
Inductive Programming 

Richard B.  Kieburtz 

Oregon Graduate Institute 
Department of Computer Science 

and Engineering 
19600 N.W. von Neumann Drive 

Beaverton, OR 97006-1999 USA 

Technical Report No. CS/E 93-001 

January 1993 



Inductive Programming* 

Richard B. Kieburtz 

Oregon Graduate Institute 
of Science & Technology 

19600 N.W. von Neumann Dr. 
Beaverton, OR 97006 USA 

Abstract 

When a datatype is characterized categorically, attention is 
focused upon the homomorphisms of the algebras induced 
by the signature of the datatype. The  inductive definition 
of the datatype leads to a natural recursion structure for 
functions that  realize its homomorphisms. This structure 
is familiar for the homomorphisms of initial datatype al- 
gebras, but is also available for non-initial algebras. Such 
recursion schemes can be captured in combinators for any 
datatype, and form a basis for inductive programming. Pro- 
grams structured in this way have natural and intuitive proof 
rules. 

The dual concept, of coinductive types, also leads to use- 
ful recursive control combinators with proof rules that derive 
weakest preconditions for propositions about their results. 
Furthermore, lazy functional programs that  use only coin- 
ductive combinators never engender space leaks. We suggest 
a means for incorporating both inductive and coinductive 
programming styles. 

1 Introduction 

Although the syntax of functional programs resembles that 
of an equational logic, all programmers rely upon a rather 
complex interpretation of the equational syntax to provide 
the control necessary for computation. Attempts to rec- 
oncile the superficial resemblance to equational logic with 
the operational imperative of a programming language gen- 
erated heated debates during early phases of the Haskell 
language design and this question has presumably engaged 
the interest of others as well. The idea that  the functions 
defined in a program are operators, axiomatically defined 
by systems of equations, suggests that  computation is in- 
herently algebraic. Let's explore further some consequences 
of that notion. 

*this research was partially funded by NSF grant No. CCR- 
91011721 

Under an algebraic interpretation, a functional program 
defines an abstract algebra intended to be realized with a 
carrier set selected for convenience of implementation. The 
carrier is an internal representation of sub-algebras in terms 
of the available data algebras of an underlying computer. 
In a denotational semantics, the storable values correspond 
to the carrier. This algebraic view of computation is also 
supported to some extent a t  t>he level of computer hardware, 
which implements certain subalgebras such as fixed-radix 
integer arithmetic and floating-point arithmetic. 

To obtain a finite presentation of operator definitions, 
most functional languages allow recursion. Unfortunately, 
unconstrained recursion schemes are not always well founded. 
and the operations so defined may only be In a deno-' 
tational semantics, sets of storable values are extended with 
bottom elements to represent the denotations of expressions 
whose computations diverge, but the bottom elements are 
not themselves storable values. Thus the algebraic nature of 
computations is sacrificed. What remains is partial algebras. 

With partial algebras, the equational syntax of operator 
definitions must not be naively interpreted. Substitutivity 
is only valid if every term actually denotes a storable value. 
The need to qualify the interpretation of the equational 
syntax weakens, if not destroys, the relation between the 
programming notation and an equational logic. It requires 
that  order-of-evaluation must be specified to obtain an un- 
ambiguous interpretation of the programming language. It 
means that  program equivalence judgements must generally 
be qualified by termination judgements, and these are te- 
dious to prove at  best,; undecidable a t  worst. 

At one time, some researchers (myself included) thought 
that lazy functional languages might solve this problem. By 
restricting the evaluation of applicative expressions to use 
normal-order reduction, the substitutivity of equations re- 
mains valid. In fact, the equational syntax of a simple lan- 
guage can be interpreted as term-rewriting rules to give the 
language an operational meaning. The domain of storable 
values is enlarged to a domain of suspended computations 
t,hat can den0t.e an expression. However, this tactic, while 
it solves the problem for a pure lambda calculus, cannot 
avoid all problems when a programming language incorpo- 
rates specific algebras. An algebraic programming language 
involves some operators that are necessarily strict, such as 
the conditional, strict in its boolean typed argument. The 
presence of algebraic operators in an otherwise non-strict 
programming language leads to other problems, two of which 
are order-of-evaluation in pattern matching, and space leaks. 

In the present paper, we explore alternatives to the use of 



unconstrained recursion for expressing operator definitions. 
Exploiting inductive (and dually, coinductive) control struc- 
tures leads to a disciplined style of functional programming, 
appropriate to a wide variety of problems. Following this 
discipline encourages the verification of proof obligations in 
conjunction with program development, &nd guides the pro- 
grammer in avoiding the dual hazards of nontermination and 
space leaks. 

The concept of inductive programming is based upon the 
realization that  datatypes determine algebras in addition to 
determining da ta  structures. Control structures appropriate 
for most algorithms that  we wish to  formulate can be derived 
as homomorphisms (or cohomomorphisms) of the appropri- 
ate algebras. The role of datatype algebras is most readily 
seen when datatypes are modeled as objects of a category. 

