Automatic Array Alignment for
Distributed Memory Multicomputers

Mitsuru Ikei

Hitachi Chemical Company Ltd.

Michael Wolfe *
Oregon Graduate Institute of Science & Technology
P.O. Box 91000

Portland OR 97291

503-690-1153
FAX: 503-690-1029

mwolfe@cse.ogi.edu

*Supported in part by grants from DARPA, Intel Supercomputer Systems Division and
the Oregon Advanced Computing Institute

Abstract

Languages such as Fortran-D and High Performance Fortran use ex-
plicit virtual processor arrays (Templates or Decompositions) to which
the programmer explicitly aligns the arrays of the program. We explore
a technique to automate this process. In particular, we are interested in
imperative languages, similar to Fortran, and scientific computations
using indexed data structures (arrays). We have implemented auto-
matic alignment in our imperative language using techniques similar
to those used for the functional language Crystal. Here we show what
changes we made to the procedure to take into account the imperative
nature of our source language. In particular, a functional language has
a single-assignment attribute; each array element is defined only once.
An imperative language allows array elements to be redefined; this al-
lows the imperative program to use arrays with fewer dimensions, as
we show. Our compiler technique “resurrects” the lost dimensions of

the data arrays to successfully apply automatic data alignment.

1 Introduction

Compilers for current supercomputers can achieve high performance for pro-
grams which are written using a “vector” model (using vectorizable loops).
To achieve similar effectiveness on parallel computers using the data parallel
model, several programming languages have been proposed. Typically these
languages have global data which is processed by the entire processor en-
semble and which can be accessed by global indices. They also have parallel
loop syntax which programmers can use to explicitly express concurrency.
To execute these programs, the global data needs to be decomposed into
pieces and distributed among the processor ensemble. The output of the
compiler often forms an SPMD (Single Program, Multiple Data) program,
where each processor executes the same program text, but calculates its own
share of the global work on the distributed data structure.

We can consider this as a two-phase process: selecting how to decom-
pose the data, and distributing the work to match the data decomposition.
Languages like Fortran D and High Performance Fortran have constructs
with which programmers manually decompose the data [FHK*T90, HPF92].
In this case, the main role of the compiler is to derive the SPMD node pro-

gram with explicit communication from the global program and the given

data decomposition [HKT92]. Our main focus of this paper is to automate
the data decomposition step.

Recent work on the functional language Crystal has produced a compiler
which automatically converts Crystal programs into executable data-parallel
SPMD programs for Distributed Memory Multicomputers [Li91]. The com-
piler uses three steps to transform the functional program to executable
SPMD form: (1) Control Structure Synthesis, (2) Domain Alignment and
(3) Communication Synthesis.

Our research examines how to apply these compiler steps to an im-
perative language; in particular, we have implemented analogs of Control
Structure Synthesis and Domain Alignment in our Tiny program restruc-
turing research tool [Wol91, Tke92]. In this paper we discuss mainly these
two steps. The rest of this paper is organized as follows. In Section 2, we
show a simple example of how a program can be converted for multicom-
puters. Sections 3 and 4 discuss Control Structure Synthesis and Domain
Alignment respectively. In Section 5, we discuss other research topics and

we conclude in Section 6.

Input Program

(1) Control Structure Synthesis

(2) Domain Alignment Problem Analysis Phase

'

Templates 4+ aligned program

| (3) Communication Synthesis

'

SPMD program for multicomputer

Program Mapping Phase

Figure 1: Compiling Steps

2 Compiler Phases

Our compiler for multicomputers will consist of two main phases: a Problem
Analysis phase and Program Mapping phase, as shown Figure 1.

In the first phase, the compiler knows nothing about the physical ma-
chine structure; it concentrates only on the data spaces and the iteration
spaces which are defined and used in the program. In other words, we as-
sume a virtual processor array which has infinite dimensionality of infinite
size and map the spaces of the program to a subset of the virtual processor

array. In the following program,

real a(100),b(100)
for i=2,99 do

b(i)=a(i-1)+a(i+1)
endfor

our compiler first finds concurrency and restructures it to parallelize as many
loops as possible. Applying our array alignment algorithm, we get the fol-

lowing.

real a(100),b(100)
align(a(#1),b(#1))
doall i=2,99 do

b(i)=a(i-1)+a(i+1)
enddoall

The output of the first phase assumes a single virtual processor array or
template and all arrays in the program are aligned to this template. Every
loop in the program can also be aligned to one dimension of the virtual
processor array. In the example, one array (in this case b()), is chosen as
the template; it is obvious that the doall loop is related to both the a() and
b() arrays.

In the second phase, the compiler will actually decompose the template
to fit in the physical nodes; it will organize a task for each node with the
necessary data movement among processors. Assuming we have four pro-
cessors connected in a line, and the template is divided into four blocks, the

node program is:

real a(25),b(25)
real from_left,from right
if (my_id()==1) then
send(2,a(25))
from right=receive(2)
elseif (my_id()==4) then
send(3,a(1))
from_left=receive(3)
else

for i=2,24 do
b(i)=a(i-1)+a(i+1)

endfor

if(my_id(O!=1) the
b(1)=from_left+a(25)

endif

if(my_id()!=4) the
b(25)=a(24)+from right

endif

send(my_id()+1,a(25))

from left=receive(my_id()-1)

send(my_id()-1,a(1))

from right=receive(my_id()+1)
endif

In this code, my_id() returns the processor id, send(dist,data) sends
data to PE dist and receive(src) receives the data from PE src. In
the beginning of the program, each processor sends its boundary data and
receives the necessary data. In this example there is no more efficient way
to divide the data; generally there are many ways to divide the data and
the selection of the decomposition is the main aim of this phase.

Although we only consider block distribution here, we are also planning
to use distributions with guard regions and some simple dynamic distribu-
tions, as discussed in Section 5. After the distribution strategy is set, we try
to find necessary communication subroutines. We use aggregate communi-
cation routines, where applicable, to minimize communication cost. Eval-

unating communication overhead with several parameters under the target

dom T = [0..n]
dom D1 = [1..n]
dom D2 = D1 * D1
dom D3 = D2 * T
dfield a(i,j): D2 = a0[i,j]
dfield b(i,j): D2 = bo[i,]]
dfield c(i,j,k): D3 =
if(k = 0)then 0.0
else c(i,j,k-1) + a(i,k) * b(k,j) fi

Figure 2: Crystal mm program

machine constraints, we can generate the most appropriate SPMD program.

3 Control Structure Synthesis

In Control Structure Synthesis, a Crystal program is converted to an im-
perative data parallel program. This is a necessary step, since the source
language is not imperative, but the target machine is. For an imperative
source language like ours, the control structure already exists in the original

program; however, we use an analog of this step to refine the program.

3.1 Crystal

In Figure 2, we show a Crystal matrix multiplication (mm) program. A

Crystal program consists of two parts: domain definitions and data field

definitions. In the first half of the mm program, four domains T, D1, D2 and
D3 are defined. Both T and D1 are one dimensional and D2 and D3 are two
and three dimensional domains respectively. In the second half, three data
fields a() and b() (on D2) and c() (on D3) are defined. The two data fields
a() and b() are used to hold the input matrices. Data field c() holds the
result of the mm calculation.

The objective of the Control Structure Synthesis phase of the Crystal
compiler is to synthesize imperative loops from data fields. The compiler

takes the following four steps for this:

1. Compute the dependence graph

2. Decompose the graph into strongly connected regions (SCRs, or max-

imal cycles)

3. Sort the SCRs topologically to find an execution order

4. Break dependence cycles by finding a dependence carrying loop

First the compiler builds a dependence graph between all data fields as
shown Figure 3. FEach SCR in the graph can be an imperative loop which
defines the data fields involved in the SCR. The compiler sorts the SCRs to

find an execution order of the loops that preserves the dependence relations.

[€=B

Figure 3: Crystal mm dependence graph

SCRs which have no dependence cycles, such as a() and b() in Figure 3,
can be executed in parallel. For SCRs with dependence cycles, the compiler
finds a dependence-carrying loop and makes this be an outermost sequential
loop, thus allowing the others loops to execute in parallel. Figure 4 shows
the mm program after Control Structure Synthesis. Forall loops are used
to designate that the a() and b() definitions can be executed on parallel.
The for-loop along the third dimension of the c() definition is found as
the dependence carrying loop and the inner forall-loop on D2 is used to
describe the parallelism. Thus the Crystal compiler derives an imperative

data parallel program from the functional specification.

3.2 Tiny

Tiny is a program restructuring tool for a small imperative language; it sup-

ports sequential and parallel loop constructs, such as used in many scientific

10

dom T = [0..n]
dom D1 [1..n]
dom D2 D1 * D1
dom D3 = D2 * T
forall((i,j):D2){ a(i,j) = a0[i,j]l }
forall((i,j):D2){ b(i,j) = bo[i,j] }
for(k:T){
forall((i,j):D2){
c(i,j,k) = if(k = 0)then 0.0
else c(i,j,k-1) a(i,k) * b(k,j) fi

+

Figure 4: Crystal mm data parallel program after Control Structure Syn-
thesis

real a(n,n),b(n,n),c(n,n)
for i = 1, n do
for j =1, n do
c(i,j) = 0.0
for k =1, n do
c(i,j) = c(i,j) + a(i,k) * b(k,3)
endfor
endfor
endfor

Figure 5: Tiny mm program

11

programs. We select this simple language to demonstrate our research. (We
use Tiny to mean both the tool and its language.) Since Tiny is an impera-
tive language, the compiler doesn’t need to synthesize loops as with Crystal;
the original program already has a legal loop structure. As an analog to the
Control Structure Synthesis phase of the Crystal compiler, our compiler
finds implicit parallelism in the imperative Tiny program, and converts the
program to a normalized form. In some sense, the Crystal compiler sequen-
tializes and normalizes a declarative program, whereas the Tiny compiler
parallelizes and normalizes an imperative program. The output of the first
phase of both compilers is similar. We show a Tiny mm program in Figure 5.

We take the following four steps to convert a program to normalized form.

1. Compute a data dependence graph

2. Decompose the loops (loop distribution)

3. Interchange sequential loops outwards

4. Parallelize inner loops (doall-loops)

First we construct a data dependence graph to preserve the semantics of the
program throughout the restructuring phase. Next we try to decompose all

non-tightly nested loops to tightly nested ones, comparable to data fields

12

real a(n,n),b(n,n),c(n,n)
doall i = 1, n do
doall j =1, n do
enddoall
enddoall
for k = 1, n do
doall i = 1, n do
doall j = 1, n do
c(i,j) = c(i,j) + a(i,k) * b(k,j)
enddoall
enddoall
endfor

Figure 6: Tiny mm program, normalized by the analog of Control Structure
Synthesis

in Crystal programs. We then try to interchange sequential dependence-
carrying loops outwards, so that inner loops can be parallelized. In Figure 6,
we show the result of this conversion. Here, the non-tightly nested loop can
be decomposed into two tightly nested loops. The dependence carrying (k)
loop in the second nested loop is interchanged to the outermost position
and the two inner loops have been successfully parallelized. This normal-
ized data parallel program is intentionally organized to resemble the Crystal
data parallel program. It may not have an efficient loop structure for di-
rect mapping to a parallel computer, however this representation shows the

relations between data spaces (arrays) and iteration spaces (loops) clearly,

13

which we use in the next step for array alignment.

4 Domain Alignment

After an imperative data parallel program is derived from the original func-
tional definitions, the Crystal compiler tries to find the optimal spatial align-
ment of data fields to minimize communications among virtual processors.

We apply essentially the same method to arrays in Tiny programs.

4.1 Crystal

Since an imperative data parallel program is derived, we need to distribute
the data fields among the processors to run the program on a multicomputer.
The Crystal compiler takes a two level distribution strategy. First, it aligns
all data fields to a global Template (Domain Alignment), where a Template
is a Cartesian mesh of virtual processors. The Template (with all data
fields aligned to it) will subsequently be distributed to physical processors

(Distribution). Domain Alignment proceeds in the following three steps:
1. Find the reference patterns

2. Build a Component Affinity Graph (CAG)

3. Partition the CAG (using a bipartite partitioning heuristic)

14

C(i:j:k) — C(i:j:k_l)
c(i,j,k) «— a(i,k)
c(i,j,k) «— blk,j)

Figure 7: Crystal mm reference patterns

The Crystal compiler selects a data field with maximum dimensionality to
represent the Template and tries to relate or align all other data fields to
this Template. First it collects all reference patterns in the program. For
instance, the reference patterns for the Crystal mm data parallel program
in Figure 2 are shown in Figure 7. These three patterns are derived from
the line where c(i,j,k) is defined. Each reference pattern relates a right
hand side data field reference to the left hand side element where it is used.
From these reference patterns, the compiler builds a Component Affinity
Graph. The CAG is a weighted undirected graph. Nodes of CAG are domain
components (one for each dimension) and edges are relations derived from
the reference patterns. We denote a domain component using notation like

a.1 which refers to 15t

domain component of the data field a. In Figure 8,
the domain components of the three data fields in the program are in the

three columns of the CAG. A domain component which is defined using a

sequential (dependence-carrying) index (k in this case) like c.3 is called a

15

ofle
()

Figure 8: Crystal mm CAG

temporal domain component and is represented by a double circle. Given
a reference pattern, we define the distance between a domain component
in the LHS and that in the RHS as the difference of an index expression
in the RHS domain from the corresponding LHS index expression. If the
distance between two different domain components is constant, we say that
there is an affinity relation between the domain components and draw an

edge between the components. For instance, in the reference pattern:

c(i,j,k) «— a(i,k)

the distance of the index expression of c.1 and the index expression of a.1is
(i—) = 0. Since it is constant, there is an edge between the two component
domains in Figure 8. There are three kinds of weights that the edges can

have: epsilon, one and infinity. If one node has two edges to two different

16

(=0)
(_C0)
(00O

Figure 9: Crystal mm partitioned CAG

components of the same domain, both edges are weighted as epsilon. An
edge between two temporal components has a weight of infinity. All others
are given a weight of one, such as the edge between a.1 and c.1.

After the CAG is build, the compiler partitions it. Assuming »n is the
dimensionality of the Template, we want to partition the CAG into n groups
such that the sum of the edges cut by partitioning is minimized. Compo-
nents which are derived from the same data field must belong to different
partitions. In Figure 9, we show the partitioned CAG of the example mm
program. In this case, partitioning is easy, but this problem is in general
NP-complete. The Crystal compiler uses simple but effective heuristics to
solve this problem. From Figure 9, we can get the chosen relative array

alignment. Using ¢ as the Template, we denote the alignment as follows.

17

align(a(#1,#2),c(#1,1,#2))
align(b(#l,#2) ,c(1,#2,#1))

4.2 Tiny

Applying the same method to Tiny looks straightforward. Data fields are
similar to arrays. Data field definitions inside loops are essentially the same
as assignment statements. However there are important differences. Crystal
is a single assignment language, with a declarative style; there is no way to
redefine elements of a data field. But a Tiny program is quite different.
Reassignment and reuse of array elements in imperative languages is quite
common. Not all loop index variables will appear in array references, even
on the left hand side. In the Crystal mm program, the ¢ data field has
three dimensions, one of which is indexed by k; the Tiny mm program has
only two dimensions for ¢, and the k index is not used for c. As we will
explain shortly, these “missing indices” are important, and our compiler
adds implicit dimensions to arrays such as ¢. The Tiny compiler uses the

following four steps in its Domain Alignment phase:
1. Find the reference patterns
2. Add implicit dimensions

3. Build a Component Affinity Graph

18

c(i,j) « c(i,])
c(i,j) < a(i,k)
c(i,j) < b(k,j)

Figure 10: Tiny mm reference patterns

4. Partition the CAG

First we derive reference patterns from a Tiny program, just as the Crystal
compiler does. From the program in Figure 6, we get reference patterns as
shown in Figure 10. Comparing this to Figure 7, we realize that the Tiny
c(i,j) array has only two domain components; in the Tiny mm program,
array element c(i,j) is reassigned values along the sequential k loop. To use
the Crystal data alignment scheme, we need to add this temporal domain as
an implicit dimension; the implicit dimension is used only for the Domain
Alignment phase, and is ignored thereafter. The Tiny compiler currently

uses the following simple algorithm.

1. If there is an assignment statement to a scalar inside loops, the scalar
is a candidate and all the loops that include the assignment statement

are possible implicit domains.

2. If there is an assignment to an array inside loops and one or more

loop indices do not appear in the LHS array subscript expressions,

19

c(i,j) k] « c(i,j)[k-1]
c(i,j) k] « a(i,k)
c(i,j) k] — b(k,j)

Figure 11: Tiny mm reference patterns with implicit dimensions

the array is a candidate. The loops with the missing indices are the

possible implicit domains.

3. If an LHS is a candidate and if in the RHS there is a subscript expres-
sion which contains a loop index of the possible implicit domain such
that the distance between the subscript expression and the loop index

is constant, an implicit dimension is added to the candidate.

According to rule 2, the k loop is a possible implicit domain for array
¢, and according to rule 3, the distance between the k subscript for array a
(and b) and the implicit loop index is constant. Using this algorithm, the
compiler revises the reference patterns as shown in Figure 11. Denoting
the implicit dimension of array c as c¢.k, the CAG of the Tiny mm program
is as shown in Figure 12. We select the ¢ array as our Template since it
has the highest dimensionality (after adding the implicit dimension). The
Tiny compiler uses exactly the same algorithm for partitioning that was

developed for the Crystal compiler. The input program shown in Figure 5

20

ofle
()

Figure 12: Tiny mm CAG

is automatically converted to the program with align statements as shown

in Figure 13.

5 Data Distribution

Before generating communication constructs to interchange data efficiently
among physical processors, the compiler must decide how to decompose
the Template (and hence the data arrays) among the physical processors.
This takes place in the Distribution phase. The Crystal compiler takes
a simple static distribution strategy. We are investigating this strategy
and evaluating other potentially more effective strategies; a strategy will be
selected after evaluating and comparing the cost of data movement. In this

paper, we discuss one dimensional physical processor arrays.

real a(n,n),b(n,n),c(n,n)
align(a(#1,#2),c(#1,1,#2))
align(b(#1,#2),c(1,#2,#1))
doall i = 1, n do
doall j =1, n do
c(i,j) = 0.0
enddoall
enddoall
for k = 1, n do
doall i = 1, n do
doall j = 1, n do
c(i,j) = c(i,j) + a(i,k) * b(k,j)
enddoall
enddoall
endfor

Figure 13: Tiny aligned mm program

5.1 Simple Distribution Strategy

After Domain Alignment, we have a Template to which all arrays are aligned
in a program. Each domain of the Template is either temporal, indexed by a
sequential for-loop, or spatial, indexed by a parallel doall-loop. Each domain
can be either decomposed (distributed among processors), or kept entirely
within a single processor’s local memory. Decomposing a temporal domain
cannot effectively use parallelism; thus one obvious way to decompose the
data is to select one spatial domain to be distributed. For instance, the

calculation part of the program in Figure 13 can be converted to the SPMD

22

real c(mylower:myupper,n),a(mylower:myupper,n),b(n,n)
for k = 1, n do
for i = mylower, myupper do
for j =1, n do
c(i,j) = c(i,j) + a(i,k) * b(k,j)
endfor
endfor
endfor

Figure 14: Simple Local Tiny mm program

program in Figure 14. Here, we decomposed along c.1. Since array b()
has no domain aligned to c.1, each processor has a copy of the entire array
b(O). If b() is too large to fit in the memory of each processor, there are
several options. One way is to decompose also along c.2; another is a
secondary decomposition of b.1 without decomposing c.k. We don’t discuss
this further in this paper, but the decision can be made after the evaluation

of communication overhead.

5.2 Dynamic Distribution

Previous work has assumed that the owner of an array would not change
throughout the execution of program. But sometimes it is better to move
chunks of data among processors along with their ownerships. Using this

strategy, the mm program can be converted as shown in Figure 15, us-

23

real c(mylowerl:myupperl,n),a(mylowerl:myupperl,n),b(n,mylower2:myupper2)
dorotate(b,2)
for i = mylowerl, myupperl do
for j = mylower2, myupper2 do
for k = 1, n do
c(i,j) = c(i,j) + a(i,k) * b(k,j)
endfor
endfor
endfor
enddorotate

Figure 15: Local Tiny mm program with rotate

ing a data rotation strategy [Wol90]. Arrays c() and a() are decomposed
row-wise and distributed statically among all processors. Although array
b() is decomposed column-wise and distributed among all processors simi-
larly, we redistribute it by the dorotate construct. In each iteration of the
dorotate(b,2) loop, each processor rotates its share of array b() to the
next processor synchronously; eventually, each processor sees the entire ar-
ray b() piece by piece, and the array ends up in the same place it started.
Note this distribution also uses the previously calculated alignment. Do-
main c¢.1 and a.1 are both decomposed together. Dimension c.2 is not
decomposed, even though b.2 is divided column-wise; however, we notice

that only part of ¢.2 is used in each iteration of the dorotate calculation.

24

We are investigating automation of this transformation. In particular, it
changes the order of the dot product accumulation for each element of the

result array in this program.

5.8 Communication Constructs

After the distribution strategy is set, the compiler must insert communica-
tion constructs into the SPMD program. Right now, the Tiny compiler does
not generate executable SPMD output. As with previous work, we will focus
on global communication patterns, which can be implemented efficiently and
more effective utilize the limited interprocessor bandwidth. The reference
patterns and data dependence relations, which have already been collected,
will be used to detect global communication points and insert the necessary

communication primitives.

6 Conclusion

We have implemented automatic array alignment in the Tiny program re-
structuring tool. The methods we used to find the optimal alignment are
analogous to the methods used in the compiler for the functional language

Crystal. Even though the imperative language we used is very different

25

from the declarative style used in Crystal, we found that a similar align-

ment strategy worked well. Specific differences are:

e The Crystal compiler needs to deduce a legal imperative loop structure
from the source program. A Tiny program already has a legal loop
structure, but it may need to be restructured or optimized. Both
compilers use dependence information to generate and/or optimize

the loop structure.

e Tiny assignment statements are similar to data field definitions in
Crystal, but not exactly the same. In particular, two statements may
assign to the same array (as in the mm program), but a Crystal pro-
gram has only one definition for each data field. Thus, Tiny loop
restructuring may separate the assignments to an array into separate

loops, while Crystal will always keep the data field definition together.

¢ Due to the single-assignment nature of the Crystal language, each data
field element can be defined only once; thus, a data field defined in a
3-dimensional domain will have three dimensions. In a Tiny program,
this is not true; to apply the same alignment strategy, we modified
the Tiny compiler to introduce implicit dimensions. We found that

implicit dimensions, which capture the iteration space of a program,

26

are important for proper alignment.

We are now developing the algorithms to convert the aligned program to an
efficient SPMD node program.

The Tiny compiler accepts a small, “toy” language; we properly view this
effort as technology demonstration only. Our results so far are encouraging,
and we are also investigating how to use these methods in a full industrial-

strength parallel language.

References

[FHK90] Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koel-
bel, Uli Kremer, Chau-Wen Tseng, and Min-You Wu. Fortran D
language specification. Technical Report TR90-141, Rice Univ.,

December 1990. Revised April,1991.

[HKT92] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Com-
piling Fortran D for MIMD distributed memory machines. Com-

munication of the ACM, 35(8):66-88, August 1992.

[HPF92] HPFF. High Performance Fortran Specification, draft ver. 0.4

edition, November 1992.

27

[Tke92]

[Li91]

[Wol90]

[Wol91]

Mitsuru Ikei. Automatic program restructuring for distributed
memory multicomputers. M.S. thesis, Oregon Graduate Insti-

tute, Dept. of Computer Science and Engineering, April 1992.

Jingke Li. Compiling Crystal for distributed-memory machines.
PhD dissertation, Yale Univ., Dept. Computer Science, October

1991.

Michael Wolfe. Loop rotation. In David Gelernter, Alexandru
Nicolau, and David A. Padua, editors, Languages and Compil-
ers for Parallel Computing, Research Monographs in Parallel
and Distributed Computing, pages 531-553. MIT Press, Boston,

1990.

Michael Wolfe. The Tiny loop restructuring research tool. In
Proc. 1991 International Conf. on Parallel Processing, volume 11,

pages 46-53, St. Charles, I, August 1991. Penn State Press.

28

