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Abstract

Many database applications tolerate a certain amount of data inconsistency to gain increased
concurrent processing and to accommodate real-world constraints. This paper describes how
inconsistency can be modeled in a database and managed with consistency restoration methods.
The correctness criterion for the maintenance of inconsistency is epsilon serializability (ESR). An
informal notation to characterize inconsistency and several consistency restoration techniques
are described.

Index terms: epsilon-serializability, divergence control, serializability, crash recovery, con-
sistency restoration, asynchronous transaction processing.

!Also available as technical report No. HKUST-CS93-002, Department of Computer Science, Hong Kong
University of Science and Technology.



Contents

1 Introduction 1

2 Consistency in Databases 2
2.1 Transaction Consistency under Serializability . . . . ... .. ... ... ..... 2
2.2 Inconsistency between Transactions . . . . . . . ... ... . L L 0oL 3
2.3 Database State Consistency . . . . . . . . ... L oL 4
2.4 Data Epsilon Specifications: Inconsistency in the Database . . . . ... ... .. 5

3 Inconsistency Quantification and Propagation 5
3.1 Terminology . . . . .« . . o e 6
3.2 Quantifying Inconsistency in the Database . . . . . . .. ... ... ... .... 7
3.3 Controlling Inconsistency between ETs . . . . . ... ... . o L. 8
3.4 Design of Data and Transaction Epsilon Specifications . . . . .. ... ... ... 8

4 Invoking Consistency Restoration 9
4.1 Violation Prevention . . . . . . . .. . L
4.2 Detection and Recovery . . . . . . . . L L 10

5 Consistency Restoration Methods 10
5.1 Consistency Restoration Based on Classic Recovery . . . .. .. ... ... ... 11
5.2 ESR and Semantics-Based Compensation . . . ... ... .. ... ........ 13

5.2.1 Definitions . . . . . ..o e e 13

5.2.2  Consistency Restoration for Compensating Transactions . . . . . . .. .. 14

5.3 A Hybrid Approach . . . . . . ... 17
5.4 Independent Updates . . . . . . . . . .. L 18

6 Related Work 19

7 Conclusions 20

ii



1 Introduction

Asynchronous transaction processing [19] alleviates the limitations of serializability [3, 15] in
terms of performance (increased level of concurrency) and availability. A convenient foundation
for asynchronous transaction processing is epsilon serializability (ESR) [20, 17]. ESR allows for
limited inconsistency in transaction processing (TP), specified by application designers using
epsilon-transactions (ETSs).

In previous papers [23, 16], we have described the divergence control (DC) methods that
maintain ESR for ETs that are either read-only (Q*7) or consistent updates (U¥T) that are
serializable with respect to each other, i.e. no export of inconsistency. The other ESR papers [20,
17, 18, 19] also make the same assumption.

This paper introduces the general ETs (GFT) that both import and export inconsistency.
Therefore they may leave inconsistent data in the database. For this case, we need consis-
tency restoration (CR) methods. CR algorithms repair the inconsistency introduced by GFT,
In contrast to DC methods that allow only temporary inconsistency and prevent permanent
inconsistency by eliminating G¥7, CR methods allow bounded and repairable inconsistency to
occur.

Although this additional case might appear to be a straightforward extension of our previous
ESR work, it is in fact a significant departure from a classic TP framework. Traditionally, a
transaction is defined as a sequence of operations that transform a consistent database state
into another consistent state. Inconsistent database states are outside the classic transaction
model. Our contribution is using ESR to introduce the management of bounded inconsistency
into databases, including an informal notation and some consistency restoration algorithms.

The practical importance of our approach is underscored by the many applications that han-
dle inconsistency themselves. For example, scientific databases may have an error bar associated
with a particular value. Banks maintain escrow accounts of deposits and transfers done by mis-
take. The association between the value and its error bar, however, is known only implicitly
to the application. In proposing to manage the inconsistency by DBMS, we are trying to take
some of this burden away from the applications, making the database inconsistency management
more uniform and explicit.

In Section 2 we define inconsistency in databases in the context of ESR. Section 3, then,
summarizes how inconsistency can be propagated between applications in an ESR environment.
We outline some tradeoffs in the invocation of consistency restoration in Section 4. We then, in
Section 5, describe concrete, representative instances of consistency restoration methods based
on compensations and independent updates. Before the conclusions in Section 7, we discuss

related work in Section 6.



2 Consistency in Databases

Traditionally, atomic transactions are programs that preserve database consistency by transform
a consistent database state into another consistent state. Serializability, or other consistency
criteria, is used by database management systems (DBMS) to run concurrent transactions in a
correct way. In the database, data value consistency can be enforced with mechanisms such as
integrity constraints. Of course, a primary objective of transaction management is to control
the execution of transactions to ensure consistent updates to the permanent database state.
When inconsistency is allowed in databases, both transaction and database state inconsis-
tency must be considered. In this section, we define consistency criteria for each case. We also
introduce notation for representing inconsistency so that we can manage its propagation and

reduction.

2.1 Transaction Consistency under Serializability

Transaction consistency is defined as serializability. A database is a set of data items, which
support Read and Write operations. Read operations do not change data and Write operations
do. (Section 5.2 introduces additional semantics to database operations.) A transaction is a
sequence of operations that take a database from a consistent state to another. Transactions
may be updates that contain at least one Write or queries that are read-only.

Our terminology follows the standard model of conflict-based serializability [3]. Two oper-
ations are said to conflict if at least one of them is a Write, so we have read-write (R/W) and
write-write (W/W) conflicts. Each pair of conflicting operations establishes a dependency. A
history, or log, is a sequence of operations such as Reads and Writes. A serial log is a sequence
of operations composed of consecutive transactions. A log of transaction operations is said to
be serializable (SRlog) if it produces results equivalent to some serial log, in which the same
transactions execute sequentially, one at a time. Concurrency control methods that preserve SR
(e.g., two-phase locking) are algorithms that restrict the interleaving of operations in such a way
that only SRlogs are allowed.