1.1 A categorical view of datatypes 

The possibilities for higher-order functional programming 
structured by datatypes have been discovered by several 
authors [Hag87, CS92, Wad90, MFP91, HKS921, many of 
whom have called it "categorical programming" because it 
arises from viewing a datatype constructor as a functor from 
a bicartesian category to itself. In this view, the function 
mapT for a datatype constructor T, a generalization of the 
familiar Lisp function mapcar, is simply the morphism m a p  
ping part of T as a functor. Two properties of mapT, namely 
that  

are immediate from the characterization of T as a functor. 
There are other functions that arise from the definitions of 
freely constructed datatypes. A generalization of the list 
reduction function 

to arbitrary datatype constructors has been used by Hagino 
[Hag871 as the basis for a formal characterization of an in- 
ductively defined datatype. 

An inductive datatype constructor is expressed categor- 
ically as the limit of a sequence of functors. The sequence 
is generated by a bifunctor, E(- ,  -), that consists of a finite 
sum of covariant bifunctors. The first argument of each bi- 
functor is reserved for a parameter type, a ,  and the second 
argument is a parameter that  ranges over terms of the se- 
quence. Expressions with the structure dictated by E ( a ,  p) 
are injected into the datatype P by an injection morphism, 
in. A datatype constructor, LE is then defined by 

L E ( ~ )  = l i m i n l ,  i n E ( a ,  i n l ) ,  i n E ( a ,  i n  E ( a ,  i n l ) ) , .  

where 1 designates a terminal object in the category (this 
object is interpreted as a datatype with a single value, such 
as the type uni t  of SML). The inductive property of the 
limiting datatype constructor is equivalent to the property 
that the natural transformation in,,@ : E ( a ,  p) - p is 
an isomorphism. When i n  is an isomorphism, the limit is a 
fixed point of the functor i n  E((II, -). 

A consequence of the inductive definition of LE (II) is 
that  its homomorphisms have a canonical recursion sc I eme. 
The dashed arrows in Figure 1 are uniquely determined by 
the other da ta  of the diagram. 

Figure I-Commuting diagram for homomorphisms of an 
initial datatype 

The dashed arrow h in Figure 1 is a homomorphism from 
the LE-algebra (LE(a) ,  ina)  t o  another LE-algebra (C,  f ) .  
Uniqueness of the homomorphisms is the condition that  
(LE(a ) ,  ina)  is an initial algebra, i.e. an initial object in a 
category whose objects are LE-algebras and whose arrows 
are homomorphisms of those algebras. Initial datatypes are 
analogous to covariant types as they would be defined in a 
second-order logic such as System F [Gir71] or the Calculus 
of Constructions [CH86]. The induction principle for such 
types [Hue871 is expressed in the commuting diagram above. 

More concretely, if the bifunctor E(- ,  -) is an n-fold co- 
product, then the injection morphism is a n-way coproduct 
injection whose components, cl ,  . . . , c, are da ta  construc- 
tors of the datatype LE((II). Thus i n  = {cl,. . . ,c,) is an 
isomorphism whose inverse is caseLE, which performs n- 
way discrimination on the data constructors. This is the 
characteristic of a free datatype. The unique derived ho- 
momorphism, h, is redT(fl, . . . , f,), where the component 
functions are typed as f i  : E;(A, C) -, C. That  is, the com- 
ponent functions f, are typed analogously to the types of the 
data constructors. The diagram of Figure 1 then specializes 
to: 

e n E , ( a , C )  c 
{f i , . . . , fn)  * 

Figure 2-Homomorphisms of a freely constructed 
datatype 

An example of an inductively defined datatype construc- 
tor is List. The component bifunctors defining List are 

E l ( a ,  - ) = I  E 2 ( a ,  -)= x -  

and its da ta  constructors are 

Nil : 1 - List(a) Cons : ff x List(a) -,  list((^) 

For List types, the homomorphism diagram specializes fur- 
ther to Figure 3, in which it is easy to  recognize that 

h = redLis t  ( f l ,  f 2 )  

satisfies the recursion scheme for reduction over a list. 



{Nil, Cons) 
1 $ ((-w x List(a)) -. List(a) 

id $ (id x h) i 

Figure 3-Homomorphisms of an initial List-algebra 

Program derivation using homomorphisms of initial datatype 
algebras is a familiar technique [MFPSI, Bir88, HKS921. 
Some examples of functions definable as initial List homo- 
morphisms are: 

sum = redList (0, (+)) 
length = redList (0, X(x, y).y + 1) 
uppend(x, y) = redList (y, Cons) z 

Initial algebra homomorphisms have recursion schemes 
analogous to structural induction rules for logical inference 
of properties of typed data. But what of the homomor- 
phisms of non-initial algebras? We shall see that these cor- 
respond to more general induction schemes. 

2 Homomorphisms of non-initial algebras 

Initial datatype homomorphisms are well-behaved and well 
known program structures, but not every algorithm can be 
expressed in terms of them. In particular, there are many ex- 
amples of functions that, when realized as an initial datatype 
homomorphism, perform significantly worse than if realized 
by a different algorithm. For example, when the predecessor 
function is expressed as a primitive recursive algorithm, its 
evaluation takes time linear in the value of the argument, 
although a logarithmic time algorithm for this function is 
known. The desired algorithm can be expressed as a ho- 
momorphism of an appropriately chosen algebra. More pre- 
cisely, given a datatype (constructor) T, we are interested 
in formulating homomorphisms of T-algebras that are not 
initial. 

For simplicity of notation, we shall assume that  T is a 
datatype, rather than a datatype const,ructor, in the devel- 
opment that follows. Correspondingly, we take the generat- 
ing functor, E, to  be a simple functor rather than a bifunc- 
tor. These conventions can easily be generalized to the case 
of type constructors by reintroducing the additional type 
parameter. 

