
Parallel Array Classes and
Lightweight Sharing Mechanisms

Steve W. Otto

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive
Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 93-009

April 1993

To appear in proceedings, Object Oriented Numerics Conference, April 1993,
sponsored by SIAM and Rogue Wave Software.

Parallel Array Classes and Lightweight Sharing Mechanisms*

Steve W. Otto
Dept of Computer Science and Engineering

Oregon Graduate Institute of Science & Technology
19600 NW von Neumann Dr

Beaverton, Oregon 97006-1999
otto@cse.ogi.edu

April 7, 1993

Abstract
We discuss a set of parallel array classes, MetaMP, for distributed-memory architectures. The

classes are implemented in C++ and interface to the PVM or Intel NX message-passing systems.
An array. class implements a partitioned array as a set of objects distributed across the nodes - a
*collectiven object. Object methods hide the low-level message-passing and implement meaningful
array operations. These include transparent guard strips (or sharing regions) that support finite-
difference stencils, reductions and multi-broadcasts for support of pivoting and row operations, and
interpolation/contraction operations for support of multigrid algorithms.

We generalize the concept of guard strips to an object implementation of lightweight sharing
mechanisms for FEM and PIC algorithms. The sharing is accomplished through the mechanism of
weak memory coherence and can be efficiently implemented. The price of the efficient implementation
is memory usage and the need to explicitly specify the coherence operations. An intriguing feature
of this programming model is that it maps well to both distributed-memory and shared-memory
architectures.

1 Introduction
This paper describes MetaMP, a programming environment for distributed-memory computers. MetaMP
stands for "meta-message-passing" and this should give the reader the clue that it has evolved from the
standpoint of message-passing programming. The environment consists of a pre-processor, a set of C++
classes, and a runtime system that map onto a few well-known message-passing systems: PVM, NX,
and Express. The attempt is to abstract SPMD, message-passing programming to a more usable level,
without sacrificing much performance. The focus is on scalable, data-parallel applications, and only a
subset of such applications is currently well-supported.

The fundamental idea of the system is to support important, parallel data structures such as (parti-
tioned) multi-dimensional arrays and (partitioned) unstructured meshes. Beyond just the data structure,
important mechanisms associated with these data structures are implemented as object methods. The
mechanisms provided are those that seem to be natural for each data structure. A few examples of these
primitives are (for arrays):

update of guard strips (object method),

abstract iterators (compiler level),

OTo appear in proceedings, Object Oriented Numerics Conference, April 1993, sponsored by SIAM and Rogue Wave
Software.

a row, column broadcasts (object method),

a bulk I/O primitives (object method).

For the unstructured mesh data structure we have the primitives:

set-up of alias or sharing regions (object method),

merge alias values (object method),

a abstract iterators (compiler level).

Most of these are provided as object methods but a few, notably iterators, are implemented by our pre-
processor. This is done so that we can perform the same efficient access of arrays within loops as done
by good Fortran compilers [I].

Hopefully, the primitive object methods give an efficient implementation of important constructs and
idioms for parallel programs. If they are heavily re-used, we can justify a large effort to write very efficient
methods and to port them to many platforms.

Before getting to the specifics of MetaMP, let us make a few comments about what we have found
useful in basing our efforts on C++. What we say is perhaps not new, but it is interesting to say
what works and what doesn't in the context of parallel applications. We have found that the use of
object-oriented techniques:

a promotes data abstraction. No surprise here, but more specifically we achieve data abstraction
through the use of:

- function overloading. An object method such as elem() (single element access of an array)
is consistently called this even though there are many different kinds of element access in the
system.

- self-describing data structures. All the information that describes the shapes, sizes, strides,
etc., of a particular instance of a data structure is stored within that data structure itself. This
makes it very easy to pass around things like a "2-Dl (block, block-cyclic)" array and let the
methods themselves inquire as to what particular type of partitioned array we have.

- parameterized types. "Templates" in C++. This language feature allows one to create generic
container classes independent of the particular data types that are to be put inside the struc-
ture. For example, once we have implemented 3-D partitioned arrays as a generic container
class, we can simply re-use that same class to store a 3-D array of i n t s or a 3-D array of triples
of double, etc.

Data abstraction, in turn, promotes parallel programming that is independent of specific implemen-
tation choices such as:

partitioning choice (e-g., block versus block-cyclic). Abstracted iterators and object methods allow
one to conveniently write programs that continue to function correctly when the partitioning choice
is changed.

a data types. The "all-meetsall" parallel algorithm looks the same whether the elements are triples
of floating-point numbers (N-body gravity) or row, column combinations of a matrix (Jacobi eigen-
solver).

a details of 110. The array "read" method knows how to read from a striped, parallel file. Since the
file was originally constructed by "write," information was written into the file which makes the
file self-describing. For instance, if the file was written with a block-cyclic partitioned array on 8
processors, and is being read into a block partitioned array on 32 processors, the read method can
know this and load in the data correctly.

Conversely, we have not found all C++ features to be useful. For example, we do not use operator
overloading at all. The allowable operators and their syntax is very limited; I'm also not sure a parallel
APGlike language would be very easy to read.

In some parts of the system, we have implemented constructs in the pre-processor even though one
could do it via methods. A good example of this is iterators. In order to make sure that array element
access within loops is efficient, we take control with the pre-processor and implement the loop and then
re-write the body of the loop for efficient element access.

Finally, deep inheritance trees can cause problems. It is certainly useful to add a feature to a MetaMP
class by using it as a base class and then inserting an extra method or two. Heavy use of inheritance
can easily cause one to violate some assumption made somewhere in the hierarchy. For example, many
MetaMP methods must be called "loosely synchronously" - that is, all processors must eventually get
around to calling the method. If this is not satisfied the likely result is deadlock.

2 MetaMP Programming Model
We will discuss the details of the MetaMP array class library. The C++ classes of the library implement
the partitioned array as a "collective" [2, 31 object within an SPMD programming model. This means
that there is a separate instance of an array object on each processor and that these objects work together
to give a consistent view of a single, global data structure such as an array. Parameters such as those
that describe the global shape of the array are replicated across the object instances; those parameters
that describe the local features of the sub-data structure (e-g., the sub-array on this processor) are unique
to the local object instance. The data of the data structure is also not replicated unless it is explicitly
aliased by a guardstrip or alias modifier at construction time.

The object methods provide important operations that access or modify the distributed data structure.
Many methods contain communication or synchronization operations, implying that they must be called
in a loosely synchronous fashion. A compiler could (often) check whether or not one is satisfying this
requirement and this is an enhancement to the system we are considering.

We now give an overview of the MetaMP array class features and object methods.

Global Indexing of Arrays
Array elements are accessed via global indexing. There is no local index of an array element on a processor
provided to the user. The choice of global indexing provides a consistent picture of what each array
element is named and is implemented without additional runtime cost. If array elements are accessed
from within loops governed by the abstract iterators, then one is guaranteed to access only on-processor
elements of the array.

In the applications we have developed, we have achieved the access of off-processor array elements by
the mechanisms of guard strips, aliasing regions, and bulk rolls or shifts of the array. That is, we employ
usual message-passing techniques, but they are expressed at the level of the array and not in terms of
explicit communications buffers.

The question arises as to whether one can easily provide for the simple access of off-processor array
elements. In the DPC system of Quinn and Hatcher [4], off-processor references are handled by sending
the requests and receiving the replies at the synchronization points implied by the DPC language. We
are trying to do this within the more asynchronous framework of SPMD programs. In this case however,
it seems that one needs access to an active-message layer in the message-passing system [5]. Baber's
Hypertasking system [6] provided an off-processor capability. Due to the high degree of non-portability
among message-passing systems in their support of active-messages, we do not have off-processor access
in the current MetaMP array classes. Another comment to be made is that one can often achieve the
desired effect in a more efficient manner through the use of aliasing. We will return to this point later in
the paper.

Partitioning Syntax
For describing the partitioning of multi-dimensional arrays, we have borrowed from the syntax of HPF
[7]. The pre-processor for MetaMP understands a syntax for the creation of "templates" (an abstract
array of virtual processors to which real arrays align to), a distribute statement for templates (map the
template onto the processors in block, block-cyclic fashion), and an align statement for the real array to
the template (arrays are aligned with templates; the templates are mapped onto the physical processors).

This was done so as to provide a rich syntax, allowing the creation of many different mappings of
arrays onto processors, but also a syntax that is becoming standardized.

