
Detecting Induction Variables using SSA Form

Michael P . Gerlek

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumam Drive
Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 93-014

June 1993

Detecting Induction Variables using SSA Form*

Michael P. Gerlek

Department of Computer Science and Engineering

Oregon Graduate Institute

7 May 1993

revised 7 June 1993

Abstract

The detection of induction variables for the purpose of strength reduction is a well-
known compiler optimization. Traditionally, however, this optimization has been re-
stricted to simple linear expressions. In this paper we present the use of a fast and
efficient algorithm based on the Static Single Assignment (SSA) form which detects
linear induction expressions as well as several types of more complex, non-linear expres-
sions. We present some details of the implementation of SSA-based induction variable
analysis in our Nascent Fortran compiler, and present experimental results showing that
this extended induction expression classification scheme can enhance data dependence
analysis as well as provide more opportunities for strength reduction.

'OGI-CSE technical report 93-014

1 Introduction

To achieve high performance on modern pipelined and parallel architectures, compilers

must take advantage of advanced optimization techniques such as vectorization, loop trans-

formation, and loop distribution. Data dependence analysis is required to determine the

validity of these optimizations: specifically, array subscript expressions within loops must

be analyzed and classified to determine the dependence relationships that may exist. Often

these subscripts are simply linear induction variables (e.g. a loop counter), but they may

be of more complex forms involving expressions of mutually defined induction variables,

polynomial sequences, periodic sequences, and so on.

The detection of induction variables (IVs) for the purpose of strength reduction is

a well-known compiler optimization. Traditionally, however, this optimization has been

restricted to relatively simple linear expressions detected by pattern matching techniques

on the intermediate representation of the program. In [Wo192], Wolfe presented a new

technique to detect IVs based on the Static Single Assignment (SSA) form of the program.

This new algorithm detects all linear induction expressions as well as several types of more

complex, non-linear expressions in one unified framework.

We have implemented SSA-based induction variable analysis in our Nascent Fortran

compiler. In this paper we will present some of our experiences in implementing the algo-

rithm for full analysis; in particular, it is clear that a compiler requires several features in

order t o detect some of the complex induction expressions encountered "in the wild" and

addressed in the literature. We also present some experimental results showing the classifi-

cations of subscript expressions in typical scientific Fortran applications, as determined by

our analysis. This data agrees with previous reported results and provides useful informa-

tion for data dependence solvers. Finally, although our focus is on determining induction

expressions for data dependence solvers in our compiler, SSA-based analysis can also be

used for strength reduction.

The rest of this paper is divided as follows. In section two, we introduce induction

expressions in more detail and then describe SSA form to show how it is used to find

induction expressions. In the third section, we present an example in some detail and point

out key extensions to the algorithm originally described. In the fourth section, we present

some experimental results showing the frequencies of various types of subscript expressions

- constants, linear induction expressions, etc - in common scientific codes. In section five

we discuss related work and then present some final conclusions in section six.

2 Induction Variables and SSA Form

2.1 Induction Variables

Intuitively, a basic induction variable is a variable that is assigned in a loop and incremented

by a constant amount on every iteration [ASU86]. More generally, an induction variable can

be defined in terms of itself and some linear combination of constants and other induction

variables.

Consider the following loop:

i := j := k := 1 := 1

L1: loop
i : = i + 3
j : = k + n
k : = j + l
m := t + 4*i
A[m+l] := ... B[ml . . .

endloop

The definition of i in loop L 1 is a linear induction variable: its starting value is 4, and on

each subsequent iteration it is incremented by 3. The variables j and k are mutual induction

variables [ACK81], since they are defined in terms of each other: j and k have initial values

of n + l and n+2, respectively, and both are incremented by the loop-invariant value n+ l on

each subsequent iteration. The variable m is not incremented on each iteration but since it

is assigned a linear function of another induction variable, i, and a loop invariant value,

t , it is a derived induction variable. This implies the subscript expressions of A and B are

induction expressions.

We will represent linear induction variables using the notation c + ahL, where h is the

basic loop counter for loop number L, i.e. on the first iteration h has value 0 and increments

by 1 one thereafter, and c is the initial value of the variable. In the above example, i

= 4 + 3hl and k = 2 + n + (n + l)hl. We will omit the loop number where the meaning is

clear.

2.2 Static Single Assignment Form

Our method for discovering induction expressions relies on using the Static Single Assign-

ment (SSA) form as an intermediate representation of programs [CFR+91]. When converted

to SSA form, a program has the property that each use of a variable has exactly one reaching

definition.

A program in SSA form is represented by renaming variables a t their definition points

so that each variable will have a unique name when it has a different value. A merge

operator, called a &-function, is inserted for a variable at a merge point in the control flow

graph (CFG) if a variable has more than one distinct reaching definition at that point.