We seek a representation of p as a function that  effects an 
n-fold classification of its argument into mutually exclusive 
classes. We refer to such a function as a classifier for the 
T-algebra. 

Lacking a complete set of constructor patterns for clas- 
sification, suppose instead that  p can be represented as the 
union of a set of n partial functions 

p = {pi : A -+ li(Ei(A))) 

whose domains partition the type A. Here, { ~ j ) ,  for j E l..n, 
is the set of injections into an n-fold coproduct. The fol- 
lowing diagram then describes a T-algebra homomorphisms 
from (A, g) to (C, f ): 

The components of the classifier derive their typings from 
the types of the constructors of the initial datatype. For each 
index i E l..n, 

if ci : ( t l  x . . . x t , , )  -4 T ( a )  
then pi : A + (sl x . . . x s,,) 

A i f t j = T  where sJ = ti, otherwise 

It is useful to int,roduce a homomorphism combinator, homT 
which given a T-algebra classifier and a T-algebra operator, 
constructs a homomorphism. The homomorphism h of the 
diagram above can then be represented as homT([pl, . . . , p,], { f l ,  . . . , f; 
The homomorphism combinator for a datatype T induced 
by a functor E has the typing 

and satisfies t,he recursion equation 

Example 1: Consider the function 

upto-n : Nut + List(Nut) 

Let g : E(A) - A be the operator of a T-algebra, (A, g) 
and let p: E(A)  -+ A be a left inverse for g, satisfying that, given an argument m, generates a list of the interval of 

natural numbers from m to n. This function is a List-aleebra 
u 

P 0 g = ~ ~ E ( A I  
homomorphism. Its structure is similar to the function that 
copies a list, except t.hat its classifier uses the predicate 

This may be the case, for instance, if (T, CT) is the free term ( 5  n, : Nut ' Nut @ Nut 

algebra generated by a signature CT, but we are interested 
in a non-free algebra, (A, CT). If there is an effectively com- 

[if ( 5  n)  j 12 o (id, SUCC); 11 o 01 : Nut + 1 $ Nut x Nut 

putable projection, p, then the T-algebra homomorphisms where ONat : Nut + 
can be calculated as (least) fixed points of the functional Following the prescription for building a List algebra ho- 

H = X h . f o E ( h ) o p  momorphism, upto-n is expressed in terms of a classifier and 
a Lisbalgebra operator, 

in analogy to  an initial datatype. In practice, this occurs 
when the generating functor, E, is an n-fold sum-of-products upt0-" = homLJ" ([if (5  n) + ~20(id, SUCC); ~1001, (Nil, Cons)) 
and the T-algebra operator is factorized, f = { f l ,  . . . , fn}. 



When elaborated as a three-stage composition, this be- One copy is an element of the result and the other is the 
comes value on which to continue the recursion. 

upto-n = {Nil, Cons)o div2 : Nat -. 1 @ (Nat x Nat) 

(id1 @ ( i d ~ a t ,  upto-n))o diva = [if ego o ( m o d  2) =+ ~2 o ( (d iv  2), (d iv  2)); ~1 o 0 ]  
[if (5  n) + ~2 o (id, SUCC); LI 0 01 

Then factors-of-2 can be expressed as a list homomorphism: 
Applying the laws for distribution over the conditional and 
for reduction of case selections, we obtain a form more fa- factors-of-2 = [if(> 0) + Just o homList(div2, (Nil, Cons)); 
miliar as a recursive program, Nothing o 0 ]  

upto-n = [if (5 n) 
Cons o (id, upto-n o succ); 
Nil] 

This is an example of what is called an anarnorphism 
by [MFPSl], that is, a homomorphism of a non-initial T- 
algebra in which the codomain, rather than the domain, is 
the type T. However, from our perspective, the fact that  the 
codomain is T is no more than coincidence. The important 
notion is that  the function has the structure of a homomor- 
phism of a particular T-algebra whose carrier is not T, but 
in the example above, happens to be Nat. Knowledge of the 
structure of the homomorphism enables us to construct the 
function. 

More generally, the classifier of a carrier type A need not 
effect a partition of A, but may only partition a subobject. 
Since there is no effective way, in general, t,o characterize 
the subobject, we instead extend the codomain of the clas- 
sifier to indicate whether the classification succeeds or fails. 
A conditional classifier can be expressed with a codomain 
M(E(A)), where 

M ( a ) = a @ l  

This corresponds to  the Maybe type constructor introduced 
by Spivey [SpiSO] to model exceptions in programs through 
the use of an inductive datatype1. Its da ta  constructors are: 

Just : a -+ M ( a )  

Nothing : 1 + M ( a )  

A classifier that  induces an n-fold partition can be expressed 
as a sequential composition of classification trials, 

in which each component, pi, is typed as pi : A + M(Ei(  -)). 

Example 2: Factors of a power of two in a positive integer. 
We seek to define a function 

factors-of-2: Nat - M(List (Nat)) 

that when applied to a positive integer, will produce a list 
of its factors by powers of two, in descending order. If its 
argument is zero or is negative, the function will fail, yielding 
Nothing. 

This function can be defined in terms of a list homo- 
morphism using a classifier whose domain is the positive 
integers. The  classifier must determine whether or not the 
number given as its argument is divisible by two, and if i t  
is, perform the division, creating two copies of the quotient. 

 he same type exists under a different name in Standard ML, 
where the type constructor is called option. 

It is interesting to  compare the categorically-inspired def- 
initions of sum-of-products types generated by a set of n 
component functors, E i ( - ) ,  with the analogous types de- 
fineable in second-order lambda calculus. The analogous 
type definition is 

in which the product constructors in Ei have also been re- 
placed by +-. The induction principle for the type is implicit 
in its definition, reading -+ as an implication symbol accord- 
ing to the propositions-as-types analogy. The analogy has 
previously been noticed by Wraith, who derives expressions 
in the polymorphically typed lambda-calculus to correspond 
to Hagino's datatypes [Wra89]. Extending the analogy to 
non-initial datatype schemes, the classifiers, pi, are intro- 
duced as effective tests of the n hypotheses of the induction 
principle for the type. 

2.1 Non-initial datatypes lead t o  conditionally terminat- 
ing recursion schemes 

A program constructed with the T-algebra homomorphism 
combinator from a suitably typed classifier and operator 
may still fail to be a homomorphism because its compu- 
tations diverge. To prove its uniform termination, an addi- 
tional condition is required, namely, a demonstration that  
its recursion scheme is well-founded. 

Example 2': Returning to  Example 2 of the previous section, 
a termination condition for a list homomorphism is 

Vx E {x' : Nat I x' > 0). p z  = Just(y, x') J x' 4 x 

in which 4 designates a well-ordering relation over Nat. 
For the list homomorphism used in Example 2, the guard 

in the definition of factors-of2 ensures that the argument is 
positive, so the condition becomes 

I t  is obvious that choosing 4 to be a subordering of the total 
ordering on integers yields a well-ordering, as the domain is 
restricted to positive integers. 

The verification condition for uniform termination can 
be stated formally, for the homomorphism scheme of an ar- 
bitrary datatype. Suppose the da ta  constructors of an in- 
ductive type, T, have typings 

Then the termination verification condition for a homomor- 
phism scheme h ~ r n ~ ( [ ~ l , .  . . ,p,], (ji, . . . , f,)) : A -+ C is 



that there exists a well-ordering of A for which 

PI x = Just(x1, . . . , xml ) A 
Vj € {l. .ml I t l j  = T). x j  4 x 

x : A =+ V ..- 
V pn  x = J u s t ( ~ ~ ,  . . . , x,,) A 

Vj  j'E {1..mn I tn, = T). x j  4 x 

Recalling that  the classifier is p = [p l , .  . . ,pn], we see that 
the termination condition given above is equivalent t o  re- 
quiring that  the retract e n E ; ( A )  < A via (g,p) is compati- 
ble with a well-founded ordering on A. 

Given evidence of termination, functional properties of 
T-algebra homomorphisms can be verified by inductive proof. 
The proof rule for a well-founded induction is 

p i  x = J u s t ( ~ 1 , .  . . , xm,)  A 
(Vj € {l . .ml  I t l j  = T). P ( x ~ ) )  =+- P ( x )  v ... 

V p n ~ =  J u s ~ ( x ~ ,  ..., Z,,)A 

x : A k  
(Vj € {l..mn I tnj = T). P ( x j ) )  =+ P ( x )  

P ( x )  

When such a rule is invoked without evidence of algorith- 
mic termination, i t  is said to be a rule for a logic of partial 
correctness. In the present framework, partial correctness 
means that  the proof rule is not known to be inductive. A 
property proved by non-inductive reasoning may be unsat- 
isfiable. 

Example 2": We illustrate the use of inductive proof by 
returning again to Example 2. Let Q(n ,  y, z)  be the propo- 
sition 

"y equals the n th  element of the list z" 

As a three-place predicate, Q is formally defined by: 

Then define a property of factors-of-&in terms of a predicate 
over its integer domain, 

P ( x )  Vy : Int. Vn: Nat. Q(n,  y, factors-of-2 x)  =+ x = y * 2" 

The classifier used in the definition of factors-of-& provides 
two clauses that  must be verified as hypotheses of the in- 
ductive proof rule for List: 

( C l )  x mod 2 # 0 A P ( x )  

(C2) x mod 2 = 0 A ( P ( x  d i v  2) + P ( x ) )  

Elaborating P ( x )  and making use of the properties of hornList 
we find that ( C l )  is equivalent to: 

x mod 2 # 0 A (Q(n,  y, Nil) =+ x = y * 2n) 
G x m o d 2 # O ~ ( f f ~ x = y * 2 ~ )  
E x m o d 2 # 0 A t t  
E x m o d 2 # O  

For (C2), there is a proof by list induction: 

x mod 2 = 0 A ( P ( x  div 2) =+ P ( x ) )  - 
={defn ofP) 

x mod 2 = 0 A ((Q(n, y, factors-of-2 (x d i v  2)) j 
(x d i v  2) = y * 2") 3 P ( x ) )  - 

={def n of 91 
x mod 2 = 0 A ((Q(n + 1, y, Cons(x d i v  2, 

factors-of-2 (x d i v  2))) =+ 
(x d i v  2) = y * 2") =+- P ( x ) )  - 

={homomorphi~m) 
x mod 2 = 0 A ((Q(n + 1, y, factors-of-2 ((x d i v  2) * 2)) * 

(x d i v  2) * 2 = y * 2" * 2) =+ P(x) )  - - -{z mod 2=0*(z div 2)*2=z) 

x mod 2 = 0 A ((Q(n + 1, y, factors-of2 x) + 
x = * 2"+') =+ P ( x ) )  

But since Q(0, y, factors-of-2 x) = 8, we have that  

Thus the clause can be generalized by natural induction to 
yield Vn : Nat. Q(n,  y, factors-of-2 x )  + x = y * 2", giving a 
derivation from (C2) of 

By the inductive proof rule we conclude 

3 Coinductive types and final algebras 

Although many problems are resolved by inductive program- 
ming, some important ones are not. A program that  re- 
sponds interactively to an unbounded stream of input stim- 
uli, or which incrementally generates an unbounded stream 
of output does not fit the inductive paradigm. There is, 
however, a dual to the notion of inductive datatype defi- 
nition, called coinductive types. Formally, the idea is easy 
to express. Rather than types that are sums we examine 
types that  are products (of tensor sums). In place of the ho- 
momorphism diagrams, we reverse all the arrows and draw 
cohomomorphism diagrams. 

Figure $-Final homomorphisms of a co-inductive type 

When the natural t,ransformation o u t ,  is an isomorphism, 
the co-algebra of the coinductive type is final, and the co- 
homomorphisms are uniquely determined by the projection 
operator, indicated by g in the diagram. The inverse trans- 
formation, out- ' ,  can be considered as the datatype con- 
structor of the coinductive type. It encloses all components 
of the product in its domain. We have less experience in 



programming with coinductive types than with the familiar 
inductive datatypes. Some examples are: 

R = I x R = R  infinity 
o u t  = id out-' = id 

R ( a )  = a x R ( a )  a-streams 
o u t  = (shd,stl) out- '  = str-cons 

R ( a )  = a x R ( a )  x R ( a )  infinite binary trees 
o u t  = (elt,left,right) out- '  = node 

These types have computational interpretations that are 
most easily understood in terms of lazy functional languages. 
Recall that the categorical product requires a non-strict data 
constructor in a programming language in which computa- 
tions may diverge. 

The (final) co-homomorphisms of these types are gener- 
ators for the types. Generators are the duals of the reduce 
homomorphisms of initial datatype algebras. Each is speci- 
fied by the application of a combinator, gen R~ to a projec- 
tion function, g, 

Example 3: For the coinductive datatype of streams, the 
unit of the stream monad satisfies the recursive equation 

The projection for this recursion scheme is the duplicator, 
A, thus we can write unitStream = genstream (id, id). 

Example4: To obtain a more interesting stream generator, 
choose a projection function that  is not polymorphic, such 
as succ, which generates the stream co-homomorphism from, 
satisfying 

from = genstream (id, SUCC) 
= str-cons(id, from o succ) 

Example 5: The  generator that copies a stream has as its 
projection function 

(sth, stl) : Stream(a) -+ Stream(a) x  stream((^) 

Example 6: For the final datatype of infinite binary trees, 
the unit is 

un,tBinTree = genB;nTree(id, id, id) 

3.1 Coinductive types that are not final 

The elements of a coinductive datatype are infinitary struc- 
tures that  can only be partially analyzed by programs that 
consume finite resources. Of greater computational inter- 
est are the non-final cohomomorphisms of type co-algebras. 
Lifting this requirement means that  the transformation o u t  
can be replaced by a splitting function, h, that has a left 
inverse, but is not an isomorphism. Let f : F ( a , T ( a ) )  -+ 

T ( a )  be a function satisfying 

This allows f to be a projection from an n-fold product. The 
projection defined by f may be condit,ional on the dat,a. 

Figure 5-Non-final cohomomorphisms 

Search algorithms can be expressed a s  co-homomorphisms of 
non-final algebras. In these examples, the recursion scheme 
of the search is induced by a Stream type, although the 
datatype R ( a )  is no longer a final type, but merely a carrier 
type for a co-algebra. 

To express cohomomorphisms, we introduce another com- 
binator, 

cohomRF : ( D  - F ( a ,  D))  x ( F ( a ,  G) - G) - D + G 

which takes as arguments a pair of a splitting function, g, 
and a projection function, f .  

It satisfies the recursion equation 

~ o h o m ~ ~ ( ~ ,  f )  = f o F(id, cohomRP (g, f )  o g 

Example 7: Sequential search follows the recursion scheme 
of streams. 

G = { x : a l p x = t t )  

f = [ i f p o  no =$ no; r l ]  

g = (g0,gl) wherego: D - a ,  gl : D -  D 
search = [if p o go =+ go; search o gl] : D --+ G 

search = cohom Stream(g, f )  

in which no and sl designate the first and second projections 
from a pair. 

Example 8: Binary search follows the recursion scheme of 
binary trees. 

G = { x : a I p o z = t t )  

f = [if PO o no =+ no; [if pl o no =$ nl ;  xz]] 

g = (go,gl,g2) w h e r e g 0 : D - a ,  g l ,g2:  D +  D 

bin-search = [if o go =$ go; 
[if p~ 0 go =$ bin-search o gl ; 

bin-searcho gz]] : D + G 

bin-search = cohomStream(g, f )  

Notice in these examples that  the projection functions ana- 
lyze data after they have been transformed by a component 
of g. Contrast this with the case of non-initial datatype ho- 
momorphisms in which the classification functions, {pi), are 
applied to  "raw" data that may subsequently be mapped to 
a result. 