It erators
Iterators provide for each processor looping over all the array elements it owns. As such, the iterator
takes an array class instance as an argument. There can be multiple statements within an iteration.
All elements on a processor need not be looped over; the global index domain can be restricted and the
strides need not be 1. We again specify this by borrowing from Fortran 90 notation:

C lower : upper : step I,
i.e., the lower bound, the upper bound, and the step between successive members of the set. These
numbers are in terms of the global dimensions of the array. The iterator will convert these to the starting
and ending values for each processor.

As was mentioned previously, iterators are implemented by our pre-processor. We do this in the
pre-processor (rather than as a method) so as to ensure that we get the same efficient array access within
loops as that done by Fortran compilers. The pre-processor re-writes the body of the loop (in C++),
performing induction variable creation and strength reduction optimizations.

Locality-based Access
Potential off-processor access of a local nature (limited distance in terms of the array indices, but not
necessarily limited distance in memory) is provided by integrated guard strips. One can think of guard
elements as being read-only copies of array elements on neighboring processors. There are object methods
to update the guard values (all directions are done at once) and "corner values" are gotten without
additional runtime cost. That is, separate messages do not need to be sent to a processor in a diagonal
direction.

Bulk Data Movement
For writing efficient pipelining algorithms such as matrix multiplication and N-body gravity direct, there
are object methods that transfer the entire sub-array from one processor to the next processor along
some dimension of the array. All processors do this in parallel and the top processor wraps, leading
to a rotated version of the partitioned array. The communications are performed efficiently and also
the object instances are updated by the roll0 method so that they "know" that they now contain
a different section of the array. This is essential so that other methods, such as iterators, continue to
function correctly. Another example of a bulk data-movement operation is matrix transpose, although
the current array classes don't have this.

Broadcasting Primitives
These are primitives that capture the idea of broadcasting along some direction of an array. They are
clearly useful for linear algebra, where row and column broadcasts are common. Actually specifying a
row-broadcast from a dynamic origin (occurs in partial-pivoting) is quite involved and uses the owner()
method so that processors can independently compute the processor that owns a certain row. The actual

broadcast is done with the pointToSubArray() method (so that a vector can alias to a row of a matrix)
and the copy0 method.

I/O - Bulk readlwrite Operations

Dumping an entire array to a (possibly parallel) file is provided as an object method. Consider a read().
The method knows the shape, partitioning, number of processors, and so on of the array desired in
memory; it also reads similar information written in the file (the file is self-describing). Using this, it is
easy to convert layouts, and to efficiently read the file.

Visualization - Drawing 2-D Arrays
A set of methods that give a convenient interface to draw a 2-D array in an X-window are being developed.

Aliasing Mechanisms for Unstructured Meshes
This can be thought of as a generalization of guard strip ideas to that of a "writable" guard strip. The
writable guard can also be described as a weakly coherent, shared-memory. The "weak coherence" means
that the programmer must specify when the shared memory is to be made consistent. This will be
discussed in more detail later in the paper. There are object methods for set-up of the alias groups, and
for the coherence operations.

Other Features
To make a programming environment usable, there are some other features which are helpful to have.
These are not tied to any particular data structure and are not object methods. They include:

portable timing primitives - a simple interface to a clock

global broadcast, global reduction, barrier functions

coordination primitives for writing asynchronous, master-slave parallel programs

load balance display as an X-window

X-window library for simple drawing

3 Example Applications
We show usage and explain more points about the array classes through some example parallel programs.
The examples used in this section are a Laplace solver which is then extended to a Multigrid solver. The
next section will discuss aliasing for FEM and PIC applications.

Laplace Solver

This is a program that solves a 2-D Laplace or Poisson problem via simple Jacobi relaxation. Though
this is a far from optimal elliptic solver, we will turn it into a powerful one in the next section. Dirichlet
boundary conditions can be set at any point on the regular 2-D mesh that describes the space. We won't
show all the code, but merely the interesting features for parallelism.

We begin by declaring a two dimensional mesh of processors, and a 2-D template that is block
distributed across the processor mesh. Our HPF-like notation for this is:

$ Procnesh pi p2 $
$ Template Two(U ,H) $
$ Distribute Two(B1ock-pi ,Block-p2) $

The $'s alert the pre-processor that these are MetaMP statements. These don't actually produce exe-
cutable code, but instead cause the pre-processor to treat the set of processors as a p l x p2 mesh and to
map the template array (regard this as a virtual set of M x N memory cells) Two in a block fashion onto
the processor mesh.

The actual 2-D arrays are made by C++ constructors, modified with an HPF-like align statement:

array2D<float> phi(W,H) ; $ Align phi(i,j) with Tuo(i,j) $

The align lines the actual array phi up with the template array Two. It has the effect of adding several
arguments to the C++ constructor which must appear on the same line. All of this is nothing but a
convenient syntax which follows HPF.

To get an array with a guard strip of width 1, we do:

$ Template TwoG(U ,H) $
$ Distribute TwoG(B1ock-p1,Block-p2) Guardstrip 1 $

array2D<float> phio(U,H) ; $ Align phio(i, j) with TwoG(i, j) $

The Jacobi iteration consists of an update of the guard strip values for the array phio (update the
read-only shared memory cells), followed by an iteration through all the memory cells of phi:

phio . updat eGuard() ;
$ phi.iterate i over C1:U-1: 11 j over C1:H-1: 11 $ C

... body of loop
>

updateGuard() is an array method, while iterate is expanded by the pre-processor. The loop body is
written in terms of operations on individual array elements, using the elem() method:

phi. elem(i, j) = 0 .25* (phio. elem(i-1, j) + phio. elem(i+l, j)
phio.elem(i,j-l) + phio.elem(i,j+l));

Note that the guard strips are integrated into the arrays themselves. That is, the shared points are
located at seemingly "illegal" points such as:

where phi0 . start(1) is where the array phio begins on this processor (for dimension 1).
To make things a bit more concrete, we can say that the iterator is expanded out to:

for block decompositions. Actually, it's a bit more complicated than this due to the fact that the iterator
allows general C1:u: sl iteration sets. The starting and ending points on a given processor may not
be simply given by the array starting location. For block distributions, the elem() method accesses a
contiguous set of memory cells in the usual C fashion and is inlined for efficiency:

float& elem(int i, int j) (return *(basePtr+i*stride[l] +j) 3

Multi-Grid Extension, Graphics
The 2-D Laplace solver of the previous extension can almost trivially be converted to a 3-D solver by
switching to the array3D class. Another extension is to extend the Jacobi relaxation solver to a Multi-
Grid solver [8]. Fundamental to multi-grid techniques are array refinement and coarsening operations.
These are illustrated in figure 1.

Figure 1: Coarsening and refinement operations for multi-grid. In coarsening, values from a fine grid
are averaged and written to a coarse grid of fewer cells. In refinement, values from a coarse grid are
interpolated to a fine grid of more cells.

The multi-grid program can be expressed with just the classes and methods presented in the previous
section. We could statically define arrays of size (H,l), (H/2 ,N/2), (H/4,1/4), ... and then copy values
from one array to another. We have taken the slightly further step and defined r e s i z e 0 object methods
which are used to re-interpret the array mapping and effectively change the size of the array. The same
could be done by destructing and constructing the array, but r e s i z e 0 is light weight in the sense that
memory is not re-allocated. r e s i z e () re-maps the array - this means that as the array shrinks it remains
properly distributed across the processors, it doesn't, for example, all shrink into processor 0. Finally,
as in a conventional program for multi-grid, the programmer still explicitly copies values, element by
element, from an array of size (H ,Y) to one of size (H/2, B/2).

Figure 2 shows the multi-grid solver running on a PVM installation. The solution is shown as a
contour plot. This plot is gotten by simply opening a window with the openplot0 method:

phio.openPlot("phi f i e l d ") ;

and drawing the field into the window via:

Also shown in the figure are a picture of the residual field and a usage of the load balance display utilities.
The residual field display was easily added by creating another partitioned array of the same alignment
as phi, setting it proportional to the residual during the convergence check phase of the program, and
drawing using the draw() method. The load balance display is used by calling it with each processor's
estimate of its Mflops.