Intuitively, in the standard model a log is shown to be an SRlog by rearranging its oper-
ations according to certain constraints imposed by R/W and W/W dependencies. The rules
of rearrangement are given by concrete concurrency control methods. A more formal way to
specify concurrency control uses serialization graph (SG), where each arc represents the precede
relation [3]. Transaction T} precedes T; when one of T7’s operations precedes and conflicts (R/W
or W/W) with T5’s operations. Since the Serializability Theorem [3] says that a log H is SR if
and only if its serialization graph SG(H ) is acyclic, an acyclic SG implies an SRlog.



ImpLimit = 0 | ImpLimit > 0

ExpLimit =0 | Transaction QFT

ExpLimit > 0 UET GFT

Table 1: Four Kinds of ETs

2.2 Inconsistency between Transactions

Informally, inconsistency between transactions is created by some execution order or history
that cannot be shown to be equivalent to a serial execution of transactions.

We quantify the inconsistency shared between non-SR transactions by using the concept
of an epsilon-transaction, denoted ET. An ET sequence of operations maintain database state
consistency when executed atomically. However, an ET also includes a specification of the
amount of inconsistency permitted when executed concurrently with other ETs. This per-ET
limit of allowed inconsistency is called e-specification, or €-spec for short.

Abstractly, €-spec is divided into two parts, imported inconsistency bound and ezported
inconsistency bound. There are many kinds of inconsistency and consequently €-spec may take
several forms, as shown in [23] and [2]. In this paper, we use concrete examples for illustration.
The methods can be generalized to other inconsistency specifications using techniques described
in [23]. For example, in an airline reservation system, the number of seats reserved could be
used as a unit of measure. Each ET has two parameters, ImpLimit that denotes the maximum
number of seats in non-SR conflicts that the ET can import from other ETs and FxpLimit
that denotes the maximum number seats in non-SR conflicts that the ET can export to other
ETs. For simplicity of presentation, our ImpLimit/ExpLimit €-spec combines all sources of
inconsistency.

The way in which ETs share inconsistency define which types of transaction processing
methods, i.e. divergence control and consistency restoration, need to be employed. ETs are
categorized into four types by the way they share inconsistency as shown in Table 1. Transactions
are the traditional serializable transactions which share no inconsistent information between
them, i.e. when I'mpLimit = 0 and ExpLimit = 0. Query ETs denoted by Q¥7 are read-
only ETs that can import or read inconsistent data, but that do not export or share their
result with other transactions. Consistent update ETs denoted by UFT are transactions that
can read consistent data (e.g. their ImpLimit = 0) and can export some inconsistency, up to
ExpLimit. For ImpLimit > 0 and ExpLimit > 0, a General ET, denoted by G¥T, may import

and export inconsistency at the same time. In this case the inconsistency in the database may



grow unboundedly. The focus of this paper is the management of inconsistency propagation and

GET

consistency restoration techniques when is introduced.

A formal characterization of ESR in [20] specifies the following intuitive properties:
o When all smport-limit and export-limit are zero, ESR histories are serializable histories.
o A set of transactions may not have a serializable history, but may satisfy ESR.

e That is, ESR may allow more operation orderings than serializability.

2.3 Database State Consistency

A database is a set of data items. Fach data item contains a value. A database state is the set of
all data values. A database state space is the set of all possible database states. Database state
consistency is defined as the adherence to the database state properties. For purposes of this
paper, we will limit our definition of a consistent database state space as one which adheres to
a cartesian space such as integers. (The algorithms work for a more general definition of metric
spaces [20], but we omit the definition here due to the lack of space.)

Many database state spaces are cartesian spaces, for example, dollar amounts in banking
databases and airplane seats in airline reservation systems. The important property of cartesian

spaces (and metric spaces) are three:

e They define a distance function between all pairs of states. For instance, the distance

between $50 and $120 is $70.

e The distance function is symmetric. E.g., the distance between $50 and $120 is $70 whether

it is a debit or credit.

¢ The distance function follows triangle inequality. For example, suppose the current account
balance is $50 and $70 is credited. The distance between the new state and the old state,
as we saw before is $70. Suppose $40 is now debited. The distance between the state after
the credit and the state after the debit is $40. The distance between the initial state of
the account ($50) and the one after both updates ($80) is $30. Since 70440 > 30, triangle

inequality is satisfied.

Usually the term “database state space” refers to the state on disk (implicitly, only the
committed values). We are not restricted to the database state on disk, however, since we also
consider the intermediate states of the database, including the contents in the main memory.
We will use the shorter term “data state” to include the intermediate states. Note that the
magnitude of an update can be measured by the distance between the old data item state and

the new data item state.



2.4 Data Epsilon Specifications: Inconsistency in the Database

For a DBMS to manage the inconsistency in the database, we need to introduce a notation
that quantifies the amount of inconsistency allowed for a particular data value and methods to
store this information on disk. In fact, depending on the semantics of inconsistency, different
notations may be used. In this paper, we extend and refine the same semantics of previous ESR
papers [23, 17, 16].

We assume each value in the database state may include an inconsistency bounded by a
fuzziness upper bound, an absolute limit that contains the “correct” value. The upper bound is
similar to an error bar, except that the upper bound does not imply any statistical significance
either within the bound or outside of bounds. In other words, we only know that the correct
value (or several possible correct values) are within the interval delimited by the current value
plus and minus the fuzziness upper bound.

Intuitively, database values that do not have any fuzziness continue to be represented by
single values. When a value acquires some fuzziness due to external directive (user definition)
or the result of a general ET (importing and exporting inconsistency), the DBMS supporting
ESR will maintain an upper bound on the amount of fuzziness introduced for each data item.
The fuzziness upper bound is then recorded in the database as part of the value.

Once we have defined the notation for capturing the data fuzziness in the database, we can
specify the amount of inconsistency allowed on each data object. This data epsilon specification
(denoted data-€-spec) of the amount of fuzziness allowed per each data object is analogous to
the transaction epsilon specification (denoted trans-€-spec, but originally called simply €-spec)
in the ETs. The data-€-spec is defined by the application designer or DBA, telling the DBMS
that a particular data object should not have its fuzziness exceed the amount specified. When
the actual fuzziness of a data object exceeds its data-€-spec, consistency restoration algorithms
(described in Section 5) are activated to reduce the value fuzziness. Or alternatively, the ET
causing the additional fuzziness may be aborted.

