
Asynchronous Consistency Restoration

under Epsilon Serializability

Pamela Drew

Dept� of Computer Science
Hong Kong University of
Science and Technology

Clear Water Bay� Kowloon� Hong Kong
email� pam�uxmail�ust�hk

Calton Pu

Dept� of Computer Science and Engineering
Oregon Graduate Institute

���		 N�W� von Neumann Dr�
Beaverton� OR �
		������
email� calton�cse�ogi�edu

Technical Report No� OGI�CSE����		
�

Abstract

Many database applications tolerate a certain amount of data inconsistency to gain increased
concurrent processing and to accommodate real�world constraints� This paper describes how
inconsistency can be modeled in a database and managed with consistency restoration methods�
The correctness criterion for the maintenance of inconsistency is epsilon serializability �ESR�� An
informal notation to characterize inconsistency and several consistency restoration techniques
are described�

Index terms� epsilon�serializability� divergence control� serializability� crash recovery� con�
sistency restoration� asynchronous transaction processing�

�Also available as technical report No� HKUST�CS������� Department of Computer Science� Hong Kong

University of Science and Technology�

Contents

� Introduction �

� Consistency in Databases �

��� Transaction Consistency under Serializability �

��� Inconsistency between Transactions �

��� Database State Consistency �

��
 Data Epsilon Speci�cations� Inconsistency in the Database � � � � � � � � � � � � �

� Inconsistency Quanti�cation and Propagation �

��� Terminology �

��� Quantifying Inconsistency in the Database �

��� Controlling Inconsistency between ETs �

��
 Design of Data and Transaction Epsilon Speci�cations � � � � � � � � � � � � � � � �

� Invoking Consistency Restoration 	

�� Violation Prevention �

�� Detection and Recovery �	

� Consistency Restoration Methods �

��� Consistency Restoration Based on Classic Recovery � � � � � � � � � � � � � � � � ��

��� ESR and Semantics�Based Compensation ��

����� De�nitions ��

����� Consistency Restoration for Compensating Transactions � � � � � � � � � � �

��� A Hybrid Approach �

��
 Independent Updates ��

� Related Work �	

� Conclusions �

ii

� Introduction

Asynchronous transaction processing ���� alleviates the limitations of serializability ��� ��� in

terms of performance �increased level of concurrency� and availability� A convenient foundation

for asynchronous transaction processing is epsilon serializability �ESR� ��	� �
�� ESR allows for

limited inconsistency in transaction processing �TP�� speci�ed by application designers using

epsilon�transactions �ETs��

In previous papers ���� ���� we have described the divergence control �DC� methods that

maintain ESR for ETs that are either read�only �QET � or consistent updates �UET � that are

serializable with respect to each other� i�e� no export of inconsistency� The other ESR papers ��	�

�
� ��� ��� also make the same assumption�

This paper introduces the general ETs �GET � that both import and export inconsistency�

Therefore they may leave inconsistent data in the database� For this case� we need consis�

tency restoration �CR� methods� CR algorithms repair the inconsistency introduced by GET �

In contrast to DC methods that allow only temporary inconsistency and prevent permanent

inconsistency by eliminating GET � CR methods allow bounded and repairable inconsistency to

occur�

Although this additional case might appear to be a straightforward extension of our previous

ESR work� it is in fact a signi�cant departure from a classic TP framework� Traditionally� a

transaction is de�ned as a sequence of operations that transform a consistent database state

into another consistent state� Inconsistent database states are outside the classic transaction

model� Our contribution is using ESR to introduce the management of bounded inconsistency

into databases� including an informal notation and some consistency restoration algorithms�

The practical importance of our approach is underscored by the many applications that han�

dle inconsistency themselves� For example� scienti�c databases may have an error bar associated

with a particular value� Banks maintain escrow accounts of deposits and transfers done by mis�

take� The association between the value and its error bar� however� is known only implicitly

to the application� In proposing to manage the inconsistency by DBMS� we are trying to take

some of this burden away from the applications� making the database inconsistency management

more uniform and explicit�

In Section � we de�ne inconsistency in databases in the context of ESR� Section �� then�

summarizes how inconsistency can be propagated between applications in an ESR environment�

We outline some tradeo�s in the invocation of consistency restoration in Section
� We then� in

Section �� describe concrete� representative instances of consistency restoration methods based

on compensations and independent updates� Before the conclusions in Section
� we discuss

related work in Section ��

�

� Consistency in Databases

Traditionally� atomic transactions are programs that preserve database consistency by transform

a consistent database state into another consistent state� Serializability� or other consistency

criteria� is used by database management systems �DBMS� to run concurrent transactions in a

correct way� In the database� data value consistency can be enforced with mechanisms such as

integrity constraints� Of course� a primary objective of transaction management is to control

the execution of transactions to ensure consistent updates to the permanent database state�

When inconsistency is allowed in databases� both transaction and database state inconsis�

tency must be considered� In this section� we de�ne consistency criteria for each case� We also

introduce notation for representing inconsistency so that we can manage its propagation and

reduction�

��� Transaction Consistency under Serializability

Transaction consistency is de�ned as serializability� A database is a set of data items� which

support Read and Write operations� Read operations do not change data and Write operations

do� �Section ��� introduces additional semantics to database operations�� A transaction is a

sequence of operations that take a database from a consistent state to another� Transactions

may be updates that contain at least one Write or queries that are read�only�

Our terminology follows the standard model of con�ict�based serializability ���� Two oper�

ations are said to con�ict if at least one of them is a Write� so we have read�write �R�W� and

write�write �W�W� con�icts� Each pair of con�icting operations establishes a dependency� A

history� or log� is a sequence of operations such as Reads and Writes� A serial log is a sequence

of operations composed of consecutive transactions� A log of transaction operations is said to

be serializable �SRlog� if it produces results equivalent to some serial log� in which the same

transactions execute sequentially� one at a time� Concurrency control methods that preserve SR

�e�g�� two�phase locking� are algorithms that restrict the interleaving of operations in such a way

that only SRlogs are allowed�

Intuitively� in the standard model a log is shown to be an SRlog by rearranging its oper�

ations according to certain constraints imposed by R�W and W�W dependencies� The rules

of rearrangement are given by concrete concurrency control methods� A more formal way to

specify concurrency control uses serialization graph �SG�� where each arc represents the precede

relation ���� Transaction T� precedes T� when one of T��s operations precedes and con�icts �R�W

or W�W� with T��s operations� Since the Serializability Theorem ��� says that a log H is SR if

and only if its serialization graph SG�H� is acyclic� an acyclic SG implies an SRlog�

�

ImpLimit � � ImpLimit � �

ExpLimit � � Transaction QET

ExpLimit � � UET GET

Table �� Four Kinds of ETs

��� Inconsistency between Transactions

Informally� inconsistency between transactions is created by some execution order or history

that cannot be shown to be equivalent to a serial execution of transactions�

We quantify the inconsistency shared between non�SR transactions by using the concept

of an epsilon�transaction� denoted ET� An ET sequence of operations maintain database state

consistency when executed atomically� However� an ET also includes a speci�cation of the

amount of inconsistency permitted when executed concurrently with other ETs� This per�ET

limit of allowed inconsistency is called ��speci�cation� or ��spec for short�

Abstractly� ��spec is divided into two parts� imported inconsistency bound and exported

inconsistency bound� There are many kinds of inconsistency and consequently ��spec may take

several forms� as shown in ���� and ���� In this paper� we use concrete examples for illustration�

The methods can be generalized to other inconsistency speci�cations using techniques described

in ����� For example� in an airline reservation system� the number of seats reserved could be

used as a unit of measure� Each ET has two parameters� ImpLimit that denotes the maximum

number of seats in non�SR con�icts that the ET can import from other ETs and ExpLimit

that denotes the maximum number seats in non�SR con�icts that the ET can export to other

ETs� For simplicity of presentation� our ImpLimit�ExpLimit ��spec combines all sources of

inconsistency�

The way in which ETs share inconsistency de�ne which types of transaction processing

methods� i�e� divergence control and consistency restoration� need to be employed� ETs are

categorized into four types by the way they share inconsistency as shown in Table �� Transactions

are the traditional serializable transactions which share no inconsistent information between

them� i�e� when ImpLimit � 	 and ExpLimit � 	� Query ETs denoted by QET are read�

only ETs that can import or read inconsistent data� but that do not export or share their

result with other transactions� Consistent update ETs denoted by UET are transactions that

can read consistent data �e�g� their ImpLimit � 	� and can export some inconsistency� up to

ExpLimit� For ImpLimit � 	 and ExpLimit � 	� a General ET� denoted by GET � may import

and export inconsistency at the same time� In this case the inconsistency in the database may

�

grow unboundedly� The focus of this paper is the management of inconsistency propagation and

consistency restoration techniques when GET is introduced�

A formal characterization of ESR in ��	� speci�es the following intuitive properties�

� When all import�limit and export�limit are zero� ESR histories are serializable histories�

� A set of transactions may not have a serializable history� but may satisfy ESR�

� That is� ESR may allow more operation orderings than serializability�

��� Database State Consistency

A database is a set of data items� Each data item contains a value� A database state is the set of

all data values� A database state space is the set of all possible database states� Database state

consistency is de�ned as the adherence to the database state properties� For purposes of this

paper� we will limit our de�nition of a consistent database state space as one which adheres to

a cartesian space such as integers� �The algorithms work for a more general de�nition of metric

spaces ��	�� but we omit the de�nition here due to the lack of space��

Many database state spaces are cartesian spaces� for example� dollar amounts in banking

databases and airplane seats in airline reservation systems� The important property of cartesian

spaces �and metric spaces� are three�

� They de�ne a distance function between all pairs of states� For instance� the distance

between ��	 and ���	 is �
	�

� The distance function is symmetric� E�g�� the distance between ��	 and ���	 is �
	 whether

it is a debit or credit�

� The distance function follows triangle inequality� For example� suppose the current account

balance is ��	 and �
	 is credited� The distance between the new state and the old state�

as we saw before is �
	� Suppose �
	 is now debited� The distance between the state after

the credit and the state after the debit is �
	� The distance between the initial state of

the account ���	� and the one after both updates ���	� is ��	� Since
	�
	 � �	� triangle

inequality is satis�ed�

Usually the term �database state space� refers to the state on disk �implicitly� only the

committed values�� We are not restricted to the database state on disk� however� since we also

consider the intermediate states of the database� including the contents in the main memory�

We will use the shorter term �data state� to include the intermediate states� Note that the

magnitude of an update can be measured by the distance between the old data item state and

the new data item state�

��� Data Epsilon Speci�cations� Inconsistency in the Database

For a DBMS to manage the inconsistency in the database� we need to introduce a notation

that quanti�es the amount of inconsistency allowed for a particular data value and methods to

store this information on disk� In fact� depending on the semantics of inconsistency� di�erent

notations may be used� In this paper� we extend and re�ne the same semantics of previous ESR

papers ���� �
� ����

We assume each value in the database state may include an inconsistency bounded by a

fuzziness upper bound� an absolute limit that contains the �correct� value� The upper bound is

similar to an error bar� except that the upper bound does not imply any statistical signi�cance

either within the bound or outside of bounds� In other words� we only know that the correct

value �or several possible correct values� are within the interval delimited by the current value

plus and minus the fuzziness upper bound�

Intuitively� database values that do not have any fuzziness continue to be represented by

single values� When a value acquires some fuzziness due to external directive �user de�nition�

or the result of a general ET �importing and exporting inconsistency�� the DBMS supporting

ESR will maintain an upper bound on the amount of fuzziness introduced for each data item�

The fuzziness upper bound is then recorded in the database as part of the value�

Once we have de�ned the notation for capturing the data fuzziness in the database� we can

specify the amount of inconsistency allowed on each data object� This data epsilon speci�cation

�denoted data���spec� of the amount of fuzziness allowed per each data object is analogous to

the transaction epsilon speci�cation �denoted trans���spec� but originally called simply ��spec�

in the ETs� The data���spec is de�ned by the application designer or DBA� telling the DBMS

that a particular data object should not have its fuzziness exceed the amount speci�ed� When

the actual fuzziness of a data object exceeds its data���spec� consistency restoration algorithms

�described in Section �� are activated to reduce the value fuzziness� Or alternatively� the ET

causing the additional fuzziness may be aborted�

In the following sections� we discuss the various ways inconsistency is propagated by ETs

�the growth of the fuzziness bound� and algorithms for consistency restoration �the reduction

of the fuzziness bound��

� Inconsistency Quanti�cation and Propagation

In this section� we quantify inconsistency between GET s and estimate the amount of inconsis�

tency passed between them�

�

��� Terminology

Inconsistency in a data item being shared by QET s and UET s can be quanti�ed using the notion

of write and read lock intervals ��	�� Consider transactions t� � � � tn where each of the ti�s updates

x� A transaction�s write lock interval is de�ned to be the time between when ti acquires a write

lock on x and when ti releases the write lock on x� A read lock interval is de�ned similarly�

A previous paper ��	� shows how the intersection of these intervals from operations of di�erent

transactions can be used to put bounds on the amount of inconsistency shared between queries

and update transactions�

With the introduction of GET � the interaction between transactions which execute write

operations on the same uncommitted data needs to be quanti�ed� To do this� we will use

a concrete example based in a multiple reader�single writer lock�based concurrency scheme�

note� however� that a similar analysis can be made for other synchronization methods� such as

timestamped schemes�

In the general model including GET � an ET ti can read a non�permanent� and potentially

inconsistent� change to data item x of another ET tj � This can be implemented in a locking

scheme as follows� We assume that no GET will execute an update on a database value directly

that also has a non�permanent representation in memory� In other words� though GET s can ex�

ecute concurrently in a possibly inconsistent manner� they update only one copy of the database

value� This assumption ensures that we can compare the inconsistency shared between transac�

tions� However� we do not require ��phase locking� nor� do we require that locks be held until

the transaction commits� Further� locks may be acquired and released by di�erent transactions

in arbitrary order� For purposes of this discussion� we assume that transactions acquire locks

once in their lifetime� however� the following de�nitions could be extended to account for the

release and reacquisition of new locks within transaction boundaries� In this model� transactions

still have a write lock interval on x as de�ned in ��	�� previous results regarding the bounds on

inconsistency between queries and update transactions remain valid�

Consider GET s named t� � � � tn where each of the ti�s can read and write to data item x� In

this model� ti can write to x� release its lock� and tj can read ti�s result before ti has committed�

In turn� tj can perform its own computation and write data item x� Let us de�ne an ET�s

update interval with respect to x to be from the time it �rst acquires a lock on x to the time it

makes its changes to x permanent in the database� i�e� commit time� Note that an ET�s update

interval is di�erent from its write interval� A write interval de�nes the time the ET holds a

lock on x whereas an update interval de�nes the time when an ET has made a non�permanent

change to x�

Every GET � g� has a set of Concurrent General Transactions �denoted by CGT �g��� For this

�

discussion� we consider UET to be a particular case of GET � since a GET becomes an UET when

its ImpLimit � 	� A ti � CGT�g� if its write interval intersects with g�s update interval� Note

that strict ��phase lock�based realizations of serializability ensure that CGT�g� � ��

��� Quantifying Inconsistency in the Database

Inconsistency in a data item x updated by a GET � g� can be de�ned informally to be the distance

between the value of x after g executes when CGT�g� � � and the value of x after g executes

when CGT �g� is not empty� This distance is bounded by the data item�s data���spec� which

de�nes the amount of inconsistency tolerable in the data value� Notice that there is no restriction

which requires all ETs in CGT�g�to have committed� there may be residual inconsistency in a

data item value that was written by an ET which later aborted�

Example �
 Consider a banking account aggregate example� an account summary� x� is

stored in million�dollar increments� The data���spec for a particular account is plus or minus

� million� Transaction T� increments the value of the account by � million� Transaction T�

decrements the account by
 million� In the GET model� these transactions can be interleaved

as follows�

T��begin�T��begin�T��updatelock�x�� x �� x� ��T��unlock�x�� ���

T��updatelock�x�� x �� x�
�T��unlock�x��T��abort�T��commit� ���

Given a consistent initial value of x � �� then the resulting value of x is �� Had T� executed in

isolation and not read the value written by T�� the resulting value of x would be �� Hence� the

residual inconsistency in x is � million dollars� Since this is within the data item�s data���spec�

the execution is ESR�

Example �
 If� on the other hand� T� from Example � updates the account summary by

�	� the result of x is ��� This value contains more inconsistency than the tolerable level will

allow� the distance between the result of T� and T��s concurrent execution and the result of T��s

execution in isolation is �	 �from ��� � � �	�� According to our de�nition above� the current

value must be within data���spec of the result of the transaction�s execution in a consistent

history� e�g�� x � �� Since �	 does not fall with the range of ��� �the data���spec� the execution

is not ESR�

One way to implement this model is to store data items as a tuple fC�O�E� Ig where C is

the current value or values of the data item� O is the original or most recently stored consistent

value for the item� E is the data���spec� and I is current amount of inconsistency associated

with the data item� Note that I cannot be computed by taking the di�erence between the last

consistent value and the current value because updates to the current value� C� contain both

inconsistency and the actual update values� To pinpoint the inconsistency� it must be calculated

during the evaluation of whether the ��specs are being met and then stored separately� The last

known consistent value� O� may have been computed by some serializable transaction history

or� perhaps� it was the result of an independent update� Notice that whether or not an ET

satis�es its trans���spec requirement is based on a comparison between the ET and it�s CGT �g��

The result of the consistent execution of every ET is not stored� O is most likely the result of a

ET from some previous time�

��� Controlling Inconsistency between ETs

The inconsistency tolerated by a GET �trans���spec� is de�ned by two components� ImpLimit

and ExpLimit� These limits are compared to two accumulators �import � inconsistency and

export�inconsistency� for the ET as it executes� Each time the ET imports some inconsistency�

import� inconsistency is incremented� Similar action is taken when inconsistency is exported�

When an ET attempts to read and write data item x� the fuzziness of x is accumulated in the

ET�s inconsistency counters�

Without loss of generality� we use for illustration the case where accumulators are zero so we

can compare data inconsistency with trans���spec directly� In case the accumulators are not zero�

the comparison is done with the remaining tolerance �the di�erence between the accumulator

and the trans���spec�� In our running example� if T� from Example � has an ImpLimit � ��

then interleaving with T� is ESR� because T� exports an inconsistency of � which is within T��s

ImpLimit of �� However� in Example �� T� exports an inconsistency of �	 which exceeds T��s

ImpLimit and hence is not ESR�

Similarly� the ExpLimit of a GET must be checked before the release of its writelocks and

its changes are made visible to other transactions� Suppose that T� from Example � has an

ExpLimit of �� After T� concurrently updates the account by �� T��s execution exports an total

of inconsistency of � and hence satis�es its ExpLimit� If� on the other hand� T� updated the

account by �� T��s ImpLimit is met� but its ExpLimit is exceeded and becomes non�ESR� T��s

ExpLimit restriction is more stringent than the data���spec of � for the account summary�

��� Design of Data and Transaction Epsilon Speci�cations

Transaction�s trans���spec and data item�s data���spec are analogous but independent concepts�

On the one hand� each ET may be able to tolerate more or less inconsistency for di�erent

applications� ET trans���specs are used in the determination of ESR schedules� e�g�� in the

granting and releasing of locks between GET � Also� an GET �s ExpLimit determines how much

inconsistency it can release into the current ET pool� This propagation between ETs can

�

continue until some ET commits its inconsistency to the database�

The data���specs� on the other hand� apply to the data item only and can be designed

in an even more independent fashion from application semantics than the ET bounds� The

constraints represented by data���spec are enforced when a transaction�s results are to be written

permanently to the database� The data���specs will then keep the inconsistency introduced into

the permanent database under control�

The design di�erences between trans���spec and data���spec is largely determined by the

application environment� For ETs that execute simple increment�decrement operations� the

ExpLimit speci�cation may be only slightly more constraining than� or perhaps even derived

from� the data���spec� As a plausible scenario� the ET ExpLimit can be omitted completely

and the transaction can rely completely on data���specs for inconsistency control� Other types

of transaction with more sophisticated operations such as branching� on the other hand� may

have an ExpLimit designed very di�erently from data���specs�

� Invoking Consistency Restoration

Once a constraint is de�ned� an immediate question is what happens when the constraint is

violated� Divergence control algorithms ���� ��� either block or abort an ET when its trans���spec

is violated� In a DBMS supporting ESR� when data���spec is violated� we invoke a consistency

restoration algorithm to reduce the data item�s fuzziness� In general� we can adopt either an

eager policy where data fuzziness is reduced by preventive consistency restoration or a lazy policy

where consistency restoration is invoked only when some data���spec is violated� The analysis

and evaluation of the trade�o�s in the di�erent policies is beyond the scope of this paper� We

only sketch some possibilities to illustrate the policy choices�

��� Violation Prevention

One approach to controlling the growth of data inconsistency is to prevent intolerable fuzziness

from occurring� For example� if an ET�s ImpLimit and ExpLimit are about to be exceeded� a

preventive method would force the ET to wait until the level of inconsistency is reduced through

the execution of a consistency restoration method� or abort� This preventive control on ETs

is a divergence control method for GET s� If implemented in a lock manager� then a check for

ImpLimit violation before an ET acquired a read lock and a check for ExpLimit before the

release of writelocks would have the desired e�ect� If either limit were exceeded� such an ET

would be forced to abort or wait until consistency had been restored�

Preventive measures can also be designed to keep the data���spec from being violated� In

this case� when a GET tries to commit� we check to see if a data���spec will be exceeded by this

�

update� If a GET � ti�s� update request violates a data item�s data���spec� then ti must either

abort or be delayed until the data item�s inconsistency has been reduced to a level that could

incur t�is additional error� This reduction process could be invoked immediately when a GET ti

is denied update permission and could be tailored speci�cally to the amount needed to satisfy t�is

request� Note that a sophisticated divergence control algorithm would recalculate the amount

of fuzziness caused by ti due to the reduced level of inconsistency in the data item�

Note that when a data item�s accumulated fuzziness is approaching its data���spec� all tjs

in CGT�g� may also be denied permission to commit unless their operations reduced the incon�

sistency in the database� Invoking a consistency restoration method every time a data value

approaches its data���spec can be expensive since t�is pending write request may bring the data�s

inconsistency level close to its data���spec again�

Alternatively� a consistency restoration process could be triggered only after a number

of GET s have been denied� This phenomenon would indicate that the data item itself is carrying

an amount of inconsistency which is particularly close to its data���spec and GET are being

denied update permission even if they would only introduce a small amount of inconsistency

in isolation� When a consistency restoration method is invoked on behalf of several ETs� some

analysis can be performed to determine how much reduction is needed to execute the pending

requests� we leave the design of such optimizations as a topic for future work�

��� Detection and Recovery

If trans���specs are not enforced before GET s commit� there is potential for unbounded inconsis�

tency to be introduced into the permanent database� ETs or queries that read these values are

said to be unsafe ��	�� If this is allowed� then the DBMS must detect the event by checking the

�nal data values against their data���specs� If a violation has occurred� the DBMS should invoke

a synchronous consistency restoration immediately� This will prevent other ETs or queries from

becoming unsafe by reading the violating ET�s results� Once an unsafe ET has executed� all of

its e�ects must be undone� This can be carried out by a classical crash recovery method� For

data integrity� the locks of the unsafe ET should not be released until the recovery is completed�

� Consistency Restoration Methods

To restore consistency into the database we use Asynchronous Consistency Restoration �ACR�

methods� Just as DC methods reduce to classic concurrency control when trans���spec � 	�

ACR methods reduce to classic crash recovery under certain conditions� Consistency restoration

methods are invoked to return the permanent database state to one in which the data fuzziness

is under their data���specs� It is not a requirement of ACR methods to return a database to a

�	

completely consistent �e�g� serializable� state and the database need only be within data���spec

of being consistent� This is in accordance with real world applications� where the database is

always somewhat inconsistent with the world because of operator errors or data obsolescence�

Any DBMS that does not guarantee this level of consistency allows a potentially uncontrollable

degeneration of data integrity�

ACR methods can take several forms� Generally speaking� they can be designed as an

independent process �from the basic transaction management� in a system� However� in some

cases� we can take advantage of the transaction management system to simplify its design� In

the following subsections� we give examples of ��� a synchronous consistency restoration based

on a classical recovery scheme� ��� some alternative asynchronous schemes based on a model

of compensating transactions� and� ��� a consistency restoration method based on independent

updates�

	�� Consistency Restoration Based on Classic Recovery

A model of inconsistency repair based on Read�Write compensations �REDO and UNDO� ��	�

consists of three steps� First� a speci�c operation or event is determined to have introduced some

inconsistency� In a classic TP environment� these events include site failures and erroneous TP�

In a GET environment� this set of events is extended to include the invocation criteria described

in the previous section� Second� the o�ending operation is undone� Third� operations which

had to be undone as a side�e�ect during the second step must be redone� In a traditional

environment� all of the dependent transactions would have to be redone to bring the database

back into a consistent state� However� when GET s are allowed� all dependent transactions may

not have to be redone since the database state does not have to be restored to a completely

consistent state�

Example �
 To illustrate this method� consider an inventory system in which there are

three ETs updating data item y� each of these ETs allow their trans���specs to be de�ned by

the data���spec� The �rst� T�� decrements the value of y by �		� The second� T�� multiplies the

value of y by �	� And the third� T�� decrements y by ��		� In the GET model� these ETs can

be interleaved as follows�

T��begin�T��begin�T��begin�T��writelock�x��T� � y � y � �		� ���

T��unlock�y��T��begin�T��writelock�y��T� � y � y � �	� �
�

T��unlock�y��T��writelock�y��T� � y � y � ��		�T��unlock�y�� ���

T��commit�T��commit�T��commit� ���

If y has an initial consistent value of �			 and a data���spec of ��		� the accumulated

��

inconsistency would become too high with T��s update operation� The inconsistency is calculated

by the ACR as follows� First� the inconsistency from the concurrent execution of T� and T� is

calculated to be �			� the distance between the database state if T� had executed in isolation

�y � �	� 			� and the database state with its concurrent GET � T� �y � �			�� This value is

stored by the ACR for future reference� Similarly� the inconsistency of T� is determined to

be
			� the absolute value of the distance between the database state if T� had executed in

isolation �y � ���		� and the value of the database with both transactions� T� and T�� in its CGT

�y � ��		��

Suppose that a detect�and�recover strategy has been adopted� Then� some committed trans�

action must be undone to bring the inconsistency of the system within data���specs� The most

straightforward selection for a victim is the violating transaction� T�� In this case� an operation

level compensation for T� which increments the value of y by ��		 is applied� Assuming the

compensation is executed synchronously� the database state is returned to the values produced

by T��

The selection of T� is a more wise choice from a consistency restoration perspective� however�

since undoing its e�ects leaves the database with an inconsistency level markedly lower than

when undoing the execution of T�� If T��s e�ects are undone� then the inconsistency for the

system is recalculated based on the execution of T� and T�� Such a history leaves the value of

�y � ��
		� and the level of inconsistency at �		� the distance between the absolute value of

the database if T� had executed in isolation �y � ���		� and the value of the database state

with the execution of it�s CGT � T� �y � ��
		�� There is� however� more cost associated with

the the undoing of T� than of T� since T��s operation compensation does not commute ���� with

the operations of T�� To undo the e�ects of T� completely� we must �rst undo T��s dependent

transaction� T�� by incrementing the value of y by ��		� dividing the value of y by �	 �the

compensation for T�� and lastly redoing T�� In the next section� we outline how ESR can be

used to reduce this cost further� The tradeo� between the cost of such UNDO�REDO operations

and the increased concurrency gained by optimizing the reduction of inconsistency is a topic for

future work�

As a last brief point� consider this example under a preventive approach� In this scenario�

the appropriate data���specs would be checked before updates were committed to the database�

The same inconsistency levels would be calculated� however� T� would be aborted or delayed

until the ACR had reduced the inconsistency by undoing the e�ects of T��

��

	�� ESR and Semantics
Based Compensation

Semantics�based compensation transaction management has been proposed as a way to reduce

the rollback overhead of sophisticated update operations� Sagas ��� and Compensating transac�

tions ���� are good examples� There are at least two ways that semantic�based compensation

strategies can be extended e�ectively with ESR to allow more concurrency and reduce rollback

costs� In one approach� ESR limits can be used to determine whether a compensation is legal�

In the second approach� semantics�based compensating transactions can be created speci�cally

to reduce inconsistency in the data state� Before we describe each of these methods in turn� we

review the basic concepts of semantics�based compensation�

�
�
� De�nitions

To simplify the presentation we use the notation of Korth et al� ���� to describe Compensating

Transactions� This model is developed to allow transactions to share uncommitted updates and

and to allow the e�ects of a committed transaction to be undone without causing cascading

aborts or redoing of entire dependent transaction histories� When the updates of transaction

T� are read by some other transaction T�� T� is said to have been externalized � If we want to

undo the e�ects of T�� a Compensating Transaction CT� is run� T� is called a compensated�for

transaction and T� a dependent transaction with respect to T�� Dependent transactions� denoted

dep�T �� de�ne a similar concept to the CGT �s in the GET model�

The goal of this recovery paradigm is to undo the compensated�for transaction� T � by execut�

ing a compensating transaction� CT � but leave the e�ects of the dependent transactions dep�T �

intact� An important de�nition is that of soundness� �As usual ���� a history is a sequence of

database operations�� If X is the history of transactions T � CT � and their set of dependent

transactions dep�T �� and Y is some history of only the dependent transactions dep�T �� then X

is said to be sound if for the same initial state S� X�S� � Y �S�� In other words� in a sound his�

tory� CT compensates for T cleanly� leaving the e�ects of dep�T � intact� Furthermore� it should

be noted that all that this means is that a consistent state is established based on semantic

information� This state may not be identical to the state the would have been reached had the

compensated�for transaction� T�� had never taken place� It can be shown that if CT commutes

with every transaction in dep�T � then the history is sound�

This de�nition can be further generalized to include weak forms of compensation soundness�

The history X is sound with respect to a re�exive relation R �in short R�sound�� if there exists

a history Y of dep�T � such that Y �S� R X�S�� For the case of R being equality� the general

de�nition reduces to the �regular� soundness�

��

�
�
� Consistency Restoration for Compensating Transactions

A natural extension to the model of compensating transactions is to use ESR speci�cations as

a criteria for soundness� In ESR�based TP systems� the de�nition of inconsistency speci�cation

implies a monotonic distance metric underlying an ��spec� So� our focus is more narrow than the

predicate�based generality of Korth�s re�exive relations� We are interested in a relation called

�Within Bound�� denoted by W �B�� such that Y �S� W �B� X�S� if the database state Y �S�

is within the distance bound B of state X�S� in the distance metric� If the distance metric is

isotropic �as in airline and bank examples and all real�world applications that have cartesian or

metric database state spaces due to the symmetry property� then the relation W �B� is re�exive�

The result is that W �B��sound histories are ESR�

In this method� the basic transaction management system is compensating transactions �����

an application programmer is expected to write compensating transactions for any transaction

in the system� The role of the ACR method is to restore consistency within data���specs if

a compensating transaction� CT � does not commute within trans���spec boundaries with the

dependent transactions of T �i�e�� the relation W�B��� The event that invokes the ACR is the

violation of trans���spec by a compensating transaction� not the original transaction T for which

CT was created� This ACR method is designed to restore consistency for compensating trans�

actions� but compensating transactions are not the implementation strategy of the consistency

restoration process itself�

An informal description of this ACR method is that during the processing of a compensation

ET� it goes through the history checking for violations of the commutativity property� Whenever

a violation is spotted� the method accumulates the update amount for all the involved ETs� If

the trans���specs are not exceeded� then the compensation remains sound and the algorithm

continues�

Example �
 Consider a variation of Example � in which each of the transactions T�� T��

and T� has committed after each of their respective operations� The resulting history is�

T��begin�T��begin�T��begin�T��writelock�y��T� � y � y � �		�T��commit�y�� �
�

T��writelock�y��T� � y � y � �	�T��commit�y�� ���

T��writelock�y��T� � y � y � ��		�T��commit�y�� ���

This history is clearly serializable� Now� suppose that T� is determined to be erroneous and

must be compensated for� According to ����� T� can be compensated for after its changes have

been made permanent to the database� T��s compensation� CT�� divides the value of y by �	�

Let us further suppose that there is a QET � T�� to be executed with a ImpLimit 	 ��		�

We can see that though CT� does not commute with dep�T �� this history is ESR for the

�

boundary conditions placed by QET � T�� In this case� the ACR must calculate the distance

between the absolute value of the data state given the history X�S� � T � dep�T �� and CT �y �

��	� and the absolute value of the distance function for the history Y �S� � dep�T ��y � ��
		�

for a total inconsistency of ���	� Since ���	 	 ��		� the ImpLimit of T�� the compensation is

ESR�

When the W �B� relation is violated� there are at least four di�erent actions that an ACR

method can take to reduce the inconsistency in a compensating transaction system� The �rst

solution is to abort the violating compensating ET� Though Compensating Transactions are

generally de�ned to be non�abortable ����� we think this is sometimes a viable choice� Consis�

tency for Compensating Transactions is de�ned by the soundness of the relation between X�S�

and Y �S�� Since the de�nition of X�S� requires committed T�CT pairs� compensating trans�

actions must always commit� However� this model can be relaxed in light of ESR since residual

inconsistency is allowed and controlled�

Note that the residual inconsistency from an aborted CT can be calculated separately from

the inconsistency managed by the W �B� relation� The inconsistency managed by the W �B�

relation represents the side�e�ects of a non�commutative CT on the dependent transactions

of T whereas the inconsistency created by the abort of a compensating transaction �and not

the original transaction� T� is captured by the CGT de�nition� This is because the transaction

for which a CT was created is considered erroneous and must be compensated for� If this

compensation is aborted� the original transaction is still erroneous and its e�ects on the data

state must be counted towards the overall inconsistency in the data state �as de�ned by our GET

model�� The W�B� relation really only applies to CT �s� not T s� Although allowing CT s to abort

may seem intractable in classic transaction theory� it is consistent with real�world databases

where some amount of residual permanent inconsistency �e�g�� due to data entry errors� is

inevitable�

The second solution is to abort the compensating transaction and retroactively UNDO the

original committed ET� Here we depart from the compensating transaction model as de�ned

by Korth et� al� ����� In their model of compensation� one of the basic purposes of CT is to

provide a way to undo the e�ects of a committed transaction� particularly for those cases where

a transaction cannot be �physically� undone� Hence� undoing of the original committed ET

is not formally part of their model� In our metric space model� however� original committed

transactions can be undone� Our model also supports the relaxation of the classical ACID prop�

erties by allowing committed transactions to be undone� This UNDO operation on the original

transaction could result in cascading UNDO�REDOs for committed dependent transactions and

cascading aborts for dependent transactions in progress� depending on the soundness of the re�

��

sulting history� Although the worst case of redoing the entire history is costly� the number of

transactions a�ected can be smaller in a GET environment� since only the ETs with exceeded

bounds must be be undone� Furthermore� as Example � shows� some optimizations may be

possible to prevent the UNDO�REDO of an entire history�

The third solution is to abort transactions in dep�T � that do not commute with the compen�

sating transaction� CT until the level of inconsistency can be brought within the W �B� relation�

Similar to solution �� this approach can be costly if the number of aborts is high� in the worst

case� cascading aborts of an entire history may occur� However� again� because some residual

inconsistency is tolerable in a GET model� fewer aborts may be required if optimizations are

performed and data���specs are met�

In the fourth solution� the ACR method processes the entire history to the end� �nding

all transactions which have bounds violations as a result of the CT and reports the result to

the compensation transaction� Based on this information� the compensation transaction can

determine the magnitude of the total con�icts with it before choosing one of the �rst three

solutions� For example� cascaded aborts may be preferable for a small number of aborts� but

if dep�T � is large then a large number of aborts may force the compensation to stop� On the

other hand� if the abort of the compensating transaction still leaves more residual inconsistency

in the data state than the data���spec allows� undoing of the original transaction or aborting

transactions in dep�T � may be the only alternative�

Example �
 Reconsider Example
 if Q�s ImpLimit � �			 for a concrete example of how

an W �B� violations can be processed� In this case� CT� violates the W �B� relation� X�S� is

unsound� and the ImpLimit of QET
� T�� is exceeded� We reconsider each of the restoration

options just described�

Alternative � is not a viable solution in this particular instance� since the residual inconsis�

tency of T� exceeds the ImpLimit of QET � From our discussion above� if CT� is aborted� then

T��s updates are considered as exported inconsistency� The value of the database state without

T��s execution� e�g� the history fT�� T�� T�g leaves y � ��
		� The absolute value of the database

state from the history fT�� T�� T�� T�g �and not CT�� is ��		� The absolute value of the distance

between these two states is
�		 � ImpLimit of QET � T��

Alternative � does provide a sound solution� The ACR aborts CT� and undoes the original

T�� This also requires the REDO of T�� This solution reduces to a classic recovery mechanism�

Alternative � also provides a sound solution� The ACR undoes the dependent transaction

T� with which CT� does not commute and then resumes the execution of CT�� In this case� the

value of y is incremented by ��		 and then CT� can be executed� The resulting inconsistency

is 	� A solution which allows other transactions which otherwise have normal execution to be

��

undone may� of course� strike terror in the hearts of classical TP researchers� but it in practical

processing environments higher priority transactions are not uncommon�

Finally� in the fourth alternative� the ACR reports to CT� that QET � T�� has had a bounds

violation� Had there been other transactions with bounds violations in the system� they would

be reported as well� The programmer of CT� can determine which of the viable alternatives� i�e�

the second or third solutions� is most appropriate for the particular environment and proceed

accordingly�

Note that because our model explicitly de�nes inconsistency and checks for places that it

can arise� This type of analysis is facilitated by ESR because it is semantics�independent� This

does not prevent ESR from incorporating the explicit speci�cation of semantics�dependent in�

consistency� In contrast� sagas ��� as proposed are implicitly dependent on application semantics

for the maintenance of database consistency�

	�� A Hybrid Approach

In a third ACR method� we can create a hybrid of the method based on classic recovery from

Section ��� and the method for compensating transactions described in Section ���� In this

hybrid model� we use compensating transactions as the basic TP paradigm� However� rather

than simply checking for consistency violations from the execution of CT s� we also allow original

transaction�s to execute as GET s� Now� there are two classes of transactions that can introduce

inconsistency into the database� Ts and CT s �where T s and CT s are not necessarily matched

pairs��

We can take advantage of the basic compensating transaction model to create ACR method

for the original transactions� T� in the system� In this scenario� the ACR generates compen�

sating transactions solely for the purpose of consistency restoration when a GET exceeds some

boundary� These compensating transactions must also satisfy W �B� as de�ned above� Note

that in this scenario� the CT s generated by the ACR are just one special type of compensating

transactions in the system� they execute concurrently with other transactions and CT s coded by

the application�s programmer� Note that we can treat all compensating transactions uniformly

without giving special care to those created to reduce inconsistency by the ACR persay� At

�rst this may not appear to be the case since in we do allow CT �s to be aborted� But� since

we only allow this step when ESR bounds are maintained� we are guaranteed that either the

consistency restoring CT will execute� or some other method will be implemented to reduce

the inconsistency� In the worst case� cascading aborts or UNDO�REDO operations would be

required�

Example �
 Building on Examples � and
� we can illustrate how this method operates�

�

Suppose we have the same three transactions which share uncommitted data as in Example ��

In addition� we extend the history with the QET with ImpLimit 	 ��		 from Example
 to

execute after T�� Recall from Example � that with the execution of T�� the inconsistency in the

database exceeds the data���spec and it was shown that removing the e�ects of T� was a more

e�ective consistency restoration choice�

In this hybrid model� the ACR method spawns� into the regular transaction stream� a com�

pensating transaction� CT�� that contains the compensation operation for T�� i�e�� the division

of y by �	� Given the same initial value of y� the execution of fT�� T�� T�� CT�g results in y �

��	� The execution of fT�� T�g leaves y � ��
		� The absolute value of the distance between the

two states is ���	 which is within the ImpLimit of QET
� T�� Hence� in this example� the ACR

is able to reduce the inconsistency in the data state to within a tolerable range by piggybacking

on the transaction model itself�

	�� Independent Updates

Besides compensations� another method of consistency restoration is independent updates � In

these cases� an independent source of consistent data is available� From time to time the consis�

tent data is used to overwrite potentially inconsistent data� The �rst important example of this

method is the propagation of replica updates in primary copy methods� such as Grapevine ����

Since all the updates are performed �rst in the primary copy� the secondary copies may be

allowed to diverge �within bounds speci�ed by each distributed ET�� A similar situation occurs

with bank accounts� The bank database is processed in batch mode at night� at which time the

updates are made� Although� each branch may log some local operations into the local replica

�usually on paper�� the o!cial copy is the central database� Speci�c examples of bounded incon�

sistency in replicated systems are described in a previous paper applying ESR to asynchronous

replication ��
��

Another class of applications that use independent updates are the signal acquisition systems

that receive fresh data every so often� such as radars or satellite photos� Even if the current

data is inconsistent� a consistent version is expected to arrive at certain time intervals to restore

consistency� In these embedded systems� inconsistent data �e�g�� from di�erent versions� may

be used for obtaining preliminary results while the system waits for the next fresh signal� This

is particularly useful for imprecise computations where partial results or order�of�magnitude

results are potentially useful�

One way to use independent updates is to emulate the bank practice� An update is made

locally and immediately� but the update is sent to the central site in a reliable message �
�� The

update in the central site satis�es the necessary rigor in consistency constraints� for example�

��

serializability� Periodically the central site propagates the o!cial updates known to be consistent

to the local sites� This is the way banks clear checks and maintain account databases� We can use

ESR to implement an ATM�s daily limit� for example� This way� any losses due to inconsistency

will be limited�

� Related Work

Besides ESR� notions of correctness weaker than SR have been proposed� Gray�s di�erent degrees

of consistency ���� o�ers an example of a coarse spectrum of consistency� Degree � consistency is

equivalent to SR� but degree � consistency o�ers higher concurrency for queries" at the cost of

reduced consistency" since updates are allowed to �dirty� data already read by queries� Degree

� is reportedly used at many DB� installations� underscoring the importance of integrating

inconsistency speci�cations� However� there are two limitations in this approach� First� degree

� is peculiar to a particular concurrency control algorithm� namely two�phase locking� Second�

because no bounds are set on the total amount of inconsistency� degree � queries will become

less accurate as a system grows larger� Finally� ESR o�ers a much �ner granularity control than

the degrees of consistency�

Quasi�serializability �QSR� has been proposed ��� as an abstract correctness criterion for a

multidatabase environment� QSR speci�es that local databases and global schedulers should

maintain SR� but isolates a global scheduler from the local schedulers� QSR is well�de�ned and

easy to implement� However� its applicability is limited in the trade�o� between consistency and

performance its global serializability requirement� At the same time� unbounded inconsistency

may be found when we consider the global history and the local histories together�

Garcia�Molina et al� ��� proposed sagas that use semantic atomicity �
� which rely on trans�

action semantics to de�ne correctness� Sagas di�er from ESR because an unlimited amount

of inconsistency �revealed before a compensation� may propagate and persist in the database�

Levy et al ��
� de�ned relaxed atomicity to model non�atomic transactions similar to sagas�

Non�atomic transactions are composed of steps� which may be a forward step or a recovery step�

They also describe the Polarized Protocol to implement Relaxed Atomicity� The main di�er�

ence between ESR and these notions of correctness is that ESR is independent of application

semantics� ESR also allows a larger number of execution histories� The Polarized Protocol�

for example� does not allow global state from an incomplete transaction to be seen by other

transactions�

An implementation issue in asynchronous TP is to guarantee uniform outcome of distributed

transactions running asynchronously� Unilateral Commit ���� is a protocol that uses reliable

message transmission to guarantee that a uniform decision is correctly carried out� Optimistic

��

Commit ���� is a protocol that uses Compensating Transactions ���� to undo the e�ects of partial

results to reach a uniform decision� This is but one aspect of the autonomous TP problem�

Sheth et al ���� use the notion of eventual consistency to de�ne current copy serializability

�CPSR� for replicated data� Each update is done on a current copy and asynchronously propa�

gated to the other replicas� Users have control over when the updates are propagated� and the

scheme reduces to synchronous replication when the propagation delay is set to zero� Eventual

consistency and ESR both provide asynchronous processing with an adjustable inconsistency

tolerance� The di�erence is that ESR is de�ned for general asynchronous TP with families of

