
Extended SSA with Factored Use-Def Chains
to Support Optimization and Parallelism

Eric Stoltz
Michael P. Gerlek

Michael Wolfe

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive
Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 93-013

June 1993

Extended SSA with Factored Use-Def Chains
to Support Optimization and Parallelism

Eric Stoltz*, Michael P. Gerlek*, Michael Wolfe*

Oregon Graduate Institute of Science and Technology

Department of Computer Science and Engineering

PO Box 91000
Portland, Oregon 97291

FAX: (503) 690-1553

* supported in part by a grant from Intel
Supercomputer Systems Division and the

Oregon Advanced Computing Institute

Extended SSA with Factored Use-Def Chains

to Support Optimization and Parallelism

Abstract

This paper describes our implementation of the Static Single Assignment (SSA) form

of intermediate program representation in our prototype parallelizing Fortran 90 compiler,

Nascent.

Although the traditional Static Single Assignment (SSA) form algorithm renames vari-

ables uniquely a t every definition point, it is not practical to add new names t o the symbol

table at all assignments. Thus, most implementations actually provide def-use chains for

each definition. Each use is the head of exactly one link, thus maintaining the semantics

of SSA. In contrast, we provide use-def chains, so that in the intermediate representation

the link at each use points to its unique reaching definition. We discuss how our approach

improves the implementation and efficiency of optimization and analysis techniques such as

constant propagation, induction variable detection, and scalar dependence identification.

Nascent accepts explicit parallel section constructs consistent with the Parallel Computing

Forum (PCF) standard and will conform to the High Performance Fortran (HPF) standard.

We have developed analysis and optimization routines to support these parallel languages

which take advantage of our extended SSA form.

1 Introduction

The Static Single Assignment (SSA) form for intermediate program flow rep-

resentation has become a popular and powerful framework with which to an-

alyze and optimize code [BM090, CG93, JP93, WZ91, RWZ88bl. SSA form

has been used to simplify optimization techniques and data-flow problems

including constant propagation [WZ91], global value numbering [RWZ88b],

and induction variable detection [Wo192], among others.

x = O
y = O
z = o
i f (P) then

y = y + 1
endif

xo = 0

YO = 0
zo = 0

i f (P) then

Y1 = yo + 1
endif

Y2 = 4 (yo, y1
x1= y2
z 1 = 2 * y 2 - 1

Figure 1: program fragment in (a) normal form and (b) SSA form

Figure 1 shows a program fragment translated into SSA form. The

distinguishing feature of this form is that each variable use has exactly one

reaching definition. Additional definitions are added at each control flow

confluence point for each variable defined along at least one of the incoming

2

: if (P) then
,! ;

, I '\ if (P) then
I I ,
I <, &- - - I
I I

. - -
I Y,= Y + 1 1
1 I

y = y + 1
\ !
\ , ! \ \

\, endif ',, .___---- , endif '.,
\ '\\ . - - - _ _

Y,..=. 9 (Y. Y)
- - - '

Y < $ (Y I Y)
\ .. * -

\ \
\ ..,

\ \

$1 \ \
x = Y I I x = Y I

Figure 2: comparison of standard SSA implementation employing (a) def-use
links and (b) use-def links

paths by introducing a &function. Details are provided in [CFRWSl].

Although this traditional SSA form renames variables uniquely at every

definition point, it is not really practical (and certainly not desirable) to

add new names to the symbol table for all assignments. Thus, the common

implementation [WZ91, JP931 actually provides def-use links [ASU86] for

each new definition (see Figure 2). Since each use is the head of exactly one

link, the semantics of SSA are preserved.

The def-use chain style of SSA implementation lends itself well to for-

ward data-flow problems [WZ91, RWZ88al due to consistency of direction

between program flow and def-use links. However, a demand-driven data-

flow problem will typically request information at a program point from its

data-flow predecessors. As we shall see, use-def chains admirably match the

demand-driven style of data-flow analysis.

In this paper we describe our implementation of SSA with use-def chains

and discuss how this approach facilitates optimization and analysis tech-

niques such as constant propagation, induction variable recognition, and

scalar dependence detection. We also describe an extension to SSA that

allows correct analysis of explicit parallel sections. We have implemented

SSA form in Nascent, our prototype Fortran 90 compiler. Nascent accepts

explicit parallel section constructs consistent with the Parallel Computing

Forum extensions and will also conform to the High Performance Fortran

(HPF) standard.

The rest of the paper is organized as follows. Section 2 provides the

details of our use-def SSA implementation, Section 3 presents the advantages

of this approach, while Section 4 will describe its applications to support

parallel languages. We will cover related work in Section 5 and conclude

with Section 6.

2 Constructing SSA with Factored Use-Def Chains

This section details the methods and techniques employed to transform an

intermediate representation into SSA form utilizing factored use-def chains

(FUD chains).

We begin our analysis of programs within a framework consisting of a

control-flow graph and an SSA data-flow graph. A control flow graph (CFG)

is a graph G = < V,E,Entry,Exit>, where V is a set of nodes representing

basic blocks in the program, E is a set of edges representing sequential

control flow in the program, and Entry and Exit are nodes representing the

unique entry point into the program and the unique exit point from the

program. For technical reasons, a flow graph edge connects Entry to Exit

[CFRW91]. Each basic block contains a list of intermediate code tuples,

described next. We restrict our attention to reducible flow graphs [ASU86].

The data-flow graph consists of tuples of the form < op, left, right,ssalink>,

as described in [Wo192], where op is the operation code and left and right are

the two operands (both are not always required, e.g. a unary minus). The

ssalink is used for fetches, including arguments of &functions, as well as in-

dexed stores (which are not discussed further in this paper). The ssalink, if

applicable, represents the one reaching definition for the variable in question

at that point in the program. The left, right, and ssalink fields are pointers:

they are all essentially use-def links. Thus, to perform an operation associ-

ated with any tuple, a request (or demand) is made for the information at

the end of these links.

In converting intermediate code into SSA form, we generally follow the

algorithm given in [CFRWSl], which relies extensively upon the concepts

of dominators and dominance frontiers for nodes in the CFG. Briefly, node

X dominates node Y if all paths from Entry to Y must pass through X.

X strictly dominates Y if X dominates Y and X # Y. X is the immediate

dominator of Y if X strictly dominates Y and all other nodes which strictly

dominate Y also dominate X. Z is in the dominance frontier of Y if Y does

not strictly dominate Z, but Y does dominate some predecessor of Z.

When performing the transformation into SSA form, we follow four main

steps:

1. Variable Modification List

We make one pass through the CFG to create a linked list of variables

modified and a list of modification sites for each variable. This is

accomplished by simply examining all data-flow tuples which belong

to each node of the CFG using a depth-first search, although any

pass which visits all nodes will suffice. We note that all variables are

assumed to be initialized (hence defined) at Entry.

2. Dominator Computation

We compute the immediate dominator tree of the CFG using the algo-

rithm by Lengauer and Tarjan [LT79]. The dominance frontier of all

nodes is then quickly assembled using a compact technique described

by [CFSSO], which is just as fast as previous techniques and an im-

provement in terms of space. In addition, it is much simpler to code;

our original 150 lines of code for this phase was reduced to just lo!

3. + Placement

The placement of +-functions is done exactly according to the algo-

rithm in [CFRWSl]. For each variable, we place a +-function at the

iterated dominance frontier of nodes in the CFG associated with all

modification sites for that variable. The iterated dominance frontier

of a node consists of the original dominance frontier set of the node

plus the dominance frontier of each node in the set, augmented by

nodes in which +-functions are placed. The number of arguments of

each +-function is equal to the number of predecessors of the CFG

node in which it resides.

4. Renaming

A depth-first pass is made of the dominator tree, pushing definition

sites onto a stack when encountered. All variable uses have their

ssalink field filled in with a pointer to the current definition at the top

of the stack. Flow graph successors are then checked for +-functions,

filling in the corresponding +-argument with a pointer to the reaching

definition at the top of the stack. This routine is called recursively

on the dominator tree children, popping definitions off the stack when

returning.

A traditional use-def chain would list all definitions of a variable which

reach the current use. The result of the preceding procedure is the factored

form - each use has exactly one reaching definition (see Figure 2b), thus

preserving SSA semantics.

3 Advantages of FUD Chains

3.1 Space Requirements

Although relatively minor, the first advantage of our approach is that it

requires only constant space per node to implement. Since each variable

use has exactly one reaching definition, it has only one ssalink field. A

8

3.2 Demand-Driven Analysis

FUD chains readily lend themselves to demand-driven analysis. Traditional

iterative solvers for optimizations such as constant propagation require many

passes, recomputing information until a fixed point is reached [FL91, ASU86,

Ken811. In our approach we classify each node in the SSA data-flow graph

in terms of its predecessors using a depth-first search.

Constant propagation is performed in Nascent using a standard constant

propagation lattice, with each node being assigned a lattice value as a func-

tion of the lattice value of its data-flow predecessors. If the predecessors

have not yet been evaluated, the algorithm is recursively called on those tu-

ples corresponding to the targets of the links. This approach requires only

one pass.

We apply techniques outlined in [BM090] in order to correctly propagate

values down conditional branches. This entails associating a predicate with

each &function so that, if possible, we can determine which branch will be

taken to reach the current confluence point. When dealing with loops, our

demand-driven approach may find a cycle in the data-flow graph. We then

use a standard iterative method, but only for those operations in the cycle,

resulting in less recalculation and faster convergence. These ideas will be

expanded in a forthcoming paper.

Induction variable detection and classification is an important first step

in many program transformations, particularly loop parallelization. We can

generalize from the detection of constant values to the detection of many

forms of recurrence relations, including linear and nonlinear induction vari-

ables, as well as variables that describe monotonic or periodic sequences

[Wo192]. Based on the observation that statements describing induction

variables correspond to strongly connected regions (SCRs) in the data-flow

graph, we use Tarjan's depth-first algorithm [Tar721 to detect these regions.

Nodes in trivial SCRs have values determined as functions of their data-

flow predecessors, as in constant propagation; however for induction vari-

able classification we assign not just constant values but symbolic expres-

sions. Nodes contained within nontrivial SCRs are assigned expressions

corresponding to the type of recurrence relation or other sequence described

by the operations in the region. The same SCRs would be discovered in

the traditional def-use SSA graph as in our use-def SSA graph if a data-

driven approach were used (i.e. operator to operand links), but clearly the

ability to define a node in terms of its dataflow predecessors in one pass

would be lost. As shown in Figure 3 (a) and (b), there is a cycle containing

k = k + 1 in both SSA graphs, but in the def-use graph the initial value

11

of the induction variable cannot be determined from within the context of

the cycle unless all the predecessors of the cycle have first been visited. In

Figure 3(a) both the store k = 0 and the + 1 nodes must have been clas-

sified prior t o classifying the cycle. However, this implies that classification

of the cycle, although initially discovered as a descendant of one of these

two nodes, must be delayed until all predecessors have been visited. In 3(b),

employing use-def links, we recursively visit all predecessors using Tarjan7s

algorithm, thus insuring that the cycle can be correctly classified when first

detected.

4 Support for Parallelism

In this section we describe how our implementation of SSA can be used to

detect and support parallelism.

4.1 Data Dependence

In order to execute code in parallel, most notably loops, dependences must

be preserved [WB87]. Induction variable detection, as explained in section

3, allows analysis of subscripts for array references. Given two statements

S; and Sj , if a dependence exists between these two statements we denote

that relationship: Si S Sj. Specific dependences annotate this notation.

In general, one must preserve the following data dependences [PW86]:

Flow-dependence: read after write, S; 6 Sj

Anti-dependence: write after read, S; Sj

Output-dependence: write after write, S; So Sj

When loops are considered, we are often interested in distance and/or

direction of the dependence. Dependence distance reflects the number of

iterations around the loop that the dependence is carried, while dependence

direction just identifies whether the direction is positive, zero, or negative A

dependence within the same iteration is considered loop independent. The

distance or direction annotates the dependence relation by using subscripts.

For example, if a flow dependence exists between S; and Sj with a distance

of d, it is denoted Si Sj, while if its direction is (<), it is denoted

si S(<) sj.

To understand how variable values are carried around loops and merged

at confluence points, we note that #-functions come in two "flavors": merge

nodes as the result of conditional branches, and those at the top or header

of a loop. The loop-header #-function merges the definition coming into the

loop with the last definition within the loop body.

13

We have developed a method of detecting flow and output dependence

for scalars within a loop based upon FUD chains in SSA. We shall describe

the method in detail for identifying flow dependence within a single loop.

The following algorithm takes as input a loop within our SSA framework

and outputs scalar flow-dependences for variable uses within the loop body.

Detecting Scalar Flow Dependence Within a Loop

def-list + list of definitions reached by a loop-header &function
self + flag to indicate whether +function transitively reaches itself
variable-of + returns the variable associated with a #+function
ssalink + returns the reaching definition corresponding to a use

find-scalar-dependences(loop C)
for each loop-header &function f in C do

def-list(f) = 8
selfl f) = false
v = variable-ofl f)

for each argument arg of f do
if arg points within loop body of C then

pre-process (ssalink(arg), f)
endif

end for

for all uses u of v within C do
follow-use(ssalinlc(u), f ,u)

endfor

endfor
end find-scalar-dependences

pre-process(def arg, #-funct ion f)
if arg == scalar definition then

def-list(f) = def-list(f) U {arg}
else if arg == f /* self-reference */

selfl f) = true
else /* non-loop-header #-function */

for each #-argument param of arg do
pre-process (ssalink(param), f)

endfor
endif

end pre-process

follow-use(def d, #-function f , use u)
if d == scalar definition then

set flow-dependence: d 6(0) u
else if d == f /* loop-header 4-function */

for each i on def-list of d do
if self(d) then

set flow-dependence: i 6(<) u
else

set flow-dependence: i 6p) u
endif

endfor
else /* non-loop-header #-function */

for each argument a of d do
follow-use(ssalink(a), f ,u)

endfor
endif

end follow-use

Let us follow this procedure through an example. In Figure 4 we first pre-

process the loop-header #-function at S1 for T. The first argument, To, comes

from outside the loop, so is considered no further. The second argument, Tg,

points to its reaching definition, which is a &function in Ss. Thus we follow

its arguments, T2 and TI. Tz is a scalar killing definition, so it is added

to the def-list for the loop-header $-function. TI is a self-reference to the

loop-header +-function, so the selfflag is set; at this point the pre-processing

phase concludes.

Next we look for any uses of T. The first use we find, lexically, is a use of

T in Sq. Its ssalink points to the scalar definition of T in S3, thus discovering

the flow dependence, S3 S (0) S4, which is loop-independent. The next use

of T is in S7. Its ssalink points to the $-function in S6. Following the

first argument takes us to the scalar definition of T in S3, which means we

have a loop-independent flow dependence: S3 b(0) S7. The second argument

from S6 takes us to the the loop-header 4-function at S1. Thus, a flow

dependence exists from each element in the def-list to the original use in S7.

In this case, there is only one item in the def-list, T2, so we have established

the flow dependence: S3 ST, with a (<) dependence direction since the

selfflag is set. A (<) direction lets us know the direction of the dependence,

but says that we can not calculate the exact distance, in this case due to

the uncertainty of which iteration will execute the i f condition at S2.

Intuitively, this procedure works since a loop independent flow depen-

dence will always be discovered by following use-def links in the current

loop body, while loop-carried dependences must always flow through the

16

loop :

TI = 6 (T3)
if (R) then
T2 = ...
. . = T2

endif
T3 = 4 (T2, T1)
. . = T3

endloop

Figure 4: sample loop to detect scalar dependences

loop-header &function. If the self flag is set, a non-loop-header 4-function

must have been encountered during the pre-processing phase; this indicates

a conditional branch which may or may not be taken during any particular

iteration. Thus, while the dependence is loop-carried and its direction is

(<), we do not know its distance. If the selfflag is not set, then the flow

dependence must be to the subsequent iteration, hence its distance is 1.

The purpose of the algorithm is to identify scalar flow dependences

within a given loop, providing a distance or direction around loop iterations.

Dependences which originate from outside the loop are not recognized here,

such as the flow dependence when To was defined outside the loop to the use

of T in S7. We also do not consider here the detection of scalar dependences

which cross loop boundaries. Nested scalar dependence can be analyzed us-

ing recursive routines by providing trip count information concerning each

loop. We are currently developing methods to extend analysis into these

areas.

Arrays can also be analyzed with this approach, but would be treated

as a scalar without regard to any subscripts. A similar algorithm to the one

presented above is used to identify output dependence. Anti-dependence,

on the other hand, is a more complex task and the subject of future work.

4.2 Explicit Parallel Sections

We have designed Nascent to accept explicit parallel section constructs con-

sistent with the Parallel Computing Forum extensions to Fortran [PCFSl] .

An example of parallel section constructs, similar to ideas advocated by

Hansen [Han73] and Allen et al. [ABC+88], is given in Figure 5. We needed

to design our intermediate representation to translate these programs into

SSA form, preserving the unique use-def link when applicable, but dealing

with multiple (perhaps anomalous) updates among parallel sections. We

solved this problem by adding a new operator to the SSA representation,

the $-function, to merge multiple parallel updates. This extension of SSA

form is necessary since with explicit parallel sections a parallel merge is

distinguishable from a sequential merge. Parallel section coend nodes are

S1: k = O
S2: i f (Q) then
S3 : k = 3

S4: e l s e
s5 : k = k + 2
Ss: endif

k = j = O
P a r a l l e l Sect ions
Section A

k = 3
Section B

k = k + 2
Section C

j = j - 1
End P a r a l l e l Sect ions

Figure 5: contrasting sequential and parallel control flow

true merges of multiple control flow paths from explicit parallel section,

all of which must execute, while a sequential merge is actually a choice or

selection of the possible incoming edges.

Figure 5 demonstrates this distinction between sequential and parallel

confluence points on two small fragments of code. In (a) only one branch

will, in fact, reach S6. However, in (b) all branches may execute in parallel,

thus it is possible for more than one definition of a variable (k, in this case)

to actually reach S9.

As with 4-functions, arguments to $-functions are filled in with a use-def

ssalink. However, as we see in Figure 6 (Figure 5(b) translated into SSA

form using $-functions), there is not necessarily a one-to-one correspondence

ko = j o = 0
P a r a l l e l Sections
Section A

kl = 3
Section B

k2 = ko + 2
Section C

j l = j o - 1
End P a r a l l e l Sect ions

k3 = $ (kl , k2)

Figure 6: previous parallel program translated into SSA form with $-functions

between predecessors of the merge and the number of arguments of the $-

function, as there was with +-functions. An additional complication arises

due to the possible nested nature of P a r a l l e l Section statements. Thus,

the algorithm to place $-functions, due to its parallel semantics, is somewhat

different than that used for $-functions. When performing the renaming

phase, however, each definition point is treated equally and pushed onto

the same stack, be it a scalar killing definition, array assignment, 4- or

Once $-functions are placed, explicit parallel code is smoothly translated

into SSA form. $-functions, just like 4-functions, generate new variable def-

initions, and their arguments are considered uses of that variable. We gain

a consistent framework with which to sensibly reason about such parallel

programs. More detail on this project can be found in a preliminary paper

[SHW93].

5 Related Work

Related work in this area also addresses program representation with which

to perform intermediate optimization and analysis. The work by Cytron

et al. [CFRW91] established the foundation for an intermediate form which

significantly reduces the complexity of def-use links. Their method describes

efficient techniques to compute the location of, and minimally construct, #-

function augmentation to data-flow graphs.

The Program Dependence Web (PDW) [BM090] attempts to provide

a framework for integrating control dependence as well as SSA within a

consistent model. The SSA form is extended to include gating functions

which provide predicate information for non-loop-header $-functions as well

as exit values for variables within loops. The PDW is considered an aug-

mented Program Dependence Graph, a graph which captures both control

and data-dependence information.

Another method employed to generalize SSA is the Dependence Flow

Graph [JP93] which combines control information with def-use SSA chains

by defining control regions which consist of single-entry, single-exit areas

of the control flow graph. The aim of this work is to allow both forward

and backward data-flow analysis, as well as to provide a representation that

can be transformed into SSA form or used to construct control dependence

graphs.

6 Conclusion

In this paper we have described how the intermediate SSA form is actually

implemented in our Fortran compiler, Nascent, utilizing factored use-def

chains as an alternative to the more popular def-use chains. This approach

has profound implications on the general nature and style of data-flow anal-

ysis. FUD chains readily accommodate demand-driven data-flow analysis,

as opposed to using more traditional iterative solvers.

We have also detailed extensions to SSA to accommodate work with

parallel languages. We facilitate data dependence analysis with new tech-

niques for detecting both linear and advanced induction variables, and have

outlined a new method for identifying scalar flow dependence within loops.

We have also provided a framework with which to reason more intelligently

about explicit parallel sections.

Per Brinch Hansen. Operating System Principles. Prentice-Hall, Engle-
wood Cliffs, NJ, 1973.

Richard Johnson and Keshav Pingali. Dependence-based program anal-
ysis. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, 1993.

Ken Kennedy. Global data flow analysis. In Steven S. Muchnick and
Neil D. Jones, editors, Program Flow Analysis: Theory and Practice,
page 18. Prentice-Hall, Englewood Cliffs, NJ, 1981.

Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for find-
ing dominators in a flowgraph. ACM Transactions on Programming
Languages and Systems, July 1979.

Parallel Computing Forum. P C F Parallel Fortran Extensions. Fortran
Forum, 10(3), September 1991. (special issue).

David A. Padua and Michael Wolfe. Advanced compiler optimizations
for supercomputers. Communications of the ACM, December 1986.

Barry K. Rosen, Mark N. Wegman, and Kenneth F. Zadeck. Detecting
equality of variables in programs. In Fifteenth Annual ACM SIGPLAN
Symposium on Principles of Programming Languages, January 1988.

Barry K. Rosen, Mark N. Wegman, and Kenneth F. Zadeck. Global
value numbers and redundant computation. In Fifteenth Annual ACM
SIGPLAN Symposium on Principles of Programming Languages, Jan-
uary 1988.

Harini Srinivasan, James Hook, and Michael Wolfe. Static single as-
signment for explicitly parallel programs. In Twentieth Annual ACM
SIGPLAN Symposium on Principles of Programming Languages, Jan-
uary 1993.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
J. Comput., 1(2):146-160, June 1972.

Michael Wolfe and Utpal Banerjee. Data dependence and its applica-
tions to parallel processing. International Journal of Parallel Program-
ming, April 1987.

Michael Wolfe. Beyond induction variables. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 1992.

Mark N. Wegman and Kenneth F. Zadeck. Constant propagation with
conditional branches. ACM Transactions on Programming Languages
and Systems, July 1991.

