate used here� the local optimum at v � ��
� is
asymptotically stable under true gradient descent� and no escape would occur�
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Figure �� a� XOR cost function� b� Predicted density� c� Simulated density�

Figure � shows a series of snapshots of the density superimposed on the cost function
for a 
�D slice through the XOR weight space� The �rst frame shows the weight
evolution under true gradient descent� The weights are initialized at the upper
right�hand corner of the frame� travel down the gradient and settle into a local
optimum� The remaining frames show the evolution of the density calculated by
direct integration of the Kolmogorov equation �
	� Here one sees an early spreading
of the initial density and the ultimate concentration at the global optimum�

��� Basin Hopping Times

The above examples graphically illustrate the intuitive notion that the noise inher�
ent in stochastic learning can move the system out of local optima� In this section
we calculate the statistical distribution of times required to pass between basins�

�The reader should not infer from these examples that stochastic update necessarily
converges to global optima� It is straightforward to construct examples for which stochastic
learning convergences to local optima with probability one�
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Figure �� Weight evolution for ��D XOR� The density is superimposed on top of the cost
function� The 	rst frame shows density using true gradient descent for all �

 timesteps�
The remaining frames show the density for selected timesteps using stochastic descent�

����� Basin Hopping in Back�propagation

For the search direction used in the example of Figure 
� we calculated the distribu�
tion of times required for networks initialized at v � ��
 to �rst pass within � � 
��
of the global optimum at v � 
�
� For this example we numerically integrated
the backward Fokker�Planck equation� We veri�ed the theoretical predictions by
obtaining �rst passage times from an ensemble of �
�


 networks initialized at
v � ��
� See Figure �� For this example the agreement is good at the small learn�
ing rate �� � 
�

�	 used� but degrades for larger � as higher order terms in the
expansion ��
	 become signi�cant�
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Figure �� XOR problem� Simulated �histogram� and theoretical �solid line� distributions
of 	rst passage times for the cost function of Figure �a�



When the Fokker�Planck approximation fails� results obtained from the exact ex�
pression ��	 are in excellent agreement with experimental results� One such exam�
ple is shown in Figure �� Similar to Figure 
a� we have chosen a one�dimensional
subspace of the XOR weight space �but in a di�erent direction	� Here� the Fokker�
Planck solution is quite poor because the steepness of the cost function results in
large contributions from higher order terms in ��
	� As one would expect� the exact
solution obtained using ��	 agrees well with the simulations�
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Figure �� Second ��D XOR example� a� Cost function� b� Simulated �histogram� and
theoretical �lines� distributions of 	rst passage times�

����� Basin Hopping in Competitive Learning

As a �nal example� we consider competitive learning with two 
�D weight vectors
symmetrically placed about the center of a rectangle� Inputs are uniformly dis�
tributed in a rectangle of width ��� and height �� This con�guration has both
global and local optima�

Figure �a shows a sample path with weights started near the local optimum �crosses	
and switching to hover around the global optimum� The measured and predicted
�from numerical integration of ��		 distribution of times required to �rst pass within
a distance � � 
�� of the global optimum are shown in Figure �b�
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Figure 
� Competitive Learning a� Data �small dots� and sample weight path �large dots��
b� First passage times�

� Discussion

The dynamics of the time evolution of the weight space probability density provides
a direct handle on the performance of learning algorithms� This paper has focused



on transient phenomena in stochastic learning with constant learning rate� The
same theoretical framework can be used to analyze the asymptotic properties of
stochastic search with decreasing learning rates� and to analyze equilibrium densi�
ties� For a discussion of the latter� see the companion paper in this volume �Leen
and Moody ����	�
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