Figure 2: The Multi-Grid application running on PVM. The two large windows show the solution (on the
left) and a picture of the residual field. The third window shows the load balance display. This function
is called loosely synchronously and is given an estimate of the achieved Mflops on that processor. In the
situation shown we are running on two processors and achieving 4.3 Mflops out of an estimated max of
5.24 for an efficiency of .82

4 Lightweight Sharing
In this section we will discuss our second effort at a useful set of classes for parallel programming. We
generalize the idea of guard strips to the notion of a writable guard strip. When this idea is pursued, the
guard region can be thought of as forming sets of memory cells which are shared between processors. In
keeping with our philosophy of explicitly stating when communications occur, this shared memory is a
weakly coherent shared-memory. This means that the program explicitly states when the various copies
of the shared-memory are to be made coherent. Finally, in contrast to usual shared-memory models,
no single copy of the memory "wins" and overwrites the other copies. Instead, the multiple copies are
merged with some operator (usually a "+") in a symmetric way and all copies are replaced with the
merged values.

The ideas are explained using two important scientific applications: unstructured mesh finite element
methods, and particle-in-cell (PIC) algorithms.

Unstructured Meshes, FEM
Central to iterative solvers for finite element problems are matrix-vector products. If the operator or
matrix is stored in a sparse form, we can think of such computations as being represented by the uni-
processor code:

Here, the vectors y and x [I represent fields which live on the nodes of the unstructured mesh; the
index i is the node label. nCi1 is the number of neighbors of node i, and nbrs Cil Cjl is the label of the
jth neighbor of node i. The matrix is stored such that ACil Cjl is the matrix element between node i
and the jth neighbor of i. The computation is illustrated in figure 3.

Figure 3: The sparse matrix-vector product. The matrix is non-zero only on nodes connected by edges,
the arrows denote the neighbors of node i that are "pulled in" and summed to give a contribution to the
vector element at i.

One suggested approach for parallelizing this type of computation is discussed by Koelbel, Saltz,
Mehrotra, Berryman [9]. In this method, we partition the mesh nodes among the processors in a unique
manner, that is, each node is stored in only one processor. The computation of the matrix-vector product
then proceeds in an "owner-computes" fashion: the sum that will be stored at node i is done by the
processor that owns node i. This is shown in figure 4.

The code for the matrix-vector product gets broken into two parts: one set of loops sums up contri-
butions from on-processor vector elements, the second set of loops sums contributions to all the nodes
connected to an off-processor node. The pseudo-code becomes something like:

loop0verAllMyPoints i
do j = 1, n-localCi1

y [i] += ACi] [jl * xhbrs-local Cil Cjll
Communications -- bring non-local x values into local buffer
1oopOverBndyPoints i

do j = n-local Cil +I, n-non-local Cil
y[i] += A[i] [j] * buff [buff-indexci] Cjll

nlocal [i] is the number of on-processor neighbors of node i, nbrslocal [I U enumerates them.
Similarly, for each node i, nnonlocalCi1 is the number of off-processor neighbors of node i, and
buff index enumerates their locations in the communication buffer.

The owner-computes method has lead us into an unnatural split into a local and a non-local compu-
tation. A similar thing occurs in regular (structured mesh) computations. We have seen earlier how the
integration of the "guard strip" into the fundamental data structure itself can lead to a cleaner parallel
program that is still efficient. We pursue a similar idea here, with the extension that one can define the
guard strip to be writable, as opposed to the read-only guard strips used in the Laplace and Multi-Grid
solvers.

Figure 4: Owner computes for the parallel sparse matrix-vector product. The processor boundary is
shown by a dotted line, arrows crossing the boundary represent inter-processor communications.

When integrating the guard strip into the unstructured mesh, we follow some of the ideas of Williams
[lo] and create multiple aliases of mesh nodes that are on processor boundaries. A set of alias groups for
the previous unstructured mesh partition is drawn in figure 5.

Again we partition the unstructured mesh, but with overlap: the nodes along the processor boundary
are replicated onto two (or more) processors. The copies of a single point form an alias group and should
be thought of as a weakly coherent, shared-memory. The aliases are all writable, and the results of
write operations are merged at some point specified by the program. This is where aliases differ from
conventional shared-memory. Instead of one copy being the current "true" copy which will overwrite the
other copies, we take the symmetric choice and say that the values coming from the separate writes must
be merged with a generalized "+" operator (i.e., a commutative, associative binary function).

The pseudo-code now takes on the pleasing structure:

loop0verAllHyPoints i
do j = 1 , nCil

yCi1 += A C i l C j] xhbrsCil Cjl1
Communications -- merge aliased y values with + function

Aliasing has formally promoted the communication buffer of the owner computes approach to portions
of the vectors x[] and y IJ that are shared. As is the case for the owner computes technique [9], the
alias approach has a useful inspector / executor optimization strategy. The alias groups are created only
once at the beginning of the program, and tables are constructed so as to efficiently perform the message
passing - that is, we can coalesce all the alias communications between any pair of processors into one,
large message.

The status of our unstructured mesh work is that the author and T. Kubaska of Intel SSD have working
C codes for both the case of assembled and un-assembled matrices [ll]. We are currently measuring speeds
on an iPSC 860 and are re-working the software to provide a C++ interface. This interface will have the
following features:

vectors and sparse matrices are automatically partitioned collective objects,

Figure 5: Alias groups for unstructured mesh computation. The double-ended arrows show each alias
group. Mesh points along a processor boundary are replicated. The copies of a single point form an alias
group and should be thought of as a weakly coherent, shared-memory. The aliases are all writable, and
the results of write operations are merged at some point specified by the program.

methods are called to define the alias points and to do the initial set-up (or inspector) portion of
the computation,

abstract loop over this processor's mesh nodes is provided,

merging of aliases is again an object method.

Aliases can be thought of as an extension of guard strip ideas, but in the next section we will give
an example of a computation in which the aliases are not merely along the processor boundaries. In
addition, we will make stronger use of the fact that the aliases are writable. This will be essential for the
efficiency of the calculation.

Particle-In-Cell Algorithms

In this section we discuss some aspects of particle-in-cell algorithms [12] and how they might be imple-
mented cleanly and efficiently using the framework of lightweight aliases. The applications of interest are
plasma simulations, where one has charged particles moving about in space, and electro-magnetic fields
defined on a regular mesh.

The four major phases for each time step of a PIC algorithm are:

Scatter: accumulate current densities (j) at mesh points from the particles in neighboring cells.
See figure 6.

Field solve: advance the electro-magnetic fields (E, B) one time step. Like j, these fields are located
on the mesh sites.

Gather: accumulate and interpolate field values to particle locations. See figure 7.

Push particles: compute the force on each particle, and move it forward one time step.

Figure 6: The particles in a cell "scatter" their position, velocity, and charge information to the j field
located on the mesh sites. The "+" indicates that contributions from multiple particles are (vector)
summed.

Figure 7: Field values are accumulated and interpolated to the particle positions.

Parallel PIC, Version 1

Aliasing techniques make it easy to arrive at efficient parallel algorithms. In a first version of a parallel
PIC program, we can alias the j, E, B fields along processor boundaries as shown in figure 8. As before,
the aliases have the effect of integrating guard strips or communication buffers into the fundamental data
structure. A strong case can be made that the alias approach is necessary for an efficient implementation.
Suppose there are several particles located in a cell along the processor boundary. Then, with the owner
computes approach, all of the particle data would have to cross the processor boundary. With aliasing,
only the cumulated values (the partial sums) need cross.

Parallel PIC, Version 2

A second version of parallel PIC is motivated by observations of D. Walker [12]. One of the features of
real PIC simulations is that particles tend to clump up and so, in order to load balance, we actually want
to employ different distributions of the particles and mesh. Figure 9 shows such a "non-conformant"
distribution - for the mesh we choose a normal, block distribution, but for the particles we choose a
hierarchical (in dimensions), adaptive distribution. Each distribution comes into play at different phases
of the PIC algorithm, and each is effective at balancing the load during its phase.

Figure 8: PIC version 1. If we alias boundary mesh sites, then instead of all the particle data crossing
the processor boundary, only the cumulated values need cross.

We define an entire region to be aliased between processors. Figure 10 shows the two distributions
superimposed, and a region of aliasing is shaded. This region is written to and read from by both
processors and as before, a merge operation with a + operator makes the shared-memory coherent. Only
one of the sharing regions is shown in figure 10. There are similar sharing regions between other pairs of
processors in the figure.

Structure of PIC Algorithm

Aliasing seems to give a clean way of expressing efficient parallelizations for both conformant (version
1) and non-conformant (version 2) PIC algorithms. For each version, the basic structure of the parallel
algorithm is as follows.

a Scatter from particles.

loopover part ic les
scatter from particle t o local copy of j f i e l d

make aliased j f i e l d coherent

a Field solve.

run conventional, parallel f i e l d solve using f i e l d regions
make aliased EBB f i e l d s coherent

a Gather to particles.

loopover part ic les
gather, interpolate f i e l d values t o particle locat ion

a Push particles.

loopover part ic les
move part ic le one time step

need t o migrate some particles

Gaussian Elimination

We have written a parallel Gaussian elimination program using the array classes. The program performs
partial pivoting. The search for the next pivot and the multi-cast of the pivot row are done through
well-defined object methods. As is well known, Gaussian elimination has potential load imbalance due

Figure 9: Non-conformant distributions. Due to particle clumping, we use an adaptive distribution
that balances the (particle) load amongst the processors. During the field solve phase, we still want a
conventional block distribution.

to the effect shown in figure 11. As the computation proceeds, the active region of the matrix shrinks
towards the lower right corner.

One known attack on the load imbalance is to use a cyclic or block-cyclic distribution of the matrix.
Then, even as the active region shrinks, many processors stay involved in the computation. We wish
to support cyclic or block-cyclic distributions transparently through our abstracted iterators. To keep
efficient access of the array elements, one again needs compiler support of the iterator. Mike Sharp is
producing a C++ to C++ translator that will provide this efficient access [I].

N-Body Gravity, Jacobi Eigensolver

Parallel versions of N-body gravity and the cyclic Jacobi eigensolver both rely on an efficient all-meet-all
primitive. When we say N-body gravity we mean the direct, N2 algorithm, and the Jacobi method for
eigenvalues is within a constant factor of the best known algorithms in the sequential case, and is scalable
(in contrast to the others). The all-meet-all primitive can be represented by the sequential, triangular,
double loop:

f o r (i = O ; i c l ; ++i)
f o r (j=O; j c l ; ++j)

if (i < j) i n t e r a c t (&objCil, LobjCjl 1;

All-meet-all is a parallel version of this, using algorithms such as those found in [13]. It is implemented
as an object method, where the object is a one dimensional array of elements that can be an arbitrary
datatype, and it also takes the i n t e r a c t () function as an argument. i n t e r a c t 0 is user-defined, and
must take pointers to a pair of elements. For N-body gravity, it is the function that computes the force
between the i t h and jth particles, for Jacobi, it takes rows and columns of a pair of matrices and does

Figure 10: Alias region of j, E, B fields between two processors. We show the two distributions super-
imposed. The shaded area is shared by the processors above and below it.

a transformation on them. All-meet-all is an efficient and easy to use abstraction for the situation of a
distributed list of items, and where each item must "meet" every other item.

5 Performance Results
The following table shows speed-up results for the Laplace and multi-grid programs on an iPSC/860. The
absolute speed for one processor for all three programs was approximately 1.8 Mflops.

Program N = l 2 4 8 16

We are currently measuring speeds for our FEM / aliasing program, also on an iPSC/860 machine.
For our PVM implementation, we measure a speed of 2.2 Mflops per HP-720 processor for the multi-

grid program. Figure 2 showed this program running on two HP-720 workstations for a total speed of 4.3
Mflops. Relatively tightly coupled applications such as multi-grid do not scale up well on this LAN-based
system. Future networks, or PVM running on scalable parallel machines, will alleviate this problem.

6 Asynchronous Search Programs

Before closing, we would like to mention our asynchronous, loosely coupled parallel search programs.
These run on PVM and scale-up quite successfully. They are a parallel implementation of a powerful
search heuristic for solving combinatoric optimization problems [14, 151. Figure 12 shows the parallel

Figure 11: Gaussian elimination. The active region of the matrix shrinks as the algorithm proceeds down
the diagonal.

graph partitioning (GP) solver running on 7 workstations, achieving an efficiency of 91%. Note that in
a heterogeneous situation such as this, speed-up is difficult to define, but efficiency (what fraction of all
the possible cycles was captured?) is still a valid concept. A related program for solving the traveling
salesman problem (TSP) shows similar behavior.

7 Conclusions
The partitioned array support that is provided by our array classes certainly seem useful. The basis of
C++ has made it easier to write re-usable software and we have successfully applied the fundamental
object methods to several distinct parallel programs.