In the following sections, we discuss the various ways inconsistency is propagated by ETs
(the growth of the fuzziness bound) and algorithms for consistency restoration (the reduction

of the fuzziness bound).

3 Inconsistency Quantification and Propagation

GET

In this section, we quantify inconsistency between s and estimate the amount of inconsis-

tency passed between them.



3.1 Terminology

Inconsistency in a data item being shared by Q¥%'s and U¥Ts can be quantified using the notion
of write and read lock intervals [20]. Consider transactions t; ...t, where each of the ¢;’s updates
x. A transaction’s write lock interval is defined to be the time between when ¢; acquires a write
lock on x and when t; releases the write lock on z. A read lock interval is defined similarly.
A previous paper [20] shows how the intersection of these intervals from operations of different
transactions can be used to put bounds on the amount of inconsistency shared between queries
and update transactions.

With the introduction of GPT, the interaction between transactions which execute write
operations on the same uncommitted data needs to be quantified. To do this, we will use
a concrete example based in a multiple reader/single writer lock-based concurrency scheme;
note, however, that a similar analysis can be made for other synchronization methods, such as
timestamped schemes.

GET

In the general model including , an ET ¢; can read a non-permanent, and potentially

inconsistent, change to data item x of another ET ¢;. This can be implemented in a locking

GFT will execute an update on a database value directly

scheme as follows. We assume that no
that also has a non-permanent representation in memory. In other words, though G¥7s can ex-
ecute concurrently in a possibly inconsistent manner, they update only one copy of the database
value. This assumption ensures that we can compare the inconsistency shared between transac-
tions. However, we do not require 2-phase locking, nor, do we require that locks be held until
the transaction commits. Further, locks may be acquired and released by different transactions
in arbitrary order. For purposes of this discussion, we assume that transactions acquire locks
once in their lifetime, however, the following definitions could be extended to account for the
release and reacquisition of new locks within transaction boundaries. In this model, transactions
still have a write lock interval on & as defined in [20]; previous results regarding the bounds on
inconsistency between queries and update transactions remain valid.

Consider GETs named t; ...t, where each of the ;s can read and write to data item 2. In
this model, ¢; can write to z, release its lock, and ¢; can read ¢;’s result before ¢; has committed.
In turn, ?; can perform its own computation and write data item x. Let us define an ET’s
update interval with respect to z to be from the time it first acquires a lock on z to the time it
makes its changes to x permanent in the database, i.e. commit time. Note that an ET’s update
interval is different from its write interval. A write interval defines the time the ET holds a
lock on z whereas an update interval defines the time when an ET has made a non-permanent
change to z.

GET

Every , g, has a set of Concurrent General Transactions (denoted by caT(g)). For this



discussion, we consider UP7 to be a particular case of GFT, since a GFT becomes an UFT when
its ImpLimit = 0. A t; € caT(g) if its write interval intersects with ¢’s update interval. Note

that strict 2-phase lock-based realizations of serializability ensure that car(g) = 0.

3.2 Quantifying Inconsistency in the Database

GFET g, can be defined informally to be the distance

Inconsistency in a data item = updated by a
between the value of z after ¢ executes when caT(g) = () and the value of a after ¢ executes
when ¢GT(g) is not empty. This distance is bounded by the data item’s data-€-spec, which
defines the amount of inconsistency tolerable in the data value. Notice that there is no restriction
which requires all ETs in ¢GT(g)to have committed; there may be residual inconsistency in a
data item value that was written by an ET which later aborted.

Example 1. Consider a banking account aggregate example; an account summary, x, is

stored in million-dollar increments. The data-€-spec for a particular account is plus or minus

5 million. Transaction T} increments the value of the account by 1 million; Transaction T,

decrements the account by 4 million. In the GFT model, these transactions can be interleaved
as follows:
Ty .begin; T5.begin; Ty.updatelock(z);  := z 4+ 1; Ty.unlock(2); (1)
Ty.updatelock(z);  := « — 4; Ty.unlock(x); Th.abort; T3.commit. (2)

Given a consistent initial value of x = 5, then the resulting value of x is 2. Had T5 executed in
isolation and not read the value written by 77, the resulting value of & would be 1. Hence, the
residual inconsistency in « is 1 million dollars. Since this is within the data item’s data-€-spec,
the execution is ESR.

Example 2. If, on the other hand, 7} from Example 1 updates the account summary by
10, the result of x is 11. This value contains more inconsistency than the tolerable level will
allow; the distance between the result of 77 and T%’s concurrent execution and the result of T5’s
execution in isolation is 10 (from 11 — 1 = 10). According to our definition above, the current
value must be within data-€-spec of the result of the transaction’s execution in a consistent
history, e.g., = 1. Since 10 does not fall with the range of 145 (the data-€-spec) the execution
is not ESR.

One way to implement this model is to store data items as a tuple {C, 0, F, I} where C is
the current value or values of the data item, O is the original or most recently stored consistent
value for the item, F is the data-€-spec, and [ is current amount of inconsistency associated
with the data item. Note that I cannot be computed by taking the difference between the last

consistent value and the current value because updates to the current value, C', contain both



inconsistency and the actual update values. To pinpoint the inconsistency, it must be calculated
during the evaluation of whether the €-specs are being met and then stored separately. The last
known consistent value, O, may have been computed by some serializable transaction history
or, perhaps, it was the result of an independent update. Notice that whether or not an ET
satisfies its trans-€-spec requirement is based on a comparison between the ET and it’s caT(g).
The result of the consistent execution of every ET is not stored. O is most likely the result of a

ET from some previous time.

3.3 Controlling Inconsistency between ETs

The inconsistency tolerated by a GFT (trans-€-spec) is defined by two components: I'mpLimit
and FapLimit. These limits are compared to two accumulators (¢mport — inconsistency and
export—inconsistency) for the ET as it executes. Fach time the ET imports some inconsistency,
tmport — tnconststency is incremented. Similar action is taken when inconsistency is exported.
When an ET attempts to read and write data item z, the fuzziness of & is accumulated in the
ET’s inconsistency counters.

Without loss of generality, we use for illustration the case where accumulators are zero so we
can compare data inconsistency with trans-€-spec directly. In case the accumulators are not zero,
the comparison is done with the remaining tolerance (the difference between the accumulator
and the trans-€-spec). In our running example, if T3 from Example 1 has an ImpLimit = 3,
then interleaving with T; is ESR, because T} exports an inconsistency of 1 which is within 73’s
ImpLimit of 3. However, in Example 2, T} exports an inconsistency of 10 which exceeds T3’s
ImpLimit and hence is not ESR.

Similarly, the ExzpLimit of a G¥T must be checked before the release of its writelocks and
its changes are made visible to other transactions. Suppose that T from Example 1 has an
FExpLimit of 2. After T} concurrently updates the account by 1, T5’s execution exports an total
of inconsistency of 1 and hence satisfies its FaxpLetmat. If, on the other hand, T} updated the
account by 3, T5’s I'mpLimat is met, but its FaplLimit is exceeded and becomes non-ESR. T5’s

FaxpLimit restriction is more stringent than the data-€-spec of 5 for the account summary.

3.4 Design of Data and Transaction Epsilon Specifications

Transaction’s trans-€-spec and data item’s data-€-spec are analogous but independent concepts.
On the one hand, each ET may be able to tolerate more or less inconsistency for different
applications. ET trans-€-specs are used in the determination of ESR schedules, e.g., in the
granting and releasing of locks between GET. Also, an G¥1’s ExpLimit determines how much

inconsistency it can release into the current ET pool. This propagation between ETs can



continue until some ET commits its inconsistency to the database.

The data-€-specs, on the other hand, apply to the data item only and can be designed
in an even more independent fashion from application semantics than the ET bounds. The
constraints represented by data-€-spec are enforced when a transaction’s results are to be written
permanently to the database. The data-€-specs will then keep the inconsistency introduced into
the permanent database under control.

The design differences between trans-€-spec and data-€-spec is largely determined by the
application environment. For ETs that execute simple increment/decrement operations, the
FaxpLimait specification may be only slightly more constraining than, or perhaps even derived
from, the data-€-spec. As a plausible scenario, the ET FxpLimit can be omitted completely
and the transaction can rely completely on data-€-specs for inconsistency control. Other types
of transaction with more sophisticated operations such as branching, on the other hand, may

have an FxpLimait designed very differently from data-€-specs.

4 Invoking Consistency Restoration

Once a constraint is defined, an immediate question is what happens when the constraint is
violated. Divergence control algorithms [23, 16] either block or abort an E'T when its trans-€-spec
is violated. In a DBMS supporting ESR., when data-€-spec is violated, we invoke a consistency
restoration algorithm to reduce the data item’s fuzziness. In general, we can adopt either an
eager policy where data fuzziness is reduced by preventive consistency restoration or a lazy policy
where consistency restoration is invoked only when some data-€-spec is violated. The analysis
and evaluation of the trade-offs in the different policies is beyond the scope of this paper. We

only sketch some possibilities to illustrate the policy choices.

4.1 Violation Prevention

One approach to controlling the growth of data inconsistency is to prevent intolerable fuzziness
from occurring. For example, if an ET’s I'mpLimit and FxpLimit are about to be exceeded, a
preventive method would force the E'T to wait until the level of inconsistency is reduced through
the execution of a consistency restoration method, or abort. This preventive control on ETs
is a divergence control method for G¥Ts. If implemented in a lock manager, then a check for
ImpLimet violation before an ET acquired a read lock and a check for FaxpLimit before the
release of writelocks would have the desired effect. If either limit were exceeded, such an ET
would be forced to abort or wait until consistency had been restored.

Preventive measures can also be designed to keep the data-€-spec from being violated. In

this case, when a G'*7 tries to commit, we check to see if a data-€-spec will be exceeded by this



update. If a GFT, t;’s, update request violates a data item’s data-€-spec, then t; must either
abort or be delayed until the data item’s inconsistency has been reduced to a level that could
incur tis additional error. This reduction process could be invoked immediately when a GFT ¢
is denied update permission and could be tailored specifically to the amount needed to satisfy tis
request. Note that a sophisticated divergence control algorithm would recalculate the amount
of fuzziness caused by t; due to the reduced level of inconsistency in the data item.

Note that when a data item’s accumulated fuzziness is approaching its data-€-spec, all ¢;s
in ¢oT(g) may also be denied permission to commit unless their operations reduced the incon-
sistency in the database. Invoking a consistency restoration method every time a data value
approaches its data-€-spec can be expensive since t;s pending write request may bring the data’s
inconsistency level close to its data-€-spec again.

Alternatively, a consistency restoration process could be triggered only after a number
of GFTs have been denied. This phenomenon would indicate that the data item itself is carrying

an amount of inconsistency which is particularly close to its data-€-spec and GFT

are being
denied update permission even if they would only introduce a small amount of inconsistency
in isolation. When a consistency restoration method is invoked on behalf of several ETs, some
analysis can be performed to determine how much reduction is needed to execute the pending

requests; we leave the design of such optimizations as a topic for future work.

4.2 Detection and Recovery

If trans-€-specs are not enforced before GF7

s commit, there is potential for unbounded inconsis-
tency to be introduced into the permanent database. ETs or queries that read these values are
said to be unsafe [20]. If this is allowed, then the DBMS must detect the event by checking the
final data values against their data-€-specs. If a violation has occurred, the DBMS should invoke
a synchronous consistency restoration immediately. This will prevent other ETs or queries from
becoming unsafe by reading the violating ET’s results. Once an unsafe ET has executed, all of

its effects must be undone. This can be carried out by a classical crash recovery method. For

data integrity, the locks of the unsafe ET should not be released until the recovery is completed.

5 Consistency Restoration Methods

To restore consistency into the database we use Asynchronous Consistency Restoration (ACR)
methods. Just as DC methods reduce to classic concurrency control when trans-€-spec — 0,
ACR methods reduce to classic crash recovery under certain conditions. Consistency restoration
methods are invoked to return the permanent database state to one in which the data fuzziness

is under their data-€-specs. It is not a requirement of ACR methods to return a database to a

10



completely consistent (e.g. serializable) state and the database need only be within data-€-spec
of being consistent. This is in accordance with real world applications, where the database is
always somewhat inconsistent with the world because of operator errors or data obsolescence.
Any DBMS that does not guarantee this level of consistency allows a potentially uncontrollable
degeneration of data integrity.

ACR methods can take several forms. Generally speaking, they can be designed as an
independent process (from the basic transaction management) in a system. However, in some
cases, we can take advantage of the transaction management system to simplify its design. In
the following subsections, we give examples of (1) a synchronous consistency restoration based
on a classical recovery scheme, (2) some alternative asynchronous schemes based on a model
of compensating transactions, and, (3) a consistency restoration method based on independent

updates.

5.1 Consistency Restoration Based on Classic Recovery

A model of inconsistency repair based on Read/Write compensations (REDO and UNDO) [10]
consists of three steps. First, a specific operation or event is determined to have introduced some
inconsistency. In a classic TP environment, these events include site failures and erroneous TP.

In a GET

environment, this set of events is extended to include the invocation criteria described
in the previous section. Second, the offending operation is undone. Third, operations which
had to be undone as a side-effect during the second step must be redone. In a traditional
environment, all of the dependent transactions would have to be redone to bring the database
back into a consistent state. However, when G¥Ts are allowed, all dependent transactions may
not have to be redone since the database state does not have to be restored to a completely
consistent state.

Example 3. To illustrate this method, consider an inventory system in which there are
three ETs updating data item y; each of these ETs allow their trans-€-specs to be defined by
the data-€-spec. The first, T7, decrements the value of y by 200. The second, T3, multiplies the
value of y by 10. And the third, T3, decrements y by 2500. In the G*T model, these ETs can

be interleaved as follows:

Ty .begin; T5.begin; Ts.begin; Th.writelock(z ); 11 1 y = y — 200; 3

Ty.unlock(y); Ta.begin; Th.writelock(y); T3 : y = y x 10; 4
Ty.unlock(y); Ts.writelock(y); 15 1 y = y — 2500; Ts.unlock(y); 5

6

Ty .commit; T5.commit; T5.commit.

(3)
(4)
(5)
(6)

If y has an initial consistent value of 1000 and a data-€-spec of 2500, the accumulated

11



inconsistency would become too high with T5’s update operation. The inconsistency is calculated
by the ACR as follows. First, the inconsistency from the concurrent execution of Ty and T is
calculated to be 2000: the distance between the database state if T, had executed in isolation
(y = 10,000) and the database state with its concurrent G*T, Ty (y = 8000). This value is
stored by the ACR for future reference. Similarly, the inconsistency of T3 is determined to
be 7000: the absolute value of the distance between the database state if T3 had executed in
isolation (y = —1500) and the value of the database with both transactions, 7} and T3, in its cGT
(y = 5500).

Suppose that a detect-and-recover strategy has been adopted. Then, some committed trans-
action must be undone to bring the inconsistency of the system within data-€-specs. The most
straightforward selection for a victim is the violating transaction, T5. In this case, an operation
level compensation for T5 which increments the value of y by 2500 is applied. Assuming the
compensation is executed synchronously, the database state is returned to the values produced
by 1.

The selection of T5 is a more wise choice from a consistency restoration perspective, however,
since undoing its effects leaves the database with an inconsistency level markedly lower than
when undoing the execution of T5. If T3’s effects are undone, then the inconsistency for the
system is recalculated based on the execution of T} and T5. Such a history leaves the value of
(y = —1700) and the level of inconsistency at 200: the distance between the absolute value of
the database if 75 had executed in isolation (y = —1500) and the value of the database state
with the execution of it’s car, 11 (y = —1700). There is, however, more cost associated with
the the undoing of T5 than of T5 since T3’s operation compensation does not commute [12] with
the operations of T5. To undo the effects of T completely, we must first undo 75’s dependent
transaction, T5, by incrementing the value of y by 2500, dividing the value of y by 10 (the
compensation for T3) and lastly redoing 7T5. In the next section, we outline how ESR can be
used to reduce this cost further. The tradeoff between the cost of such UNDO/REDO operations
and the increased concurrency gained by optimizing the reduction of inconsistency is a topic for
future work.

As a last brief point, consider this example under a preventive approach. In this scenario,
the appropriate data-€-specs would be checked before updates were committed to the database.
The same inconsistency levels would be calculated, however. T3 would be aborted or delayed

until the ACR had reduced the inconsistency by undoing the effects of T5.
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5.2 ESR and Semantics-Based Compensation

Semantics-based compensation transaction management has been proposed as a way to reduce
the rollback overhead of sophisticated update operations. Sagas [8] and Compensating transac-
tions [12] are good examples. There are at least two ways that semantic-based compensation
strategies can be extended effectively with ESR to allow more concurrency and reduce rollback
costs. In one approach, ESR limits can be used to determine whether a compensation is legal.
In the second approach, semantics-based compensating transactions can be created specifically
to reduce inconsistency in the data state. Before we describe each of these methods in turn, we

review the basic concepts of semantics-based compensation.

5.2.1 Definitions

To simplify the presentation we use the notation of Korth et al. [12] to describe Compensating
Transactions. This model is developed to allow transactions to share uncommitted updates and
and to allow the effects of a committed transaction to be undone without causing cascading
aborts or redoing of entire dependent transaction histories. When the updates of transaction
Ti are read by some other transaction T5, T} is said to have been externalized. If we want to
undo the effects of 77, a Compensating Transaction CT7 is run. 77 is called a compensated-for
transaction and Ty a dependent transaction with respect to Ti. Dependent transactions, denoted
dep(T), define a similar concept to the car’s in the GFT model.

The goal of this recovery paradigm is to undo the compensated-for transaction, T', by execut-
ing a compensating transaction, C'T, but leave the effects of the dependent transactions dep(T")
intact. An important definition is that of soundness. (As usual [3], a history is a sequence of
database operations.) If X is the history of transactions 7', CT', and their set of dependent
transactions dep(T'), and Y is some history of only the dependent transactions dep(7'), then X
is said to be sound if for the same initial state S, X(.5) = Y'(.9). In other words, in a sound his-
tory, C'T" compensates for T' cleanly, leaving the effects of dep(T") intact. Furthermore, it should
be noted that all that this means is that a consistent state is established based on semantic
information. This state may not be identical to the state the would have been reached had the
compensated-for transaction, 77, had never taken place. It can be shown that if C'T" commutes
with every transaction in dep(T") then the history is sound.

This definition can be further generalized to include weak forms of compensation soundness.
The history X is sound with respect to a reflexive relation R (in short R-sound), if there exists
a history Y of dep(T') such that Y(5) R X(S). For the case of R being equality, the general

definition reduces to the “regular” soundness.
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5.2.2 Consistency Restoration for Compensating Transactions

A natural extension to the model of compensating transactions is to use ESR specifications as
a criteria for soundness. In ESR-based TP systems, the definition of inconsistency specification
implies a monotonic distance metric underlying an €-spec. So, our focus is more narrow than the
predicate-based generality of Korth’s reflexive relations. We are interested in a relation called
“Within Bound”, denoted by W(B), such that Y (.5) W(B) X(5) if the database state Y (.5)
is within the distance bound B of state X () in the distance metric. If the distance metric is
isotropic (as in airline and bank examples and all real-world applications that have cartesian or
metric database state spaces due to the symmetry property) then the relation W(B) is reflexive.
The result is that W(B)-sound histories are ESR.

In this method, the basic transaction management system is compensating transactions [12];
an application programmer is expected to write compensating transactions for any transaction
in the system. The role of the ACR method is to restore consistency within data-€-specs if
a compensating transaction, C'T’, does not commute within trans-€-spec boundaries with the
dependent transactions of 1" (i.e., the relation W(B)). The event that invokes the ACR is the
violation of trans-€-spec by a compensating transaction, not the original transaction T for which
C'T was created. This ACR method is designed to restore consistency for compensating trans-
actions, but compensating transactions are not the implementation strategy of the consistency
restoration process itself.

An informal description of this ACR method is that during the processing of a compensation
ET, it goes through the history checking for violations of the commutativity property. Whenever
a violation is spotted, the method accumulates the update amount for all the involved ETs. If
the trans-€-specs are not exceeded, then the compensation remains sound and the algorithm
continues.

Example 4. Consider a variation of Example 3 in which each of the transactions Ty, T3,

and T5 has committed after each of their respective operations. The resulting history is:

Ty .begin; T.begin; Ts.begin; Th.writelock(y); 11 : y = y — 200; Th.commit(y); (7)
Ty.writelock(y); T3 - y = y x 10; Ta.commit(y); (8)
Ts.writelock(y); 15 1 y = y — 2500; T5.commit(y). (9)

This history is clearly serializable. Now, suppose that 15 is determined to be erroneous and
must be compensated for. According to [12], T3 can be compensated for after its changes have
been made permanent to the database. T3’s compensation, C'T5, divides the value of y by 10.
Let us further suppose that there is a QFT, Ty, to be executed with a I'mpLimit < 2500.

We can see that though CT, does not commute with dep(7'), this history is ESR for the
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boundary conditions placed by Q¥ T,. In this case, the ACR must calculate the distance
between the absolute value of the data state given the history X (5) : T, dep(T), and CT (y =
550) and the absolute value of the distance function for the history Y (.5) = dep(T)(y = —1700)
for a total inconsistency of 2250. Since 2250 < 2500, the I'mpLimit of Ty, the compensation is
ESR.

When the W(B) relation is violated, there are at least four different actions that an ACR
method can take to reduce the inconsistency in a compensating transaction system. The first
solution is to abort the violating compensating ET. Though Compensating Transactions are
generally defined to be non-abortable [12], we think this is sometimes a viable choice. Consis-
tency for Compensating Transactions is defined by the soundness of the relation between X (.5)
and Y(5). Since the definition of X (.5) requires committed 7'/CT pairs, compensating trans-
actions must always commit. However, this model can be relaxed in light of ESR since residual
inconsistency is allowed and controlled.

Note that the residual inconsistency from an aborted C'I' can be calculated separately from
the inconsistency managed by the W(B) relation. The inconsistency managed by the W (B)
relation represents the side-effects of a non-commutative C'T" on the dependent transactions
of T" whereas the inconsistency created by the abort of a compensating transaction (and not
the original transaction, T) is captured by the cGT definition. This is because the transaction
for which a CT was created is considered erroneous and must be compensated for. If this
compensation is aborted, the original transaction is still erroneous and its effects on the data
state must be counted towards the overall inconsistency in the data state (as defined by our GF7
model). The W(B) relation really only applies to CT’s, not T's. Although allowing C'T’s to abort
may seem intractable in classic transaction theory, it is consistent with real-world databases
where some amount of residual permanent inconsistency (e.g., due to data entry errors) is
inevitable.

The second solution is to abort the compensating transaction and retroactively UNDQO the
original committed ET. Here we depart from the compensating transaction model as defined
by Korth et. al. [12]. In their model of compensation, one of the basic purposes of C'T is to
provide a way to undo the effects of a committed transaction, particularly for those cases where
a transaction cannot be “physically” undone. Hence, undoing of the original committed ET
is not formally part of their model. In our metric space model, however, original committed
transactions can be undone. Our model also supports the relaxation of the classical ACID prop-
erties by allowing committed transactions to be undone. This UNDO operation on the original
transaction could result in cascading UNDO/REDOs for committed dependent transactions and

cascading aborts for dependent transactions in progress, depending on the soundness of the re-
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sulting history. Although the worst case of redoing the entire history is costly, the number of

transactions affected can be smaller in a GEL

environment, since only the ETs with exceeded
bounds must be be undone. Furthermore, as Example 3 shows, some optimizations may be
possible to prevent the UNDO/REDO of an entire history.

The third solution is to abort transactions in dep(1') that do not commute with the compen-
sating transaction, C'I" until the level of inconsistency can be brought within the W (B) relation.
Similar to solution 2, this approach can be costly if the number of aborts is high; in the worst
case, cascading aborts of an entire history may occur. However, again, because some residual
inconsistency is tolerable in a GFT model, fewer aborts may be required if optimizations are
performed and data-€-specs are met.

In the fourth solution, the ACR method processes the entire history to the end, finding
all transactions which have bounds violations as a result of the C'T" and reports the result to
the compensation transaction. Based on this information, the compensation transaction can
determine the magnitude of the total conflicts with it before choosing one of the first three
solutions. For example, cascaded aborts may be preferable for a small number of aborts, but
if dep(T') is large then a large number of aborts may force the compensation to stop. On the
other hand, if the abort of the compensating transaction still leaves more residual inconsistency
in the data state than the data-€-spec allows, undoing of the original transaction or aborting
transactions in dep(1’) may be the only alternative.

Example 5. Reconsider Example 4 if ¢)’s I'mpLimit = 2000 for a concrete example of how
an W(B) violations can be processed. In this case, C'T; violates the W(B) relation, X(5) is
unsound, and the I'mpLimat of Q?T Ty, is exceeded. We reconsider each of the restoration
options just described.

Alternative 1 is not a viable solution in this particular instance, since the residual inconsis-
tency of Ty exceeds the I'mpLimit of Q7. ;From our discussion above, if C'T, is aborted, then
Ty’s updates are considered as exported inconsistency. The value of the database state without
T3’s execution, e.g. the history {7}, 15, T4} leaves y = -1700. The absolute value of the database
state from the history {11,7%, 15, T4} (and not C'Ty) is 5500. The absolute value of the distance
between these two states is 7200 > I'mpLimit of Q¥T, T).

Alternative 2 does provide a sound solution. The ACR aborts C'Ty and undoes the original
T5. This also requires the REDO of T5. This solution reduces to a classic recovery mechanism.

Alternative 3 also provides a sound solution. The ACR undoes the dependent transaction
T3 with which C'T does not commute and then resumes the execution of C'T5. In this case, the
value of y is incremented by 2500 and then C'Ty can be executed. The resulting inconsistency

is 0. A solution which allows other transactions which otherwise have normal execution to be
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undone may, of course, strike terror in the hearts of classical TP researchers, but it in practical
processing environments higher priority transactions are not uncommon.

Finally, in the fourth alternative, the ACR reports to CT, that QFT, Ty, has had a bounds
violation. Had there been other transactions with bounds violations in the system, they would
be reported as well. The programmer of C'T; can determine which of the viable alternatives, i.e.
the second or third solutions, is most appropriate for the particular environment and proceed
accordingly.

Note that because our model explicitly defines inconsistency and checks for places that it
can arise. This type of analysis is facilitated by ESR because it is semantics-independent. This
does not prevent ESR from incorporating the explicit specification of semantics-dependent in-
consistency. In contrast, sagas [8] as proposed are implicitly dependent on application semantics

for the maintenance of database consistency.

5.3 A Hybrid Approach

In a third ACR method, we can create a hybrid of the method based on classic recovery from
Section 5.1 and the method for compensating transactions described in Section 5.2. In this
hybrid model, we use compensating transactions as the basic TP paradigm. However, rather
than simply checking for consistency violations from the execution of C'I's, we also allow original

transaction’s to execute as GET

s. Now, there are two classes of transactions that can introduce
inconsistency into the database: Ts and C'T's (where T's and CT's are not necessarily matched
pairs.)

We can take advantage of the basic compensating transaction model to create ACR method
for the original transactions, T, in the system. In this scenario, the ACR generates compen-
sating transactions solely for the purpose of consistency restoration when a G*7 exceeds some
boundary. These compensating transactions must also satisfy W(B) as defined above. Note
that in this scenario, the C'T’s generated by the ACR are just one special type of compensating
transactions in the system; they execute concurrently with other transactions and C'T's coded by
the application’s programmer. Note that we can treat all compensating transactions uniformly
without giving special care to those created to reduce inconsistency by the ACR persay. At
first this may not appear to be the case since in we do allow CT’s to be aborted. But, since
we only allow this step when ESR bounds are maintained, we are guaranteed that either the
consistency restoring C'I" will execute, or some other method will be implemented to reduce
the inconsistency. In the worst case, cascading aborts or UNDO/REDO operations would be
required.

Example 6. Building on Examples 3 and 4, we can illustrate how this method operates.
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Suppose we have the same three transactions which share uncommitted data as in Example 3.
In addition, we extend the history with the Q¥7 with I'mpLimit < 2500 from Example 4 to
execute after T5. Recall from Example 3 that with the execution of T3, the inconsistency in the
database exceeds the data-€-spec and it was shown that removing the effects of T, was a more
effective consistency restoration choice.

In this hybrid model, the ACR method spawns, into the regular transaction stream, a com-
pensating transaction, C'T5, that contains the compensation operation for 75, i.e., the division
of y by 10. Given the same initial value of y, the execution of {71,715, T3, CTy} results in y =
550. The execution of {11, T5} leaves y = -1700. The absolute value of the distance between the
two states is 2250 which is within the I'mpLimit of Q?T Ty. Hence, in this example, the ACR
is able to reduce the inconsistency in the data state to within a tolerable range by piggybacking

on the transaction model itself.

5.4 Independent Updates

Besides compensations, another method of consistency restoration is independent updates. In
these cases, an independent source of consistent data is available. From time to time the consis-
tent data is used to overwrite potentially inconsistent data. The first important example of this
method is the propagation of replica updates in primary copy methods, such as Grapevine [5].
Since all the updates are performed first in the primary copy, the secondary copies may be
allowed to diverge (within bounds specified by each distributed ET). A similar situation occurs
with bank accounts. The bank database is processed in batch mode at night, at which time the
updates are made. Although, each branch may log some local operations into the local replica
(usually on paper), the official copy is the central database. Specific examples of bounded incon-
sistency in replicated systems are described in a previous paper applying ESR to asynchronous
replication [17].

Another class of applications that use independent updates are the signal acquisition systems
that receive fresh data every so often, such as radars or satellite photos. Even if the current
data is inconsistent, a consistent version is expected to arrive at certain time intervals to restore
consistency. In these embedded systems, inconsistent data (e.g., from different versions) may
be used for obtaining preliminary results while the system waits for the next fresh signal. This
is particularly useful for imprecise computations where partial results or order-of-magnitude
results are potentially useful.

One way to use independent updates is to emulate the bank practice. An update is made
locally and immediately, but the update is sent to the central site in a reliable message [4]. The

update in the central site satisfies the necessary rigor in consistency constraints, for example,
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serializability. Periodically the central site propagates the official updates known to be consistent
to the local sites. This is the way banks clear checks and maintain account databases. We can use
ESR to implement an ATM’s daily limit, for example. This way, any losses due to inconsistency

will be limited.

6 Related Work

Besides ESR, notions of correctness weaker than SR have been proposed. Gray’s different degrees
of consistency [9], offers an example of a coarse spectrum of consistency. Degree 3 consistency is
equivalent to SR, but degree 2 consistency offers higher concurrency for queries— at the cost of
reduced consistency— since updates are allowed to “dirty” data already read by queries. Degree
2 is reportedly used at many DB2 installations, underscoring the importance of integrating
inconsistency specifications. However, there are two limitations in this approach. First, degree
2 is peculiar to a particular concurrency control algorithm, namely two-phase locking. Second,
because no bounds are set on the total amount of inconsistency, degree 2 queries will become
less accurate as a system grows larger. Finally, ESR offers a much finer granularity control than
the degrees of consistency.

Quasi-serializability (QSR) has been proposed [6] as an abstract correctness criterion for a
multidatabase environment. QSR specifies that local databases and global schedulers should
maintain SR, but isolates a global scheduler from the local schedulers. QSR is well-defined and
easy to implement. However, its applicability is limited in the trade-off between consistency and
performance its global serializability requirement. At the same time, unbounded inconsistency
may be found when we consider the global history and the local histories together.

Garcia-Molina et al. [8] proposed sagas that use semantic atomicity [7] which rely on trans-
action semantics to define correctness. Sagas differ from SR because an unlimited amount
of inconsistency (revealed before a compensation) may propagate and persist in the database.
Levy et al [14] defined relazed atomicity to model non-atomic transactions similar to sagas.
Non-atomic transactions are composed of steps, which may be a forward step or a recovery step.
They also describe the Polarized Protocol to implement Relaxed Atomicity. The main differ-
ence between ESR and these notions of correctness is that ESR is independent of application
semantics. ESR also allows a larger number of execution histories. The Polarized Protocol,
for example, does not allow global state from an incomplete transaction to be seen by other
transactions.

An implementation issue in asynchronous TP is to guarantee uniform outcome of distributed
transactions running asynchronously. Unilateral Commit [11] is a protocol that uses reliable

message transmission to guarantee that a uniform decision is correctly carried out. Optimistic
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Commit [13] is a protocol that uses Compensating Transactions [12] to undo the effects of partial
results to reach a uniform decision. This is but one aspect of the autonomous TP problem.

Sheth et al [21] use the notion of eventual consistency to define current copy serializability
(CPSR) for replicated data. Each update is done on a current copy and asynchronously propa-
gated to the other replicas. Users have control over when the updates are propagated, and the
scheme reduces to synchronous replication when the propagation delay is set to zero. Eventual
consistency and ESR both provide asynchronous processing with an adjustable inconsistency
tolerance. The difference is that ESR is defined for general asynchronous TP with families of
ADC and ACR methods.

An example of asynchronous replication methods is Quasi-Copies [1]. Different inconsistency
constraints such as time delay can be specified by the user and the system will propagate updates
to maintain copy consistency accordingly. ESR can be used to model ETs reading quasi-copies,
since the inconsistency specifications are similar. Beyond ESR’s usefulness in asynchronous
replication [17], we can ESR in asynchronous TP.

Data-value Partitioning [22] has been proposed as a method to for increasing distributed
TP system availability and autonomy by explicitly separating parts of the value of a data item
into different sites. Since the different parts may operate asynchronously even during network
partitions, Data-value Partitioning increases autonomy because of its non-blocking character.
The basic idea is to allow more parallel processing by dividing the data item value. However,
this makes reading a data value non-trivial. ESR can be used in the modeling and management

of partitioned data-values.

7 Conclusions

Classic transaction models do not include inconsistency, since a transaction is defined as a
program that transforms a consistent database state into another consistent state. In this
paper, we have used ESR to extend the transaction model to include inconsistency. To achieve
this, we defined data-€-spec for data items in analogy to the trans-€-spec in epsilon transactions
(ETs). Each data item may contain some inconsistency (stored with the value and managed by
the DBMS), limited by its data-€-spec.

When ETs access fuzzy data, the data fuzziness is accumulated by the ET. If the fuzziness
is tolerable (compared to trans-€-spec) then the ET commits. Otherwise, the ET may wait,
abort, or trigger a consistency restoration (CR) method. We described several CR methods in
the paper, with different trade-offs in terms of amount of information that need to be stored
and amount of processing needed to bring the data fuzziness to below its data-€-spec levels.

By no means have we exhausted the important topic of inconsistency management in data-
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bases. For major application areas such as scientific data management a more refined modeling

of inconsistency is needed to make this service attractive to users. Much work remains to be

done. Starting from the definition of inconsistency (in terms of database state space geometric

properties), through the design of divergence control and consistency restoration, ending with

the policies to invoke consistency restoration, we need to formalize the notation and describe

the algorithms in more detail. But we believe that we have introduced the basis for this line of

work in this paper.
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