
Separate Polyvariant Binding-Time Analysis

Charles Consel
Pierre Jouvelot

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 93-006

March 1993

Separate Polyvariant Binding-Time Analysis

Charles Consel Pierre Jouvelot
Pacific Software Research Center Ecole des Mines de Paris

Oregon Graduate Institute (jouvelot@cri.ensmp.fr)
(conselOcse. og i . edu)

Abstract

Binding-time analysis aims at determining which variables can be
bound to their values at compile time. This binding-time informa-
tion is of utmost importance when performing partial evaluation or
constant folding on programs. Existing binding-time analyses are
global in that they require complete program texts and descriptions
of which of their inputs are available at compile time. As a con-
sequence, such analyses cannot be used in programming languages
that support modules or separate compilation. Libraries have to be
analyzed every time they are used in some program. This is par-
ticularly limiting when considering programming in-the-large; any
modification of an application results in the reprocessing of all the
modules.

This paper presents a new static analysis for higher-order typed
functional languages that relies on a type and effect system to ob-
tain polyvariantand separate binding-time information. By allowing
function types to be parametrized over the binding times of their
arguments, different uses of the same function can have different
binding times via a straightforward instanciation of its type. By
using an effect system, we are able to propagate binding-time infor-
mation across compilation boundaries.

We give a complete description of our binding-time analysis
framework, show how both type and binding-time information can
be expressed and how they relate to the dynamic semantics, and
give a type and binding-time checking algorithm which is proved
correct with respect to the static semantics.

1 Introduction

Analyzing the binding-time properties of variables in programs aims
at determining when the value of these variables can be computed.
If it is at compile time, their binding time is said to be static;
otherwise, they are not known until run time and their binding time
is said to be dynamic. The binding-time properties of variables in
an expression determine whether it can be evaluated at compile
time or at run time. Given a program, binding-time analysis is
performed by propagating the binding-time properties of its inputs.

Binding-time analysis is primarily used for partial evaluation [12]
and optimizing compilation [I] where it allows some evaluations to

be performed at compile time, thus improving the overall efficiency.
It has been studied within the framework of abstract interpretation
[2, 3, 5, 6 , 7, 8, 10, 201 and type systems [l l , 17, 181. Effective treat-
ments of higher-order functions [3, 21 and data structures [3] have
been described. Also, inference of binding-time annotations has
been shown to be a very efficient approach to performing binding-
time analysis [Ill.

However, regardless of the analysis setting, existing binding-time
analyses are global (i.e., the analysis can only be performed on com-
plete programs). As a consequence, such analyses cannot be used
in programming languages that support modules or separate com-
pilation. Libraries have to be analyzed every time they are used in
some program. This is particularly limiting when considering pro-
gramming in-the-large; any modification of an application results
in the reprocessing of all the modules.

To alleviate these drawbacks, this paper introduces a new a p
proach for performing polyvariant and separate binding-time anal-
ysis in higher-order typed functional languages: the binding-time
behavior of functions is independent of their applications. Our ap-
proach to binding-time analysis relies on a new type and effect sys-
tem [14, 151 that allows function types to be parameterized over
the binding times of their arguments, thus permitting different uses
of the same function to have different binding times. A type and
effect system is a static system that allows the dynamic properties
of programs to be estimated by a compiler. Types determine what
expressions compute, while effects here determine when expressions
can be computed; effects denote binding times.

Unlike previous work, the binding times manipulated by the
static system are not only defined by simple constants, such as static
or dynamic, but are also symbolically parameterized over binding
times. For example, we capture the binding-time behavior of the
abstraction:

(lambda (x:Int y:Int) (+ x y))

by the boolean function:

This boolean function defines the following binding-time behavior:
an application of the abstraction evaluates to a dynamic value if
either of its arguments is dynamic. Noteworthy, this binding-time
behavior is determined independently of any given context. We
show in this paper that the binding-time behavior of functions are
always captured by a simple disjunctive boolean term. As a result,

calculating the binding-time value for a given application from such
a term is straightforward.

The paper is organized as follows. Section 2 presents the syntax
and dynamic semantics of the language. Section 3 describes the
binding-time analysis type and effect system, together with a proof
of its correctness with respect to the dynamic semantics. Section 4
presents the type and effect checking algorithm, together with a
proof of its correctness with respect to the static semantics. We
discuss possible extensions to this work in Section 5, and give some
concluding remarks in Section 6.

2 Language Definition

Our kernel language is the simply typed lambda-calculus, extended
to accommodate effect information that describes binding-time p rop
erties. We discuss in Section 5 how this simple language can be
extended to a full-fledged programming language. Binding times
occur within function types, where they represent latent binding
times. A latent binding time is the binding time of the function
body. It communicates the expected behavior of a function from its
point of definition to its point of use and is expressed in terms of
the binding time of the function argument. Thus, function types,
besides the type of the argument and result, include a name for its
argument and a latent binding time, which may use this argument
name. Note that this is similar to a dependent type system in that
we need to be able to refer to function arguments in function types,
but differs in that the binding time of the argument, and not its
value, is required.

Let us look at a couple of examples. First, examine the type of
the increment function.

(lambda (x: Int) (+ x 1)) : (x : I n t) % I n t

Not only does the function type describe the abstraction a s a func-
tion from I n t to I n t , but also it captures its binding-time be-
havior as the boolean function (Ax. x). It expresses the fact that
the binding-time value of an application of this increment function
solely depends on the binding-time value of its argument, denoted
here by the name of the formal.

Next, consider the following function:

(lambda (x: I n t)

(lambda (f : (y : In t) 2 I n t)
Y

(f (f x)))) : (x : 1nt) 'St (f : (y : In t) - I n t) fs I n t

The binding-time description of this function can be read as follows:
the first abstraction evaluates to a static value, namely a lambda
expression (see below). The resulting function evaluates to a static
value if both the functional argument f and integer parameter x are
static.

We give below the abstract syntax of our kernel language:

B ..- . I Binding Time Effects
I Bo V B i Combination of Effects

T ..- . I Types
B 1 (I : 1) - T Function Types

E ..- . I Expressions
I (lambda (I : T) E) Typed Lambdas
I (Eo El) Applications

For the sake of simplicity, the language does not include constants
(see Section 5). Also, note that though our syntax allows for mul-
tiple basic type identifiers, only one, say basic, would be strictly
needed to perform binding-time analysis. The crucial information is
the arrow structure of types, together with their latent binding-time
information.

The dynamic semantics of our language is expressed by struc-
tural operational semantics [19]. The dynamic semantics presented
in figure 1 is composed of a set of rules that inductively defines
the evaluation relation E + E' on the structure of expressions.
Since the partial evaluation process deals with syntactic objects, the
dynamic semantics uses a syntactic substitution-based approach; it
associates to each expression E its reduced expression. The com-
puted values are closed reduced terms:

v E Value Values

If the (+Ed) rewriting rule that implements the beta-reduction
of the lambda-calculus is standard, the (-+Id) rule dealing with
lambda terms is more unusual. Its semantics requires reductions
inside lambda bodies to be performed; this takes into account the
fact that partial evaluation is also performed within function defi-
nitions.

E + E'
('Id) (lambda (I : T) E) - (lambda (I : T) E')

Eo (lambda (I : T) E')
El + E'1

('Ed) E[E '~ /I] + E"
(Eo El) + E"

Figure 1: Dynamic Semantics

We note E[E'/I] the syntactic substitution of I by E' in E.

3 Static Semantics

The static semantics specifies the type and binding-time informa-
tion of expressions. We assume that the types of function arguments
are provided by the programmer; the return type and binding time
of function bodies are left unspecified and are automatically recon-
structed by the type checking algorithm. We discuss the rationale
behind this restriction in Section 5.

3.1 Binding-Time and Type Algebras

The binding-time algebra is a boolean lattice with the binding-time
combination operator V as the lattice operator and the predefined
identifier s t a t for bottom and dyn for top.

Bo V (El V B2) = (Bo V B1) V B2 Associative
BO V B1 = BI V Bo Commutative

B V B = B Idempotent

B V s t a t = B Unitary
B V dyn = dyn Absorbing

The standard ordering relation is noted C and is defined in the
usual way:

Bo 5 B1 u (Bo V B1) = B1

The ordering relation for elements of the type language is also
denoted by 5. Types are partially ordered by a subtyping relation
that extends the subeffecting relation to types. The C relation is
defined by structural induction. The interesting case deals with
function types; monotonicity on latent binding times and return
types, and antimonotonicity on argument types:

ensure that no bound expression variables remain within types or
binding times after their lexical scope is exited.

Since we are interested in applications of binding-time infor-
mation to program transformations, our static semantics assigns a
s t a t binding time to a lambda expression; the meaning here is that
the expression is available at compile time. If we wanted to define
the binding time of an expression as s t a t when it can actually be
evaluated at compile time, a more appropriate rule would have been:

AII : T] I- E : T' # B
B I s A I- (lambda (I : T) E) : (I : T) + T' # B - I

where the - operation is defined as (x V y) - x = y1

Since an argument name may appear within the latent binding time
or the return type of function types, function types are scoping con- 3m3 Correctness Theorem

structs. We therefore assume that alpha-renaming within function
types is used whenever necessary to avoid capture problems. A major issue is to relate the static information to the dynamic

semantics. The precise definitions are given in the Appendix A but
the intuition behind the following adequacy theorem is as follows. If

3.2 Typing Rules a given expression E has a type T and a binding-time value B, then,
after applying a substitution noted [B,L] that maps every identifier

~h~ type and binding-time static semantics, presented in figure 2, in B to a value, the resulting expression can be reduced according

is defined by the relation of evaluation A I- E : T # B . ~i~~~ to the dynamic semantics to a value v* without error. Note that

a type environment A, the static semantics associates to each ex- the free variables of E that do not appear in B are not substituted,

pression E a type T and its binding-time value B. and yet the evaluation process succeeds; this is expected since their
values are not required according to the binding-time value B.

T C T'
B 5 B'

(Conv,) A I- E : T # B
A I- E : T ' # B '

I : T E A
(Vars) A I- I : T # I

AII :T] I- E : T' # B
B - I s) A I- (lambda (I : T) E) : (I : T) - T' # s t a t

B
A I- Eo : (I : TI) To # Bo

(+Es) A I- El : TI # B1
A I- (Eo El) : To[Bl/I] # Bo V B[Bi/I]

Figure 2: Static Semantics

The (Conv,) rule allows both types and binding times to be
upgraded to higher values in their respective lattice. Note however
that it is always safe to bound the binding time of an expression
with the disjunction of its free expression variables; the dynamic
semantics shows that its evaluation can only depends on them.

In the (-1,) rule, the type and binding time of the function body
are integrated into the function type as its result type and latent
binding time. This information is used when a function is applied in
the (-Es) rule. The binding time of the whole expression includes
(1) the binding time of the function, since partially evaluating an
application requires the function value, and (2) the latent binding
time, in which the binding time of the argument is substituted for
the argument name in order to account for the binding time of the
actual. Note that the substitutions performed in the (+Es) rule

Theorem 1 (Adequacy) If A I- E : T # B, then E ~ ~ , L] + v*
and 4 I- v* : T[L] # B' such that B' C B[L].

where 4 denotes the empty typing environment. We denote E~ the
expression E of type T in which all subexpressions have been tagged
with their appropriate type.

Proof: See Appendix A.

Note that we do not have to worry here about termination con-
ditions since the language, being an extension of the simply typed
lambda-calculus, is strongly normalizing. If a fixpoint operation
were introduced in the language (see Section 5), the theorem hy-
pothesis would naturally have to include a restriction stating that
E terminates.

4 Type and Binding-Time Effect Checking

In the section we show how type and binding-time information can
be checked in expressions.

4.1 Type Unification

The unification algorithm U, displayed in figure 3, checks for the
type inequality of T1 and Tz. It returns the set of effect equalities
that must be satisfied for the two types to be considered related by
the 5 relation. We note Y effect unification variables; they are used
to convert effect inequalities into equalities.

Note the use of new constants when checking function types. The
idea is that the two latent binding-time effects and two return types

'using the unitary rule, one can see that z - r = stat.

U(TI, T2) =
l e t f a i l = {(NI, NZ)} i n
case T1 i n
I1 =>

i f Tz = I1 then 0 e l s e f a i l
BI TI = (I1 : Tll) - Ti2 =>

92 i f Tz = (I2 : Tz]) - T22 then
l e t Cl = U(T21, TI])
l e t new constant N
l e t new v
l e t Cz = U(Tlz[N/Il], Tz~[N/Iz])
Ci u cz u {(Bi[N/Ii] V u, Bz[N/Iz]))

e l s e f a i l
e l s e f a i l

where N1 and N2 are two distinct fresh constants.

Figure 3: Unification Algorithm

must be equal whatever the binding-time value of the argument
is; using a fresh new constant ensures that this equality will be
independent of the argument.

A model m of a constraint set C, noted m C, is an assignment
of the effect variables v of C such that, for every equality (Bo, BI) in
C, one has mBo = mB1.

The unification algorithm U is sound if, whenever there exists a
model that satisfies the binding-time constraint set, the two types
are related by the subtyping relationship.

Theorem 2 (Soundness) 3m U(x, y) j x C y

The unification algorithm U is complete if, whenever two types
are subtypes, there exists a model for the constraint set returned
by U.

Theorem 3 (Completeness) x C y & 3 m b U(x, y)

4.2 Type Checking Algorithm

The type and binding-time checking algorithm 'R is presented in
figure 4. In a type environment A that binds variables to their
type, for an expression E, 72 returns its type T, its binding time B
and an effect constraint C. The actual types and binding times of
an expression (there are many of them via the (Conv,) rule) can be
obtained by instantiating T and B with any model of C.

Note the use of new effect variables v to implement the subef-
fecting (Conv,) rule. The subtyping rule is taken care of by the
unification algorithm, which also uses new effect variables to deal
with subeffecting relations.

4.3 Correctness Theorems

This section states and proves that the type and binding-time check-
ing algorithm is correct with respect to the static semantics.

Theorem 4 (Terminat ion) R(A, E) terminates.

72(A , E) = case E i n
I =>

i f I : T E A then
l e t new v
(T, I V 4 4)

e l s e f a i l
(lambda (I : T) E) =>

l e t (T', B', C) = 'R(AII : TI, E)
l e t new v

B '
((I : T) - T' , v, C)

(Eo El) =>
l e t (To,Bo,Co) = 7L(A, Eo
l e t (TI,BI,CI) = A, El 1

B
i f (I : T) ---+ T' = To then

l e t C = U(TI, T)
l e t 9' = BO V B[Bl / I]
l e t new v
(T' [Bl/ I], B' V v, Co U C1 U C)

e l s e f a i l
e l s e f a i l

Figure 4: Type Checking Algorithm'

Proof: Algorithm 'R solely recurses on proper subparts of each
expression.

The following theorem ensures the soundness of the type check-
ing algorithm with respect to the inference rules. I t states that any
model of the binding-time constraint set returned by 72 is appro-
priate to give ground types and binding times consistent with the
static semantics.

Theorem 5 (Soundness) Let (T, B , C) = 'R(A, E) and m be a model:

Proof: See Appendix B.

The following theorem ensures the completeness of the type
checking algorithm with respect to the inference rules. If the static
semantics ensures that an expression has a type and a binding time,
then the checking algorithm returns a proper type, binding time and
constraint set. Moreover, this constraint set admits a model that
relates the computed type and binding time to their assumed ones.

Theorem 6 (Completeness) If A t E : T # B, there exists T',
B', C' and a model m' such that:

(T', B', C') = R(A, E)
m' I= C'
B = m'B'
m ' ~ ' C T

Proof: See Appendix C.

We are left with the issue of determining appropriate models for
binding time constraint sets.

Theorem 7 (Decidability) Every constraint set constructed by
72 on a type-correct expression admits a model.

Proof: This theorem is an immediate consequence of the complete- Data structures
ness theorem and the fact that the binding-time value dyn can al-
ways be conservatively assigned to every type-correct expression in The language defined in Section 2 does not support constants and,
a program. more generallv. data structures. Constants could be straightfor-

Practically, the following algorithm can be used to determine wardlyadded-to it by extending the initial dynamic and sta<ic en-

a constraint set model. First, non-deterministically choose which vironments to constant identifiers.

effect variables are to be assigned the binding time dyn. This elim- Arbitrary data structures could be implemented as higher-order
inates some of the now trivial equations since dyn is absorbent. functions, taking advantage of polymorphism to deal with the var-
The resulting constraint set can be then solved using the algorithm ious types for which they are used.
defined in [13] on a lattice with top element.

Note that constraint sets may admit multiple models. For ex- Side EfFects
ample, with the following program:

(lambda (f : (x : 1nt)'Zt I n t)
dyn (lambda (g: (y : (x : In t) -+ I n t) ' s t I n t)

(g (lambda (x: In t) (f x)))))

the reconstruction algorithm introduces a unification variable vf
for the function call (f x) , while the application to g, which uses
subtyping, also introduces via the unification algorithm a unification
variable v. The constraint that must be satisfied for the lambda
expression to be compatible with the explicit type of g is thus:

Vf V Y = dyn

This constraint has multiple solutions, which are not comparable
via the subeffecting relationship. There are thus, in general, no
minimal models for constraint sets.

Since constraint sets always have at least one solution, every
type-correct program is effect-correct. However, if the user were in-
terested in checking that a particular expression has a given binding-
time value, it would be easy to add a new special form to the lan-
guage, such as (ensures B E), which would ensure that, among
the possible binding-time values of E, one is lower than B in the
binding-time lattice.

5 Extensions

This section addresses some possible language extensions of our
framework to deal with polymorphism, constants and data struc-
tures, recursion, side effects, and more advanced type reconstruc-
tion.

Polymorphism

Since type and effect systems have been explicitly designed to deal
with imperative constructs in the presence of higher-order func-
tions, one could extend our binding-time analysis to functional lan-
guages that admit mutation operations, following the lines of [21].
Reference values can be treated as any other data, since types
carry enough information through latent binding times to perform
binding-time analysis. Our technique would thus be able to per-
form, within a unique framework, binding-time analysis of both
functional and imperative language features, an interesting prospect2

Recursion

As defined in Section 2, our language is strongly normalizing. One
way to add general recursion would be to introduce a set of fixpoint
combinator constants Y t for each type t and provide a suitable type
for them, such as:

d P s t a t d ~ n
Y t : (f : (x : t) - + t) - - - + (y : t) - + t

The subtyping rule would coerce any function type to admit a dy-
namic latent binding time, thus ensuring that a conservative binding
time is deduced for the fixpoint value.

Although correct, this approach is not particularly attractive
since, for instance, calls with static arguments to recursive func-
tions would be flagged as dynamic. Beside extending the syntax of
binding-time expressions, which would complicate the type checking
process, a better way to deal with this problem would be to intro-
duce a r e c construct in the language with the following dynamic
semantics:

Bo T = [Il : TI):- To
(Recd) E = r e c (I T 11) Eo)

E + (lambda (11 : TI) Eo[E/I])

Since the language defined previously is pure, l e t polymorphism h while its static semantics could be defined by the following rule:
la Standard ML [16] could easily be added to it using the following -
rewriting:

(l e t (10 Eo) El) + EI[EO/IO]

This rewriting is purely syntactic and does not require any change

no T = (I1 : TI) ---+ To
(Recs) AII : T][Il : TI] t. Eo : To # Bo

A t. (rec (I : T 11) Eo) : T # s t a t
to either the static or the dynamic semantics.

Note that adding recursion to the language implies that the ade-
Polymorphism would thus be introduced by specifying that the quacy theorem of Section 3 must be restricted to terminating ex-

expression to which 10 is bound is replicated within the l e t body, pressions. Ultimately, partial evaluation may also fail to terminate
thus relaxing the constraints between the different uses of 10. Note in this case; the approach suggested in [9] can be used to detect
however that the type checking algorithm would not necessarily expressions that are always terminating.
have to be applied on the larger, substituted expression; using
caching mechanisms, a more efficient implementation could be de- 2 ~ o t e that adding mutation operations would badly interact with the

simple-minded polymorphism scheme presented above, see [21] for a better signed. approach.

Advanced Reconstruction

The paper presents a static system in which argument types have
to be provided by the programmer. Some kind of reconstruction is
already performed by our system, since neither the binding time,
nor the return type of function bodies have to be explicitly provided.

The main difficulty that prevents us from going beyond this level
of type reconstruction, i.e. allowing more types to be omitted by
the programmer, is that function types include latent binding times
which depend on the function argument name. Thus, binding times
actually are functions from argument names to binding expressions.
Mowing them to be left out in the static semantics would require
the type and effect reconstruction algorithm to infer these functions.
This seems to require some sort of second-order unification, which
is undecidable.

We view our current approach as a first step towards a more
flexible system and are currently looking at ways to make this
reconstruction problem tractable, for instance by performing par-
tial reconstruction (e.g., non-function types could easily be recon-
structed).

6 Conclusion

We presented a new static analysis approach to obtain polyvariant
and separate binding-time information for higher-order typed func-
tional languages. It relies on a type and effect system . By allowing
function types to be parameterized over the binding times of their
arguments, different uses of the same function can have different
binding times via a straightforward instanciation of its type.

We give a complete description of our binding-time analysis
framework, show how both type and binding-time information can
be expressed, how they relate to the dynamic semantics and give a
type and binding-time checking algorithm which is proved correct
with respect to the static semantics.

Our approach can also be used to control the program transfor-
mation process. Indeed, experience in specializing programs shows
that in some cases constants should not be propagated to avoid
code explosion or non-termination. These problems are usually cir-
cumvented by either providing some analysis or asking the user to
supply annotations aimed at controlling the propagation process. In
our framework, controlling constant propagation is naturally c a p
tured by the type language. This provides the user (or analyses)
with a uniform and high-level way of annotating programs.

Our approach could be extended to other applications such as
strictness analysis. In fact, as shown in [4] for first-order programs,
the strictness behavior of a function is naturally captured by a
boolean function, just like the binding-time behavior. Our pre-
liminary studies in applying our approach to the strictness problem
are very promising.

Acknowledgments

We thank Vincent Dornic for his careful reading of drafts of this
paper.

References

[2] A. Bondorf. Automatic autoprojection of higher order recursive
equations. In N. D. Jones, editor, ESOP'SO, 3rd European
Symposium on Programming, volume 432 of Lecture Notes in
Computer Science, pages 70-87. Springer-Verlag, 1990.

[3] C. Consel. Binding time analysis for higher order untyped func-
tional languages. In ACM Conference on Lisp and Functional
Programming, pages 264-272, 1990.

[4] C. Consel. Fast strictness analysis via symbolic fixpoint it-
eration. Research Report 867, Yale University, New Haven,
Connecticut, USA, 1991.

[5] C. Consel. Polyvariant binding-time analysis for higher-order,
applicative languages. In ACM Symposium on Partial Evalu-
ation and Semantics-Based Program Manipulation, 1993. To
appear.

[6] C. Consel and S. C. Khoo. Parameterized partial evaluation. In
A CM SIGPLAN Conference on Programming Language Design
and Implementation, pages 92-106, 1991.

[7] C. Consel and S. C. Khoo. Parameterized partial evaluation
(extended version). Research Report 865, Yale University, New
Haven, Connecticut, USA, 1991. To appear in Transactions on
Programming Languages and Systems. Extended version of [6].

[8] C. Consel and S.C. Khoo. On-line & off-line partial evalua-
tion: Semantic specifications and correctness proofs. Research
Report 896, Yale University, New Haven, Connecticut, USA,
1992.

[9] V. Dornic, P. Jouvelot, and D. K. Gifford. Polymorphic time
systems for estimating program complexity. A CM Letters on
Programming Languages and Systems, 1(1), 1992.

[lo] M. Gengler and B. Rytz. A polyvariant binding time analysis
handling partially known values. In Workshop on Static Anal-
ysis, volume 81-82 of Bigre Journal, pages 322-330. IRISA,
Rennes, France, 1992.

[l l] F. Henglein. Efficient type inference for higher-order binding-
time analysis. In FPCA'91, 5th International Conference on
Functional Programming Languages and Computer Architec-
ture, pages 448-472, 1991.

[12] N. D. Jones, P. Sestoft, and H. Sbndergaard. An experiment
in partial evaluation: the generation of a compiler generator.
In J.-P. Jouannaud, editor, Rewriting Techniques and Applica-
tions, Dijon, France, volume 202 of Lecture Notes in Computer
Science, pages 124-140. Springer-Verlag, 1985.

[13] P. Jouvelot and D. K. Gifford. Algebraic reconstruction of
types and effects. In ACM Symposium on Principles of Pro-
gramming Languages, pages 303-310, 1991.

[14] J. M. Lucassen. Types and Eflects, towards the integration
of functional and imperative programming. PhD thesis, M.1.T
(L.C.S. LAB.), Massachusetts, U.S.A, 1987. TR-408.

[15] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems.
In A CM Symposium on Principles of Programming Languages,
pages 47-57, 1988.

[16] R. Milner, M. Tofte, and R. Harper. The Definition of ML.
MIT Press, 1990.

[I] A. D. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[17] T. Mogensen. Binding time analysis for polymorphically typed
higher order languages. In J. Diaz and F. Orejas, editors, Inter-
national Joint Conference on Theory and Practice of Software
Development, volume 352 of Lecture Notes in Computer Sci-
ence, pages 298-312. Springer-Verlag, 1989.

[18] H. R. Nielson and F. Nielson. Automatic binding time analysis
for a typed A-calculus. In ACM Symposium on Principles of
Programming Languages, pages 98-106, 1988.

[19] G. D. Plotkin. A Structural Approach To Operational Seman-
tics. University of Aarhus, Aarhus, Denmark, 1981.

[20] B. Rytz and M. Gengler. A polyvariant binding time analy-
sis. In C. Consel, editor, ACM Workshop on Partial Evalua-
tion and Semantics-Based Program Manipulation, pages 21-28.
Yale University, 1992. Research Report 909.

[21] J-P. Talpin and P. Jouvelot. The type and effect discipline. In
IEEE Symposium on Logic in Computer Science, 1992.

A Adequacy

The language is extended with a set of dedicated values T~ for any
type T. Intuitively, such values denote computations that go wrong.
The domain Value* is defined in the following way:

Definition 1 v* E Value* if and only if v* E Value and T~ does
not occur in V* for any type T.

We assume that, for any type T, values v* and v of that type
exist.

D e f i n i t i o n 2 (R e b i n d i n g) A rebinding [L] is a scope-preserving
substitution upon binding-time identifiers within types and binding-
time expressions defined by:

I [L] = L (I) i f I E doma in (L)
I otherwise

(Bo V Bl)[LI = (Bo [LI V B1 [LI)

where L' = L[I w B'] for some B' and f [x I+ y] is the function equal
to f except on x where it yields y.

Note that the definition of a given rebinding requires the speci-
fication of what bound variables are substituted to. Rebiidings are
used to instantiate a given type in a way that is compatible with
the binding-time value of arguments of lambda expressions.