The arguments to the function correspond to the reaching definitions from each predecessor

of the merge point. We represent the modified program by labeling each definition of

a variable with a unique subscript and each use with the appropriate subscript for the

reaching definition. In figure 1, we show a very simple program before and after conversion

to SSA form.

The SSA graph of a program is a directed graph with edges from each vertex, corre-

sponding to operations in our intermediate representation, to each of its arguments. In our

representation, the usual arithmetic operators have one or two arguments. For fetch opera-

tors, two arguments are required: one for the name of the variable and one for the reaching

definition. The latter edge, an ssalink, is the result of the conversion to SSA form: the sink

of an ssalink is a definition point, either a store operator or a &-function. Stores also require

two arguments: the name of the variable and the expression to be stored. &-functions have

one edge, represented by an ssalink, to each reaching definition at that point. In this imple-

j := 1
L2: loop

j := j + 3
endloop

j l := 1
L2: loop

j2 : = 4 (j i , j3)
j3 := j2 + 3

endloop

Figure 1: Sample program

store store

Figure 2: SSA graph of sample program

mentation we consider only integer valued expressions and do not consider array references.

Figure 2 shows the SSA graph for the example program (ssalinks are represented by dashed

lines).

2.3 Finding Linear Induction Expressions using SSA

In [Wo192] a technique is presented for discovering induction expressions using the SSA

graph based on the following observations. By definition, IVs will occur only when there

is an assignment to a variable within a loop. In such a case, there will be a loop header 4 -

function to merge the two reaching definitions of the variable, the initial value of the variable

(from above the loop) and the subsequent value (from within the body of the loop). Also

by definition, the assignment to the IV within the body of the loop uses the previous value

of the variable, so the fetch in our representation will have an ssalink to the loop header

&function. Therefore, if there is a cycle in the SSA graph, then the cycle may define an

induction variable.

Our algorithm for finding induction variables, then, relies on discovering cycles in the

SSA graph. We use Tarjan's algorithm [Tar721 to find strongly connected regions (SCRs),

which allows the compiler to perform a depth-first search of the graph, visiting each SCR

only when all its descendants have been visited. When an SCR is visited, it is classified as

an induction expression, a loop invariant, or some other type of expression, based on the

classifications of its child SCRs.

For linear induction variables, the operations within the cycle may consist of fetches,

stores, and addition of loop invariant values or other linear variables. Subtraction is also

allowed, provided the right operand is not in the cycle (i.e. i := k - i is not linear). There

must be one 4-function at the loop header and no other 4-functions. As we will see below,

other combinations of operations in the cycle will yield other types of induction expressions.

As an example, consider the graph from above. The search procedure finds the cycle

involving j and classifies it as a linear induction variable based on the operations within

the cycle. By traversing the cycle in reverse starting at the loop header 4, the compiler

can determine the initial value for each operator and accumulate the total increment in the

cycle. The 4 and the fetch operators have an initial value of 1 inherited from outside the

loop, the add operator then assumes the value of 1 + 3 = 4, and j 3 then has an initial value

of 4. The total increment is 3. The linear induction expression for the #-function is 1 + 3h2

and the store j3 = 4 + 3h2. Had there been a use of j below the assignment to j3, the

linear expression 3 + 4h2 would be propagated down the ssalink to the fetch of j3.

2.4 Other Types of Induction Expressions

By construction, every SCR in an SSA graph will have at least one $-function at the loop

header1. If the SCR contains operations for the addition and subtraction of invariant values

as well, a linear induction variable may be described. If these constraints are relaxed, more

We consider only reducible flow graphs.

complex sequences may be classified [Wo192]. We describe these briefly:

Polynomial IVs can arise by incrementing an IV in a loop by another (linear or
polynomial) induction variable and may be represented by an expression polynomial
in h.

Geometric N s are produced by assignments of the form i : = i*k. They are repre-
sented by an equation with a term of the form bh where h is the basic loop counter
and b is the multiplicative constant. Expressions of the form j := c - j (where c is
loop invariant) also describe geometric sequences since c - j r -l*j + c.

Wrap-around variables are variables in loops that take on some value determined from
outside the loop on the first n iterations and on all subsequent iterations take on a value
that can be represented by an induction expression. Wrap-around expressions occur
naturally in programs at the loop header 6-functions of derived induction variables.

Periodic variables take on the values in a sequence of n values for the first n iterations
of the loop, and on iteration n + 1 the sequence repeats; only periodic induction
variables have more than one loop header 6. When the period of the sequence is 2,
the periodic value alternates between two values, producing a flip-flop variable2.

Monotonic variables may occur when a variable within a loop is conditionally incre-
mented. If the cumulative effect of the body of the loop is to increment the variable by
a constant, the variable may be classified as monotonically increasing; if the compiler
can determine the variable is always incremented (as in the case where a variable is
incremented on both branches of an if-test), the variable may be classified as strictly
monotonically increasing. Monotonically decreasing variables are defined analogously.
Only monotonic induction variables have non-loop header 4-functions.

3 Implementation Issues and Extensions

To perform SSA-based induction variable analysis on non-trivial loops, several important

points must be addressed. For example, the compiler needs to be able to operate on arbitrary

symbolic expressions, inter-loop SSA edges must be gated to prevent inter-loop cycles, the

compiler must be able to determine tripcounts, and it must make some use of derived

assertions to produce the best results. In addition, some of the rules originally given for

nonlinear expressions may be extended. In this section, we present a typical loop nest and

describe in some detail how our algorithm identifies and classifies the induction expressions

within it. We do this for three reasons: one, to provide a full example of the implementation

2Flip-flop variables may also be expressed as geometric sequences, using -1 as the base.

of our technique; two, to point out areas we addressed that were not detailed in the original

paper; and three, t o show our scheme handles real-world examples other researchers have

addressed as important.

3.1 An Example from the Benchmarks

Several researchers studying parallelizing compilers have pointed out several specific types of

induction variable forms that, while relatively infrequent, can lead to significant parallelism

if the subscript expressions can be classified [EHLP92, HP921. A typical example is a

triangular loop containing a polynomial induction variable, similar to the program shown

in figure 3 in both Fortran and in SSA form.

To parallelize this loop, the compiler must determine if at any iteration of the i and

j loops, the references to A(j+l) and A(k) refer to the same element - this is the essence

of dependence analysis. It is important, therefore, to be able to characterize j + i and k as

functions of the loop indexes.

The SSA form of this program is also shown in figure 3. Note that because of a

technicality of our representation of Fortran DO loops, the loop index variable provides the

reaching definition of the variable and not the loop-header 4-function; our compiler handles

loops defined using traditional gotos and if-tests as well, but our treatment of DO loops

makes the presentation simpler.

Our SSA form also includes 7-functions, gating the exit values of variables assigned

within the loops; this will be explained below. We begin our example by considering only

the inner loop.

3.2 The Inner Loop

When considering a loop nest, we must consider any reference from outside of the loop as

invariant because we wish to define induction variables in the context of the current loop

only. Figure 4 shows the inner loop of the example program.

We may apply Tarjan's algorithm to the nodes of the SSA graph of the inner loop in

L 3 : do i = 1, n L3: do
L4 : do j = 1, i i 2 = 4 (i o , i i)

A(j+l) = ... i l = dosequence(l,no)
k = k + ~ j l = 4(jo, j3)

enddo ki = $(ko, k4)
. . .= A(k) L4 : do

enddo ~3 = 4(j1, ~ 2)
j2 = dosequence(1, il)

k2 = 4(k1, k3)
A(j2+1) = .. .
k3 = k2 + 1

enddo

j3 = rl(j2)
k4 = 77(k2)
. . .= A(k4)

enddo

i 3 = 77(il)
j5 = 77(j2)
k5 = q(k4)

Figure 3: Triangular loop nest

L4: do

j3 = 4 (j l , j 2)
j2 = dosequence(1, i l)

k2 = k3)
A(j2 + 1) = ...
k3 = k2 + 1

enddo

Figure 4: The inner loop

any order we choose. Assuming we identify the only nontrivial SCR in the graph first, we

identify k as a linear induction variable. In particular, k2 = kl + h4 and k3 = 1 + ka + h4,

where k l is loop invariant symbolic expression. The loop index, j2, is not in an SCR, but

DO loop indexes are always linear induction variables - in this case j2 = 1 + h4. The 4-

function at j 3 is actually a wrap-around variable: on the first iteration, it has value j 1 and

on each subsequent iteration it takes the value of j2. The subscript expression for A(j+l)

is a linear expression, since it is a use of j2.

3.3 Tripcounts

For practical purposes, we are limited in our ability to determine the tripcounts of loops.

The tripcount of Fortran DO loops can be determined at compile-time, although the result

may be symbolic and need not be constant: by definition, the Fortran loop do i = i a , i b , i c

will have a tripcount of imax (0, (ib - ia+ic) / i c) . The tripcount of the example inner loop

therefore will be tc4 = imax(0, (il + I - I)/ I) which is simplified to tc4 = imax(0, il) in

the internal representation in the compiler.

Because the tripcount is an important factor for solving nested loops, it is advantageous

to simplify this expression as much as possible: in some cases our compiler can remove the

imax expression from the tripcount. The value of i l is not known at this point in the

analysis, but it is represented internally by a fetch of i l . If we follow the ssalink of this

fetch to its reaching definition, the compiler discovers i1 is a DO loop index of an outer

loop and quick inspection reveals this outer DO loop has a lower bound of 1. The compiler

can then assume that if the inner loop has executed, the value of i l must be at least 1. The

imax operator may then be optimized away, setting the tripcount of the inner loop to be

tc4 = il. If the target of the ssalink had been a store, our compiler would attempt to find

the lower bound for the expression on the right-hand side. No lower bound information is

returned if a cycle or a 4 is encountered.

At present, our compiler treats this lower bound technique as a special case for reduc-

ing imax expressions, but it is evident that what is actually happening is a demand-driven

forward-substitution of symbolic values. Our technique for finding induction variables in-

herently performs a style of propagation of symbolic values in loop bodies (and beyond,

via rl-functions). Although not addressed in the original paper, a demand-driven walk of

the SSA graph seems to provide a convenient method of constant propagation. As values

from outside the loop are treated as invariants, our current approach will not unify con-

stant propagation and induction variable classification. Our group is currently investigating

modifications to the standard SSA form to support aggressive constant propagation [WZ91]

and we hope to study the merging of these techniques.

Our studies show roughly three-quarters of the loops in scientific Fortran codes are DO

loops. For more general loops our strategy to determine the tripcount is to examine the

condition controlling whether or not the loop's CFG exit edge is taken. If an induction

expression for that condition may be found (e.g. i<n may be treated as i-n), the number

of times the loop executes may be determined. For loops with multiple exits, we do not

currently attempt to determine a tripcount. Obviously tripcounts for loops with simple

exit conditions like i f (i<n) where i is not an induction expression cannot be determined

either. Our compiler does not currently consider complex exit expressions such as i f (i<n

OR j<m).

3.4 Exit Value Expressions and 7-functions

Having classified all expressions in the inner loop and determined its tripcount, we proceed

to the next loop level. Here the SCRs for variables j and k span loop boundaries, however.

We wish to consider the effects of the inner loop on these variables as fixed and for this

reason we gate the exit value of each variable assigned within the loop and restrict the walk

of the SSA graph from passing through these gates. We are essentially collapsing the effect

of the loop body into this exit value gate expression, A need for exit values was pointed

out in Wolfe's original paper; in this section we describe our method.

We add a new operator to the traditional SSA-graph, the 7-function, which is placed

in a position immediately after the body of the loop. Ballance et a1 introduced 7-functions

in their Gated Single Assignment (GSA) form with loop predicate information to determine

under what conditions the value being gated would be used [BM090]. Here we adopt the

7-function but use it simply as a convenient placeholder for the exit value.

An 7-function is inserted after the exit of each loop for every variable assigned within

that loop. In particular, for every control flow graph edge that exits a loop, a postezit node

is inserted as the target of that edge, thus assuring a unique successor for each exit. An

edge exiting multiple loops requires only one postexit. Postexit nodes, analogous to loop

preheaders, are inserted in our compiler during loop discovery phase.

The 7-functions themselves are created as part of our SSA translation phase [CFR+91].

As the first step of the SSA algorithm, all variable definitions are marked. During this phase,

we create an 7-function for variable x in each postexit node of loop L if there is a t least one

definition of x within the body of L. We then mark the 7 as both a use and a definition of

x. As the SSA algorithm proceeds, it creates ssalinks from uses to definitions; thus, a use

of x from a position outside of L will have an ssalink to the 7 as its reaching definition and

the 7 itself will have an ssalink to the reaching definition in L. The insertion of an 77 for x

is essentially an insertion of the assignment x : = x.

As described above, our goal is to use 7-functions as placeholders for an expression

representing the exit value of a variable assigned within a loop. The exit value will be

either a constant or a symbolic expression, depending on the classification of the variable

(linear expression, integer constant, etc), its value prior to the loop, and the ability of the

compiler to determine the tripcount of the loop. If the variable of the 7 is an induction

expression its exit value is a function of the tripcount of the loop, and the compiler performs

symbolic algebra to "solve" the induction expression for the tripcount. If the tripcount is

unknown, the exit value is undefined. It is important to note that the exit value of a variable

will be an expression in terms of the current loop or the outermost level, not from within

the loop the q is gating.

When performing our search of the SSA graph, if we encounter an 7-function we do

not follow its ssalink into the inner loop, as stated above. Instead, a t that point we derive

the exit value of the gated variable and translate its symbolic representation into operators

in our intermediate form. The resulting tree is then used as the target of the 7-function's

value edge. Our search then resumes, walking up the value edge.

In the example, when the 77 for j 2 is reached, the compiler must determine the exit

value of j 2 after the iterations of L4 . Owing to the semantics of DO loops, the occurrence

of the assignment at the DO dominates the exit node in the flow graph, thus the tripcount

of jz is actually one more than t c4 . The exit value for jz is calculated as shown. We use

the notation a@b to mean "the value of expression a after b iterations": in particular, since

h starts a t zero, h@n = n - 1.