Inductive recursion schemes accumulate (on a stack) the 
data they have classified until a base case is encountered. 
The test made by a classifier is applied prior to the com- 
pletion of any recursive invocation. Coinductive recursion 
schemes can correspond to simple iteration, as a whi le  loop, 
for instance. Coinductive schemes can produce results incre- 
mentally; inductive schemes cannot. These distinctions are 
important to keep in mind when one wishes t o  separate in- 
ductive from coinductive recursion. The  clues provided by 
the types of domain and codomain are often misleading in 
the classification of recursion schemes that  are neither initial 
nor final. 



3.2 Coinductive proof rules 

Suppose F ( a ,  RF(o))  = t l  x . . , x tn ,  where each ti is either 
a or R. This form of a product functor is not the most 
general one from which to  form coinductive types, but it 
will serve to illustrate the formulation of proof rules. Let 

These are index sets that  distinguish the components of the 
product that correspond to the parameter type or to the 
recursive type, respectively. 

Further, let g : D - F ( a ,  D)  be a splitting function 
and f : F ( a ,  G) + G be a projection function. Suppose f 
has the form of an n-fold conditional 

f = [Po * fo;  . . . [pn-1 * f n - 1 1 . .  .I 
whose predicates are nonoverlapping. Each predicate has 
the typing 

pi : FI, ( a ,  G) + Boo1 

where by FI we designate the projection of F on the in- 
dex set I. This restriction is imposed so that the condi- 
tional projection, f, can be calculated from data produced 
by the splitting function, without further recursion. Define 
a boundedness predicate, B, for cohomRF(g, f )  as follows. 

(Vi .  (pi x = tt) * B(gi x)) =+ B(x) 

This is a transfinite induction rule. If B is compatible with 
a well-founded ordering (D ,  +), such that  Vx E D .  x + gi x, 
then for all x E D ,  c ~ h o m ~ ~ ( ~ ,  f )  x consumes only bounded 
resources. 

The idea behind this rule is that  the components of g 
are generalized predecessors. The subobject of D for which 
no recursion occurs under an application of cohomRF(g, f )  
constitutes a basis. Termination is an important property 
to determine of a cohomomorphism because unlike a gener- 
ator, its codomain is not necessarily of a coinductive type. 
I t  cannot be assumed that  a value produced by applying 
a cohomomorphism will not be totally analyzed by other 
functions in a program. 

We could also give a transfinite induction rule for more 
general properties of coinductive functions. Instead, we offer 
a rule that is easier t o  use. This rule is compatible with nat- 
ural induction but is strictly less powerful than transfinite 
induction as a rule of logic. 

3.3 Space leaks 

Space leaks occur when applications of projection funct,ions 
(including conditional projections) are suspended. Since a 
lazy functional language specifies that suspended applica- 
tion is the default, with exception made only for applica- 
tions of explicitly strict operators, space leaks are difficult 
to avoid. However, coinductive programming does not en- 
gender space leaks. A cohomomorphism combinator applies 
projections directly t o  tuples, rather than to arbitrary ex- 
pressions, and does not need to  be suspended. Only indi- 
vidual components of a tuple may require suspension, as 

when a component represents the recursive application of a 
cohomomorphisrn. 

Contrast this situation with that of an inductive pro- 
gram written in a lazy programming language. There, the 
form of a homomorphism has an outermost operator that 
may as readily be a datatype constructor as a strict func- 
tion. Suspending applications of datatype constructors of- 
ten introduces space leaks. But suspending an application 
of a T-algebra operator is also unnecessary, as the operator 
never controls recursion. Recursion control is effected by 
the classifier of an inductive homomorphism. Our conclu- 
sion is that  lazy languages are ill-suited for inductive pro- 
gramming. The use of an inductive programming style with 
lazy languages actually promotes leaky programs. On the 
other hand, inductive algorithms are very natural for a wide 
variety of problems. 

3.4 Coinductive programming with explicit suspensions 

If programmers wish to mix inductive and coinductive pro- 
gramming styles, how should they resolve the conflicting 
goals of preventing nontermination and space leaks? Since 
space leaks appear to be more subtle than nontermination, 
one obvious suggestion is to use a strict programming lan- 
guage and to create explicit suspensions for those applica- 
tions that involve coinduction. There are combinators that  
will help to structure programs in this way. 

k i : i d  x F ( f r e e z e  ( k ) )  

Figure 6-Coinduction with explicit suspension 

Figure 6 relates to Figure 5 in the following way. The  compo- 
nents of the splitting function that were typed as gi : D + cv 
have been removed, leaving g. Instead, a copy of the argu- 
ment (of type D )  is propagated untransformed for analysis 
by the projection function, f .  Recursive applications of the 
cohomomorphism under the product functor, F ,  are explic- 
itly suspended with freeze. This allows the use of a strict 
pair constructor. The projection function f now employs 
predicates that act on the untransformed argument of type 
D, and most significantly, whenever a projection selects a 
component that  is a suspended computation, it must be un- 
frozen explicitly. 

A cohomomorphism combinator for a type 

R ( a )  _N out-l(tl x . . . x t , )  

is constructed as follows. As before, let I, designate the set 
{i 1 ti = a) and IR  designate the set {i I ti = R a ) .  The 
combinator 

cohom' ( g ,  f )  : D --+ G 

is constructed with a splitting function 

and projection function 



that consists of a an 1 I R ~  +1-fold conditional, also contains pairs that agree in the first component with 
each of the pairs in the old sieve. 

f = boor0 * foo%o;. . . [pn-20*0 * fn-20~1; fn- lo*^]. . .] 
update-sieve : Nat -+ List(Nat x Nat) + Nat x List(Nat x Nat) 

where fo : Dlp. + G and for a > 0, fi : (1 -* G)IR -* G. update-sieve n = 
For example, the cohomomorphism for Stream types is cOhom 'Stream 

cohom~ Stream . . ( D - , D ) x ( D x ( l - , G ) + G ) + D - + G  
cohom, Stream (9, f )  z = f (x, A(). cohom' Stream (9, f )  (g 2))  

and that for Bin-tree types is 

cohom~ Bin-tree . 
( D + D ) x ( D x ( l - G ) x ( l + G ) + G ) + D - G  

cohom> Bin-tree (g1,92,f)x = 
f (x, A(). cohom' Bin-tree (91,92 9 f )  (91 x), 

A(). cohomy (919 92 r f )  (92 XI) 

The most familiar example of stream cohomorphism is 
an iteration function: 

while : ((D -, Bool) x ( D  - D))  -* D -, D 

while(p, r )  = cohom 'Stream(r, X(x, f).if p x then f () else x)  

Its proof rule is 

(tl, A(,, f ) .  case s of 
[I * (n, [(n, n)l) 

I ((P, Y) :: t )  * 
let m = i nc rnp  y in 
i f m = n  

then (p, (p, m) :: t) 
else box(p, m)  (f 0) 

where boxx (n, xs) = (n, (x :: xs)) 

A conclusion we wish to  draw from this definition is that 
the result of the function satisfies 

Qn,s(nl, s') = V(p, y) E S. 3(pt, Y') E s'. p' = p 

A ( (n' = n A Sieve(n, s') A s' # [I A 
let ((p, y) :: t )  = reversest in 

p = n A (V(pl, y') E 2 ,  p' < n A y' # n))  
V (a '  < n A (39. n = q * n') A Sieve(n, st))) 

We must formulate a precondition Rn(s)  that  will enable us 
to discharge the following proof obligations: 

(PX = f l  * P(x)  * Q(x) 
/\ ( p x = t t ) * ~ ( x ) * ~ ( r x )  (a) En([]) * Qn.s(n9 [(nln)l) 

{' : B(x)l ' P(z )  Q(w/aile(p, r )  x) ( b )  Rn((p, y) :: t) A i n c r n p y  = n * Q n , s ( ~ ,  (P, i nc rnpy)  :: t )  

As a larger example, we illustrate an algorithm to con- (c) %((PI Y) :: t )  * Rn(t) 
struct a stream of prime numbers using the sieve of Eratos- 
thenes. A sieve is represented as a list of pairs, (p, y), where (d) Pn((p, y) :: t) Aincrnp y # n 
p is a prime number and y is some multiple of p. A sieve ~ ( n ' ,  s') = update ieve  n l 
s is said to be well maintained for a number n if it satisfies * Qn,s (nt ,  8') * Qn, r  (n', (p, incr n p Y) :: 9') 
the predicate 

Since Q,,,(n, [(n, n)]) is valid (from the definition of Q), (a) 
Sieve(n, S) = V(p, y) E S. Pn(p, y) imposes no condition on R. To establish (b), we require that 

where Rn(s) * Sieve(n, s )  I 
~ ~ ( P , Y ) = ~ ~ . ( Y = ~ * P ) A ( ( Y - P )  < ~ V Y  < n )  Requirement (d) further suggests the condition I 

This property assures that  for any pair (p, y), that y is no Rn(s) * v(p, y) E s. P < n 
greater than n + p - I .  I t  allows a simple test to determine 
whether or not n is a multiple of p. Namely, compare n Condition (c) is obviously satisfied if we let 

with y. If n > y then increase y in increments of p until the Rn = Sieve(n, s )  A V(p, y) E s. p < n 
result is greater than or equal t o  n. If the comparison shows 
equality, n is a multiple of p, otherwise it is not. Proving these clauses allows us to use the proof rule for 

To increment y, let stream coinduction to conclude: 

incr n p y = while ((< n), (+p)) y (L) Rn(s)  * &,,,,(update-sieve n s) 

Using the proof rule for while, together with the algebra of 
addition and inequality, we can conclude: 

Next, we construct a function that, given a number n 
and a sieve well maintained for n, produces a pair of a new 
sieve and a number. The number in the result either is n, in 
case n is not a multiple of any number in the original sieve, 
or else it is a smaller number of which n is a multiple. The 
new sieve is well maintained for n and in addition, is assured 
to  contain a number of which n is a multiple. The new sieve 

It is necessary to point out that  none of these assertions 
has been proved formally. Their complexity and technicality 
illustrates the need for a good, automated proof assistant.. 

The final coinductive computational step constructs a 
sieve for the next prime number from a candidate number 
and a sieve well conditioned for the candidate. 

nextsieve : Not -, List(Not x Not) + Not x List(Nat x Nat) 

nestsieve = cohorn'Stream 
((+2), A(n, f ). As.  

let (n', s t )  = update-sieve n s in 
if n' = n then (n', s') else f ()) 



A property that  describes the intended result of this function 
is 

Rn(s)  A (n', s') = nextsieve n s S(n,  s, (n', s')) 

where S (n ,  s, (n', s t))  r Sieve(nl, s f )  A 
V(p, y) E s. 3(p1, y') E s'. P' = p A 
let ((p, y) :: t )  = reverses' in 

(P, Y) = (n', n') A 
V(p', y') E t ,  p' < n' A Y' # n' 

Given the precondition 

O(n) = oddn n > 1 

we generate the proof obligations 

( P I )  O(n) =+ (Rn(s) A (n', s') = update-sieve n s 
n' = n j S(n,  s, (n', s'))) 

Using proposition (L) established for update-sieve as a lemma 
and the equality n' = n, ( P I )  can be reduced to 

which is directly verifiable from the definitions of the pred- 
icates Q,,, and S. Condition (P2) is true of numbers. We 
conclude: 

O(n) j Rn(s) j S(n,  s, nextsieven s )  

The reader will notice that  the above proposition falls short 
of asserting that  the function calculates a sieve of prime 
numbers. All the computational aspects are accounted for, 
but the primeness of the result is not, and would indeed re- 
quire additional argument. I t  is obvious that any increasing 
sequence of candidate numbers would do as well in establish- 
ing computational properties of the algorithm as the choice 
made here, t o  use all the odd numbers. 

The program to calculate a steam of primes is completed 
by defining 

nextprime = (no, ((+2) x id) o evalo (nextsieve x id)) 

where eval: ((Y -+ p )  x a -+ ,8 
eval(f ,x)= f x  

primes = str-cons'(2, A(). genstrea" nestprime (3, [I)) 

Notice that  the type of the stream constructor has been 
adapted for inclusion in a strict programming language, 

str-cons' : (Y x (1 -  stream((^)) -+ Stream(a) 

4 Conclusions 

Unstructured recursion is to functional programmers as the 
much-maligned goto command is to imperative program- 
mers. I t  affords the power to code algorithms that are often 
difficult to understand. In the realm of functional program- 
ming, "difficult to understand" can mean that logical prop- 
erties are not manifest or easily derived, or that  termination 
is uncertain, or that unsuspected space leaks may occur in 
execution. This paper has proposed several combinators for 
structuring recursive programs according to  the control im- 
plicit in datatype algebras (and coalgebras). 

We have insufficient experience in using these combina- 
tors to make strong claims for their superiority, but it is en- 
couraging that they seem to have natural and intuitive proof 
rules. Furthermore, they suggest styles of programming that 
allow one to anticipate sources of possible non-termination 
and of space leaks, and to take appropriate measures to 
avoid them. 

References 

[Bir88] Richard S. Bird. Lectures on constructive func- 
tional programming. In M. Broy, editor, Construc- 
tive Methods in Computing Science, volume 52 of 
NATO Series F. Springer-Verlag, 1988. 

[CH86] Thierry Coquand and Gerard Huet. The Calculus 
of Constructions. Technical Report 530, INRIA, 
May 1986. 

[CS92] J. R. B. Cockett and D. Spencer. Strong categor- 
ical datatypes. In R. A. G. Seely, editor, Interna- 
tional Meeting on Category Theory, 1991. AMS, 
1992. 

[Gir71] J.-Y. Girard. Une extension de  l'interprktation 
fontionnelle de G6del 9. l'analyse et  son applica- 
tion & l'klimination des coupures dans l'analyse et 
la thCorie des types. In J .  F. Fenstad, editor, Pro- 
ceedings of the Second Scandinavian Logic Sympo- 
sium, pages 63-92. North Holland, 1971. 

[Hag871 T. Hagino. A Categorical Programming Language. 
PhD thesis, University of Edinburgh, 1987. 

[HKS92] James Hook, Richard B. Kieburtz, and Timothy 
Sheard. Generating programs by reflection. Tech- 
nical Report OGI CSE-092-015, Oregon Graduate 
Institute, July 1992. 

[Hue871 GCrard Huet. Induction principles formalized in 
the Calculus of Constructions. In TAPSQFT'87, 
volume 249 of Lecture Notes in Computer Science, 
pages 276-286. Springer-Verlag, 1987. 

[MFPSI] Erik Meijer, Maarten Fokkinga, and Ross Pa- 
terson. Functional programming with bananas, 
lenses, envelopes and barbed wire. In Proc. of 
5th A CM Conf. on Functional Programming Lan- 
guages and Computer Architecture, volume 523 of 
Lecture Notes in Computer Science, pages 124- 
144. Springer-Verlag, August 1991. 

[SpigO] Mike Spivey. A functional theory of excep- 
tions. Science of Computer Programming, 14:25- 
42, 1990. 

[Wadgo] Philip Wadler. Comprehending monads. In Proc. 
1990 ACM Conference on Lisp and Functional 
Programming, pages 61-78, 1990. 

[Wra89] G. C. Wrait,h. A note on categorical datatypes. 
In D. H. Pitt,  D. E. Rydeheard, P. Dybjer, A. M. 
Pitts, and A. PoignC, editors, Category Theory and 
Computer Science, volume 389 of Lecture Notes 
in Computer Science, pages 118,127. Springer- 
Verlag, 1989. 


