
Automatic Array Alignment for

Distributed Memory Multicomputers

Mitsuru Ikei

Hitachi Chemical Company Ltd�

Michael Wolfe �

Oregon Graduate Institute of Science � Technology

P�O� Box �����

Portland OR �����

	�
�������	


FAX 	�
���������

mwolfe�cse�ogi�edu

�Supported in part by grants from DARPA� Intel Supercomputer Systems Division and

the Oregon Advanced Computing Institute

�



Abstract

Languages such as Fortran�D and High Performance Fortran use ex�

plicit virtual processor arrays �Templates or Decompositions� to which

the programmer explicitly aligns the arrays of the program� We explore

a technique to automate this process� In particular� we are interested in

imperative languages� similar to Fortran� and scienti�c computations

using indexed data structures �arrays�� We have implemented auto�

matic alignment in our imperative language using techniques similar

to those used for the functional language Crystal� Here we show what

changes we made to the procedure to take into account the imperative

nature of our source language� In particular� a functional language has

a single�assignment attribute� each array element is de�ned only once�

An imperative language allows array elements to be rede�ned� this al�

lows the imperative program to use arrays with fewer dimensions� as

we show� Our compiler technique 	resurrects
 the lost dimensions of

the data arrays to successfully apply automatic data alignment�

�



� Introduction

Compilers for current supercomputers can achieve high performance for pro�

grams which are written using a �vector� model �using vectorizable loops��

To achieve similar e	ectiveness on parallel computers using the data parallel

model
 several programming languages have been proposed� Typically these

languages have global data which is processed by the entire processor en�

semble and which can be accessed by global indices� They also have parallel

loop syntax which programmers can use to explicitly express concurrency�

To execute these programs
 the global data needs to be decomposed into

pieces and distributed among the processor ensemble� The output of the

compiler often forms an SPMD �Single Program
 Multiple Data� program


where each processor executes the same program text
 but calculates its own

share of the global work on the distributed data structure�

We can consider this as a two�phase process� selecting how to decom�

pose the data
 and distributing the work to match the data decomposition�

Languages like Fortran D and High Performance Fortran have constructs

with which programmers manually decompose the data �FHK��
 HPF���

In this case
 the main role of the compiler is to derive the SPMD node pro�

gram with explicit communication from the global program and the given

�



data decomposition �HKT��� Our main focus of this paper is to automate

the data decomposition step�

Recent work on the functional language Crystal has produced a compiler

which automatically converts Crystal programs into executable data�parallel

SPMD programs for Distributed Memory Multicomputers �Li��� The com�

piler uses three steps to transform the functional program to executable

SPMD form� ��� Control Structure Synthesis
 ��� Domain Alignment and

��� Communication Synthesis�

Our research examines how to apply these compiler steps to an im�

perative language� in particular
 we have implemented analogs of Control

Structure Synthesis and Domain Alignment in our Tiny program restruc�

turing research tool �Wol�
 Ike��� In this paper we discuss mainly these

two steps� The rest of this paper is organized as follows� In Section �
 we

show a simple example of how a program can be converted for multicom�

puters� Sections � and � discuss Control Structure Synthesis and Domain

Alignment respectively� In Section �
 we discuss other research topics and

we conclude in Section ��

�



�

�

�

�

Input Program

Program Mapping Phase

��� Control Structure Synthesis

��� Domain Alignment

Templates � aligned program

��� Communication Synthesis

SPMD program for multicomputer

Problem Analysis Phase

Figure �� Compiling Steps

� Compiler Phases

Our compiler for multicomputers will consist of two main phases� a Problem

Analysis phase and Program Mapping phase
 as shown Figure ��

In the �rst phase
 the compiler knows nothing about the physical ma�

chine structure� it concentrates only on the data spaces and the iteration

spaces which are de�ned and used in the program� In other words
 we as�

sume a virtual processor array which has in�nite dimensionality of in�nite

size and map the spaces of the program to a subset of the virtual processor

array� In the following program


real a������b�����

for i���		 do

b�i��a�i
���a�i���

endfor

�



our compiler �rst �nds concurrency and restructures it to parallelize as many

loops as possible� Applying our array alignment algorithm
 we get the fol�

lowing�

real a������b�����

align�a�����b�����

doall i���		 do

b�i��a�i
���a�i���

enddoall

The output of the �rst phase assumes a single virtual processor array or

template and all arrays in the program are aligned to this template� Every

loop in the program can also be aligned to one dimension of the virtual

processor array� In the example
 one array �in this case b���
 is chosen as

the template� it is obvious that the doall loop is related to both the a�� and

b�� arrays�

In the second phase
 the compiler will actually decompose the template

to �t in the physical nodes� it will organize a task for each node with the

necessary data movement among processors� Assuming we have four pro�

cessors connected in a line
 and the template is divided into four blocks
 the

node program is�

�



real a����b��� for i����� do

real from left�from right b�i��a�i
���a�i���

if�my id������ then endfor

send���a���� if�my id������ the

from right�receive��� b����from left�a���

elseif�my id������ then endif

send���a���� if�my id������ the

from left�receive��� b����a�����from right

else endif

send�my id�����a����

from left�receive�my id��
��

send�my id��
��a����

from right�receive�my id�����

endif

In this code
 my�id�� returns the processor id
 send�dist�data� sends

data to PE dist and receive�src� receives the data from PE src� In

the beginning of the program
 each processor sends its boundary data and

receives the necessary data� In this example there is no more e�cient way

to divide the data� generally there are many ways to divide the data and

the selection of the decomposition is the main aim of this phase�

Although we only consider block distribution here
 we are also planning

to use distributions with guard regions and some simple dynamic distribu�

tions
 as discussed in Section �� After the distribution strategy is set
 we try

to �nd necessary communication subroutines� We use aggregate communi�

cation routines
 where applicable
 to minimize communication cost� Eval�

uating communication overhead with several parameters under the target

�



dom T � ����n�

dom D� � ����n�

dom D� � D� � D�

dom D� � D� � T

dfield a�i�j�� D� � a��i�j�

dfield b�i�j�� D� � b��i�j�

dfield c�i�j�k�� D� �

if� k � � �then ���

else c�i�j�k
�� � a�i�k� � b�k�j� fi

Figure �� Crystal mm program

machine constraints
 we can generate the most appropriate SPMD program�

� Control Structure Synthesis

In Control Structure Synthesis
 a Crystal program is converted to an im�

perative data parallel program� This is a necessary step
 since the source

language is not imperative
 but the target machine is� For an imperative

source language like ours
 the control structure already exists in the original

program� however
 we use an analog of this step to re�ne the program�

��� Crystal

In Figure �
 we show a Crystal matrix multiplication �mm� program� A

Crystal program consists of two parts� domain de�nitions and data �eld

�



de�nitions� In the �rst half of the mm program
 four domains T
 D�
 D� and

D� are de�ned� Both T and D� are one dimensional and D� and D� are two

and three dimensional domains respectively� In the second half
 three data

�elds a�� and b�� �on D�� and c�� �on D�� are de�ned� The two data �elds

a�� and b�� are used to hold the input matrices� Data �eld c�� holds the

result of the mm calculation�

The objective of the Control Structure Synthesis phase of the Crystal

compiler is to synthesize imperative loops from data �elds� The compiler

takes the following four steps for this�

�� Compute the dependence graph

�� Decompose the graph into strongly connected regions �SCRs
 or max�

imal cycles�

�� Sort the SCRs topologically to �nd an execution order

�� Break dependence cycles by �nding a dependence carrying loop

First the compiler builds a dependence graph between all data �elds as

shown Figure �� Each SCR in the graph can be an imperative loop which

de�nes the data �elds involved in the SCR� The compiler sorts the SCRs to

�nd an execution order of the loops that preserves the dependence relations�





� ���

��
��

��
�	


��
��

a��
��

c

b

Figure �� Crystal mm dependence graph

SCRs which have no dependence cycles
 such as a�� and b�� in Figure �


can be executed in parallel� For SCRs with dependence cycles
 the compiler

�nds a dependence�carrying loop and makes this be an outermost sequential

loop
 thus allowing the others loops to execute in parallel� Figure � shows

the mm program after Control Structure Synthesis� Forall loops are used

to designate that the a�� and b�� de�nitions can be executed on parallel�

The for�loop along the third dimension of the c�� de�nition is found as

the dependence carrying loop and the inner forall�loop on D� is used to

describe the parallelism� Thus the Crystal compiler derives an imperative

data parallel program from the functional speci�cation�

��� Tiny

Tiny is a program restructuring tool for a small imperative language� it sup�

ports sequential and parallel loop constructs
 such as used in many scienti�c

��



dom T � ����n�

dom D� � ����n�

dom D� � D� � D�

dom D� � D� � T

forall��i�j��D��f a�i�j� � a��i�j� g
forall��i�j��D��f b�i�j� � b��i�j� g

for�k�T�f
forall��i�j��D��f

c�i�j�k� � if� k � � �then ���

else c�i�j�k
�� � a�i�k� � b�k�j� fi

g
g

Figure �� Crystal mm data parallel program after Control Structure Syn�
thesis

real a�n�n��b�n�n��c�n�n�

for i � �� n do

for j � �� n do

c�i�j� � ���

for k � �� n do

c�i�j� � c�i�j� � a�i�k� � b�k�j�

endfor

endfor

endfor

Figure �� Tiny mm program

��



programs� We select this simple language to demonstrate our research� �We

use Tiny to mean both the tool and its language�� Since Tiny is an impera�

tive language
 the compiler doesn�t need to synthesize loops as with Crystal�

the original program already has a legal loop structure� As an analog to the

Control Structure Synthesis phase of the Crystal compiler
 our compiler

�nds implicit parallelism in the imperative Tiny program
 and converts the

program to a normalized form� In some sense
 the Crystal compiler sequen�

tializes and normalizes a declarative program
 whereas the Tiny compiler

parallelizes and normalizes an imperative program� The output of the �rst

phase of both compilers is similar� We show a Tiny mm program in Figure ��

We take the following four steps to convert a program to normalized form�

�� Compute a data dependence graph

�� Decompose the loops �loop distribution�

�� Interchange sequential loops outwards

�� Parallelize inner loops �doall�loops�

First we construct a data dependence graph to preserve the semantics of the

program throughout the restructuring phase� Next we try to decompose all

non�tightly nested loops to tightly nested ones
 comparable to data �elds

��



real a�n�n��b�n�n��c�n�n�

doall i � �� n do

doall j � �� n do

c�i�j� � ���

enddoall

enddoall

for k � �� n do

doall i � �� n do

doall j � �� n do

c�i�j� � c�i�j� � a�i�k� � b�k�j�

enddoall

enddoall

endfor

Figure �� Tiny mm program
 normalized by the analog of Control Structure
Synthesis

in Crystal programs� We then try to interchange sequential dependence�

carrying loops outwards
 so that inner loops can be parallelized� In Figure �


we show the result of this conversion� Here
 the non�tightly nested loop can

be decomposed into two tightly nested loops� The dependence carrying �k�

loop in the second nested loop is interchanged to the outermost position

and the two inner loops have been successfully parallelized� This normal�

ized data parallel program is intentionally organized to resemble the Crystal

data parallel program� It may not have an e�cient loop structure for di�

rect mapping to a parallel computer
 however this representation shows the

relations between data spaces �arrays� and iteration spaces �loops� clearly


��



which we use in the next step for array alignment�

� Domain Alignment

After an imperative data parallel program is derived from the original func�

tional de�nitions
 the Crystal compiler tries to �nd the optimal spatial align�

ment of data �elds to minimize communications among virtual processors�

We apply essentially the same method to arrays in Tiny programs�

��� Crystal

Since an imperative data parallel program is derived
 we need to distribute

the data �elds among the processors to run the program on a multicomputer�

The Crystal compiler takes a two level distribution strategy� First
 it aligns

all data �elds to a global Template �Domain Alignment�
 where a Template

is a Cartesian mesh of virtual processors� The Template �with all data

�elds aligned to it� will subsequently be distributed to physical processors

�Distribution�� Domain Alignment proceeds in the following three steps�

�� Find the reference patterns

�� Build a Component A�nity Graph �CAG�

�� Partition the CAG �using a bipartite partitioning heuristic�

��



c�i�j�k� � c�i�j�k
��

c�i�j�k� � a�i�k�

c�i�j�k� � b�k�j�

Figure �� Crystal mm reference patterns

The Crystal compiler selects a data �eld with maximum dimensionality to

represent the Template and tries to relate or align all other data �elds to

this Template� First it collects all reference patterns in the program� For

instance
 the reference patterns for the Crystal mm data parallel program

in Figure � are shown in Figure �� These three patterns are derived from

the line where c�i�j�k� is de�ned� Each reference pattern relates a right

hand side data �eld reference to the left hand side element where it is used�

From these reference patterns
 the compiler builds a Component A�nity

Graph� The CAG is a weighted undirected graph� Nodes of CAG are domain

components �one for each dimension� and edges are relations derived from

the reference patterns� We denote a domain component using notation like

a�� which refers to �st domain component of the data �eld a� In Figure �


the domain components of the three data �elds in the program are in the

three columns of the CAG� A domain component which is de�ned using a

sequential �dependence�carrying� index �k in this case� like c�� is called a

��



��
�
��
�

��
�

��
�
��
�

��
�

��
�

��
���

�
�
�
�
�
�

��
	��

�
��

c��

��

�

�
a��

a�� c��

c��

b��

b��

Figure �� Crystal mm CAG

temporal domain component and is represented by a double circle� Given

a reference pattern
 we de�ne the distance between a domain component

in the LHS and that in the RHS as the di	erence of an index expression

in the RHS domain from the corresponding LHS index expression� If the

distance between two di	erent domain components is constant
 we say that

there is an a�nity relation between the domain components and draw an

edge between the components� For instance
 in the reference pattern�

c�i�j�k� � a�i�k�

the distance of the index expression of c�� and the index expression of a�� is

�i� i� � �� Since it is constant
 there is an edge between the two component

domains in Figure �� There are three kinds of weights that the edges can

have� epsilon
 one and in�nity� If one node has two edges to two di	erent

��



�
�

�
�

�
�

�
�

�
�

�
�

��
�
��
�
��
�

��
�

��
�

��
�
��
�
��
�

��
	�

a��
��

�

�

b��

b��

c��

c��

c��

a��

Figure � Crystal mm partitioned CAG

components of the same domain
 both edges are weighted as epsilon� An

edge between two temporal components has a weight of in�nity� All others

are given a weight of one
 such as the edge between a�� and c���

After the CAG is build
 the compiler partitions it� Assuming n is the

dimensionality of the Template
 we want to partition the CAG into n groups

such that the sum of the edges cut by partitioning is minimized� Compo�

nents which are derived from the same data �eld must belong to di	erent

partitions� In Figure 
 we show the partitioned CAG of the example mm

program� In this case
 partitioning is easy
 but this problem is in general

NP�complete� The Crystal compiler uses simple but e	ective heuristics to

solve this problem� From Figure 
 we can get the chosen relative array

alignment� Using c as the Template
 we denote the alignment as follows�

��



align�a��������c����������

align�b��������c����������

��� Tiny

Applying the same method to Tiny looks straightforward� Data �elds are

similar to arrays� Data �eld de�nitions inside loops are essentially the same

as assignment statements� However there are important di	erences� Crystal

is a single assignment language
 with a declarative style� there is no way to

