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Extended SSA with Factored Use-Def Chains 

to Support Optimization and Parallelism 

Abstract 

This paper describes our implementation of the Static Single Assignment (SSA) form 

of intermediate program representation in our prototype parallelizing Fortran 90 compiler, 

Nascent. 

Although the traditional Static Single Assignment (SSA) form algorithm renames vari- 

ables uniquely a t  every definition point, it is not practical to  add new names t o  the symbol 

table at all assignments. Thus, most implementations actually provide def-use chains for 

each definition. Each use is the head of exactly one link, thus maintaining the semantics 

of SSA. In contrast, we provide use-def chains, so that in the intermediate representation 

the link at each use points to its unique reaching definition. We discuss how our approach 

improves the implementation and efficiency of optimization and analysis techniques such as 

constant propagation, induction variable detection, and scalar dependence identification. 

Nascent accepts explicit parallel section constructs consistent with the Parallel Computing 

Forum (PCF) standard and will conform to the High Performance Fortran (HPF) standard. 

We have developed analysis and optimization routines to  support these parallel languages 

which take advantage of our extended SSA form. 



1 Introduction 

The Static Single Assignment (SSA) form for intermediate program flow rep- 

resentation has become a popular and powerful framework with which to an- 

alyze and optimize code [BM090, CG93, JP93, WZ91, RWZ88bl. SSA form 

has been used to  simplify optimization techniques and data-flow problems 

including constant propagation [WZ91], global value numbering [RWZ88b], 

and induction variable detection [Wo192], among others. 

x = O  
y = O  
z = o  
i f  ( P ) then 

y = y + 1  
endif 

xo = 0 

YO = 0 
zo = 0 

i f  ( P ) then 

Y1 = yo + 1 
endif 

Y2 = 4 ( yo, y1 
x1= y2 
z 1 = 2 * y 2 - 1  

Figure 1: program fragment in (a) normal form and (b) SSA form 

Figure 1 shows a program fragment translated into SSA form. The 

distinguishing feature of this form is that each variable use has exactly one 

reaching definition. Additional definitions are added at each control flow 

confluence point for each variable defined along at least one of the incoming 
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Figure 2: comparison of standard SSA implementation employing (a) def-use 
links and (b) use-def links 

paths by introducing a &function. Details are provided in [CFRWSl]. 

Although this traditional SSA form renames variables uniquely at every 

definition point, it is not really practical (and certainly not desirable) to  

add new names to the symbol table for all assignments. Thus, the common 

implementation [WZ91, JP931 actually provides def-use links [ASU86] for 

each new definition (see Figure 2). Since each use is the head of exactly one 

link, the semantics of SSA are preserved. 

The def-use chain style of SSA implementation lends itself well to  for- 



ward data-flow problems [WZ91, RWZ88al due to consistency of direction 

between program flow and def-use links. However, a demand-driven data- 

flow problem will typically request information at a program point from its 

data-flow predecessors. As we shall see, use-def chains admirably match the 

demand-driven style of data-flow analysis. 

In this paper we describe our implementation of SSA with use-def chains 

and discuss how this approach facilitates optimization and analysis tech- 

niques such as constant propagation, induction variable recognition, and 

scalar dependence detection. We also describe an extension to  SSA that 

allows correct analysis of explicit parallel sections. We have implemented 

SSA form in Nascent, our prototype Fortran 90 compiler. Nascent accepts 

explicit parallel section constructs consistent with the Parallel Computing 

Forum extensions and will also conform to the High Performance Fortran 

(HPF) standard. 

The rest of the paper is organized as follows. Section 2 provides the 

details of our use-def SSA implementation, Section 3 presents the advantages 

of this approach, while Section 4 will describe its applications to  support 

parallel languages. We will cover related work in Section 5 and conclude 

with Section 6. 



2 Constructing SSA with Factored Use-Def Chains 

This section details the methods and techniques employed to  transform an 

intermediate representation into SSA form utilizing factored use-def chains 

(FUD chains). 

We begin our analysis of programs within a framework consisting of a 

control-flow graph and an SSA data-flow graph. A control flow graph (CFG) 

is a graph G = < V,E,Entry,Exit>, where V is a set of nodes representing 

basic blocks in the program, E is a set of edges representing sequential 

control flow in the program, and Entry and Exit are nodes representing the 

unique entry point into the program and the unique exit point from the 

program. For technical reasons, a flow graph edge connects Entry to  Exit 

[CFRW91]. Each basic block contains a list of intermediate code tuples, 

described next. We restrict our attention to  reducible flow graphs [ASU86]. 

The data-flow graph consists of tuples of the form < op, left, right,ssalink>, 

as described in [Wo192], where op is the operation code and left and right are 

the two operands (both are not always required, e.g. a unary minus). The 

ssalink is used for fetches, including arguments of &functions, as well as in- 

dexed stores (which are not discussed further in this paper). The ssalink, if 

applicable, represents the one reaching definition for the variable in question 



at that point in the program. The left, right, and ssalink fields are pointers: 

they are all essentially use-def links. Thus, to perform an operation associ- 

ated with any tuple, a request (or demand) is made for the information at  

the end of these links. 

In converting intermediate code into SSA form, we generally follow the 

algorithm given in [CFRWSl], which relies extensively upon the concepts 

of dominators and dominance frontiers for nodes in the CFG. Briefly, node 

X dominates node Y if all paths from Entry to  Y must pass through X. 

X strictly dominates Y if X dominates Y and X # Y. X is the immediate 

dominator of Y if X strictly dominates Y and all other nodes which strictly 

dominate Y also dominate X. Z is in the dominance frontier of Y if Y does 

not strictly dominate Z, but Y does dominate some predecessor of Z. 

When performing the transformation into SSA form, we follow four main 

steps: 

1. Variable Modification List 

We make one pass through the CFG to create a linked list of variables 

modified and a list of modification sites for each variable. This is 

accomplished by simply examining all data-flow tuples which belong 

to  each node of the CFG using a depth-first search, although any 



pass which visits all nodes will suffice. We note that all variables are 

assumed to  be initialized (hence defined) at Entry. 

2. Dominator Computation 

We compute the immediate dominator tree of the CFG using the algo- 

rithm by Lengauer and Tarjan [LT79]. The dominance frontier of all 

nodes is then quickly assembled using a compact technique described 

by [CFSSO], which is just as fast as previous techniques and an im- 

provement in terms of space. In addition, it is much simpler to  code; 

our original 150 lines of code for this phase was reduced to  just lo! 

3. + Placement 

The placement of +-functions is done exactly according to  the algo- 

rithm in [CFRWSl]. For each variable, we place a +-function at the 

iterated dominance frontier of nodes in the CFG associated with all 

modification sites for that variable. The iterated dominance frontier 

of a node consists of the original dominance frontier set of the node 

plus the dominance frontier of each node in the set, augmented by 

nodes in which +-functions are placed. The number of arguments of 

each +-function is equal to  the number of predecessors of the CFG 

node in which it resides. 



4. Renaming 

A depth-first pass is made of the dominator tree, pushing definition 

sites onto a stack when encountered. All variable uses have their 

ssalink field filled in with a pointer to  the current definition at  the top 

of the stack. Flow graph successors are then checked for +-functions, 

filling in the corresponding +-argument with a pointer to  the reaching 

definition at the top of the stack. This routine is called recursively 

on the dominator tree children, popping definitions off the stack when 

returning. 

A traditional use-def chain would list all definitions of a variable which 

reach the current use. The result of the preceding procedure is the factored 

form - each use has exactly one reaching definition (see Figure 2b), thus 

preserving SSA semantics. 

3 Advantages of FUD Chains 

3.1 Space Requirements 

Although relatively minor, the first advantage of our approach is that it 

requires only constant space per node to  implement. Since each variable 

use has exactly one reaching definition, it has only one ssalink field. A 
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3.2 Demand-Driven Analysis 

FUD chains readily lend themselves to  demand-driven analysis. Traditional 

iterative solvers for optimizations such as constant propagation require many 

passes, recomputing information until a fixed point is reached [FL91, ASU86, 

Ken811. In our approach we classify each node in the SSA data-flow graph 

in terms of its predecessors using a depth-first search. 

Constant propagation is performed in Nascent using a standard constant 

propagation lattice, with each node being assigned a lattice value as a func- 

tion of the lattice value of its data-flow predecessors. If the predecessors 

have not yet been evaluated, the algorithm is recursively called on those tu- 

ples corresponding to  the targets of the links. This approach requires only 

one pass. 

We apply techniques outlined in [BM090] in order to  correctly propagate 

values down conditional branches. This entails associating a predicate with 

each &function so that, if possible, we can determine which branch will be 

taken to  reach the current confluence point. When dealing with loops, our 

demand-driven approach may find a cycle in the data-flow graph. We then 

use a standard iterative method, but only for those operations in the cycle, 

resulting in less recalculation and faster convergence. These ideas will be 



expanded in a forthcoming paper. 

Induction variable detection and classification is an important first step 

in many program transformations, particularly loop parallelization. We can 

generalize from the detection of constant values to the detection of many 

forms of recurrence relations, including linear and nonlinear induction vari- 

ables, as well as variables that describe monotonic or periodic sequences 

[Wo192]. Based on the observation that statements describing induction 

variables correspond to  strongly connected regions (SCRs) in the data-flow 

graph, we use Tarjan's depth-first algorithm [Tar721 to detect these regions. 

Nodes in trivial SCRs have values determined as functions of their data- 

flow predecessors, as in constant propagation; however for induction vari- 

able classification we assign not just constant values but symbolic expres- 

sions. Nodes contained within nontrivial SCRs are assigned expressions 

corresponding to  the type of recurrence relation or other sequence described 

by the operations in the region. The same SCRs would be discovered in 

the traditional def-use SSA graph as in our use-def SSA graph if a data- 

driven approach were used (i.e. operator to  operand links), but clearly the 

ability to  define a node in terms of its dataflow predecessors in one pass 

would be lost. As shown in Figure 3 (a) and (b), there is a cycle containing 

k = k + 1 in both SSA graphs, but in the def-use graph the initial value 
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of the induction variable cannot be determined from within the context of 

the cycle unless all the predecessors of the cycle have first been visited. In 

Figure 3(a) both the store k = 0 and the + 1 nodes must have been clas- 

sified prior t o  classifying the cycle. However, this implies that classification 

of the cycle, although initially discovered as a descendant of one of these 

two nodes, must be delayed until all predecessors have been visited. In 3(b), 

employing use-def links, we recursively visit all predecessors using Tarjan7s 

algorithm, thus insuring that the cycle can be correctly classified when first 

detected. 

4 Support for Parallelism 

In this section we describe how our implementation of SSA can be used to  

detect and support parallelism. 

4.1 Data Dependence 

In order to  execute code in parallel, most notably loops, dependences must 

be preserved [WB87]. Induction variable detection, as explained in section 

3, allows analysis of subscripts for array references. Given two statements 

S; and Sj ,  if a dependence exists between these two statements we denote 



that relationship: Si S Sj. Specific dependences annotate this notation. 

In general, one must preserve the following data dependences [PW86]: 

Flow-dependence: read after write, S; 6 Sj 

Anti-dependence: write after read, S; Sj 

Output-dependence: write after write, S; So Sj 

When loops are considered, we are often interested in distance and/or 

direction of the dependence. Dependence distance reflects the number of 

iterations around the loop that the dependence is carried, while dependence 

direction just identifies whether the direction is positive, zero, or negative A 

dependence within the same iteration is considered loop independent. The 

distance or direction annotates the dependence relation by using subscripts. 

For example, if a flow dependence exists between S; and Sj with a distance 

of d, it is denoted Si Sj, while if its direction is (<), it is denoted 

si S(<) sj. 

To understand how variable values are carried around loops and merged 

at confluence points, we note that #-functions come in two "flavors": merge 

nodes as the result of conditional branches, and those at the top or header 

of a loop. The loop-header #-function merges the definition coming into the 

loop with the last definition within the loop body. 
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We have developed a method of detecting flow and output dependence 

for scalars within a loop based upon FUD chains in SSA. We shall describe 

the method in detail for identifying flow dependence within a single loop. 

The following algorithm takes as input a loop within our SSA framework 

and outputs scalar flow-dependences for variable uses within the loop body. 

Detecting Scalar Flow Dependence Within a Loop 

def-list + list of definitions reached by a loop-header &function 
self + flag to  indicate whether +function transitively reaches itself 
variable-of + returns the variable associated with a #+function 
ssalink + returns the reaching definition corresponding to  a use 

find-scalar-dependences( loop C ) 
for each loop-header &function f in C do 

def-list( f )  = 8 
selfl f )  = false 
v = variable-ofl f )  

for each argument arg of f do 
if arg points within loop body of C then 

pre-process ( ssalink(arg), f ) 
endif 

end for 

for all uses u of v within C do 
follow-use( ssalinlc(u), f ,u ) 

endfor 

endfor 
end find-scalar-dependences 



pre-process( def arg, #-funct ion f ) 
if arg == scalar definition then 

def-list( f) = def-list( f) U {arg} 
else if arg == f /* self-reference */ 

selfl f )  = true 
else /* non-loop-header #-function */ 

for each #-argument param of arg do 
pre-process ( ssalink(param), f ) 

endfor 
endif 

end pre-process 

follow-use( def d, #-function f ,  use u ) 
if d == scalar definition then 

set flow-dependence: d 6(0) u 
else if d == f /* loop-header 4-function */ 

for each i on def-list of d do 
if self(d) then 

set flow-dependence: i 6(<) u 
else 

set flow-dependence: i 6p)  u 
endif 

endfor 
else /* non-loop-header #-function */ 

for each argument a of d do 
follow-use( ssalink(a), f ,u ) 

endfor 
endif 

end follow-use 

Let us follow this procedure through an example. In Figure 4 we first pre- 

process the loop-header #-function at S1 for T. The first argument, To, comes 

from outside the loop, so is considered no further. The second argument, Tg, 

points to  its reaching definition, which is a &function in Ss. Thus we follow 



its arguments, T2 and TI. Tz is a scalar killing definition, so it is added 

to  the def-list for the loop-header $-function. TI is a self-reference to  the 

loop-header +-function, so the selfflag is set; at this point the pre-processing 

phase concludes. 

Next we look for any uses of T. The first use we find, lexically, is a use of 

T in Sq. Its ssalink points to  the scalar definition of T in S3, thus discovering 

the flow dependence, S3 S ( 0 )  S4, which is loop-independent. The next use 

of T is in S7. Its ssalink points to  the $-function in S6. Following the 

first argument takes us to the scalar definition of T in S3, which means we 

have a loop-independent flow dependence: S3 b(0) S7. The second argument 

from S6 takes us to  the the loop-header 4-function at S1. Thus, a flow 

dependence exists from each element in the def-list to  the original use in S7. 

In this case, there is only one item in the def-list, T2, so we have established 

the flow dependence: S3 ST, with a (<) dependence direction since the 

selfflag is set. A (<) direction lets us know the direction of the dependence, 

but says that we can not calculate the exact distance, in this case due to  

the uncertainty of which iteration will execute the i f  condition at S2. 

Intuitively, this procedure works since a loop independent flow depen- 

dence will always be discovered by following use-def links in the current 

loop body, while loop-carried dependences must always flow through the 
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loop : 

TI = 6 ( T3 ) 
if ( R ) then 
T2 = ... 
. . =  T2 

endif 
T3 = 4 ( T2, T1 ) 
. . =  T3 

endloop 

Figure 4: sample loop to detect scalar dependences 

loop-header &function. If the self flag is set, a non-loop-header 4-function 

must have been encountered during the pre-processing phase; this indicates 

a conditional branch which may or may not be taken during any particular 

iteration. Thus, while the dependence is loop-carried and its direction is 

(<), we do not know its distance. If the selfflag is not set, then the flow 

dependence must be to  the subsequent iteration, hence its distance is 1. 

The purpose of the algorithm is to  identify scalar flow dependences 

within a given loop, providing a distance or direction around loop iterations. 

Dependences which originate from outside the loop are not recognized here, 

such as the flow dependence when To was defined outside the loop to  the use 

of T in S7. We also do not consider here the detection of scalar dependences 

which cross loop boundaries. Nested scalar dependence can be analyzed us- 



ing recursive routines by providing trip count information concerning each 

loop. We are currently developing methods to  extend analysis into these 

areas. 

Arrays can also be analyzed with this approach, but would be treated 

as a scalar without regard to any subscripts. A similar algorithm to the one 

presented above is used to  identify output dependence. Anti-dependence, 

on the other hand, is a more complex task and the subject of future work. 

4.2 Explicit Parallel Sections 

We have designed Nascent to  accept explicit parallel section constructs con- 

sistent with the Parallel Computing Forum extensions to Fortran [PCFSl] . 

An example of parallel section constructs, similar to  ideas advocated by 

Hansen [Han73] and Allen et al. [ABC+88], is given in Figure 5. We needed 

to  design our intermediate representation to  translate these programs into 

SSA form, preserving the unique use-def link when applicable, but dealing 

with multiple (perhaps anomalous) updates among parallel sections. We 

solved this problem by adding a new operator to  the SSA representation, 

the $-function, to  merge multiple parallel updates. This extension of SSA 

form is necessary since with explicit parallel sections a parallel merge is 

distinguishable from a sequential merge. Parallel section coend nodes are 



S1: k = O  
S2: i f  ( Q ) then 
S3 : k = 3 

S4: e l s e  
s5 : k = k + 2  
Ss: endif 

k = j = O  
P a r a l l e l  Sect ions 
Section A 

k = 3  
Section B 

k = k + 2  
Section C 

j = j - 1  
End P a r a l l e l  Sect ions 

Figure 5: contrasting sequential and parallel control flow 

true merges of multiple control flow paths from explicit parallel section, 

all of which must execute, while a sequential merge is actually a choice or 

selection of the possible incoming edges. 

Figure 5 demonstrates this distinction between sequential and parallel 

confluence points on two small fragments of code. In (a) only one branch 

will, in fact, reach S6. However, in (b) all branches may execute in parallel, 

thus it is possible for more than one definition of a variable (k, in this case) 

to  actually reach S9. 

As with 4-functions, arguments to  $-functions are filled in with a use-def 

ssalink. However, as we see in Figure 6 (Figure 5(b) translated into SSA 

form using $-functions), there is not necessarily a one-to-one correspondence 



ko = j o  = 0 
P a r a l l e l  Sections 
Section A 

kl = 3 
Section B 

k2 = ko + 2 
Section C 

j l  = j o  - 1 
End P a r a l l e l  Sect ions 

k3 = $ ( kl ,  k2 ) 

Figure 6: previous parallel program translated into SSA form with $-functions 

between predecessors of the merge and the number of arguments of the $- 

function, as there was with +-functions. An additional complication arises 

due to  the possible nested nature of P a r a l l e l  Section statements. Thus, 

the algorithm to place $-functions, due to  its parallel semantics, is somewhat 

different than that used for $-functions. When performing the renaming 

phase, however, each definition point is treated equally and pushed onto 

the same stack, be it a scalar killing definition, array assignment, 4- or 

Once $-functions are placed, explicit parallel code is smoothly translated 

into SSA form. $-functions, just like 4-functions, generate new variable def- 

initions, and their arguments are considered uses of that variable. We gain 

a consistent framework with which to  sensibly reason about such parallel 



programs. More detail on this project can be found in a preliminary paper 

[SHW93]. 

5 Related Work 

Related work in this area also addresses program representation with which 

to  perform intermediate optimization and analysis. The work by Cytron 

et al. [CFRW91] established the foundation for an intermediate form which 

significantly reduces the complexity of def-use links. Their method describes 

efficient techniques to  compute the location of, and minimally construct, #- 

function augmentation to data-flow graphs. 

The Program Dependence Web (PDW) [BM090] attempts to  provide 

a framework for integrating control dependence as well as SSA within a 

consistent model. The SSA form is extended to  include gating functions 

which provide predicate information for non-loop-header $-functions as well 

as exit values for variables within loops. The PDW is considered an aug- 

mented Program Dependence Graph, a graph which captures both control 

and data-dependence information. 

Another method employed to  generalize SSA is the Dependence Flow 

Graph [JP93] which combines control information with def-use SSA chains 



by defining control regions which consist of single-entry, single-exit areas 

of the control flow graph. The aim of this work is to allow both forward 

and backward data-flow analysis, as well as to provide a representation that 

can be transformed into SSA form or used to construct control dependence 

graphs. 

6 Conclusion 

In this paper we have described how the intermediate SSA form is actually 

implemented in our Fortran compiler, Nascent, utilizing factored use-def 

chains as an alternative to  the more popular def-use chains. This approach 

has profound implications on the general nature and style of data-flow anal- 

ysis. FUD chains readily accommodate demand-driven data-flow analysis, 

as opposed to using more traditional iterative solvers. 

We have also detailed extensions to SSA to accommodate work with 

parallel languages. We facilitate data dependence analysis with new tech- 

niques for detecting both linear and advanced induction variables, and have 

outlined a new method for identifying scalar flow dependence within loops. 

We have also provided a framework with which to reason more intelligently 

about explicit parallel sections. 
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