ADC and ACR methods�

An example of asynchronous replication methods is Quasi�Copies ���� Di�erent inconsistency

constraints such as time delay can be speci�ed by the user and the system will propagate updates

to maintain copy consistency accordingly� ESR can be used to model ETs reading quasi�copies�

since the inconsistency speci�cations are similar� Beyond ESR�s usefulness in asynchronous

replication ��
�� we can ESR in asynchronous TP�

Data�value Partitioning ���� has been proposed as a method to for increasing distributed

TP system availability and autonomy by explicitly separating parts of the value of a data item

into di�erent sites� Since the di�erent parts may operate asynchronously even during network

partitions� Data�value Partitioning increases autonomy because of its non�blocking character�

The basic idea is to allow more parallel processing by dividing the data item value� However�

this makes reading a data value non�trivial� ESR can be used in the modeling and management

of partitioned data�values�

	 Conclusions

Classic transaction models do not include inconsistency� since a transaction is de�ned as a

program that transforms a consistent database state into another consistent state� In this

paper� we have used ESR to extend the transaction model to include inconsistency� To achieve

this� we de�ned data���spec for data items in analogy to the trans���spec in epsilon transactions

�ETs�� Each data item may contain some inconsistency �stored with the value and managed by

the DBMS�� limited by its data���spec�

When ETs access fuzzy data� the data fuzziness is accumulated by the ET� If the fuzziness

is tolerable �compared to trans���spec� then the ET commits� Otherwise� the ET may wait�

abort� or trigger a consistency restoration �CR� method� We described several CR methods in

the paper� with di�erent trade�o�s in terms of amount of information that need to be stored

and amount of processing needed to bring the data fuzziness to below its data���spec levels�

By no means have we exhausted the important topic of inconsistency management in data�

�	

bases� For major application areas such as scienti�c data management a more re�ned modeling

of inconsistency is needed to make this service attractive to users� Much work remains to be

done� Starting from the de�nition of inconsistency �in terms of database state space geometric

properties�� through the design of divergence control and consistency restoration� ending with

the policies to invoke consistency restoration� we need to formalize the notation and describe

the algorithms in more detail� But we believe that we have introduced the basis for this line of

work in this paper�

References

��� R� Alonso� D� Barbara� and H� Garcia�Molina� Data caching issues in an information
retrieval systems� ACM Transactions on Database Systems� ���������#��
� September ���	�

��� R� Alonso and C� Pu� Inconsistency speci�cations for epsilon�serializability� Technical
Report CUCS�	xx���� Department of Computer Science� Columbia University� May �����

��� P�A� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery in

Database Systems� Addison�Wesley Publishing Company� �rst edition� ���
�

�
� P�A� Bernstein� M� Hsu� and B� Mann� Implementing recoverable requests using queues�
In Proceedings of ���� SIGMOD International Conference on Management of Data� pages
���#���� May ���	�

��� A�D� Birrell� R� Levin� R�M� Needham� and M�D� Schroeder� Grapevine� An exercise in
distributed computing� Communications of ACM� ���
����	#�

� April �����

��� W� Du and A� Elmagarmid� Quasi serializability� a correctness criterion for global concur�
rency control in InterBase� In Proceedings of the International Conference on Very Large

Data Bases� pages �

#���� Amsterdam� The Netherlands� August �����

�
� H� Garcia�Molina� Using semantic knowledge for transactions processing in a distributed
database� ACM Transactions on Database Systems� ��������#���� June �����

��� H� Garcia�Molina and K� Salem� Sagas� In Proceedings of ACM SIGMOD Conference on

Management of Data� pages �
�#���� May ���
�

��� J�N� Gray� R�A� Lorie� G�R� Putzolu� and I�L� Traiger� Granularity of locks and degrees
of consistency in a shared data base� In Proceedings of the IFIP Working Conference on

Modeling of Data Base Management Systems� pages �#��� ��
��

��	� T� Haerder and A� Reuter� Principles of transaction�oriented database recovery� ACM

Computing Surveys� ���
����
#��
� December �����

���� M� Hsu and A� Silberschatz� Unilateral commit� A new paradigm for reliable distributed
transaction processing� In Proceedings of the Seventh International Conference on Data

Engineering� Kobe� Japan� February ���	�

���� H� Korth� E� Levy� and A� Silberschatz� A formal approach to recovery by compensating
transactions� In Proceedings of the ��th International Conference on Very Large Data Bases�
Brisbane� Australia� August ���	�

��

���� E� Levy� H� Korth� and A� Silberschatz� An optimistic commit protocol for distributed
transaction management� In Proceedings of the ���� ACM SIGMOD International Confer�

ence on Management of Data� Denver� Colorado� May �����

��
� E� Levy� H� Korth� and A� Silberschatz� A theory of relaxed atomicity� In Proceedings of

the ���� ACM Symposium on Principles of Distributed Computing� August �����

���� C�H� Papadimitriou� Serializability of concurrent updates� Journal of ACM� ���
�����#����
October ��
��

���� C� Pu� W�W� Hseush� G�E� Kaiser� P� S� Yu� and K�L� Wu� Distributed divergence control
algorithms for epsilon serializability� In Proceedings of the ���� International Conference

on Distributed Computing Systems� To Appear �����

��
� C� Pu and A� Le�� Replica control in distributed systems� An asynchronous approach� In
Proceedings of the ���� ACM SIGMOD International Conference on Management of Data�
pages �

#���� Denver� May �����

���� C� Pu and A� Le�� Autonomous transaction execution with epsilon�serializability� In Pro�

ceedings of ���� RIDE Workshop on Transaction and Query Processing� Phoenix� February
����� IEEE�Computer Society�

���� C� Pu� A� Le�� and S�W� Chen� Heterogeneous and autonomous transaction processing�
IEEE Computer� �
������
#
�� December ����� Special issue on heterogeneous databases�

��	� K� Ramamrithan and C� Pu� A formal characterization of epsilon serializability� Technical
Report CUCS�	

���� Department of Computer Science� Columbia University� �����

���� A� Sheth� Yungho Leu� and Ahmed Elmagarmid� Maintaining consistency of interdepen�
dent data in multidatabase systems� Technical Report CSD�TR����	��� Computer Science
Department� Purdue University� March �����

���� N� Soparkar and A� Silberschatz� Data�value partitioning and virtual messages� In Proceed�

ings of the Ninth ACM Symposium on Principles of Database Systems� Nashville� Tennessee�
April ���	�

���� K�L� Wu� P� S� Yu� and C� Pu� Divergence control for epsilon�serializability� In Proceedings

of Eighth International Conference on Data Engineering� pages �	�#���� Phoenix� February
����� IEEE�Computer Society�

$

��

