
A Study of Dynamic Optimization Techniques�

Lessons and Directions in Kernel Design

Calton Pu and Jonathan Walpole

Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology

P�O� Box �����
Portland� OR ��	��
����

fcalton�walpoleg�cse�ogi�edu

Technical Report No� OGI
CSE
��
���

Abstract

The Synthesis kernel �	�� 		� 	�� 	�� 	
� showed that dynamic code generation� software feedback�

and �ne
grain modular kernel organization are useful implementation techniques for improving the

performance of operating system kernels� In addition� and perhaps more importantly� we discov


ered that there are strong interactions between the techniques� Hence� a careful and systematic

combination of the techniques can be very powerful even though each one by itself may have serious

limitations� By identifying these interactions we illustrate the problems of applying each technique

in isolation to existing kernels� We also highlight the important common under
pinnings of the

Synthesis experience and present our ideas on future operating system design and implementation�

Finally� we outline a more uniform approach to dynamic optimizations called incremental partial

evaluation�



� Introduction

Historically� measures of throughput have formed the primary basis for evaluating operating sys

tem performance� As a direct consequence� many operating system implementation techniques
are geared towards optimizing throughput� Unfortunately� traditional approaches to improving
throughput also tend to increase latency� Examples include the use of large bu�ers for data
transfer and coarse
grain scheduling quanta� This approach was appropriate for the batch pro

cessing model of early computer systems� Today�s interactive multimedia computing environments�
however� introduce a di�erent processing model that requires di�erent performance metrics and
implementation techniques�

The new computing model is one in which data is transferred in real
time between I�O devices�
along a pipeline of system and application
level computation steps� In this interactive environment�
applications are primarily concerned with �end
to
end� performance� which is determined not only
by operating system throughput� but also by the magnitude and variance of the latency intro

duced at each step in the pipeline� Reducing and controlling end
to
end latency� while maintaining
throughput� in this �pipelined� environment� is a key goal for next
generation operating systems�

In contrast to the totally throughput
oriented implementation techniques of conventional op

erating systems� the Synthesis kernel sought to investigate dynamic optimization techniques that
would provide lower and more predictable latency as well as improving throughput� In particular�
Synthesis incorporates dynamic code generation to reduce the latency of critical kernel functions�
and software feedback to control the variance in latency introduced by the operating system�s
resource scheduling policies�

Our experience with Synthesis showed these dynamic optimization techniques to be interesting
and useful in their own right� However� the more important kernel design lessons we learned from
the project relate to the interactions between the techniques used in Synthesis� and their relationship
to more traditional kernel design approaches� By focusing on those lessons this paper makes the
following contributions� ��� it discusses the interaction between �ne grain modularity� dynamic
code generation and software feedback� �	� it identi�es the di�culties in applying each of these
techniques in isolation to traditional operating systems� and ��� it explains the implementation

related limitations of Synthesis and outlines how we plan to overcome them in our new research
project�

The paper is organized as follows� Section 	 motivates the need for dynamic optimization tech

niques by outlining some key performance challenges for next generation operating systems� Two
of these techniques� dynamic code generation and software feedback� are summarized in sections �
and � respectively� together with their advantages and problems� Section � discusses a more uniform
methodology to address the problems in Synthesis� Section � outlines related work and Section �
concludes the paper�

� Performance Challenges

The advent of interactive multimedia computing imposes strict new requirements on operating
system performance� In particular� next
generation operating systems must support the processing
of real
time data types� such as digital audio and video� with low end
to
end latency and high
throughput� The emerging model of computation is one in which real
time data enters the system
via an input device� passes through a number of kernel and application processing steps� and is
�nally presented� in real
time� at an output device� In this environment� system performance is
determined in large
part by the throughput and total end
to
end latency of this pipeline�

As multimedia applications and systems become more complex� the number of steps in the
pipeline will increase� It is important that the addition of new steps in the pipeline does not cause
signi�cant increases in the end
to
end latency or decreases in throughput� This problem is a key

�



challenge for operating system designers�
If operating systems implement data movement by bu�ering large amounts of data at each

pipeline stage� and process it using correspondingly large CPU scheduling quanta� then adding
pipeline elements will lead to undesirable increases in end
to
end latency� An alternative approach
is to implement data movement and processing steps at a �ne granularity� perhaps getting �ner as
the number of pipeline steps increases� This approach has traditionally not been taken because it
does not allow operating system overhead� incurred during operations such as context switching�
data transfer� system call invocation� and interrupt handling� to be amortized over large periods of
useful work� Rather than focusing on amortizing these costs at the expense of end
to
end latency�
we suggest that next generation operating systems must resolve the problem directly� by reducing
the cost of these fundamental operating system operations�

The need for new design approaches is exacerbated by the trend towards microkernel
based
operating systems� Such systems implement operating system functionality as a collection of coarse

grain server modules running above a minimal kernel� While this structuring approach has many
well
publicized advantages� current implementations of it tend to lead to an increase in the cost of
invoking operating system functions in addition to increasing the number of expensive steps in the
pipeline�

Finally� the necessary process of emulating existing monolithic operating systems above micro

kernel
based operating systems makes the problem even worse� Current approaches to implement

ing emulation� such as redirecting system calls to user
level emulation libraries before invoking
operating system function� introduce additional latency for kernel calls ����� This in turn leads to
unwanted increases in end
to
end latency for interactive real
time applications� Again� there are
many important and well
accepted reasons for supporting emulation� e�g�� utility and application
software compatibility� What is needed are new implementation techniques to support it more
e�ciently�

In summary� next
generation operating systems� which are likely to be more modular and have
multiple emulated interfaces� must provide support for very low
overhead data movement over long
pipelines and control
�ow transfer through many layers of software� This requirement has a major
impact on the implementation of key operating system functions such as bu�er management� inter

rupt handling� context switching� and system call invocation� They must also provide predictable
real
time resource scheduling to support multimedia applications� Each of these areas has been
well explored within the bounds of traditional kernel implementation approaches� The Synthesis
kernel� however� departs from traditional approaches by making extensive use of the following two
dynamic optimization techniques�

� dynamic code generation 
 to reduce the latency of common kernel functions� and

� software feedback 
 for adaptive resource scheduling with predictable variance in latency�

Each of these techniques has been described in detail in our earlier papers �		� 	�� 	
�� Therefore�
with a brief introduction of the ideas� the following sections focus on the key lessons we learned
from their application in Synthesis�

� Dynamic Code Generation

��� The Techniques and Uses

Dynamic code generation is the process of creating executable code� during program execution� for
use later during the same execution� The primary advantage of creating code dynamically� rather
than at compile time� is that more information about the ultimate execution context is available to
the code generation and optimization process� Consequently� more e�cient code can be obtained�

	



The primary concern is that dynamic code generation is an on
line process carried out during
run
time� in contrast to o�
line compile
time code generation� Hence� only carefully selected low
overhead optimization techniques can be applied� since the cost of run
time code generation may
outweight its bene�ts� The code generation techniques used in Synthesis are divided into three
groups� factoring invariants � collapsing layers � and executable data structures �

Factoring invariants is a special case of partial evaluation� that applies optimization techniques
analogous to constant folding and constant propagation� The main di�erence is that Synthesis
bypasses costly run
time data structure traversals in addition to constant folding� For a more
e�cient implementation of factoring invariants� pre
compiled templates that have already been
optimized are used whenever possible� A good example of factoring invariants is the �le system
open call� which returns a critical path of a few dozen machine instructions that are used later by
the calling thread to read�write that speci�c �le �	
�� In this case� the invariants are the thread
requesting access� the �le descriptor� and the �le usage parameters�

Collapsing layers addresses the performance problem introduced by the increasingly popular
abstract layered interfaces for systems software� Normal implementations fall into a di�cult trade

o�� either they implement each level separately for e�ciency �resulting in untenable development
and maintenance costs� or they compose lower layers to implement a high level �with heavy overhead
at high levels�� Collapsing layers is analogous to a combination of in
line macro expansion with
constant folding� When a high
level function calls a lower level procedure� the code is expanded
in
line� This inlining eliminates unnecessary barriers �the source of most data copying�� allowing
controlled and e�cient data sharing by all the layers� An example of collapsing layers is the
networking protocol stack �	��� A virtual circuit can allocate message bu�er space at the top level
and share it with the lower levels without additional copying� The Unix emulator in Synthesis also
uses collapsing layers to reduce kernel call emulation cost �	���

Executable data structures are data structures �usually with �xed traversal order� optimized
with embedded code to reduce interpretation overhead� Although this technique only saves a few
instructions at a time� the savings are signi�cant when the total number of instructions executed
during each traversal step is small� This technique is especially useful when the work done on each
data element is also small compared to the traversal cost� The Synthesis run queue� composed
of thread table elements� is an example of an executable data structure �	��� At thread creation
time� each element is optimized to reduce context switch cost� The pointer to the next thread� for
example� serves as the destination of a jump instruction to eliminate address load overhead�

��� Performance Bene�ts

Many of the performance measurements on Synthesis were made on an experimental machine �called
the Quamachine�� Although the measured numbers on the Quamachine represent the compounded
e�ects of custom software �the Synthesis kernel� and hardware� an e�ort was made to compare
Synthesis performance fairly with that of an existing operating system kernel� We summarize here
a comparison reported earlier �	���

The Quamachine was �tted with a Motorola �
�	� CPU running at �� MHz and memory speed
comparable to a SUN
������ which has a �
�	� processor at ����� MHz� Test programs were
compiled under SUNOS ��� and the same executable run on both the SUN and the Quamachine
with a partial Unix emulator on Synthesis� A validation program establishes that the two machines
have comparable hardware �note that the test environment actually favors SUNOS performance��
Figure � illustrates the performance improvements for pipe and �le access obtained using Synthesis
when running the same executable on equivalent hardware�� Reading and writing a pipe� � byte
at a time� shows very high SUNOS overhead relative to Synthesis ��� times�� Note� however that
Synthesis also improves on SUNOS performance when reading and writing a pipe � kilobytes at a

�Figure extracted from Table � of �����

�



Test Program SUN Synthesis Speed Synthesis Loops

Description runtime Emulator Ratio throughput in prog

������������� ���� ������� ����� ���������� ������

Validation ���� �	�
� ���� ������

R
W pipe 	 Byte 	��� ��	� ��� 	��KB
sec 	����

R
W pipe 
 KB ���� ���
 ��� �MB
sec 	����

R
W RAM file ���� ���	 ��	 �MB
sec 	����

�������������������������������������������������������������
Execution time for complete programs� measured in seconds� Each program
repeatedly executes the speci�ed system calls �the left column�� The validation
program contains only user level memory location references�

Figure �� Comparison of Synthesis and SUNOS I�O Performance

time �almost � times��
A more recent experiment �	�� illustrates the relative I�O latency for Synthesis and two widely

used commercial operating systems� The Synthesis window system on the Sony �
�� NEWS work

station can �nish cat 
etc
termcap in 	�� seconds� while X Windows �BSD Unix� takes 	� seconds
and NextStep �a derivative of Mach� with similar hardware takes �� seconds� Since dynamic op

timization breaks down barriers between the kernel and server� this is not intended to be a direct
comparison between systems� Nevertheless� while such high
level benchmarks do not isolate the
speci�c bene�ts of each individual optimization �for example� the window system uses both dynamic
code generation and software feedback� explained in Section ����� they do demonstrate the potential
power of the combination of techniques used in Synthesis� Furthermore� sections ��� and ��	 show
not only that the various optimization techniques used in Synthesis are inter
dependent� but also
that the interactions among them are very important� Hence� it is not appropriate� or particularly
informative� to measure them in isolation�

��� Interaction With Other Ideas

Although dynamic code generation is intuitively appealing� it is not naively applicable in any
operating system kernel� Several conditions must be met for dynamic code generation to have a
high payo�� The �rst necessary condition is an encapsulated kernel� i�e�� an abstract kernel interface
that hides implementation details� Dynamic code generation wins when pieces of the kernel can be
replaced with more specialized versions� The scope for this type of dynamic replacement is severely
restricted when kernel data structures are visible at the user level� since computations are often
specialized by replacing data structures� The core Unix �le system kernel calls such as read and
write are good examples of an abstract interface� but nlist� which examines the name list in an
executable directly� is not� This is the �rst important lesson from Synthesis�

Lesson � An abstract kernel interface is essential for any substantial performance optimization
based on dynamic code generation�

This requirement is in contrast to conventional operating system kernel design approaches in
which direct access to kernel data structures is viewed as a short cut and a low overhead way
to obtain system information� The prevalence of this approach in monolithic operating system
kernels makes an extensive application of dynamic code generation very di�cult� For example�
Unix 
dev
kmem and MVS Control Vector Table make it impossible to optimize context switch
without breaking a large number of system utilities�

�



The second necessary condition is a �ne
grain modular organization of the kernel� Typically�
dynamic code generation manipulates encapsulated objects and small independent code fragments
with speci�c function� Note that this level of modularity is orthogonal to the modularity intro

duced by most microkernels where modularity is de�ned by microkernel and server boundaries�
Individually� microkernels and their servers are signi�cantly smaller than a monolithic operating
system� however these modules are still too large and complex for the purposes of dynamic code
generation� In particular� when data structures are shared among many functions within a server it
becomes di�cult to specialize individual functions� independently of the other functions� In other
words� the shared data structure creates a dependency between the implementations of the func

tions that share it� Consequently� dynamic code generation gains e�ectiveness and applicability as
the granularity of kernel modules is re�ned� This is the second important lesson from Synthesis�

Lesson � Fine�grain modularity within the kernel signi�cantly increases the scope for performance
optimization�

This approach to kernel structure takes the evolution from monolithic systems to microkernels
one step further� It also explains the di�culty in applying dynamic code generation extensively
to microkernels modularized solely at server and kernel boundaries� The internal dependencies in
such coarse
grain modules limit the potential bene�ts of applying dynamic code generation�

Lessons one and two led to the �objecti�cation� of the Synthesis kernel �	�� 	��� In the current
version of Synthesis� the kernel is composed of small encapsulated modules called quajects� For
example� queues� bu�ers� threads and windows are considered basic quajects since they support
some kernel calls by themselves� Composite quajects provide high level kernel services such as a
�le system� The implementation of quajects in Synthesis does not rely on language support such as
type checking or inheritance� Nevertheless� particular attention was paid to the interface between
quajects as well as the kernel interface� which is completely encapsulated and operational� This
allows several specialized kernel routines to run under the same kernel call interface� Although the
Synthesis implementation is minimally su�cient for the degree of �ne
grain modularity required for
dynamic code generation� Section ��	 discusses the kind of language support needed for a �ne
grain
modularization of kernels�

��� Important Questions

The Synthesis kernel has shown that dynamic code generation can produce signi�cant performance
improvements �	�� 	�� 	��� In this sense� the Synthesis project was useful as a proof of concept for
the application of dynamic code generation in operating systems� However� the focus on dynamic
code generation required hand
coded optimizations written in macro
assembler� The important
issues of high level programming language support for dynamic code generation and the de�nition
of a clear programming methodology were left out of Synthesis� This section discusses some of
the di�culties associated with this ad hoc implementation of dynamic code generation� Section �
discusses more recent research that focuses on incorporating dynamic code generation into a more
integrated and well de�ned systems programming approach�

The lack of high level programming language support for dynamic code generation and interface
description introduces a number of di�culties which impact issues such as portability� debuggability�
and correctness� For example� since the current approach does not allow invariants to be described
explicitly� it becomes di�cult to reason about the validity of an optimized piece of code which has
been generated dynamically by factoring invariants� A key problem is that the code generator must
ensure that the invariants used for optimization hold for the duration of code execution� If any
invariant is violated� the situation must be corrected by re
synthesizing code� Without support for
explicit descriptions of invariants� such consistency checks become implicit in the code and make
program maintenance� porting� and debugging more di�cult� A similar problem arises when opti

mization parameters and goals are not described explicitly� The general di�culties outlined above

�



appear in di�erent concrete situations in Synthesis� For instance� Synthesis pays careful attention
to cache management� particularly instruction and data cache consistency when generating code
dynamically� However� cache
related invariants and optimization parameters remain completely
implicit in the kernel code�

While we believe that systems based on dynamic code generation can be portable� it is clear
that Synthesis� current implementation of dynamic code generation makes it di�cult to preserve
performance optimizations when porting� On the one hand� the extensive use of macro
assembler
has allowed the kernel to be ported to a family of machines �Synthesis has been ported from an early
�
��� to �
�	� and then Sony�s workstation with �
����� On the other hand� however� machine
speci�c optimizations remain implicit in the kernel code� This is an insidious problem because the
performance gains due to these optimizations are easily lost when porting to di�erent machines�
Note that this is a problem in the current implementation� not an inherent limitation of dynamic
code generation� In section � we discuss how this problem can be addressed in future systems�

Finally� debugging dynamically generated code is a well recognized problem� However� there
is an important distinction between our approach to dynamic code generation and traditional
self
modifying code� In Synthesis� once generated� an execution path remains unchanged� i�e��
code is not updated in place� Technically� when a fragment of code is generated or updated� it
is not immediately put in the execution path� In addition to programming�debugging� this is a
precaution taken to avoid performance penalties due to instruction cache invalidation� From this
perspective� debugging dynamically generated code is similar to debugging object
oriented systems
where objects may be created at run
time� Other projects in the operating system domain� such
as the x
kernel� have similar characteristics�

Within the limitations of a kernel written in macro
assembler� Synthesis o�ers signi�cant de

bugging aids� The Synthesis kernel contains a symbol table as part of its dynamic linking module�
which is used to allow symbolic references to memory addresses� The kernel also contains a powerful
monitor that supports breakpoints� instruction tracing� a disassembler� and an on
line compiler for
a subset of C� Although the Synthesis kernel was not production quality software� several talented
project students were able to understand it� modify it� and extend it using the kernel monitor �	���
Nevertheless� from a software engineering point of view� the problem of debugging executable code
for which no source code exists remains a challenge�

� Software Feedback

��� The Technique� Uses� and Bene�ts

Feedback mechanisms are well known in control systems� For example� phase
locked loops imple

mented in hardware are used in many applications including FM radio receivers� The intuitive idea
of feedback systems is to remember the recent history and predict the immediate future based on
the history� If the input stream is well behaved and the feedback memory sophisticated enough to
capture the �uctuations in the input� then the feedback system can �track� the input signals within
speci�ed limits of stability �maximum error between predicted and actual input� and responsiveness
�maximum elapsed time before error is reduced during a �uctuation��

Most control systems work in a well
understood environment� For example� the frequency
modulation in FM radio transmission is very regular� In fact� a truly random input stream cannot
be tracked by any feedback system� For a speci�ed degree of stability and responsiveness� the
complexity of a feedback system depends on the complexity of the input stream� The more regular
an input stream is� the less information the feedback mechanism needs to remember�

Software implementations of feedback mechanisms are used in Synthesis to solve two problems�
�ne
grain scheduling �		� and scheduling for real
time I�O processing�

A serious problem in the SUNOS adaptive scheduling algorithm ��� is the assumption that

�



all processes are independent of each other� In a pipeline of processes� this assumption is false
and the resulting schedule may not be good� Fine
grain scheduling was introduced in Synthesis
to solve this problem� In Synthesis� a producer thread is connected to a consumer thread by a
queue� Each queue has a small feedback mechanism that watches the queue�s content� If the queue
becomes empty� the producer thread is too slow and the consumer thread is too fast� If the queue
becomes full� the producer is too fast and the consumer too slow� A small scheduler �speci�c to the
queue� then adjusts the time slice of the producer and consumer threads accordingly� A counter
that is incremented when queue full and decremented when queue empty shows the accumulated
di�erence between producer and consumer� Large positive or negative values in the counter suggest
large adjustments are necessary� The goal of the feedback
based scheduler is to keep the counter at
zero �its initial value�� Since context switches carry low overhead in Synthesis� frequent adjustments
can adapt to the varying CPU demands of di�erent threads�

Another important application of software feedback is to guarantee the I�O rate in a pipeline
of threads that process high
rate real
time data streams� as in next
generation operating systems
supporting multimedia �section 	�� A Synthesis program �	�� that plays a compact disc simply reads
from 
dev
cd and writes to 
dev
speaker� Specialized schedulers monitor the data �ow through
both queues� A high input rate from CD will drive up the CPU slice of the player thread and allow
it to move data to its output bu�er� The result is a simple read�write program and the kernel takes
care of CPU and memory allocation to keep the music �owing at the ���� KHz CD sampling rate�
regardless of the other jobs in the system� Because of the adaptiveness of software feedback� the
same program works for a wide range of sampling rates without change to the schedulers�

In addition to scheduling� another example of software feedback application is in the Synthesis
window system mentioned in Section ��	� It samples the virtual screen �� times a second� the
number of times the monitor hardware draws the screen� The window system only draws the parts
of the screen that have changed since the last hardware update� If the data is arriving faster than
the screen can scroll it� then the window bypasses the lines that �have scrolled o� the top�� This
helped reduce the cat 
etc
termcap run
time from a ��� seconds calculated cost �multiplying the
text length by unit cost� to the actually measured 	�� seconds�

��� Interaction With Other Ideas

One of the fundamental problems with feedback mechanisms in general is that their complexity
and cost increases with the complexity in the input signal stream� For this reason� it is generally
not a good idea to provide a single implementation of a general
purpose feedback algorithm with
a wide range of applicability� because it will be too expensive for the majority of input cases that
are relatively simple� Furthermore� in the few cases where the input stream is even more complex
than anticipated� the algorithm breaks down anyway�

Synthesis uses dynamic code generation to synthesize a simple and e�cient software feedback
mechanism that is specialized for each use� In addition� dynamic code generation is not limited
to the simpli�cation of the feedback mechanism� It also dynamically links the feedback into the
system� For example� when monitoring the relative progress of processes in a pipeline� a counter

based mechanism can be used to monitor queue length� However� the �ne
grain scheduler still needs
to adjust the time slices of neighboring threads based on this information� Dynamic code generation
links the local scheduler directly to the producer and consumer thread table entries� avoiding the
thread table traversal overhead when adjustments are desired� This is the third important lesson
from Synthesis�

Lesson � Software feedback requires dynamic code generation to be practical�

Given the di�culties with applying dynamic code generation �lessons � and 	 in section ����� it
is easy to see that it would be di�cult to apply software feedback extensively in existing systems�

�



The success of software feedback in Synthesis also depends heavily on the �ne
grain modular
structure of the kernel� Each of the kernel�s �ne
grain modules �quajects� has a relatively simple
input domain� This simplicity allows the feedback mechanism to be small and e�cient� For example�
one software feedback mechanism is used for each queue in a pipeline to manage two directly related
threads� instead of using a global scheduler to control many threads� Software feedback is much
more di�cult to apply to relatively coarse
grain modules� such as microkernels and their servers�
because the input stream for each coarse
grain module is considerably more complex than those of
Synthesis quajects� This is the fourth important lesson from Synthesis�

Lesson � Fine�grain modularity enables the application of simple software feedback mechanisms�

��� Important Questions

Although software feedback mechanisms have been used successfully in Synthesis� many important
research questions remain unanswered� First� our approach was entirely experimental� Unlike in
control theory where feedback mechanisms are well understood and their behavior characterized
in detail� the theoretical foundations of software feedback have yet to be established� The reason
for postponing the theoretical work is that the applicability of classical analysis is restricted to
relatively simple domains� such as linear systems� In systems software� small embedded systems
may be amenable to such analysis� General operating system environments� in contrast� are subject
to unpredictable input �uctuations and thus classical analysis �or theoretical work with similar
constraints� is of limited value�

On the experimental side� the scope of our contribution is restricted� so far� to the speci�c
software feedback mechanisms developed in Synthesis� These mechanisms have been developed
and optimized manually� Consequently� the design and implementation of new software feedback
mechanisms for a di�erent application is not an easy task� In addition� the software feedback
mechanisms used in Synthesis have been tuned� and their parameters chosen� experimentally� There
is no explicit testing of feedback stability or responsiveness for the cases input signal �uctuations
exceed the speci�cations� For this reason� Synthesis feedback mechanisms tend to be conservative�
having high stability even if this implies a somewhat slower response rate�

Another area of research that remained unexplored in Synthesis is the combination of software
feedback with other approaches to guaranteeing levels of service and managing overload� For
example� in systems where quality of service guarantees are important� resource reservation and
admission controls have been proposed and used� During periods of �uctuating� medium to high�
system load such approaches can become too conservative� resulting in excessive reservation of
resources and unnecessary admission test failures� Software feedback� on the other hand� is a
means for implementing adaptive resource management strategies that are very e�cient during
periods when resources are not saturated� In areas such as multimedia computing and networking
where high data rates and strict latency requirements stress resources to the limits� e�ciency and
real
time service guarantees become critical�

� A More Uniform Approach

��� A Next Generation Operating System Kernel

Synthesis showed that dynamic optimization techniques can be usefully added to the kernel devel

oper�s toolkit� Although dynamic code generation and software feedback borrow techniques devel

oped in completely di�erent areas� the former from compilers and the latter from control systems�
they solve similar problems in an operating system kernel� Both gather information at runtime�
one on state invariants and the other on program performance� to lower the execution overhead of
the kernel� Both give the Synthesis kernel the ability to adapt to environmental changes� dynamic






code generation provides coarse grain adaptation since invariants do not change often� and software
feedback supports �ne grain adaptation since it monitors changes continually� Both techniques are
desirable in an operating system kernel� however� the problems enumerated in sections ��� and ���
remain to be solved�

Despite the apparent commonality in the underlying principles� the implementation and devel

opment of Synthesis fell short of de�ning a new kernel development methodology that applies these
techniques in a uniform way� At the Oregon Graduate Institute� in collaboration with Charles Con

sel� we are developing a uniform programming methodology for next
generation operating system
kernels� based on theoretical foundations in partial evaluation ��	�� The approach� called incremen�
tal partial evaluation ����� applies partial evaluation repeatedly� whenever information useful for
optimization becomes available in the system� Dynamic code generation in Synthesis can be seen
as a concrete illustration of this general approach� Section ��	 presents an overview of incremental
partial evaluation�

To improve system adaptiveness we will make extensive use of software feedback for resource
management� Instead of custom building each feedback mechanism� as was the case in Synthesis� we
will construct a toolkit from which many software feedback mechanisms can be derived� Section ���
outlines the components of such a toolkit�

The commonality between each of these techniques� and their interaction with modular kernel
design� is discussed in section ���� As mentioned in lessons � through �� the ideas used in Syn

thesis are not easily applied to conventional kernel designs� especially not in isolation� Therefore�
section ��� discusses the potential of our new approach to integrate techniques and hence� aid in
their application to existing systems�

��� Incremental Partial Evaluation

Incremental partial evaluation can be divided into three parts� explicit invariant de�nition� incre

mental code generation� and dynamic linking� Kernel functions are de�ned in an abstract interface�
At the top level of design� each function is implemented by a general algorithm� similar to tradi

tional operating system kernels� The di�erence is that incremental partial evaluation hierarchically
subdivides the input domain of the function by identifying and making explicit the invariants that
lead to code optimization� For example� the creation of a thread and the opening of a �le generate
important invariants for the �le read function when applied to that �le in that thread� As these
invariants become true at runtime� incremental partial evaluation uses them to incrementally opti

mize and generate code� a process called specialization� When the specialization process ends� the
pieces are dynamically linked together and the execution path is ready for invocation�

Concretely� an operating system kernel using incremental partial evaluation is a hierarchical or

ganization of multiple implementations for each function� At the top level we have the most general
implementation for the entire input domain� At each level down the hierarchy� the implementations
are for a subdomain of the input space and hence contain a simpler� faster execution algorithm�
In order to achieve better performance on a speci�c architecture� the specialization at the lower
levels can become increasingly architecture
dependent� This approach does not reduce portability�
however� because the algorithms at the high level remain abstract and portable� i�e�� the approach
preserves the portability of operating system kernel code while allowing architecture
speci�c opti

mizations� Also� specializations that depend on particular architectures are clearly identi�ed and
isolated at the low levels of this implementation hierarchy�

Another important goal in incremental partial evaluation research is the application of auto

mated specialization techniques� particularly on
line partial evaluation� to implement the hierarchy
of multiple implementations� Automated specialization is usually abstract enough to be portable
across di�erent architectures� However� we do not rule out hand
written specialized implementa

tions for two reasons� First� some critical paths in an operating system kernel may require hand
tuning by the best programmer available� Second� new architectures may contain new instructions�

�



memory mappings� and other facilities that existing automated procedures do not know about� For
example� a simple but important function is data movement� commonly known as bcopy� which has
several possible implementations� each with peculiar performance results for di�erent situations�
Therefore� we anticipate the usefulness of hand specialization for the foreseeable future�

A third goal in the incremental partial evaluation approach is to make synchronization primitives
e�cient and portable� Since we are building an operating system kernel for parallel and distributed
systems� e�cient synchronization is fundamental� In Synthesis� lock
free synchronization �	�� was
adopted and implemented with the compare
and
swap instruction� Since the compare
and
swap
instruction is not available on all processor architectures� the portability of the synchronization
mechanism is a serious question� We plan to adopt an abstract lock
free synchronization mecha

nism� such as transactional memory ����� and then use incremental partial evaluation to select an
appropriate implementation of it using the facilities available on the target hardware platform�

We are in the process of de�ning high
level programming language support for incremental
partial evaluation� To the kernel programmer� it will help by supporting modularity� strong typing�
and well
de�ned semantics for automatic incremental partial evaluation� plus a systematic way to
develop and maintain the hierarchy of multiple implementations� The necessary support includes
the explicit de�nition of invariants� automated generation of guard statements to detect the breaking
of an invariant� and support for the composition of specialized modules for dynamic linking�

A natural interface to specialized code in incremental partial evaluation would distinguish be

tween abstract types and concrete types �as in Emerald ����� Multiple implementations can be seen
as the concrete types supporting the same abstract type� The invariants distinguish the concrete
types and describe their relationship to each other in the implementation hierarchy� From this
point of view� the hierarchy of multiple implementations is the symmetric reverse of inheritance�
In a traditional object
oriented class hierarchy� subclasses inherit and generalize from a superclass
by expanding its input domain� In dynamic optimization� each lower level in the implementation
hierarchy specializes the implementation above it by restricting its input domain through some
invariant�

��� Software Feedback Toolkit

Section ��� discussed the limitations of the Synthesis implementation of software feedback� To
address these problems� we are developing a toolkit� This approach is analogous to the composi

tion of elementary components� such as low pass� high pass� integrator� and derivative �lters� in
linear control systems� By composing these elements� the resulting feedback system can achieve a
predictable degree of stability and responsiveness�

The software feedback toolkit is divided into three parts� First� interesting �lters will be imple

mented in software� For example� low pass and band pass �lters can be used in stabilizing feedback
against �spikes� in the signal stream� Other �lters can help in the scheduling of real
time tasks by
incorporating the notion of priority� or value� Fine
grain schedulers can use a composition of these
�lters to achieve the desired stability and responsiveness given a well
behaved input stream�

To support this mode of construction� the toolkit provides a program that composes elementary
�lters to generate an e�cient software implementation of a feedback mechanism� given a speci�

cation of the input stream� This program should run both o�
line� to apply the full range of
optimization techniques� as well as on
line� to support the regeneration of feedback mechanisms
when the original speci�cations are exceeded� Note that this on
line version will utilize the same
dynamic code generation techniques described earlier�

Finally� the toolkit will contain a set of test modules that observe the input stream and the
feedback mechanism itself� When the input stream exceeds the speci�cations� or when the feedback
is deemed unstable� a new feedback mechanism is generated dynamically to replace the �failed�
one� Because a rigorous theoretical foundation for the application of software feedback does not
exist yet� these tests are essential for protecting the overall stability of the system� Note that even

��



Fine
Grain Modularity�Abstract Kernel Interface �section ����

Incremental Partial Evaluation �section ��	�

Software Feedback �section ���� Emulation �section ����

Figure 	� Techniques and Their Interaction

in control theory� composition� without testing� is guaranteed to work only for linear systems� In
an open environment� such as a general
purpose operating system� there is no guarantee that the
system behavior will remain linear� or bounded in any way� Therefore� even with a good theoretical
understanding of the feedback mechanism� some form of test is necessary�

This toolkit should dramatically improve the ease with which software feedback mechanisms
can be constructed and deployed in an operating system kernel� In this sense� the toolkit serves
a similar role to the programming language support for incremental partial evaluation described
above� both are tools that provide structured support for dynamic optimization�

��� Commonality Among Techniques

There are some striking similarities between the organization and use of the support mechanisms for
software feedback and incremental partial evaluation� Both techniques achieve dynamic optimiza

tion by making assumptions about invariants� The test modules in the software feedback toolkit
have an identical function to the invariant guards in incremental partial evaluation� both recognize
when invariant
related assumptions are no longer valid� The e�ect of triggering both mechanisms
is also similar� they both result in regeneration of new code� In the software feedback case a new
feedback mechanism is generated to handle the new range of input stream values �which can be
viewed as a new invariant�� In the case of incremental partial evaluation a new code template is
instantiated using new invariant
related information�

Despite these similarities� however� the two techniques are applicable in di�erent circumstances�
Where very fast response is needed� or where parameters change quickly� frequent code regeneration
becomes too expensive� In these cases� a software feedback mechanism must be used that can adapt
dynamically within the anticipated range of input stream values� Adaptation� via feedback� within
this range is dramatically cheaper than adaptation� via code generation� outside the range� For
this reason� software feedback is appropriate for highly volatile situations in which a small number
of parameters change frequently but over a small range� In the less frequent cases where the
input range is exceeded dynamic code generation is used to regenerate a new specialized feedback
mechanism�

For other kernel modules involving infrequent parameter changes� dynamic code generation is
more appropriate� Finally� if parameters are �xed or known prior to runtime� automatic or hand

coded o�
line optimization techniques can be used� This wide range of optimization techniques
has a common conceptual basis� the ability to identify invariants and localize the e�ects of imple

mentation changes� Consequently� the requirements for an abstract kernel interface and �ne
grain
modular kernel structure are at the foundation of this approach� These dependencies are illustrated
in Figure 	�

Note that the interdependence between layers in Figure 	 is mutual� Not only are the optimiza

tion techniques dependent on modularity� they also o�er the key to implementing highly modular

��



Monolithic
Kernels

�e�g�� UNIX�
�

�����s

Microkernels
�e�g�� Mach�

��
��
serv�� ��
��
serv�	 ��
��
serv��

�

��
��s

Fine
Grain Modulesh h h h h
h h h h h
e e e e
e e e e

�����s

��
��
��
��
��
��e e ee e ee e e

Figure �� Evolution of Operating System Kernels

kernels e�ciently� Without dynamic optimization� the overhead of a layered system design increases
with the number of layers� The performance degradation of this approach tends to be worse than
linear because layers tend to encapsulate functionality� hiding optimization
related information that
could be utilized by higher layers�

Furthermore� a key tenet of systems design� �optimize for the most common case�� breaks down
since the growing complexity of the system at the top eventually defeats such optimizations imple

mented at the bottom� Note that dynamic optimization techniques allow an important extension
of this principle� Rather than optimizing for a single case� dynamic optimization techniques allow
a number of potentially common cases to be anticipated and the choice of a specialized implemen

tation to be delayed until runtime� at which point it is possible to recognize the �actual case�� If
the actual case turns out to be one of the anticipated cases an optimized implementation is used�
Otherwise� invariant guards or test modules cause a more general algorithm to be employed� A
generalized tenet� therefore� is �optimize for many common cases�� This tenet suggests multiple
implementations� each for its own �common case�� A corollary of the generalized tenet is �delay
committing to a speci�c implementation as long as possible�� This delay narrows down the number
of possible cases� allowing the most appropriate implementation to be selected�

��� Integration Into Existing Systems

Figure � illustrates an evolution in operating system kernel structure from monolithic kernels�
through coarse
grain modular kernels �including microkernels�� to �ne
grain modular kernels� The
signi�cance of this evolution is that it becomes progressively easier to apply Synthesis
style dynamic
optimization techniques�

Moving from the left to the center of Figure � represents the introduction of encapsulated
kernel and server interfaces in systems such as Mach ���� for example� This is the �rst requirement
for applying dynamic optimization techniques� Moving from the center to the right of Figure �
represents the introduction of �ne
grain modularity within the kernel code at the level of objects or
abstract data types� The most well known systems in this category are Choices ���� and Chorus �	��
which use object oriented programming languages and techniques� Other systems in this category
are discussed in ��� ���

Even in the presence of �ne
grain modularity� considerable work must be done to incorpo

rate dynamic optimization techniques into a kernel� Selected modules must be rewritten using
incremental partial evaluation and�or software feedback before being reintroduced in the original
system� This approach can be extended to replace complete coarse
grain modules with new opti


�	



mized implementations� Full encapsulation is essential to facilitate the reintroduction of these new
implementations� as is the integration of the toolkit and partial evaluators that must participate
at runtime�

This approach of evolving existing systems by systematically replacing encapsulated components
opens the possibility for performance comparisons using the same underlying hardware and the
same overlaying application software� In addition� the dynamically optimized modules can be used
immediately by existing systems�

� Related Work

Many of the individual optimization techniques and kernel structuring ideas discussed in this pa

per have been studied in other contexts� Coarse
grain modularity has been studied in the context
of microkernel
based operating systems such as Mach ���� Chorus ���� and V ���� Mach� for ex

ample� o�ers an encapsulated kernel� in which kernel resources and services are hidden behind a
port�message
based interface ���� The facilities that allow dynamic linking and loading of servers
into the address space of a running Chorus kernel are also related to our research in that they allow
a choice between di�erent implementations of the kernel interface to made dynamically �����

The use of object
oriented programming languages and design approaches has allowed operating
systems such as Choices �
�� Chorus ����� and Apertos ���� to utilize �ner
grain modularity within
their kernel code� The x
kernel �	�� also o�ers relatively �ne
grain modularity through its concept of
micro
protocols� Its use of dynamic linking to compose micro
protocol modules is a good example of
a dynamic optimization technique� i�e�� the approach of dynamically constructing a protocol stack
to better match the required execution context is closely related to the principles that underlie
Synthesis�

Dynamic code generation has been used in a number of other research e�orts� The Blit terminal
from Bell Labs� for example� used dynamically optimized bitblt operations to improve display
update speed �	��� Feedback systems have been discussed extensively in the context of control
theory� Their application to system software has been focused in two areas� network protocols and
resource management� In network protocols� feedback has been applied in the design of protocols
for congestion avoidance �	��� In resource management� feedback has been used in goal
oriented
CPU scheduling ����� The principal distinction between Synthesis and these other research e�orts
is that Synthesis has applied these techniques extensively� and in careful combination� in the design
of an operating system kernel�

As we start to emphasize a formal approach to dynamic optimization� existing partial evaluation
work becomes more relevant� Dynamic optimization can bene�t from o�
line algorithms such as
binding
time analysis ���� in practical systems ����� Another related area of research on dynamic
optimization is on re�ection and meta
object protocols ��	�� While most of the programming
languages supporting meta
object protocols are interpreted� there are signi�cant e�orts focused on
building an open compiler with customizable components ��
�� An experiment to add re�ection to
C�� ���� resulted in a recommendation to not modify C�� to support re�ection� However� much
of this research could be useful in the support of the dynamic optimization techniques we envision�

	 Conclusion

The Synthesis project investigated the use of several interesting structuring and dynamic optimiza

tion techniques in the implementation of an operating system� Kernel structure was modular at a
very �ne granularity� Runtime optimization was based on two techniques� dynamic code generation
and software feedback� Both of these dynamic optimization techniques depend heavily on the abil

ity to encapsulate functionality at a �ne granularity� Conversely� dynamic code generation is the

��



key to building e�cient implementations of highly modular operating systems� since it facilitates
the collapsing of inter
module boundaries at execution time� Similar synergistic e�ects exist be

tween software feedback and dynamic code generation� to be e�cient and hence widely applicable�
software feedback requires dynamic code generation�

By hand
coding these techniques in a prototype operating system kernel� Synthesis has shown
that� when used in combination� they can be very powerful� However� the strong interactions and
inter
dependencies between the techniques have inhibited the direct application of these positive
results in other systems� An important research challenge� therefore� is to show how the techniques
demonstrated in Synthesis can be incorporated into production quality operating system kernels�

This paper represents a concrete step in addressing this challenge� The interactions among the
techniques are explained� their relationship to other kernel design approaches is discussed� and a
potential migration path from existing encapsulated kernels is outlined� We also describe new tech

nology that will facilitate the migration of dynamic optimization techniques into existing systems�
speci�cally� a more uniform programming methodology based on incremental partial evaluation and
a software feedback toolbox�

Our current research is focused on applying this new programming methodology� in an evo

lutionary way� to existing operating system kernels� We suggest that a new kernel programming
approach� such as this� is key to meeting the stringent demands on kernel e�ciency that arise in
modern multimedia computing environments�

References

��� M� Accetta� R� Baron� W� Bolosky� D� Golub� R� Rashid� A� Tevanian� and M� Young� Mach� A new
kernel foundation for Unix development� In Proceedings of the ���� Usenix Conference� pages ��	��
�
Usenix Association� �����

�
� P� Amaral� R� Lea� and C� Jacquemot� A model for persistent shared memory addressing in distributed
systems� In Proceedings of the Second International Workshop on Object Orientation in Operating

Systems� pages 
	�
� Dourdan� France� September ���
�

��� Anonymous et al� SUNOS release ��
 source code� SUN Microsystems Source License� �����

��� A� Black� N� Hutchinson� E� Jul� H� Levy� and L� Carter� Distribution and abstract types in Emerald�
IEEE Transactions on Software Engineering� SE��
��
���
	��� January �����

�
� D�L� Black� D�B� Golub� D�P� Julin� R�F� Rashid� R�P� Draves� R�W� Dean� A� Forin� J� Barrera�
H� Tokuda� G� Malan� and D� Bohman� Microkernel operating system architecture and mach� In
Proceedings of the Workshop on Micro�Kernels and Other Kernel Architectures� pages ��	��� Seattle�
April ���
�

��� L�F� Cabrera and E� Jul� editors� Proceedings of the Second International Workshop on Object Orien�

tation in Operating Systems� Dourdan� France� September ���
� IEEE Computer Society Press�

��� L�F� Cabrera� V� Russo� and M� Shapiro� editors� Proceedings of the International Workshop on Object

Orientation in Operating Systems� Palo Alto� California� October ����� IEEE Computer Society Press�

��� R�H� Campbell� N� Islam� and P� Madany� Choices� frameworks� and re�nement� Computing Systems�

���� Summer ���
�

��� D� Cheriton� The V distributed system� Communications of ACM� ���������	���� March �����

���� C� Consel� Binding time analysis for higher order untyped functional languages� In ACM Conference

on Lisp and Functional Programming� pages 
��	
�
� �����

���� C� Consel� Report on Schism��
� Research report� Paci�c Software Research Center� Oregon Graduate
Institute of Science and Technology� Beaverton� Oregon� USA� ���
�

��



��
� C� Consel and O� Danvy� Tutorial notes on partial evaluation� In ACM Symposium on Principles of

Programming Languages� pages ���	
��� �����

���� C� Consel� C� Pu� and J� Walpole� Incremental partial evaluation� The key to high performance� modu�
larity and portability in operating systems� In ACM Symposium on Partial Evaluation and Semantics�

Based Program Manipulation� Copenhagen� ����� To appear�

���� A� Dave� M� Se�ka� and R�H� Campbell� Proxies� application interfaces� and distributed systems� In
Proceedings of the Second International Workshop on Object Orientation in Operating Systems� pages

�
	

�� Dourdan� France� September ���
�

��
� L� Georgiadis and C� Nikolaou� Adaptive scheduling algorithms that satisfy average response time
objectives� Technical Report TR�RC����
�� IBM Research� August �����

���� M� Guillemont� J� Lipkis� D� Orr� and M� Rozier� A second�generation micro�kernel based unix� Lessons
in performance and compatibility� In Proceedings of the Winter Technical USENIX Conference ����
Dallas� �����

���� M� Herlihy and E�B� Moss� Transactional memory� Architectural support for lock�free data structures�
In Proceedings of the International Symposium on Computer Architecture� San Diego� May ����� Full
paper as DEC�CRL TR number CRL��
����

���� J� Lamping� G� Kiczales� L� Rodriguez� and E� Ruf� An architecture for an open compiler� In Proceedings
of the International Workshop on New Models for Software Architecture ���� pages �
	���� Tokyo�
Japan� November ���
�

���� P� Madany� P� Kougiouris� N� Islam� and R�H� Campbell� Practical examples of rei�cationand re�ection
in c��� In Proceedings of the International Workshop on New Models for Software Architecture ����
pages ��	��� Tokyo� Japan� November ���
� RISE� IPA� ACM SIGPLAN�

�
�� H� Massalin� E	cient Implementation of Fundamental Operating System Services� PhD thesis� Depart�
ment of Computer Science� Columbia University� April ���
�

�
�� H� Massalin and C� Pu� Threads and input�output in the Synthesis kernel� In Proceedings of the Twelfth
Symposium on Operating Systems Principles� pages ���	
��� Arizona� December �����

�

� H� Massalin and C� Pu� Fine�grain adaptive scheduling using feedback� Computing Systems� ��������	
���� Winter ����� Special Issue on selected papers from the Workshop on Experiences in Building
Distributed Systems� Florida� October �����

�
�� H� Massalin and C� Pu� Reimplementing the Synthesis kernel� In Proceedings of Workshop on Micro�

kernels and Other Kernel Architecturs� Seattle� April ���
� Usenix Association�

�
�� Thomas Matthews� Implementation of tcp�ip for the Synthesis kernel� Master�s thesis� Columbia
University� Department of Computer Science� New York City� �����

�

� S� O�Malley and L� Peterson� A dynamic network architecture� ACM Transactions on Computer

Systems� ���
�����	���� May ���
�

�
�� R� Pike� B� Locanthi� and J� Reiser� Hardware�software trade�o�s for bitmap graphics on the blit�
Software
Practice and Experience� �
�
�����	�
�� February ���
�

�
�� C� Pu and H� Massalin� Quaject composition in the Synthesis kernel� In Proceedings of International

Workshop on Object Orientation in Operating Systems� Palo Alto� October ����� IEEE�Computer
Society�

�
�� C� Pu� H� Massalin� and J� Ioannidis� The Synthesis kernel� Computing Systems� �������	�
� Winter
�����

�
�� K� K� Ramakrishnan and Raj Jain� A binary feedback scheme for congestion avoidance in computer
networks� ACM Transaction on Computer Systems� ��
�� May �����

��



���� M� Rozier� V� Abrossimov� F� Armand� I� Boule� M� Gien� M� Guillemont� F� Herrman� C� Kaiser�
S� Langlois� P� Leonard� and W� Neuhauser� Overview of the chorus distributed operating system� In
Proceedings of the Workshop on Micro�Kernels and Other Kernel Architectures� pages ��	��� Seattle�
April ���
�

���� Y� Yokote� F� Teraoka� and M� Tokoro� A re�ective architecture for an object�oriented distributed
operating system� In Proceedings of the ��� European Conference on Object�Oriented Programming�
pages ��	���� Nottingham� UK� July ����� Cambridge Unversity Press�

��
� A� Yonezawa and B�C� Smith� editors� Proceedings of the International Workshop on New Models for

Software Architecture ���� Tokyo� Japan� November ���
� RISE� IPA� ACM SIGPLAN�

���� H� Zimmermann� J�S� Banino� A� Caristan� M� Guillemont� and G� Morisset� Basic concepts for the
support of distributed systems� the Chorus approach� In Proceedings of �nd International Conference

on Distributed Computing Systems� July �����

��


