
A Class Specific Optimizing Compiler

Michael D. Sharp
Steve W. Otto

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neurnann Drive
Beaverton, OR 97006-1999 USA

Technical Report No. CS/ E 93-010

April 1993

A Class Specific Optimizing Compiler

Michael D. Sharp and Steve W. Otto
Oregon Graduate Institute of Science & Technology

sharp@cse.ogi.edu, otto@cse.ogi.edu

March 21, 1993

Abstract

Class specific optimizations are compiler optimizations specified by
the class implementor to the compiler. They allow the compiler to take
advantage of the semantics of the particular class so as to produce bet-
ter code. Optimizations of interest include the strength reduction of
c1ass::array address calculations, elimination of large temporaries, and
the placement of asynchronous sendlrecv calls so as to achieve compu-
tation/communication overlap. We will outline our progress towards the
implementation of a C++ compiler capable of incorporating class specific
optimizations.

1 Introduction
During the implementation of complex systems in C++, particularly numerical
ones, the implementor typically encounters performance problems of varying
difficulty. These difficulties usually relate to the lack of semantic understanding
the C++ compiler has of the user defined classes. This problem was recently
studied in [2] where the potential solution of class based optimizations was put
forth.

A class based optimization is an optimization which makes use of semantic
information normally not known to the compiler. These optimization rules are
specified by the user as part of the class description and they are dynamically
linked to the compiler's standard optimizer. While the notion of a rule directed
optimizer is not new [3] they are not widespread. The authors believe this is the
first time the optimization rules have been user specified for the C++ language.

After introducing two example optimizations, this paper will focus on some
of the issues relating to the construction of a system implementing class based
optimizations. The issues discussed relate mainly to optimization specification,
detection of applicability, and application.

class Matrix {
public:

Matrix();
Matrix& operator=(const Matrix&);
Matrix& operator+=(const Matrix&);

friend Matrix& operator+(const Matrix&,const Matrix&);

1;

main() {
Matrix A, B, C, D;

// . . .
A = B + C + D; // Fragment 1

/ I ...
A = B; A+ = C; A+ = D; // Fragment 2

// ...
}

Figure 1: Matrix code fragments

2 Sample optimizations

Throughout this paper two optimizations will be used as examples. The first
is the temporary variable elimination optimization, and the second is strength
reduction combined with induction variable analysis in a general array iterator.
The later construct is an extension the authors have made to the C++ language.

2.1 Temporary variable elimination

In numerical computations it is often advantageous to optimize a program for
the amount of memory used. One of the easiest ways to optimize a program
for minimal memory usage is to eliminate large temporary variables. We will
use the example of matrix calculations to demonstrate the point. The two code
fragments appearing in Figure 1 show the value of this optimization. The first
fragment requires a temporary matrix while the second avoids this by performing
the calculation in place. Ideally the transform from the first to second fragment
would be handled by a matrix class specific optimization.

The above optimization applies only if the '+' operator is at the root of
the expression tree. The same type of optimization will also apply for other
overloaded operators such at *,/, and -. This is not true in general, but if a
user overloads @ then the operation is usually one that has similar characteristics

$X.iterate i over [0 : 100 : I]$ {
X.elem(i) = a * X.elem(i) + y.elem(i);

1

Figure 2: One dimensional array iterator

to the integer @ operator.
We now consider what happens in the optimization of a general expression

containing several operators. The optimization rule is continually applied to
the expression tree starting at the root. If the operator at the root of this tree
is TVE (the ability to express the expression without temporary usage at this
level) the single statement is split into two statements (the = and the + =)
as was done in Fragment 2 of Figure 1. The optimization is then applied to
each statement in turn. The statements continue to split into more statements
as long as the root operator has the TVE property. If the root operator for
a statement is not TVE then a temporary (of potentially large size) must be
created.

2.2 Optimizing abstract array iterators

Consider a partitioned array container class as described in [6]. The partition
types that are supported are block and block cyclic.

In FORTRAN, access at array elements inside of do loops is very efficient.
This is possible since FORTRAN does not have the pointer aliasing problems of
C and C++, and the semantics of the do loop is simpler than those of for. As a
result FORTRAN compilers are able to perform induction variable analysis and
strength reduction so that array address calculations are done efficiently. While
there are C++ compilers, g++ for example, capable of such optimizations,
this is not the norm. One of our goals is to provide such a strength reduction
optimization on a class by class basis. Using this approach it is possible to avoid
illegal applications and to guarantee the optimization will be applied without
relying on the underlying compiler to implement it.

Consider the simple example of an iterator for a one dimensional array in
figure 2. If X is a block partitioned array this iterator might be implemented
along the lines of figure 3, and if X is block-cyclic partitioned, the iterator might
be implemented as in figure 4.

Clearly the situation becomes complex for multi-dimensional, block-cyclic
partitioned arrays. With proper optimizations for array iterators, the coding
complexity of multi-dimensional computations can be reduced. General iterators
also expose opportunities for additional optimization due to the less restrictive
nature of the control structure. That is, since a precise ordering of the iteration

for (i = X.start(0); i < X.end(0); i + +) {
*(X.base + i) = . . .
}

Figure 3: 1-D block partitioned array iterator

for (I = 0; 1 < X.numBlocks(0); + + I) {
for (i = X.start(0, I); i < X.end(0, I); + + i) {

*(X.base[l] + i) = . . .
}

1

Figure 4: 1-D block-cyclic partitioned array iterator

space is not specified by the programmer the optimizer has more flexibility in
loop restructuring.

3 Optimization specification

Two of the most difficult technical problems in the implementation of class based
optimizations are defining a language in which to describe general optimizations,
and the implementation of the pattern matching routine which detects when to
apply optimizations. What is presented in this and in the next section are not
complete answers to these difficult problems, rather the current direction of
research of the authors.

In attempting to define a language to describe general optimizations there are
a number of issues to be considered. It must be possible to not only describe the
syntactic pattern to match, but to also specify the semantics, and dependencies
of this code. Any optimization triggering heuristics must also be specifiable in
this language.

The syntactic patterns to be matched may not necessarily be contiguous. It
is quite reasonable to expect user defined optimizations to require the ability
to skip past statements searching for some matching condition, or to require a
certain set of conditions for an arbitrarily long list of commands. For example,
the iteration optimizations discussed earlier require the examination of the entire
loop body.

A language for the specification of optimizations called GOSPEL is presented
in [7]. This language expresses optimizations in terms of both the general pro-

gram structure to be matched as well as the data dependencies necessary for
the optimization to result in semantically correct code. Currently we are im-
plementing optimizations at a much lower mechanical level (figure 5). Future
research includes the definition of a language similar to GOSPEL, but more
closely tied to C++.

An ideal form of specification would be C++ extended with inspiration from
programming logics. In such a language the general syntactic form of the op-
timization could be specified by fragments of C++, while the data dependence
and any heuristics could appear in embedded assertions. It would surely be the
most useful representation since optimizations would then be specified more by
partial code examples and a few language extensions then by another language
altogether. Figure 6 shows a possible form of a loop interchange optimization.

The current design of our optimizer is quite similar to what one would use
to implement an optimization in a traditional compiler. It is very dependent on
the internal representation of the code and the writer of such an optimization
must have knowledge of this representation. While neither of the authors is
satisfied with this as a final goal, it is felt to be a good intermediate step to
prove the concept of class based optimizations.

4 Optimizer implementation

The optimizer's implementation is greatly complicated by the fact that before
an optimization can be applied, the associated pattern of un-optimized code
must be located in the internal representation of the program. In the past
various code generated and peephole optimizers [I, 4, 51 have done this, but
either always on small contiguous patterns, or, if an attributed grammar is
used, with restrictions on the use of attributes. In the case of this optimizer it
must be possible to match noncontiguous patterns, as they were discussed in
the previous section, and to add additional attributes (derived from operations
on the compiler supplied ones) based on the needs of the optimization.

Another complicating factor for the implementation of the optimizer is the
determination of the optimization ordering. Usually this is determined by the
compiler architect, however since the actual optimizations are now being sup-
plied by the class designers, it is quite conceivable that the ordering of optimiza-
tions will play a role in the efficiency of the optimized code. Ordering problems
will hopefully be minimal since optimizations are triggered by class occurrences,
but an ordering mechanism should still be explored. Certainly such a mecha-
nism will depend heavily upon the user's application and should be specified by
the user if the default ordering is not acceptable.

AssignmentPtr=Find(Assignment);
while (AssignmentPtr) {

// check the type of this assignment
if(Type(AssignmentPtr)==MatrixClass) {
// check for the pattern B+C on the right
// hand side of the assignment where B and C
// are any subexpression.
ExprPtr=RightHandSide(AssignmentPtr) ;
if(Operator(ExprPtr)==OP_Plus) {
// break A=B+C into A=B;A+=C
// since a match was found this statement should be
// re-processed in hopes of finding another.
// AssignmentPtr should not be changed before the
// next loop iteration.
Tree construction code omitted for brevity. The
newly constructed tree is pointed to by APlusCTree
RightHandSide(AssignmentPtr)=LeftOperand(ExprPtr);
InsertStatementAfter(AssignmentPtr ,APlusCTree)
1

eise {
// didn't find a pattern match.
// move to the next assignment statement
AssignmentP tr=FindNext (Assignment ,Assignment Ptr);

1
1

else {
// didn't find a pattern match because
// the class type was wrong
AssignmentPtr=FindNext(Assignment ,AssignmentPtr);

1
}

Figure 5: Current specification form for temporary elimination

for ($1,$2,$3) {
for ($4,$5,$6) {

$A;
1

I

${
/* check for dependence between invariants */
/* ($1->Statement is the statement containing */
/* the fragment represented by $1) */
if Dependence($l->Statement,$4->Statement,any) fail;

/* check for (<,>) dependence between */
/* two statements in the loop body */
forAllStmt($A,$7) { /* for all individual statements $7 in $A */

forAllStmt($A,$8) {
/* check dependence for legality of optimization */
if (Dependence($7,$8," (< ,>)")) fail;

- 1

$optimization
for ($4,$5,$6) {

for ($1,$2,$3) {
$A;

1
1

where:
$A i s a m e t a variable represent ing zero o r m o r e s t a t e m e n t s
$1-$n are m e t a variables represent ing c o m p o n e n t s of a s t a t e m e n t

Figure 6: Loop interchange specification

7

5 Current Status

At the time of writing, the authors have a working C++ to C++ optimizer
which was custom built for this project. This is felt to be of great worth due
to the avoided additional complexity of layering such an optimizer on top of a
public domain compiler which wasn't designed with such capabilities in mind.

The optimizer was implemented using a tool, developed by one of the au-
thors, to describe complex attribute relationships and structures. This tool
allowed a relatively quick implementation of a very memory efficient internal
representation of C++. Since all of the attributes of this representation are
managed and mapped by this tool, there is great flexibility in our optimizer
when it comes to adding to the internal program representation.

Work is currently under way to define the optimization specification lan-
guage, as well as implement the pattern matcher. As was stated earlier, the
current approach is a very mechanical and strongly dependent upon the inter-
nal representation of the program being optimized. It is the authors' goal to
evolve this into a much higher form in the hopes of hiding many of the details
of the compiler implementation.

References

[I] A. V. Aho, M. Ganapathi, S. W. K. Tjiang, Code Generation Using Tree
Matching and Dynamic Programming ACM Transactions on Programming
Languages and Systems, 11(4):491-516 (1989)

[2] I. G. Angus, Applications Demand Class-Specific Optimizations: The C++
Compiler Can Do More, 1993 Object-Oriented Numerics Conference, April
25-27, 1993, Sunriver, Oregon

[3] J . W. Davidson, D. B. Whalley, Quick Compilers Using Peephole Opti-
mization, Software-Practice and Experience, 19(1):79-97 (1989)

[4] M. Ganapathi, C. N. Fischer, Affix Grammar Driven Code Generation,
ACM Transactions on Programming Languages and Systems, 7(4):560-599
(1985)

[5] R. S. Glanville, S. L. Graham, A new method for compiler code gener-
ation, Proceedings of the fifth annual ACM Symposium on Principles of
Programming Languages

[6] S. W. Otto, Parallel array classes in lightweight sharing mechanisms, 1993
Object-Oriented Numerics Conference, April 25-27, 1993, Sunriver, Oregon

[7] D. Whitfield, M. L. Soffa, Automatic Generation of Global Optimizers,
Proceedings of the 1991 SIGPLAN Conference on Programming Language
Design and Implementation

