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Abstract 

Class specific optimizations are compiler optimizations specified by 
the class implementor to the compiler. They allow the compiler to take 
advantage of the semantics of the particular class so as to produce bet- 
ter code. Optimizations of interest include the strength reduction of 
c1ass::array address calculations, elimination of large temporaries, and 
the placement of asynchronous sendlrecv calls so as to achieve compu- 
tation/communication overlap. We will outline our progress towards the 
implementation of a C++ compiler capable of incorporating class specific 
optimizations. 

1 Introduction 
During the implementation of complex systems in C++, particularly numerical 
ones, the implementor typically encounters performance problems of varying 
difficulty. These difficulties usually relate to the lack of semantic understanding 
the C++ compiler has of the user defined classes. This problem was recently 
studied in [2] where the potential solution of class based optimizations was put 
forth. 

A class based optimization is an optimization which makes use of semantic 
information normally not known to the compiler. These optimization rules are 
specified by the user as part of the class description and they are dynamically 
linked to the compiler's standard optimizer. While the notion of a rule directed 
optimizer is not new [3] they are not widespread. The authors believe this is the 
first time the optimization rules have been user specified for the C++ language. 

After introducing two example optimizations, this paper will focus on some 
of the issues relating to the construction of a system implementing class based 
optimizations. The issues discussed relate mainly to optimization specification, 
detection of applicability, and application. 



class Matrix { 
public: 

Matrix(); 
Matrix& operator=(const Matrix&); 
Matrix& operator+=(const Matrix&); 

friend Matrix& operator+(const Matrix&,const Matrix&); 

1; 

main() { 
Matrix A, B, C, D; 

// . . .  
A = B + C + D; // Fragment 1 

/ I  ... 
A = B;  A+ = C; A+ = D; // Fragment 2 

// ... 
} 

Figure 1: Matrix code fragments 

2 Sample optimizations 

Throughout this paper two optimizations will be used as examples. The first 
is the temporary variable elimination optimization, and the second is strength 
reduction combined with induction variable analysis in a general array iterator. 
The later construct is an extension the authors have made to the C++ language. 

2.1 Temporary variable elimination 

In numerical computations it is often advantageous to optimize a program for 
the amount of memory used. One of the easiest ways to optimize a program 
for minimal memory usage is to eliminate large temporary variables. We will 
use the example of matrix calculations to demonstrate the point. The two code 
fragments appearing in Figure 1 show the value of this optimization. The first 
fragment requires a temporary matrix while the second avoids this by performing 
the calculation in place. Ideally the transform from the first to second fragment 
would be handled by a matrix class specific optimization. 

The above optimization applies only if the '+' operator is at the root of 
the expression tree. The same type of optimization will also apply for other 
overloaded operators such at *,/, and -. This is not true in general, but if a 
user overloads @ then the operation is usually one that has similar characteristics 



$X.iterate i over [0 : 100 : I]$ { 
X.elem(i) = a * X.elem(i) + y.elem(i); 

1 

Figure 2: One dimensional array iterator 

to the integer @ operator. 
We now consider what happens in the optimization of a general expression 

containing several operators. The optimization rule is continually applied to 
the expression tree starting at the root. If the operator at the root of this tree 
is TVE (the ability to express the expression without temporary usage at this 
level) the single statement is split into two statements (the = and the + =) 
as was done in Fragment 2 of Figure 1. The optimization is then applied to 
each statement in turn. The statements continue to split into more statements 
as  long as the root operator has the TVE property. If the root operator for 
a statement is not TVE then a temporary (of potentially large size) must be 
created. 

2.2 Optimizing abstract array iterators 

Consider a partitioned array container class as described in [6]. The partition 
types that are supported are block and block cyclic. 

In FORTRAN, access at array elements inside of do loops is very efficient. 
This is possible since FORTRAN does not have the pointer aliasing problems of 
C and C++, and the semantics of the do loop is simpler than those of for. As a 
result FORTRAN compilers are able to perform induction variable analysis and 
strength reduction so that array address calculations are done efficiently. While 
there are C++ compilers, g++ for example, capable of such optimizations, 
this is not the norm. One of our goals is to provide such a strength reduction 
optimization on a class by class basis. Using this approach it is possible to avoid 
illegal applications and to guarantee the optimization will be applied without 
relying on the underlying compiler to implement it. 

Consider the simple example of an iterator for a one dimensional array in 
figure 2. If X is a block partitioned array this iterator might be implemented 
along the lines of figure 3,  and if X is block-cyclic partitioned, the iterator might 
be implemented as in figure 4. 

Clearly the situation becomes complex for multi-dimensional, block-cyclic 
partitioned arrays. With proper optimizations for array iterators, the coding 
complexity of multi-dimensional computations can be reduced. General iterators 
also expose opportunities for additional optimization due to the less restrictive 
nature of the control structure. That is, since a precise ordering of the iteration 



for (i = X.start(0); i < X.end(0); i + +) { 
*(X.base + i) = . . . 
} 

Figure 3: 1-D block partitioned array iterator 

for (I = 0; 1 < X.numBlocks(0); + + I) { 
for (i = X.start(0, I); i < X.end(0, I); + + i) { 

*(X.base[l] + i) = . . . 
} 

1 

Figure 4: 1-D block-cyclic partitioned array iterator 

space is not specified by the programmer the optimizer has more flexibility in 
loop restructuring. 

3 Optimization specification 

Two of the most difficult technical problems in the implementation of class based 
optimizations are defining a language in which to describe general optimizations, 
and the implementation of the pattern matching routine which detects when to 
apply optimizations. What is presented in this and in the next section are not 
complete answers to these difficult problems, rather the current direction of 
research of the authors. 

In attempting to define a language to describe general optimizations there are 
a number of issues to be considered. It must be possible to not only describe the 
syntactic pattern to match, but to also specify the semantics, and dependencies 
of this code. Any optimization triggering heuristics must also be specifiable in 
this language. 

The syntactic patterns to be matched may not necessarily be contiguous. It 
is quite reasonable to expect user defined optimizations to require the ability 
to skip past statements searching for some matching condition, or to require a 
certain set of conditions for an arbitrarily long list of commands. For example, 
the iteration optimizations discussed earlier require the examination of the entire 
loop body. 

A language for the specification of optimizations called GOSPEL is presented 
in [7]. This language expresses optimizations in terms of both the general pro- 



gram structure to be matched as well as the data dependencies necessary for 
the optimization to result in semantically correct code. Currently we are im- 
plementing optimizations at a much lower mechanical level (figure 5). Future 
research includes the definition of a language similar to GOSPEL, but more 
closely tied to C++. 

An ideal form of specification would be C++ extended with inspiration from 
programming logics. In such a language the general syntactic form of the op- 
timization could be specified by fragments of C++, while the data dependence 
and any heuristics could appear in embedded assertions. It would surely be the 
most useful representation since optimizations would then be specified more by 
partial code examples and a few language extensions then by another language 
altogether. Figure 6 shows a possible form of a loop interchange optimization. 

The current design of our optimizer is quite similar to what one would use 
to implement an optimization in a traditional compiler. It  is very dependent on 
the internal representation of the code and the writer of such an optimization 
must have knowledge of this representation. While neither of the authors is 
satisfied with this as a final goal, it is felt to be a good intermediate step to 
prove the concept of class based optimizations. 

4 Optimizer implementation 

The optimizer's implementation is greatly complicated by the fact that before 
an optimization can be applied, the associated pattern of un-optimized code 
must be located in the internal representation of the program. In the past 
various code generated and peephole optimizers [I, 4, 51 have done this, but 
either always on small contiguous patterns, or, if an attributed grammar is 
used, with restrictions on the use of attributes. In the case of this optimizer it 
must be possible to match noncontiguous patterns, as they were discussed in 
the previous section, and to add additional attributes (derived from operations 
on the compiler supplied ones) based on the needs of the optimization. 

Another complicating factor for the implementation of the optimizer is the 
determination of the optimization ordering. Usually this is determined by the 
compiler architect, however since the actual optimizations are now being sup- 
plied by the class designers, it is quite conceivable that the ordering of optimiza- 
tions will play a role in the efficiency of the optimized code. Ordering problems 
will hopefully be minimal since optimizations are triggered by class occurrences, 
but an ordering mechanism should still be explored. Certainly such a mecha- 
nism will depend heavily upon the user's application and should be specified by 
the user if the default ordering is not acceptable. 



AssignmentPtr=Find(Assignment); 
while (AssignmentPtr) { 

// check the type of this assignment 
if(Type(AssignmentPtr)==MatrixClass) { 
// check for the pattern B+C on the right 
// hand side of the assignment where B and C 
// are any subexpression. 
ExprPtr=RightHandSide(AssignmentPtr) ; 
if(Operator(ExprPtr)==OP_Plus) { 
// break A=B+C into A=B;A+=C 
// since a match was found this statement should be 
// re-processed in hopes of finding another. 
// AssignmentPtr should not be changed before the 
// next loop iteration. 
Tree construction code omitted for brevity. The 
newly constructed tree is pointed to by APlusCTree 
RightHandSide(AssignmentPtr)=LeftOperand(ExprPtr); 
InsertStatementAfter(AssignmentPtr ,APlusCTree) 
1 

eise { 
// didn't find a pattern match. 
// move to the next assignment statement 
AssignmentP tr=FindNext (Assignment ,Assignment Ptr); 

1 
1 

else { 
// didn't find a pattern match because 
// the class type was wrong 
AssignmentPtr=FindNext(Assignment ,AssignmentPtr); 

1 
} 

Figure 5: Current specification form for temporary elimination 



for ($1,$2,$3) { 
for ($4,$5,$6) { 

$A; 
1 

I 

${ 
/* check for dependence between invariants */ 
/* ($1->Statement is the statement containing */ 
/* the fragment represented by $1) */ 
if Dependence($l->Statement,$4->Statement,any) fail; 

/* check for (<,>) dependence between */ 
/* two statements in the loop body */ 
forAllStmt($A,$7) { /* for all individual statements $7 in $A */ 

forAllStmt($A,$8) { 
/* check dependence for legality of optimization */ 
if (Dependence($7,$8," (< ,>)" )) fail; 

- 1 

$optimization 
for ($4,$5,$6) { 

for ($1,$2,$3) { 
$A; 

1 
1 

where:  
$A i s  a m e t a  variable represent ing zero o r  m o r e  s t a t e m e n t s  
$1-$n are m e t a  variables represent ing c o m p o n e n t s  of  a s t a t e m e n t  

Figure 6: Loop interchange specification 

7 



5 Current Status 

At the time of writing, the authors have a working C++ to C++ optimizer 
which was custom built for this project. This is felt to be of great worth due 
to the avoided additional complexity of layering such an optimizer on top of a 
public domain compiler which wasn't designed with such capabilities in mind. 

The optimizer was implemented using a tool, developed by one of the au- 
thors, to  describe complex attribute relationships and structures. This tool 
allowed a relatively quick implementation of a very memory efficient internal 
representation of C++. Since all of the attributes of this representation are 
managed and mapped by this tool, there is great flexibility in our optimizer 
when it comes to adding to the internal program representation. 

Work is currently under way to define the optimization specification lan- 
guage, as well as implement the pattern matcher. As was stated earlier, the 
current approach is a very mechanical and strongly dependent upon the inter- 
nal representation of the program being optimized. It is the authors' goal to 
evolve this into a much higher form in the hopes of hiding many of the details 
of the compiler implementation. 
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