D e f i n i t i o n 3 (Grounding) A grounding b , ~] is a scope-preserving

substitution upon identifiers within typed expressions ET defined by:

= v* i f I & B
v otherwise

E I ~ ~) ~ ' [B , L] = (E O ~ O ~ , L I ~1~~ [B,LI)
(lambda (I : TI) = (l ambda (I : TI [L]) E O ~ O [Bo,Lt])

B
where Lt,LII w B'] for some B', T = ((I : TI) 5 To), q5 I- v* :
T[L] # stat and similarly for v.

Groundings are similar to structural substitutions with respect
to a binding-time value on expressions, as long as the expressions
are not lambda expressions; in this latter case, the grounding is
performed with respect to this lambda latent binding time since this
is what defines the behavior of the lambda body. Since the (+Id)
rule requires evaluation of a lambda expression body, a rebinding
is maintained to emulate the possible binding times of the actual
argument.

Theorem 8 (A d e q u a c y) If A I- E : T # B, then E T [~ , ~] + v*
and q5 I- v* : T[L] # B' such that B' C B[L].

The proof of adequacy of the static semantics with respect to
the dynamic semantics is performed by induction on the length of
value derivation. Note that the language is strongly normalizing.
For simplicity, we assume that the conversion rule (Conv,) on types
is not used. We note E # B whenever E # B' for some B' B.

. E = I
Suppose that A I- I : T # I.
By definition of groundings, L] = v*.
Since values are closed, q5 I- v* : T[L] # stat - stat 5 I[L]

b E = (l ambda (1:To) Eo)
Suppose that A I- (lambda (I : TI) Eo) : T # B.

B with T = (I : TI) 2 To . - E ~ L , ~] = (lambda (I : TI[L]) E ~ ~ ~ [~ ~ , ~ I])
where L' = LII I+ B'] for some B'.
By the (+I,) rule, A[I ,Tl] k EO : TO # BO
By the induction hypothesis, choosing L' again as rebinding, - EoTo[I] + v,' and q5 k v,' : # C B O [~ ~] B0.J
By definition of the (+Id) evaluation rule, - E T b , L 1 -+ v* and q5 I- v* : T[L] # stat[L]
with
(v* = (lambda (I : TI[L]) v,')

E = (EO EI)
Suppose that A I- (Eo El) : T # B with

T = T1[B1/l]
B = Bo V Bt[B1/I]

B ' with TO = (I : TI) - T1 .
By definition of the static semantics, A I- Eo : To # Bo
By the induction hypothesis, choosing L again as rebinding,
.u ~ o ~ ~ b ~ , ~] -+ v,' and 4 I- v,' : # C Bo[L]
Since one can show that E T [~ , ~] -+ v* W E ~ [~ , B + , L] -+ v*,

-i E O ~ O [B , ~] -+ v,' = (lambda (I : TI[L]) El)
By the (-+I,) rule, [I : TI[^]] I- E' : T" # B" with

{
T" = T'[Lt]
B" = B ' [~ I]
L' = LII I+ B"']

for any B'". We now face two cases:

- I GB'
Similarly a s above, since B1 C B , - ElT1 [B,L] +- V: and 4 I- v; : Ti [L] # E B i [L]
Choosing B"' = I , we get I E B".
Using the (-+Ed) rule,

IT" - E T ~ , ~] = E'~"[I e v:] = E [B t ~ , L ~
since the free variables of E' includes at most I .

- I g ~ ' - E I ~ ~ [B ,L] -+ VI

Even if T appears in vl , we have 4 I- vl : TI [L].
As in the previous case, using the (+Ed) rule,

T IT" - E h s L] = E'~''[I c vl] = E [B..,,]

In both cases, by induction, - E ' ~ " [~ ~ ~ , ~ ~ ~] + v" and 4 I- vl* : T"[L~~] # C B"[~I I]

Choosing L" such that ~ " (1 ') = I' and B'" = BI,
T"[~II] = T" = T' [~ I] = (T'[BI/I])[~] = T[L]

I I = B" = B'[L~] = (B'[BI/I])[~] E B[L] { B1'[L I

B Soundness

Where (To, Bo, Co) = 'R(A, Eo)
and (TI, BI , C1) = R(A, El)

B
and To = (I : T) - T'
and B' = Bo v BIBl/I] - A I- Eo : mTo # mBo with m I= CO and

A I- El : mT1 # mB1 with m C1 (by induction
hypothesis)

B - A I- Eo : m((1 : T) -+ T') # mBo with m I= Co
mB - A I- Eo : (I : mT) - m ~ ' # mBo with m I= Co - By lemma 2 we know that mT1 mT,

therefore we have A I- El : mT # mB1 - A I- (Eo El) : (mT1)[mB1/l] # mBo V (mB)[mBl/I] (by
typing rule (+E,)) - A I- (Eo El) : (m~') [m~1/1] # mBo V (mB)[mBl/I] V mu
(by typing rule (Conv,)) - A I- (Eo El) : (mT1)[mB1/l] # m(Bo v B[Bl/I] V v) - A I- (Eo El) : (mT1)[rn~1/1] # m(B1 V v)

C Completeness

Theorem 9 (Soundness) Let (T, B , C) = 'R(A, E) and m be a model:

The proof of the soundness of 72 with respect to the static se-
mantics is performed by induction on the structure of expressions.

. E = I
Let (T, I V v, 0) = 'R(A, I) with m 0. - I : T E A (by definition of 72) - A I- I : T # I (by typing rule (Var,))
- A t - I : m T # I - A I- I : mT # I V mv (by typing rule (Conv,)) - A I- I : mT # m(I V v) (because I is not an effect variable)

E = (lambda (I : T) E')
B '

Let ((I : T) - T' , v, C) = 'R(A, (lambda (I : T) E')) with
m I= C.

Where (T',B', C) = 'R(A[1 : T],E') with m I= C. - AII : T] I- E' : mT' # mB1 (by induction hypoth-
esis)

mB1 - A I- (lambda (I : T) E) : (I : mT) - m ~ ' # s t a t (by
typing rule (+-I,))

B '
0 A I- (lambda (I : T) E) : m((1 : T) -+ T') # mu (by
typing rule (Conv,))

Let (T'[B~/I],B' V v,Co U Ci U C) = 'R(A, (Eo El)) with m I=
(CO u Cl u C).

Theorem 10 (Completeness) If A I- E : T # B, there exists T',
B'. C' and a model m' such that:

(T', B', C') = 'R(A, E)
rn' I= C'
B = m'B'
m'T' T

The proof of the completeness of 'R with respect to the static
semantics is performed by induction on the structure of expressions.

. E = I
Suppose that A t- I : T # B. - 1 : To E A A (T ~ E T) (by typing rules (Var,) and (Conv,)) - 1 E B (by typing rules (Var,) and (Conv,)) - 3 T' such that I : T' E A such that

{
(T', B', C') = R(A, I)
T' = To
B ' = I V V
C' = 0
m' = 0[v w B] - m'T' = mT' = To C T (from definitions) - m ' ~ ' = ml(I V v)

= I ~ m ' v
= I V B (by substitution)
= B (since I B)

E = (lambda (1:To) Eo)
Suppose that A I- (lambda (I : To) Eo) : T # B. - 3 TI, B l such that

B
(I : To) A T1 C T

B
A I- (lambda (I : To) Eo) : (I : To) 2 T1 # s t a t - A[I : T ~] EO : TI # BI (by typing rule (+-I,)) - 3 T'O, B'O, C'O, m!, such that

(~ '0 , B'O , C'o) = 'R(A[I : T'o], Eo)
m!, I= C'o (by induction

I I moT o C TI hypothesis)
m!-,B10 = B1

(T', B', C') = 'R(A, (lambda(1 : TO) Eo))
m' = m;[v w B]

B
5 (I : To) 2 TI
r m
L 1

m ' ~ ' = m'v
= B

E = (EO EI)
Suppose that A t- (Eo El) : T # B - 3 TI, B'I , BI , TO, B'o such that

B '
A F Eo : (I : TI) -+ To # Bo
A I- E l : T1 # B1
To[Bi/I] C T
Bo V B1[B1/I] C B

"* V i E (0, I) , 3 T',, B'i, C'i, m: such that
(TI;, B'i, C'i) = R(A, Ei)

- 3 ~ " 1 , B", T1'o such that

I m;T"o L TO
mkT1 T1'l - m;T1l L TI = m;T1 5 m;T"l (by Theorem 2) - 3 C such that U(T '~ , T " ~) = C - 3 T', B', C', m' such that

{
(TI, B',c') = R(A, (EO EI))
T' = T1'o[B'i/l]
B' = B'O V B1'[B'l /I] V v
C' = C'o U C'1 U C
m' = mi m;[v H B] - m' I= C' since mim; C'O LJ C'1 U C - mlT' = (mi a;)(Tt'o[Btl /I])

= (mi m;)T"o [(m;m;)~'l /I]
= (mim;)T"o[Bl/I]
L m;To[B1/1]
= To[Bi/I] - m ' ~ ' = m1(B'o V B"[B1l/l] V v)
= mi m;B'o V (mi m;B1')[mi m;B'l /I] V B
= Bo V B1[B1/l] V B
= B