The exit value expression for j2 is then 1 + i1. This is translated into a fetch of il

added to the integer constant 1 and connected to the 7-function at j3.

By a similar process, k4 is set as the exit value expression k2@(tc2 + I) , which reduces

3.5 The Outer Loop

After the insertion of exit values, the outer loop has been transformed into figure 5. The

compiler searches the SSA graph for the body of this loop, classifying il as a linear induction

variable, i 2 as a wrap-around variable, and j3 as a derived induction variable.

The SCR containing variable k, however, contains an addition of a loop invariant value

(kl) and a linear induction expression (i2). As described in [Wo192], the compiler simulates

the first 4 iterations of the loop to determine the values that the 4, k l , takes on. Initially,

kl@O = ko@O = ko. On the next iteration, kl = kl@O + ia@l, which simplifies to 1 + ko.

The next two iterations produce 3 + ko and 6 + ko. These expressions are then used to

. . .
j3 = q (l + i l)

k4 = q(k1 + i i)
. . . = A(k4)

enddo

Figure 5: Outer loop, with exit value expressions

solve a system of polynomial equations, producing the expression ko + h3/2 + h$/2. The

induction expression for the subscript of A is defined by k4, so the subscript is represented

by the polynomial equation i 2 + ko + h3/2 + hi/2. Since i z is equal to 1 + h3, the polynomial

is simplified to ko + 3h3/2 + hi12 + 1.

The example concludes by determining the q values for i, j , and k. Variable i exits

with the value imax(1, no+ 1) and k with an expression polynomial in no. The exit value of j

is unknown since the induction expression for j s is a wrap-around variable. The tripcount

tcl is not known to be greater than 1, so no simpler expressions can be produced. We

attempt to use the same lower bound information we described earlier to determine if the

tripcount indicates whether the initial value or the subsequent induction expression in the

wrap-around variable is being used, and also in the imax expression, but in this case no

information about no is known.

3.6 Generalized Non-Linear Form

Linear induction variables are discovered by looking for strongly connected regions in the

SSA graph. In fact, however, the SCR for a linear induction variable is actually a simple

cycle; the algorithm used to determine the contribution of the cycle within the body of

the loop implicitly takes advantage of this fact. The region will not be a cycle only if the

assignment to the variable contains the variable on the right hand side more than once

or there is a non-loop-header 4 in the region. In the latter case, the region may describe

a monotonic variable. The former case is demonstrated by the fact that i : = i + i is

actually a geometric induction variable, since it is equivalent to i := i*2.

The original rule presented for determining that an SCR represents a geometric se-

quence must be extended. In addition to the condition that the cycle may contain a multi-

plication by a known integer, a geometric induction variable may occur when the variable

carried around the loop occurs more than once on the right hand side of the assignment.

This extension requires some modification to the original technique for classifying geometric

induction variables.

The general method for determining equations for geometric induction variables pro-

ceeds by visiting each node in the SCR and accumulating its contribution to the variable.

The compiler must find the first n + 1 values of the variable by symbolically interpreting the

loop, where n is the degree of the equation representing the sequence. The equation is then

determined by solving a system of equations including a geometric term for the n+ 1 values.

The base of the geometric term is precisely the factor by which the induction variable is

multiplied. This process is performed symbolically, so we can also relax the restriction that

the factor must be an integer; it need only be loop-invariant.

For an assignment of the form i := i + i, however, there is no multiplication, so

the base factor of 2 is not immediately evident. A compiler may try to express this by

rearranging and collecting terms in the intermediate representation. A simpler trick is

t o abstractly interpret the expression, collecting factors of the induction variable in the

expression tree of the right hand side of the assignment.

Starting at the +-function, we visit each node in the SCR in reverse order and assign

it a factor value. For a fetch in the SCR (which must be a fetch of the induction variable),

we assign a factor value of 1. For addition operators, we assign a factor value equal to the

sum of the factor values of the parents, using a value of 0 if the parent is not in the SCR.

For multiplication operations, we similarly assign a factor value equal to the product of

the parents' values. The factor value assigned the @function is the factor value of the 4's

ssalink in the SCR. This factor is then used as the base in the geometric term.

In our implementation, multiple passes through the SCR nodes may be required before

the factor value of the loop header 4 is set. The list of nodes in the SCR is maintained as a

stack in Tarjan's algorithm and does not necessarily correspond to a breadth-first traversal.

As a result, we may attempt to set the factor for a node before we have visited both its

parents. The maximum number of passes required is small, as it is equal to the number of

ssalinks to the loop header 4, corresponding to the number of occurrences of the variable

in the expression.

As an example, in figure 6 we show the SSA graph for the loop

go := 1
L5: loop

gi := $(go, g2)
g2 := 5 * gi - (2 + gl)

endloop

The factor values assigned each node are shown next to the operations. The final value

produced is 4, which is correct since 5*g-(2+g) = 4*g-2.

3.7 Other Implementation Details

As described in the original paper, SSA-based analysis can also be used to classify monotonic

variables, i.e. those variables that are conditionally incremented (or decremented) by a

positive (or negative) value on each iteration. We have implemented a conservative version

of this, akin to abstract interpretation, that handles addition or subtraction of known values

in the SCR and assigns lattice values (monotonically increasing, strictly monotonically

increasing, etc.) to the operators in the SCR. Dependence solvers may be able to take

advantage of this information; as the need arises, our implementation will be strengthened.

Some support for the recognition of non-constant periodic induction variables has also

been added. Constant periodic induction variables cycle through a set of values, e.g.

{1,2,3,1,2,3, . . .). Linear periodics, however, use that set of values as increments from

Figure 6: SSA graph with factor values

the previous value: using the set {1,3,5), a variable with period 3, starting at 0, would

take on the values {1,4,9,10,13,18, . . .). We use the term "linear" here since we only

support the addition or subtraction of loop invariant values3.

4 Experimental Results

In this section we present some preliminary data that provides insight into the nature of the

data dependence problem in general. Data dependence tests vary greatly in efficiency and

accuracy. For example, the GCD test considers only the coefficients of the loop indexes:

if their GCD divides the constant term, there is an integer solution to the dependence

equation and a dependence may exist (depending on the loop bounds). If the dependence

equation contains unknown variables, this test may not be used. Other tests have other

constraints. It is important to examine, then, the types of expressions that occur in the

31t is interesting to note that our implementation now distinguishes constant periodics as linear periodics:
the sequence { 1 , 2 , 3 , 1 , 2 , 3 , . . .) is a linear periodic using the set {1,1, -2).

Table 1: Codes used

subscript expressions that produce the dependence equations [WB87]. Our algorithm for

classifying induction variables was run on several common Fortran programs, described in

table 1. EISPACK and LINPACK are common mathematical libraries, and the others are

from the Perfect Club benchmark suite [CKPKSO].

Each subscript expression that appeared within a loop was recorded by type and by the

actual expression. Four types of induction expressions are distinguished: invariant, linear,

variant, and other. Invariant expressions are constants such as integer values, subroutine

parameters, loop-invariant expressions, or some combination of these. Linear expressions are

defined in terms of linear functions of the indexes of the enclosing loops. (A linear expression

with all coefficients equal to zero is considered invariant.) Variant expressions are those

values for which the compiler cannot determine a closed form. "Other" expressions represent

polynomial and geometric IVs, monotonic IVs, and so on. The type of expression is based

on the occurrence of the array reference containing the expression, while the expression

takes into account all information. In the following fragment, for example,

L6 : d o i = l , n
L7 : do j = 1, i

A (i) = . . .
enddo

enddo

loops
306
234
673
332
144
168
413
666

79
3015

program
ADM
ARC2D
EISPACK
LINPACK
OCEAN
QCD2
SPEC77
SPICE
T R F D
total

we consider the subscript expression to be invariant because it occurs in the inner loop,

subscripts
3104
3858
4820
3242
438
941

2604
5842

137
24938

lines
6108
3967

11466
10058
4346
2330
3888

18524
488

61175

description
fluid dynamics
fluid dynamics
eigensystem package
linear system package
fluid dynamics
chemical & physical model
fluid dynamics
circuit simulation
chemical and physical model

even though the induction expression is actually h6 + 1.

routines
97
39
70
60
36
35
65

128
7

537

Figure 7 shows the relative frequencies of the four types of subscript expressions for the

sample programs. While some programs vary considerably (SPICE, ARC2D), the average

over all subscripts in all programs is 40% linear, 33% invariant, 26% variant, and 1% other.

Figure 8 presents the same data (for all programs collectively), for each dimension of the

array reference. As there are significantly more arrays of one dimension (69%) than two

or three dimensions (24% and 7%), the first dimension data reflects the average. At the

point of occurrence, it is not surprising that in the inner dimensions the number of invariant

expressions decreases, presenting more possible parallelism.

Fully one-third of the subscript expressions in programs are invariant at the point of

usage. Figure 9 presents a breakdown of these expressions by form (c represents an integer

constant, v represents any unknown variable). This data is presented for 85% of the most

frequently occurring types of expressions, but the trends shown hold for all expressions.

Ignoring the forms containing variant terms, two-thirds (67%) of the invariant expressions

are known constants or single-variable linear forms. Only 18% have unknown symbolic

quantities.

Of the subscripts with linear expressions, figure 9 shows the 85% most frequent forms

encountered (k represents a coefficient not equal to 1). Again ignoring variant expressions,

half the subscript expressions are of the simple form c f lh . Less than 10% have unknown

variables. We have also found that of those linear coefficients not equal to &I, the majority

are small integers, making tests for integer solutions easier in some dependence tests [SLY9O].

Figure 7: Subscript classifications

Figure 8: Subscript classifications by dimension

invariant

linear

variant

other

variant

linear

invariant

dim 1 dim 2 dim 3

Figure 9: Invariant forms

c f kh
c f v & l h

One quarter of the subscripts have expressions which cannot be classified. We have

identified two causes. Four percent of all the variant expressions result from the subscript

expression containing a variable passed to a subroutine. Interprocedural analysis may be

able to determine if these variables are not modified within the called routine. More signif-

icantly, we have found that many codes contain indexed array references, such as A (B (i)) .

In SPICE, which has the most variant expressions, 60% are caused by indexed references.

Other codes average approximately 20%. Without user assertions, a compiler cannot elim-

inate these sources of variance. The remainder of the variant subscripts (three-quarters)

have not been specifically identified by cause. In general, nodes in the SSA graph are clas-

sified as variant due to fetches of non-integer values and nontrivial SCRs not matching one

of the induction variable forms.

Other researchers have recently examined various aspects of subscript expressions

[SLYSO, Haggo], with similar results. These results represent a first approximation to help

determine what types of data dependence tests should be applied. Further study is needed,

particularly in analyzing pairwise comparisons of references to the same array at all levels

in each loop nest.

c f v
c f hi f hj
c & v f k h i f k h j
c f v f h i f h ,
other
contains variant term

8
0
0
0
1
15

n/a
4
4
3
3

14

.

5 Related Work

Induction variable detection for strength reduction, particularly of array expressions, is

well covered in the literature. The usual approach is to use reaching definition information

within a loop body and search for assignments of the form i := i f c, where c is loop

invariant. This defines i as a basic induction variable . Other assignments of the form j : =

c*i + k, where c and k are loop invariant (possibly 0), associate with j the tuple (i , c, k),

putting j in the family of i [ASU86].

Mutually defined induction variables cannot be found by this algorithm, however, since

the other variable on the right-hand is not known to be in any family of induction variables.

Kennedy et al [ACK81] present a comprehensive treatment of strength reduction by recog-

nizing more general linear cases. In the PTRAN compiler [ABC+88], such cases are solved

by a dataflow technique which initially assumes all variables are linear induction variables

until a contradiction exists.

Abstract interpretation has been used to recognize recurrence relations. In [AI90],

a method is presented in which abstract interpretation is used to associate each variable

assigned within a loop a symbolic expression; these symbolic expressions are then compared

against known patterns representing recurrence relations.

The Parafrase-2 compiler uses a symbolic interpreter for its optimizations; for the

recognition of induction variables, a scheme has been proposed whereby the compiler will

solve a system of recurrence relations that describe the behavior of variables within loops

[HP92]. In some respects, the approach used in Parafrase-2 is similar to ours: the symbolic

interpretation approach determines a symbolic expression for each variable at each node

of the program's flow graph by interpreting the expressions within that node, based on

symbolic expressions of predecessor nodes. The key difference is that the Parafrase approach

translates all induction variables into recurrence relations to be solved. With our technique,

linear induction variables are classified directly. Our treatment of polynomial and geometric

IVs is closer to Parafrase's.

A chart is presented in [HP92] listing 10 forms of induction expressions and sym-

bolic substitutions. Four compilers are compared using a test-suite containing these forms:

Parafrase-2 recognizes all 10, the Titan compiler recognizes 2, and both the KAP compiler

and the VAST-2 compiler recognize none. We are pleased to report Nascent scores 6 as of

this writing. The remaining four are within the scope of our approach and are currently

being incorporated; we anticipate no problems in this regard.

In [EHLP92], Eigenmann et a1 discuss their experiences in hand-parallelizing four of

the Perfect benchmarks. They note the importance of having compilers detect generalized

induction variables (GIVs) (referred to in this work as polynomial and geometric IVs). A

factor of 8 speedup was obtained in one case by replacing a geometric induction variable

with its closed form in terms of the loop index.

6 Conclusions

This paper has discussed the implementation of an SSA-based algorithm for detecting sev-

eral forms of induction variables. In particular, we have presented some details needed

for implementation and outlined experimental results showing the effectiveness of our tech-

nique.

We have added 7-functions to the standard SSA form in our compiler to provide gates

for exit value expressions. The overall cost of 7-functions is comparatively small in both time

and space, and no new phases have been added to the compiler for postexit node insertion

in the CFG or 7 node insertion in the SSA graph. There is some cost in creating exit value

expression trees, but this is dominated by the cost of the induction variable procedure as

a whole. At present we attempt to build an exit value for every variable assigned within a

loop, increasing the size of our intermediate form by about 10%. This approach is overly

conservative: we do not need 7 expressions in all cases, but as a consequence of our flow

graph algorithms, the value at each 7 is considered used. The side-effect of providing a

convenient method to propagate exit values may prove useful, although this has not yet

been measured; in the worst case the 7-function's value expression can be treated as dead

code.

To provide the most precise exit values, the compiler must be able to perform forward

substitution of symbolic values and lower bounds. Local constant propagation and forward

substitution is a natural extension of this work; the support for symbolic algebra we are im-

plementing in our compiler for improved induction expression representation will contribute

here.

We have improved upon the treatment of geometric forms and periodic forms. In the

former case, the original definition was clearly inadequate. In the latter case, we wished

to show our technique was as powerful as others. While such cases are not at all common,

there are cases where their recognition has been an important step in parallelizing scientific

programs.

Finally, we have begun to measure the characteristics of subscript expressions in scien-

tific Fortran codes, and have found that the number of distinct forms may suggest the data

dependence problem may not be as difficult as had been feared. This data may eventually

provide insight into the directions for future research in dependence tests. Further analysis

of the causes of variant expressions in general will result in better classification of subscript

expressions.

SSA-based induction variable analysis has several advantages over previous methods.

It is clearly a more general solution than traditional pattern matching and we have shown

in our implementation that it can recognize the same types of expressions as other proposed

schemes. Perhaps most importantly, this technique can be readily incorporated into exist-

ing compilers that use internal representations similar to SSA. For strength reduction, all

linear induction expressions can be detected very quickly with only one pass over the SSA

graph. With as much support added for symbolic forms as desired, compilers that require

dependence information for subscripts will be able to detect linear dependences as well as

more complex forms.

7 Acknowledgements

I am grateful to both my advisor, Michael Wolfe, and my fellow student, Eric Stoltz. Both

provided much input into the development of the ideas in this paper.

This paper was submitted on 7 May 93 and presented on 21 May 93 in fufillment of

the Research Proficiency requirement for advancement to candidacy at OGI-CSE. A more

complete treatment of this work in is progress.

References

[ABC+88] F . Allen, M. Burke, P. Charles, R. Cytron, and J . Ferrante. An overview of the ptran
analysis system for multiprocessing. Journal of Parallel and Distributed Computing,
pages 617-640, May 1988.

[ACKBl] F. E. Allen, John Cocke, and Ken Kennedy. Reduction in operator strength. In Steven S.
Muchnick and Neil D. Jones, editors, Program Flow Analysis, pages 79-101. Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[A1901 Zahira Ammarguellat and W. L. Harrison 111. Automatic recognition of induction vari-
ables and recurrence relations by abstract interpretation. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
283-295, June 1990.

[ASU86] Alfred V. Aho, Ravi Sethi, , and Jeffrey D. Ullman. Compilers: Principles, Techniqaes,
and Tools. Addison-Wesley, Reading, MA, 1986.

[BMOSO] R. A. Ballance, A. B. Maccabe, and K. J . Ottenstein. The program dependence web:
A representation supporting control-, data-, and demand-driven interpretation of im-
perative languages. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 257-271, June 1990.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F . Kenneth
Zadeck. Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems, October 1991.

[CKPK9O] George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck. Supercomputer perfor-
mance evaluation and the perfect benchmarks. In Proceedings of the International Con-
ference on Supercomputing, pages 254-266, March 1990.

[EHLP92] R. Eigenmann, J . Hoeflinger, Z. Li, and D. Padua. Experience in the automatic paral-
lelization of four perfect-benchmark programs. In U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers for Parallel Computing, pages 65-83.
Spinger-Verlag, 1992. LNCS no. 589.

[Haggo] Mohammad Reza Haghighat. Symbolic dependence analysis for high performance paral-
lelizing compilers. Technical Report 995, University of Illinois (CSRD), May 1990. M.S.
Thesis.

[HP92] Mohammed R. Haghighat and Constantine D. Polychronopoulos. Symbolic program
analysis and optimization for parallelizing compilers. In Workshop on Languages and
Compilers for Parallelism, pages 355-369, 1992.

[SLY901 Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An empirical study of fortran programs
for parallelizing compilers. IEEE Transactions on Parallel and Distributed Systems,
1(3):356-364, July 1990.

[Tar721 Robert Tarjan. Depth-first search and linear graph algorithms. SIA M J. Comput.,
1(2):146-160, June 1972.

[WB87] Michael Wolfe and Utpal Banerjee. Data dependence and its applications t o parallel
processing. International Journal of Parallel Programming, 16(2):137-178, April 1987.

[Wo192] Michael Wolfe. Beyond induction variables. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 162-174, June
1992.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems, 13(2):181-210,
April 1991.

