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Abstract

We apply the feature-selection technique of Fukunaga and Koontz, an extension of the
Karhunen-Loeve transformation, to spoken letter recognition. Feedforward networks trained
for letter-pair discrimination with the new features show up to 37% reduction in classifier
error rate relative to networks trained with spectral coefficients. This performance increase
is accompanyed by a 91% reduction in feature dimension. For three-letter discrimination,
the new features perform comparably to spectral coefficients, with a 90% reduction in feature
dimension.

1 Introduction

It is generally recognized that compact feature sets ameliorate the computational burden for
classifiers. Researchers have used algebraic and neural network implementations of principal
component analysis to compress high-dimensional data for speech [1], acoustic emission [2], and
vision [3, 4] problems.

Beyond compression, statistical feature-selection techniques should provide features with
good discriminatory power. Since principal component analysis, or the Karhunen-Loe¢ve (KL)
transformation, is based on a reconstruction criteria, there is no guarantee that discriminatory
information is retained in the compression. Fukunaga and Koontz [5] (FK) have developed a
feature selection technique aimed at extracting features that are important for classification [6, 7,
for additional detail]. The technique is a supervised extension of the KL transformation.

In this paper, we apply the FK transformation to spectral data from spoken letters. We
compare the performance of classifiers trained on the raw spectral data, on principal components,
and on the FK features.

2 Feature Selection

The FK transformation proceeds as follows. We assume that there are m classes of objects.
From the training data, we construct the correlation matrix

R = Ezz!] = Xm: Pr Ry (1)
=1

where E is the average over the training data, x is the N-dimensional input vector, Pr is the a
priori probability for the I'" class and R; is the correlation matrix for the I'" class. The unit
norm eigenvectors of the R are denoted ¢;, 1 <17 < N with corresponding eigenvalues A;. Next
construct the matrix T whose i'" row is ¢;/v/X;, and transform the original vectors under T,

y = T x. (2)



It is straightforward to verify that Ely y'] = I. Next construct class correlation matrices from

the vectors y,
Cr = PrEflyy'], (3)

where E; is the average over the vectors in class I. Clearly
m
> Cr=Elyy'l = L (4)
I=1

Next the eigensystem for C7 is found. Let fJI and /\J[- denote, respectively, the j eigenvector
and eigenvalue of C7. From (4) it follows that

Crfl = (X Cx)ff =(I—Cnff =(=X)f = (5)
K#I

Hence the fj’ are eigenvectors of both C; and the matrix C; formed by summing all the class
correlation matrices except C7. The eigenvalues of these two matrices are related by

M o= 1=\ (6)

Since C; and C; are positive semidefinite, (6) requires that the eigenvalues M oand A all lie
between 0 and 1. Owing to (6), eigenvectors corresponding to large eigenvalues for C7 correspond
to small eigenvalues for C7. Hence, directions for large variance of class I are directions of small
variance for the other classes.

This last result forms the basis for selecting discriminatory features. To simplify the dis-
cussion, assume for now that there are two classes of objects, I = 1,2. Select those eigenvectors
fjl corresponding to eigenvalues )\jl close to unity and close to zero. Project the y vectors onto
this set of eigenvectors to recover the final feature vectors z. The set of z-vectors drawn from
class 1 will have large variance along the directions corresponding to large A', and small variance
along the directions correspond to small A'. The reverse is true for vectors from class 2. Thus
the z—vectors from the two classes lie near orthogonal subspaces.

The number of eigenvectors chosen is a parameter in the design space, but will typically be
far less than the dimension NV of the original data. Hence, like dimension reduction by principal
component analysis, the FK features form a more compact set than the original data. However
these features should have more discriminatory power than the principal components.

3 Application to Spoken Letter Recognition
3.1 Data Description

The aim of this study was to improve the performance of a neural network spoken letter recogni-
tion system. The data for our experiments was drawn from the spoken letter database described
in [8]. The database consists of 7800 examples of English letters spoken in isolation. There are
two utterances of each letter (A-Z) by each of one hundred fifty speakers. Each utterance in
the database is digitized at 16 kHz sampling rate and lowpass filtered at 7.6 kHz. For our ex-
periments the data was broken into subsets consisting of utterances from thirty speakers, fifteen
male and fifteen female.

Discrete Fourier transform (DFT) coefficients serve as the raw features for this study.
First each utterance was segmented into a sequence of broad phonetic categories using a rule-
based segmenter. The segmenter identifies closure, sonorant, fricative and stop segments of the
utterance [9]. Then, from the digitized speech, we obtained a 128-point DFT computed over a
10 msec Hanning window, every 3 msec.



We compare the performance of three-layer backpropagation networks trained for letter
recognition using the DFT data, principal components of the DFT data, and features selected
by the FK algorithm. The backpropagation networks were trained using conjugate gradient
optimization [10]. The next two subsections describe the details of the feature selection, and the
classifier results.

3.2 Two-letter Discrimination

We chose three letter pairs for study: (F.H), (A,E) and (M,N). Here we report only the results
for (M,N), the most challenging pair. Only the sonorant segment of the data is required to
discriminate between these letters. The sonorant was divided into four equal length portions.
The lowest 32 DFT coefficients, spanning the range 0-4kHz, were time-averaged over each of
the four portions of the sonorant. The remaining 32 spectral coefficients, spanning the range
from 4-8kHz, were averaged over 8 frequency bands for each 3msec time slice. These were then
time-averaged over each of the four portions of the sonorant. This left a total of 160 features for
the entire sonorant.

3.2.1 Feature Generation

Four-fifths of the data (120 speakers) served as training data and one-fifth was retained as
test data. The training data was used to generate the correlation and class-correlation matrices
required for the FK algorithm. The eigenvectors f]] recovered from these correlation matrices
were used to generate feature sets for both the training and test data. Thus, test set features
were generated based only on the statistical properties of the training data.
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Figure 1: Scatter plots of the first two features for the letters M (4) and N ().

Figure 1 shows scatter plots of the first two FK features, corresponding to the highest and
lowest A!, for the letters M and N. The training data is plotted in figure la and the test data in
figure 1b. For the training data, the two classes are nearly contained in orthogonal subspaces.
For the test data, on the other hand, there is no clear separation. We found that classifiers
trained on a set of FK features generated by the algorithm as described in section 2 performed
poorly on the test data, relative to classifiers trained on the raw spectral coefficients.
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Figure 2: Scatter plots of the first two features derived from 60 eigenvectors of R.

The gross difference between the scatter plots for the training and test data is caused by
overfitting to the training data during the feature selection process. To alleviate this overfitting,
we reduced the number of free parameters in the feature-extraction algorithm. We accomplished
this by reducing the dimension of the intermediate feature vector y in equation (2). We used
only the leading m eigenvectors of the original correlation matrix to construct the transformation
matrix 7" in (2). This leaves m-dimensional vectors y for the rest of the transformation process.
The value of m was chosen to give good classifier performance.

Figure 2 shows scatter plots of the first two FK features derived using the leading 60 of the
160 total eigenvectors of the original correlation matrix. The training data is plotted in figure
2a, and the test data in figure 2b. The training data has been smeared out relative to figure
la; there is higher variance orthogonal to the class subspaces. However, the test data is better
separated than in figure 1b.

3.2.2 Classifier Performance

To assess the discrimination ability of the FK features, we first developed a performance
profile for classifiers trained on the raw spectral coefficients. The results serve as the experimental
control. Using the original 160-dimensional data, we trained classifier networks with hidden
layers ranging in size from 5 to 45 nodes. The peak test set performance was obtained for
networks with 10 and 15 hidden nodes.

Table 1 summarizes the best performance of classifiers trained on the spectral coefficients.
Speaker differences between the five data subsets produced significant variation in training and
test set performance depending on which data subset was reserved as the test set. Accordingly,
we report results for each of five configurations. The first column in the table lists the data
subsets used to train the classifier, followed by the data subset used for test. The second column
gives the number of input, hidden, and output nodes in the networks. The third column gives
the number of training epochs at which the test set performance peaked. The fourth column
gives the percentage of correct classification for the test set. The table shows an average peak
test set performance of 91.98% correct. On average, the training required 142 epochs.



Table 1: M/N Raw Data Table 2: M/N FK Features

Data ‘ Net Config. | Epochs % | ‘ Data | Net Config. | Epochs ‘ % ‘
1234-5 | 160 10 2 185 89.92 1234-5 | 12152 165 91.6
1235-4 | 160 15 2 115 94.17 1235-4 | 6152 205 96.67
1245-3 | 160 10 2 190 90.0 1245-3 | 1815 2 85 94.12
1345-2 | 160 10 2 85 95.0 1345-2 | 12152 70 95.83
2345-1 | 160 15 2 135 90.83 2345-1 [ 18 15 2 155 96.67

[ Ave. | [ 142 [91.98] [Ave. [14 | 136 [94.98 |

Table 2 presents the best performance of classifiers trained on the FK features. We found
that using 60 correlation eigenvectors ¢; to compute the FK features provided good results. We
varied the number of input features between 6 and 54, in increments of 6. We used networks
with 15 hidden nodes for all experiments.

Networks trained on the FK features outperformed the control. The average peak test
performance is 94.98% with an average training time of 136 epochs. The average reduction in
classification error, relative to the control is a little over 37%. Most of the information needed
for good class separation seems to be captured in the first fourteen features, on average. This
represents an order of magnitude decrease in the feature vector dimension relative to the spectral
coefficients.

Of course, the basic Karhunen-Loeve transformation can also be used to reduce the di-
mension of the original features, and one might question whether the FK transformation offers
an advantage over the former. To address this, we trained classifier networks on the principal
components. As above, we varied the number of network inputs between 6 and 54, in increments
of 6. All networks had 15 hidden nodes. The results are shown in Table 3.

Table 3 M/N Principal Components
Data ‘ Net, Config.

Epochs‘ test ‘

1234-5 | 54 15 2 45 90.0
1235-4 | 30 15 2 110 95.0
1245-3 | 16 15 2 50 90.76
1345-2 [ 1215 2 215 93.33
2345-1 | 48 15 2 100 90.76

| Ave. |32 | 104 | 91.97 |

Clearly, the FK features provided higher classification performance with greater compres-
sion than the principal components. Averaged over the five dataset configurations, networks
trained on the principal components performed about the same as the control. The number of
principal components for optimal performance averaged 32, an 80% reduction in the dimension
of the feature vectors.

3.3 Three-letter Discrimination

In this section we present results for classification of the letters (B,D,V). We chose this triple
based on preliminary experiments on the triples: (B,D,V), (B,D,E), (P,T,G), and (V,Z,C). The
triple (B,D,V) is most challenging, and we limit our discussion to those results.

Because the sonorant portion of each of these letters is identical, more information is re-
quired than for the (M,N) experiments above. Therefore, the portion of each utterance before



the sonorant (combinations of stop and fricative) was used along with the first part of the sono-
rant itself. The portion preceding the sonorant was divided into three equal length parts. The
sonorant was divided into seven equal length parts, of which only the first two were used. From
each part, 32 time-averaged coefficients from 0-4 KHz and 8 time and frequency averaged coef-
ficients from 4 to 8 KHz were generated. The resulting feature vectors have 200 components.
The data was divided into four subsets for training and test.

We trained nets with 200 input nodes, hidden layers ranging from 5 to 40 nodes and 3
output nodes. The peak test set performance was obtained for networks with 10 hidden nodes.
Averaged over the four dataset configurations, the peak test set performance was 92.5% correct.
Training required an average of 178 epochs.

For the experiments on the FK features and the principal components, all nets contained
ten hidden nodes and three output nodes. The number of input nodes ranged from 8 to 64 nodes
in increments of 8. We generated the FK features using 80 correlation eigenvectors.

Classification performance for networks trained on the FK features was comparable to the
control, though with considerable compression and reduction in the number of training epochs
required. Averaged over the dataset configurations, the peak test set score was 92.86%. For two
of the dataset configurations the FK features outperformed the control, one configuration showed
comparable performance, and one configuration performed worse than the control. Training
required an average of 63 epochs. The best performing networks averaged 20 input nodes, a 90%
compression relative to the spectral coeflicients.

Networks trained on principal components performed comparably to those trained on the
raw spectral coefficients and the FK features. Averaged over the dataset configurations, the
peak test set score was 92.5%. Training required an average of 207 epochs. The best performing
networks averaged 46 inputs, a 72% compression relative to the spectral coefficients.

4 Summary

Our results show that the Fukunaga-Koontz transformation provides considerable data compres-
sion, and can improve the classification performance of feed-forward networks. For the (M,N)
experiments, networks trained on spectral coefficients achieve peak performance of about 92%,
while networks trained on the FK features achieve peak performance of about 95%. This per-
formance increase is accompanied by a 91% reduction in the dimension of the feature vector
used as input to the classifier. For our (B,D,V) experiments, the FK features achieved peak
performance comparable to the raw spectral coeflicients, though with compression of 90%.

The major drawback to the procedure is the need to tune several parameters to achieve
these results. The number of correlation eigenvectors used to compute the FK features, the
number of FK features to retain as input to the classifier, and the number of hidden nodes in
the classifier network all affect performance.
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