Unstructured mesh applications and parallel programs such as PIC seem to be naturally expressed in
terms of a weakly-coherent, shared memory system. We are finding that these map well down to message-
passing systems. Equally intriguing is the fact that these methods may map to large-scale shared memory
architectures in quite a nice way. Aliased variables are precisely those which should be replicated in a
shared memory implementation so as to avoid effects such as cache-line thrashing. The coherence calls
are those places at which the replicated variables must be brought together.

Elaborate parallel applications demand carefully constructed parallel data structures and mechanism.
Though it is true that some of the ideas discussed here are finding their way into HPF compilers, this
seems to us to stretch the idea'of what a compiler should do. Compilers preclude extension; a mixed
approach of compiling and class definitions may be more workable.

We are in the process of making the MetaMP pre-processor and array classes and runtime sys-
tem available. Application programs are also available. For information send email to Steve Otto at:
otto0cse.ogi.edu.

Acknowledgments
I thank Jon Inouye, Ravi Konuru, Ted Kubaska, Robert Prouty, Mike Sharp, David Walker, Jonathan
Walpole, and Roy Williams for useful discussions. I would like to acknowledge Intel Supercomputing
Systems Division and OACIS, the Oregon Advanced Computing Institute, for financial support.

Figure 12: The parallel GP solver running with MetaMP/PVM. The many windows show the current
solution that is being searched on each processor. This run executed on 7 workstations, a mix of Hewlett
Packard and SUN Microsystems machines. The load balance display on the upper left shows that at
this point, the parallel search is running at an efficiency of .91. The program is computing the min-cut
bi-partition of a FEM mesh.

References

[I] M. Sharp and S. Otto. A class specific optimizing compiler. In Object Oriented Numerics Conference
'93, April 1993.

[2] F. Bodin, D. Gannon, S. Narayana, P. Beckman, and S. Yang. Distributed PC++: Basic ideas for
an object parallel language. In Object Oriented Numerics Conference '93, April 1993.

[3] M. Lemke and D. Quinlan. P++, a C++ virtual shared grids based programming environment
for architecture-independent development of structured grid applications. Technical report, GMD:
Gessellschaft fur Mathematik und Datanverarbeitung MBH, 1992.

[4] P. Hatcher and M. Quinn. Data-Parallel Programming on MIMD Computers. The MIT Press, 1991.

[5] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: a mechanism for in-
tegrated communication and computation. In 19th Annual International Symposium on Computer
Architecture, pages 256-66. ACM Press, 1992.

[6] M. Baber. Hypertasking support for dynamically redistributable and resizable arrays on the iPSC.
In The Sixth Conference on Hypercube Concurrent Computers and Applications, pages 59-66. IEEE
Computer Society Press, 1991.

[7] The High Performance Fortran Forum. Draft 1.0 of HPF. Technical report. Send electronic mail
to netlibQornl.gov with "send hpf-vl0.p~ from hpf" in the message body. The report is sent as a
Postscript file. This site also has the IATEX source of the draft; use "send index from hpf' to see the
file names.

[8] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C, Second Edition.
Cambridge University Press, 1992.

[9] C. Koelbel, P. Mehrotra, J. Saltz, and H. Berryman. Parallel loops on distributed machines. In
D. Walker and Q. Stout, editors, The FiBh Distributed Memory Computing Conference. IEEE, 1990.

[lo] R. Williams. Voxel databases: A paradigm for parallelism with spatial structure. Technical Report
CCSF-19-92, Caltech Concurrent Supercomputing Facility, 1992.

[l l] T. Kubaska. Light weight sharing mechanisms for sparse matrix computations. Master's thesis,
Oregon Graduate Institute of Science & Technology, 1993. In preparation.

[12] D. Walker. Particle-in-cell plasma simulation codes on the connection machine. In Computer Systems
in Engineering. 1991.

[13] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on Concurrent
Processors, volume 1. Prentice Hall, Englewood Cliffs, NJ, 1988.

[14] 0. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains for the traveling salesman
problem. J. Complex Syst., 5:3:299, 1991.

[15] 0. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains for the TSP incorporating local
search heuristics. Oper. Res. Lett., 11:219-24, 1992.