rede�ne elements of a data �eld� But a Tiny program is quite di	erent�

Reassignment and reuse of array elements in imperative languages is quite

common� Not all loop index variables will appear in array references
 even

on the left hand side� In the Crystal mm program
 the c data �eld has

three dimensions
 one of which is indexed by k� the Tiny mm program has

only two dimensions for c
 and the k index is not used for c� As we will

explain shortly
 these �missing indices� are important
 and our compiler

adds implicit dimensions to arrays such as c� The Tiny compiler uses the

following four steps in its Domain Alignment phase�

�� Find the reference patterns

�� Add implicit dimensions

�� Build a Component A�nity Graph

��



c�i�j� � c�i�j�

c�i�j� � a�i�k�

c�i�j� � b�k�j�

Figure ��� Tiny mm reference patterns

�� Partition the CAG

First we derive reference patterns from a Tiny program
 just as the Crystal

compiler does� From the program in Figure �
 we get reference patterns as

shown in Figure ��� Comparing this to Figure �
 we realize that the Tiny

c�i�j� array has only two domain components� in the Tiny mm program


array element c�i�j� is reassigned values along the sequential k loop� To use

the Crystal data alignment scheme
 we need to add this temporal domain as

an implicit dimension� the implicit dimension is used only for the Domain

Alignment phase
 and is ignored thereafter� The Tiny compiler currently

uses the following simple algorithm�

�� If there is an assignment statement to a scalar inside loops
 the scalar

is a candidate and all the loops that include the assignment statement

are possible implicit domains�

�� If there is an assignment to an array inside loops and one or more

loop indices do not appear in the LHS array subscript expressions


�



c�i�j��k� � c�i�j��k
��

c�i�j��k� � a�i�k�

c�i�j��k� � b�k�j�

Figure ��� Tiny mm reference patterns with implicit dimensions

the array is a candidate� The loops with the missing indices are the

possible implicit domains�

�� If an LHS is a candidate and if in the RHS there is a subscript expres�

sion which contains a loop index of the possible implicit domain such

that the distance between the subscript expression and the loop index

is constant
 an implicit dimension is added to the candidate�

According to rule �
 the k loop is a possible implicit domain for array

c
 and according to rule �
 the distance between the k subscript for array a

�and b� and the implicit loop index is constant� Using this algorithm
 the

compiler revises the reference patterns as shown in Figure ��� Denoting

the implicit dimension of array c as c�k
 the CAG of the Tiny mm program

is as shown in Figure ��� We select the c array as our Template since it

has the highest dimensionality �after adding the implicit dimension�� The

Tiny compiler uses exactly the same algorithm for partitioning that was

developed for the Crystal compiler� The input program shown in Figure �

��



��
�
��
�

��
�

��
�

��
�
��
�

��
�

��
�

�
�
�
�
�
�
�
�

��
	��

�
��

b��

��

�

�

c�k

a��

a�� c��

c��

b��

Figure ��� Tiny mm CAG

is automatically converted to the program with align statements as shown

in Figure ���

� Data Distribution

Before generating communication constructs to interchange data e�ciently

among physical processors
 the compiler must decide how to decompose

the Template �and hence the data arrays� among the physical processors�

This takes place in the Distribution phase� The Crystal compiler takes

a simple static distribution strategy� We are investigating this strategy

and evaluating other potentially more e	ective strategies� a strategy will be

selected after evaluating and comparing the cost of data movement� In this

paper
 we discuss one dimensional physical processor arrays�

��



real a�n�n��b�n�n��c�n�n�

align�a��������c����������

align�b��������c����������

doall i � �� n do

doall j � �� n do

c�i�j� � ���

enddoall

enddoall

for k � �� n do

doall i � �� n do

doall j � �� n do

c�i�j� � c�i�j� � a�i�k� � b�k�j�

enddoall

enddoall

endfor

Figure ��� Tiny aligned mm program

��� Simple Distribution Strategy

After Domain Alignment
 we have a Template to which all arrays are aligned

in a program� Each domain of the Template is either temporal
 indexed by a

sequential for�loop
 or spatial
 indexed by a parallel doall�loop� Each domain

can be either decomposed �distributed among processors�
 or kept entirely

within a single processor�s local memory� Decomposing a temporal domain

cannot e	ectively use parallelism� thus one obvious way to decompose the

data is to select one spatial domain to be distributed� For instance
 the

calculation part of the program in Figure �� can be converted to the SPMD

��



real c�mylower�myupper�n��a�mylower�myupper�n��b�n�n�

for k � �� n do

for i � mylower� myupper do

for j � �� n do

c�i�j� � c�i�j� � a�i�k� � b�k�j�

endfor

endfor

endfor

Figure ��� Simple Local Tiny mm program

program in Figure ��� Here
 we decomposed along c��� Since array b��

has no domain aligned to c��
 each processor has a copy of the entire array

b��� If b�� is too large to �t in the memory of each processor
 there are

several options� One way is to decompose also along c��� another is a

secondary decomposition of b�� without decomposing c�k� We don�t discuss

this further in this paper
 but the decision can be made after the evaluation

of communication overhead�

��� Dynamic Distribution

Previous work has assumed that the owner of an array would not change

throughout the execution of program� But sometimes it is better to move

chunks of data among processors along with their ownerships� Using this

strategy
 the mm program can be converted as shown in Figure ��
 us�

��



real c�mylower��myupper��n��a�mylower��myupper��n��b�n�mylower��myupper��

dorotate�b���

for i � mylower�� myupper� do

for j � mylower�� myupper� do

for k � �� n do

c�i�j� � c�i�j� � a�i�k� � b�k�j�

endfor

endfor

endfor

enddorotate

Figure ��� Local Tiny mm program with rotate

ing a data rotation strategy �Wol��� Arrays c�� and a�� are decomposed

row�wise and distributed statically among all processors� Although array

b�� is decomposed column�wise and distributed among all processors simi�

larly
 we redistribute it by the dorotate construct� In each iteration of the

dorotate�b��� loop
 each processor rotates its share of array b�� to the

next processor synchronously� eventually
 each processor sees the entire ar�

ray b�� piece by piece
 and the array ends up in the same place it started�

Note this distribution also uses the previously calculated alignment� Do�

main c�� and a�� are both decomposed together� Dimension c�� is not

decomposed
 even though b�� is divided column�wise� however
 we notice

that only part of c�� is used in each iteration of the dorotate calculation�

��



We are investigating automation of this transformation� In particular
 it

changes the order of the dot product accumulation for each element of the

result array in this program�

��� Communication Constructs

After the distribution strategy is set
 the compiler must insert communica�

tion constructs into the SPMD program� Right now
 the Tiny compiler does

not generate executable SPMD output� As with previous work
 we will focus

on global communication patterns
 which can be implemented e�ciently and

more e	ective utilize the limited interprocessor bandwidth� The reference

patterns and data dependence relations
 which have already been collected


will be used to detect global communication points and insert the necessary

communication primitives�

� Conclusion

We have implemented automatic array alignment in the Tiny program re�

structuring tool� The methods we used to �nd the optimal alignment are

analogous to the methods used in the compiler for the functional language

Crystal� Even though the imperative language we used is very di	erent

��



from the declarative style used in Crystal
 we found that a similar align�

ment strategy worked well� Speci�c di	erences are�

� The Crystal compiler needs to deduce a legal imperative loop structure

from the source program� A Tiny program already has a legal loop

structure
 but it may need to be restructured or optimized� Both

compilers use dependence information to generate and�or optimize

the loop structure�

� Tiny assignment statements are similar to data �eld de�nitions in

Crystal
 but not exactly the same� In particular
 two statements may

assign to the same array �as in the mm program�
 but a Crystal pro�

gram has only one de�nition for each data �eld� Thus
 Tiny loop

restructuring may separate the assignments to an array into separate

loops
 while Crystal will always keep the data �eld de�nition together�

� Due to the single�assignment nature of the Crystal language
 each data

�eld element can be de�ned only once� thus
 a data �eld de�ned in a

��dimensional domain will have three dimensions� In a Tiny program


this is not true� to apply the same alignment strategy
 we modi�ed

the Tiny compiler to introduce implicit dimensions� We found that

implicit dimensions
 which capture the iteration space of a program


��



are important for proper alignment�

We are now developing the algorithms to convert the aligned program to an

e�cient SPMD node program�

The Tiny compiler accepts a small
 �toy� language� we properly view this

e	ort as technology demonstration only� Our results so far are encouraging


and we are also investigating how to use these methods in a full industrial�

strength parallel language�

References

�FHK��� Geo	rey Fox
 Seema Hiranandani
 Ken Kennedy
 Charles Koel�

bel
 Uli Kremer
 Chau�Wen Tseng
 and Min�You Wu� Fortran D

language speci�cation� Technical Report TR�����
 Rice Univ�


December ��� Revised April
���

�HKT�� Seema Hiranandani
 Ken Kennedy
 and Chau�Wen Tseng� Com�

piling Fortran D for MIMD distributed memory machines� Com�

munication of the ACM
 �����������
 August ���

�HPF�� HPFF� High Performance Fortran Speci�cation
 draft ver� ���

edition
 November ���

��



�Ike�� Mitsuru Ikei� Automatic program restructuring for distributed

memory multicomputers� M�S� thesis
 Oregon Graduate Insti�

tute
 Dept� of Computer Science and Engineering
 April ���

�Li�� Jingke Li� Compiling Crystal for distributed�memory machines�

PhD dissertation
 Yale Univ�
 Dept� Computer Science
 October

���

�Wol�� Michael Wolfe� Loop rotation� In David Gelernter
 Alexandru

Nicolau
 and David A� Padua
 editors
 Languages and Compil�

ers for Parallel Computing
 Research Monographs in Parallel

and Distributed Computing
 pages �������� MIT Press
 Boston


���

�Wol�� Michael Wolfe� The Tiny loop restructuring research tool� In

Proc� ���� International Conf� on Parallel Processing
 volume II


pages �����
 St� Charles
 IL
 August ��� Penn State Press�

��


