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Abstract 

The detection of induction variables for the purpose of strength reduction is a well- 
known compiler optimization. Traditionally, however, this optimization has been re- 
stricted to  simple linear expressions. In this paper we present the use of a fast and 
efficient algorithm based on the Static Single Assignment (SSA) form which detects 
linear induction expressions as well as several types of more complex, non-linear expres- 
sions. We present some details of the implementation of SSA-based induction variable 
analysis in our Nascent Fortran compiler, and present experimental results showing that 
this extended induction expression classification scheme can enhance data  dependence 
analysis as well as provide more opportunities for strength reduction. 

'OGI-CSE technical report 93-014 



1 Introduction 

To achieve high performance on modern pipelined and parallel architectures, compilers 

must take advantage of advanced optimization techniques such as vectorization, loop trans- 

formation, and loop distribution. Data dependence analysis is required to  determine the 

validity of these optimizations: specifically, array subscript expressions within loops must 

be analyzed and classified to  determine the dependence relationships that may exist. Often 

these subscripts are simply linear induction variables (e.g. a loop counter), but they may 

be of more complex forms involving expressions of mutually defined induction variables, 

polynomial sequences, periodic sequences, and so on. 

The detection of induction variables (IVs) for the purpose of strength reduction is 

a well-known compiler optimization. Traditionally, however, this optimization has been 

restricted to  relatively simple linear expressions detected by pattern matching techniques 

on the intermediate representation of the program. In [Wo192], Wolfe presented a new 

technique to  detect IVs based on the Static Single Assignment (SSA) form of the program. 

This new algorithm detects all linear induction expressions as well as several types of more 

complex, non-linear expressions in one unified framework. 

We have implemented SSA-based induction variable analysis in our Nascent Fortran 

compiler. In this paper we will present some of our experiences in implementing the algo- 

rithm for full analysis; in particular, it is clear that a compiler requires several features in 

order t o  detect some of the complex induction expressions encountered "in the wild" and 

addressed in the literature. We also present some experimental results showing the classifi- 

cations of subscript expressions in typical scientific Fortran applications, as determined by 

our analysis. This data agrees with previous reported results and provides useful informa- 

tion for data dependence solvers. Finally, although our focus is on determining induction 

expressions for data dependence solvers in our compiler, SSA-based analysis can also be 

used for strength reduction. 

The rest of this paper is divided as follows. In section two, we introduce induction 

expressions in more detail and then describe SSA form to show how it is used to  find 



induction expressions. In the third section, we present an example in some detail and point 

out key extensions to  the algorithm originally described. In the fourth section, we present 

some experimental results showing the frequencies of various types of subscript expressions 

- constants, linear induction expressions, etc - in common scientific codes. In section five 

we discuss related work and then present some final conclusions in section six. 

2 Induction Variables and SSA Form 

2.1 Induction Variables 

Intuitively, a basic induction variable is a variable that is assigned in a loop and incremented 

by a constant amount on every iteration [ASU86]. More generally, an induction variable can 

be defined in terms of itself and some linear combination of constants and other induction 

variables. 

Consider the following loop: 

i := j := k := 1 := 1 

L1:  loop 
i : = i + 3  
j : = k + n  
k : = j + l  
m := t + 4*i  
A[m+l] := ... B[ml . . .  

endloop 

The definition of i in loop L 1  is a linear induction variable: its starting value is 4, and on 

each subsequent iteration it is incremented by 3. The variables j and k are mutual induction 

variables [ACK81], since they are defined in terms of each other: j and k have initial values 

of n + l  and n+2, respectively, and both are incremented by the loop-invariant value n+ l  on 

each subsequent iteration. The variable m is not incremented on each iteration but since it 

is assigned a linear function of another induction variable, i, and a loop invariant value, 

t ,  it is a derived induction variable. This implies the subscript expressions of A and B are 

induction expressions. 



We will represent linear induction variables using the notation c + ahL, where h is the 

basic loop counter for loop number L, i.e. on the first iteration h has value 0 and increments 

by 1 one thereafter, and c is the initial value of the variable. In the above example, i 

= 4 + 3hl and k = 2 + n + (n + l)hl. We will omit the loop number where the meaning is 

clear. 

2.2 Static Single Assignment Form 

Our method for discovering induction expressions relies on using the Static Single Assign- 

ment (SSA) form as an intermediate representation of programs [CFR+91]. When converted 

to  SSA form, a program has the property that each use of a variable has exactly one reaching 

definition. 

A program in SSA form is represented by renaming variables a t  their definition points 

so that each variable will have a unique name when it has a different value. A merge 

operator, called a &-function, is inserted for a variable at a merge point in the control flow 

graph (CFG) if a variable has more than one distinct reaching definition at that point. 

The arguments to  the function correspond to the reaching definitions from each predecessor 

of the merge point. We represent the modified program by labeling each definition of 

a variable with a unique subscript and each use with the appropriate subscript for the 

reaching definition. In figure 1, we show a very simple program before and after conversion 

to  SSA form. 

The SSA graph of a program is a directed graph with edges from each vertex, corre- 

sponding to  operations in our intermediate representation, to  each of its arguments. In our 

representation, the usual arithmetic operators have one or two arguments. For fetch opera- 

tors, two arguments are required: one for the name of the variable and one for the reaching 

definition. The latter edge, an ssalink, is the result of the conversion to  SSA form: the sink 

of an ssalink is a definition point, either a store operator or a &-function. Stores also require 

two arguments: the name of the variable and the expression to  be stored. &-functions have 

one edge, represented by an ssalink, to  each reaching definition at that point. In this imple- 



j := 1 
L2: loop 

j := j + 3 
endloop 

j l  := 1 
L2: loop 

j2 : = 4 ( j i ,  j3) 
j3 := j2 + 3 

endloop 

Figure 1: Sample program 

store store 

Figure 2: SSA graph of sample program 

mentation we consider only integer valued expressions and do not consider array references. 

Figure 2 shows the SSA graph for the example program (ssalinks are represented by dashed 

lines). 

2.3 Finding Linear Induction Expressions using SSA 

In [Wo192] a technique is presented for discovering induction expressions using the SSA 

graph based on the following observations. By definition, IVs will occur only when there 

is an assignment to  a variable within a loop. In such a case, there will be a loop header 4 -  

function to  merge the two reaching definitions of the variable, the initial value of the variable 

(from above the loop) and the subsequent value (from within the body of the loop). Also 

by definition, the assignment to  the IV within the body of the loop uses the previous value 

of the variable, so the fetch in our representation will have an ssalink to  the loop header 



&function. Therefore, if there is a cycle in the SSA graph, then the cycle may define an 

induction variable. 

Our algorithm for finding induction variables, then, relies on discovering cycles in the 

SSA graph. We use Tarjan's algorithm [Tar721 to  find strongly connected regions (SCRs), 

which allows the compiler to  perform a depth-first search of the graph, visiting each SCR 

only when all its descendants have been visited. When an SCR is visited, it is classified as 

an induction expression, a loop invariant, or some other type of expression, based on the 

classifications of its child SCRs. 

For linear induction variables, the operations within the cycle may consist of fetches, 

stores, and addition of loop invariant values or other linear variables. Subtraction is also 

allowed, provided the right operand is not in the cycle (i.e. i := k - i is not linear). There 

must be one 4-function at the loop header and no other 4-functions. As we will see below, 

other combinations of operations in the cycle will yield other types of induction expressions. 

As an example, consider the graph from above. The search procedure finds the cycle 

involving j and classifies it as a linear induction variable based on the operations within 

the cycle. By traversing the cycle in reverse starting at the loop header 4, the compiler 

can determine the initial value for each operator and accumulate the total increment in the 

cycle. The 4 and the fetch operators have an initial value of 1 inherited from outside the 

loop, the add operator then assumes the value of 1 + 3 = 4, and j 3 then has an initial value 

of 4. The total increment is 3.  The linear induction expression for the #-function is 1 + 3h2 

and the store j3 = 4 + 3h2. Had there been a use of j below the assignment to  j3, the 

linear expression 3 + 4h2 would be propagated down the ssalink to  the fetch of j3. 

2.4 Other Types of Induction Expressions 

By construction, every SCR in an SSA graph will have at least one $-function at the loop 

header1. If the SCR contains operations for the addition and subtraction of invariant values 

as well, a linear induction variable may be described. If these constraints are relaxed, more 

We consider only reducible flow graphs. 



complex sequences may be classified [Wo192]. We describe these briefly: 

Polynomial IVs can arise by incrementing an IV in a loop by another (linear or 
polynomial) induction variable and may be represented by an expression polynomial 
in h. 

Geometric N s  are produced by assignments of the form i : = i*k. They are repre- 
sented by an equation with a term of the form bh where h is the basic loop counter 
and b is the multiplicative constant. Expressions of the form j := c - j (where c is 
loop invariant) also describe geometric sequences since c - j  r -l*j + c. 

Wrap-around variables are variables in loops that take on some value determined from 
outside the loop on the first n iterations and on all subsequent iterations take on a value 
that can be represented by an induction expression. Wrap-around expressions occur 
naturally in programs at the loop header 6-functions of derived induction variables. 

Periodic variables take on the values in a sequence of n values for the first n iterations 
of the loop, and on iteration n + 1 the sequence repeats; only periodic induction 
variables have more than one loop header 6.  When the period of the sequence is 2, 
the periodic value alternates between two values, producing a flip-flop variable2. 

Monotonic variables may occur when a variable within a loop is conditionally incre- 
mented. If the cumulative effect of the body of the loop is to  increment the variable by 
a constant, the variable may be classified as monotonically increasing; if the compiler 
can determine the variable is always incremented (as in the case where a variable is 
incremented on both branches of an if-test), the variable may be classified as strictly 
monotonically increasing. Monotonically decreasing variables are defined analogously. 
Only monotonic induction variables have non-loop header 4-functions. 

3 Implementation Issues and Extensions 

To perform SSA-based induction variable analysis on non-trivial loops, several important 

points must be addressed. For example, the compiler needs to  be able to  operate on arbitrary 

symbolic expressions, inter-loop SSA edges must be gated to  prevent inter-loop cycles, the 

compiler must be able to  determine tripcounts, and it must make some use of derived 

assertions to  produce the best results. In addition, some of the rules originally given for 

nonlinear expressions may be extended. In this section, we present a typical loop nest and 

describe in some detail how our algorithm identifies and classifies the induction expressions 

within it. We do this for three reasons: one, to provide a full example of the implementation 

2Flip-flop variables may also be expressed as geometric sequences, using -1 as the base. 



of our technique; two, to  point out areas we addressed that were not detailed in the original 

paper; and three, t o  show our scheme handles real-world examples other researchers have 

addressed as important. 

3.1 An Example from the Benchmarks 

Several researchers studying parallelizing compilers have pointed out several specific types of 

induction variable forms that,  while relatively infrequent, can lead to  significant parallelism 

if the subscript expressions can be classified [EHLP92, HP921. A typical example is a 

triangular loop containing a polynomial induction variable, similar to  the program shown 

in figure 3 in both Fortran and in SSA form. 

To parallelize this loop, the compiler must determine if at any iteration of the i and 

j  loops, the references to  A(j+l) and A(k) refer to  the same element - this is the essence 

of dependence analysis. It is important, therefore, to  be able to  characterize j + i  and k as 

functions of the loop indexes. 

The SSA form of this program is also shown in figure 3. Note that because of a 

technicality of our representation of Fortran DO loops, the loop index variable provides the 

reaching definition of the variable and not the loop-header 4-function; our compiler handles 

loops defined using traditional gotos and if-tests as well, but our treatment of DO loops 

makes the presentation simpler. 

Our SSA form also includes 7-functions, gating the exit values of variables assigned 

within the loops; this will be explained below. We begin our example by considering only 

the inner loop. 

3.2 The Inner Loop 

When considering a loop nest, we must consider any reference from outside of the loop as 

invariant because we wish to define induction variables in the context of the current loop 

only. Figure 4 shows the inner loop of the example program. 

We may apply Tarjan's algorithm to the nodes of the SSA graph of the inner loop in 



L 3 :  do i = 1, n L3: do 
L4 : do j = 1, i i 2  = 4 ( i o ,  i i)  

A(j+l)  = ... i l  = dosequence(l,no) 
k = k + ~  j l  = 4(jo, j3)  

enddo ki  = $(ko, k4) 
. . .= A(k) L4 : do 

enddo ~3 = 4(j1, ~ 2 )  
j2 = dosequence(1, il) 

k2 = 4(k1, k3) 
A(j2+1) = .. . 
k3 = k2 + 1 

enddo 

j3 = rl(j2) 
k4 = 77(k2) 
. . .= A(k4) 

enddo 

i 3  = 77(il) 
j5 = 77(j2) 
k5 = q(k4) 

Figure 3: Triangular loop nest 

L4: do 

j3 = 4 ( j l , j 2 )  
j2 = dosequence(1, i l )  

k2 = k3) 
A(j2 + 1) = ... 
k3 = k2 + 1 

enddo 

Figure 4: The inner loop 



any order we choose. Assuming we identify the only nontrivial SCR in the graph first, we 

identify k as a linear induction variable. In particular, k2 = kl  + h4 and k3 = 1 + ka + h4, 

where k l  is loop invariant symbolic expression. The loop index, j2, is not in an SCR, but 

DO loop indexes are always linear induction variables - in this case j2 = 1 + h4. The 4- 

function at  j 3 is actually a wrap-around variable: on the first iteration, it has value j 1 and 

on each subsequent iteration it takes the value of j2. The subscript expression for A(j+l)  

is a linear expression, since it is a use of j2. 

3.3 Tripcounts 

For practical purposes, we are limited in our ability to  determine the tripcounts of loops. 

The tripcount of Fortran DO loops can be determined at compile-time, although the result 

may be symbolic and need not be constant: by definition, the Fortran loop do i = i a ,  i b ,  i c  

will have a tripcount of imax (0,  ( ib - ia+ic)  / i c ) .  The tripcount of the example inner loop 

therefore will be tc4 = imax(0, (il + I - I)/ I )  which is simplified to  tc4 = imax(0, il) in 

the internal representation in the compiler. 

Because the tripcount is an important factor for solving nested loops, it is advantageous 

to  simplify this expression as much as possible: in some cases our compiler can remove the 

imax expression from the tripcount. The value of i l  is not known at this point in the 

analysis, but it is represented internally by a fetch of i l .  If we follow the ssalink of this 

fetch to  its reaching definition, the compiler discovers i1 is a DO loop index of an outer 

loop and quick inspection reveals this outer DO loop has a lower bound of 1. The compiler 

can then assume that if the inner loop has executed, the value of i l  must be at  least 1. The 

imax operator may then be optimized away, setting the tripcount of the inner loop to  be 

tc4 = il. If the target of the ssalink had been a store, our compiler would attempt to  find 

the lower bound for the expression on the right-hand side. No lower bound information is 

returned if a cycle or a 4 is encountered. 

At present, our compiler treats this lower bound technique as a special case for reduc- 

ing imax expressions, but it is evident that what is actually happening is a demand-driven 



forward-substitution of symbolic values. Our technique for finding induction variables in- 

herently performs a style of propagation of symbolic values in loop bodies (and beyond, 

via rl-functions). Although not addressed in the original paper, a demand-driven walk of 

the SSA graph seems to  provide a convenient method of constant propagation. As values 

from outside the loop are treated as invariants, our current approach will not unify con- 

stant propagation and induction variable classification. Our group is currently investigating 

modifications to  the standard SSA form to support aggressive constant propagation [WZ91] 

and we hope to  study the merging of these techniques. 

Our studies show roughly three-quarters of the loops in scientific Fortran codes are DO 

loops. For more general loops our strategy to  determine the tripcount is to  examine the 

condition controlling whether or not the loop's CFG exit edge is taken. If an induction 

expression for that condition may be found (e.g. i<n may be treated as i-n), the number 

of times the loop executes may be determined. For loops with multiple exits, we do not 

currently attempt to  determine a tripcount. Obviously tripcounts for loops with simple 

exit conditions like i f  ( i<n )  where i is not an induction expression cannot be determined 

either. Our compiler does not currently consider complex exit expressions such as i f  (i<n 

OR j<m). 

3.4 Exit Value Expressions and 7-functions 

Having classified all expressions in the inner loop and determined its tripcount, we proceed 

to  the next loop level. Here the SCRs for variables j and k span loop boundaries, however. 

We wish to  consider the effects of the inner loop on these variables as fixed and for this 

reason we gate the exit value of each variable assigned within the loop and restrict the walk 

of the SSA graph from passing through these gates. We are essentially collapsing the effect 

of the loop body into this exit value gate expression, A need for exit values was pointed 

out in Wolfe's original paper; in this section we describe our method. 

We add a new operator to  the traditional SSA-graph, the 7-function, which is placed 

in a position immediately after the body of the loop. Ballance et a1 introduced 7-functions 



in their Gated Single Assignment (GSA) form with loop predicate information to  determine 

under what conditions the value being gated would be used [BM090]. Here we adopt the 

7-function but use it simply as a convenient placeholder for the exit value. 

An 7-function is inserted after the exit of each loop for every variable assigned within 

that loop. In particular, for every control flow graph edge that exits a loop, a postezit node 

is inserted as the target of that edge, thus assuring a unique successor for each exit. An 

edge exiting multiple loops requires only one postexit. Postexit nodes, analogous to  loop 

preheaders, are inserted in our compiler during loop discovery phase. 

The 7-functions themselves are created as part of our SSA translation phase [CFR+91]. 

As the first step of the SSA algorithm, all variable definitions are marked. During this phase, 

we create an 7-function for variable x in each postexit node of loop L if there is a t  least one 

definition of x within the body of L. We then mark the 7 as both a use and a definition of 

x. As the SSA algorithm proceeds, it creates ssalinks from uses to  definitions; thus, a use 

of x from a position outside of L will have an ssalink to  the 7 as its reaching definition and 

the 7 itself will have an ssalink to  the reaching definition in L. The insertion of an 77 for x 

is essentially an insertion of the assignment x : = x. 

As described above, our goal is to use 7-functions as placeholders for an expression 

representing the exit value of a variable assigned within a loop. The exit value will be 

either a constant or a symbolic expression, depending on the classification of the variable 

(linear expression, integer constant, etc), its value prior to  the loop, and the ability of the 

compiler to  determine the tripcount of the loop. If the variable of the 7 is an induction 

expression its exit value is a function of the tripcount of the loop, and the compiler performs 

symbolic algebra to "solve" the induction expression for the tripcount. If the tripcount is 

unknown, the exit value is undefined. It is important to note that the exit value of a variable 

will be an expression in terms of the current loop or the outermost level, not from within 

the loop the q is gating. 

When performing our search of the SSA graph, if we encounter an 7-function we do 

not follow its ssalink into the inner loop, as stated above. Instead, a t  that point we derive 



the exit value of the gated variable and translate its symbolic representation into operators 

in our intermediate form. The resulting tree is then used as the target of the 7-function's 

value edge. Our search then resumes, walking up the value edge. 

In the example, when the 77 for j 2  is reached, the compiler must determine the exit 

value of j 2  after the iterations of L4 .  Owing to  the semantics of DO loops, the occurrence 

of the assignment at the DO dominates the exit node in the flow graph, thus the tripcount 

of jz is actually one more than t c4 .  The exit value for jz is calculated as shown. We use 

the notation a@b to mean "the value of expression a after b iterations": in particular, since 

h starts a t  zero, h@n = n - 1. 

The exit value expression for j2 is then 1 + i1. This is translated into a fetch of il 

added to  the integer constant 1 and connected to  the 7-function at j3. 

By a similar process, k4 is set as the exit value expression k2@(tc2 + I ) ,  which reduces 

3.5 The Outer Loop 

After the insertion of exit values, the outer loop has been transformed into figure 5. The 

compiler searches the SSA graph for the body of this loop, classifying il as a linear induction 

variable, i 2  as a wrap-around variable, and j3 as a derived induction variable. 

The SCR containing variable k, however, contains an addition of a loop invariant value 

(kl) and a linear induction expression (i2).  As described in [Wo192], the compiler simulates 

the first 4 iterations of the loop to  determine the values that the 4, k l ,  takes on. Initially, 

kl@O = ko@O = ko. On the next iteration, kl = kl@O + ia@l, which simplifies to  1 + ko. 

The next two iterations produce 3 + ko and 6 + ko. These expressions are then used to  



. . .  
j3 = q ( l +  i l )  

k4 = q(k1 + i i )  
. . . = A(k4) 

enddo 

Figure 5: Outer loop, with exit value expressions 

solve a system of polynomial equations, producing the expression ko + h3/2 + h$/2. The 

induction expression for the subscript of A is defined by k4, so the subscript is represented 

by the polynomial equation i 2  + ko + h3/2 + hi/2. Since i z  is equal to  1 + h3, the polynomial 

is simplified to  ko + 3h3/2 + hi12 + 1. 

The example concludes by determining the q values for i, j ,  and k. Variable i exits 

with the value imax(1, no+ 1) and k with an expression polynomial in no. The exit value of j 

is unknown since the induction expression for j s  is a wrap-around variable. The tripcount 

tcl is not known to be greater than 1, so no simpler expressions can be produced. We 

attempt to  use the same lower bound information we described earlier to  determine if the 

tripcount indicates whether the initial value or the subsequent induction expression in the 

wrap-around variable is being used, and also in the imax expression, but in this case no 

information about no is known. 

3.6 Generalized Non-Linear Form 

Linear induction variables are discovered by looking for strongly connected regions in the 

SSA graph. In fact, however, the SCR for a linear induction variable is actually a simple 

cycle; the algorithm used to  determine the contribution of the cycle within the body of 

the loop implicitly takes advantage of this fact. The region will not be a cycle only if the 



assignment to  the variable contains the variable on the right hand side more than once 

or there is a non-loop-header 4 in the region. In the latter case, the region may describe 

a monotonic variable. The former case is demonstrated by the fact that i : = i + i is 

actually a geometric induction variable, since it is equivalent to  i := i*2. 

The original rule presented for determining that an SCR represents a geometric se- 

quence must be extended. In addition to the condition that the cycle may contain a multi- 

plication by a known integer, a geometric induction variable may occur when the variable 

carried around the loop occurs more than once on the right hand side of the assignment. 

This extension requires some modification to  the original technique for classifying geometric 

induction variables. 

The general method for determining equations for geometric induction variables pro- 

ceeds by visiting each node in the SCR and accumulating its contribution to  the variable. 

The compiler must find the first n + 1 values of the variable by symbolically interpreting the 

loop, where n is the degree of the equation representing the sequence. The equation is then 

determined by solving a system of equations including a geometric term for the n+ 1 values. 

The base of the geometric term is precisely the factor by which the induction variable is 

multiplied. This process is performed symbolically, so we can also relax the restriction that 

the factor must be an integer; it need only be loop-invariant. 

For an assignment of the form i := i + i, however, there is no multiplication, so 

the base factor of 2 is not immediately evident. A compiler may try to  express this by 

rearranging and collecting terms in the intermediate representation. A simpler trick is 

t o  abstractly interpret the expression, collecting factors of the induction variable in the 

expression tree of the right hand side of the assignment. 

Starting at the +-function, we visit each node in the SCR in reverse order and assign 

it a factor value. For a fetch in the SCR (which must be a fetch of the induction variable), 

we assign a factor value of 1. For addition operators, we assign a factor value equal to  the 

sum of the factor values of the parents, using a value of 0 if the parent is not in the SCR. 

For multiplication operations, we similarly assign a factor value equal to  the product of 



the parents' values. The factor value assigned the @function is the factor value of the 4's 

ssalink in the SCR. This factor is then used as the base in the geometric term. 

In our implementation, multiple passes through the SCR nodes may be required before 

the factor value of the loop header 4 is set. The list of nodes in the SCR is maintained as a 

stack in Tarjan's algorithm and does not necessarily correspond to  a breadth-first traversal. 

As a result, we may attempt to set the factor for a node before we have visited both its 

parents. The maximum number of passes required is small, as it is equal to  the number of 

ssalinks to  the loop header 4, corresponding to  the number of occurrences of the variable 

in the expression. 

As an example, in figure 6 we show the SSA graph for the loop 

go := 1 
L5: loop 

gi := $(go, g2) 
g2 := 5 * gi - (2 + gl) 

endloop 

The factor values assigned each node are shown next to  the operations. The final value 

produced is 4, which is correct since 5*g-(2+g) = 4*g-2. 

3.7 Other Implementation Details 

As described in the original paper, SSA-based analysis can also be used to  classify monotonic 

variables, i.e. those variables that are conditionally incremented (or decremented) by a 

positive (or negative) value on each iteration. We have implemented a conservative version 

of this, akin to  abstract interpretation, that handles addition or subtraction of known values 

in the SCR and assigns lattice values (monotonically increasing, strictly monotonically 

increasing, etc.) to  the operators in the SCR. Dependence solvers may be able to  take 

advantage of this information; as the need arises, our implementation will be strengthened. 

Some support for the recognition of non-constant periodic induction variables has also 

been added. Constant periodic induction variables cycle through a set of values, e.g. 

{1,2,3,1,2,3, . . .). Linear periodics, however, use that set of values as increments from 



Figure 6: SSA graph with factor values 

the previous value: using the set {1,3,5), a variable with period 3, starting at  0, would 

take on the values {1,4,9,10,13,18, . . .). We use the term "linear" here since we only 

support the addition or subtraction of loop invariant values3. 

4 Experimental Results 

In this section we present some preliminary data that provides insight into the nature of the 

data dependence problem in general. Data dependence tests vary greatly in efficiency and 

accuracy. For example, the GCD test considers only the coefficients of the loop indexes: 

if their GCD divides the constant term, there is an integer solution to  the dependence 

equation and a dependence may exist (depending on the loop bounds). If the dependence 

equation contains unknown variables, this test may not be used. Other tests have other 

constraints. It is important to examine, then, the types of expressions that occur in the 

31t is interesting to note that our implementation now distinguishes constant periodics as linear periodics: 
the sequence { 1 , 2 , 3 , 1 , 2 , 3 , .  . .) is a linear periodic using the set {1,1, -2). 



Table 1: Codes used 

subscript expressions that produce the dependence equations [WB87]. Our algorithm for 

classifying induction variables was run on several common Fortran programs, described in 

table 1. EISPACK and LINPACK are common mathematical libraries, and the others are 

from the Perfect Club benchmark suite [CKPKSO]. 

Each subscript expression that appeared within a loop was recorded by type and by the 

actual expression. Four types of induction expressions are distinguished: invariant, linear, 

variant, and other. Invariant expressions are constants such as integer values, subroutine 

parameters, loop-invariant expressions, or some combination of these. Linear expressions are 

defined in terms of linear functions of the indexes of the enclosing loops. (A linear expression 

with all coefficients equal to  zero is considered invariant.) Variant expressions are those 

values for which the compiler cannot determine a closed form. "Other" expressions represent 

polynomial and geometric IVs, monotonic IVs, and so on. The type of expression is based 

on the occurrence of the array reference containing the expression, while the expression 

takes into account all information. In the following fragment, for example, 

L6 :  d o i = l , n  
L7 : do j = 1, i 

A ( i )  = . . . 
enddo 

enddo 

loops 
306 
234 
673 
332 
144 
168 
413 
666 

79 
3015 

program 
ADM 
ARC2D 
EISPACK 
LINPACK 
OCEAN 
QCD2 
SPEC77 
SPICE 
T R F D  
total 

we consider the subscript expression to be invariant because it occurs in the inner loop, 

subscripts 
3104 
3858 
4820 
3242 
438 
941 

2604 
5842 

137 
24938 

lines 
6108 
3967 

11466 
10058 
4346 
2330 
3888 

18524 
488 

61175 

description 
fluid dynamics 
fluid dynamics 
eigensystem package 
linear system package 
fluid dynamics 
chemical & physical model 
fluid dynamics 
circuit simulation 
chemical and physical model 

even though the induction expression is actually h6 + 1. 

routines 
97 
39 
70 
60 
36 
35 
65 

128 
7 

537 



Figure 7 shows the relative frequencies of the four types of subscript expressions for the 

sample programs. While some programs vary considerably (SPICE, ARC2D), the average 

over all subscripts in all programs is 40% linear, 33% invariant, 26% variant, and 1% other. 

Figure 8 presents the same data (for all programs collectively), for each dimension of the 

array reference. As there are significantly more arrays of one dimension (69%) than two 

or three dimensions (24% and 7%), the first dimension data reflects the average. At the 

point of occurrence, it is not surprising that in the inner dimensions the number of invariant 

expressions decreases, presenting more possible parallelism. 

Fully one-third of the subscript expressions in programs are invariant at the point of 

usage. Figure 9 presents a breakdown of these expressions by form (c represents an integer 

constant, v represents any unknown variable). This data is presented for 85% of the most 

frequently occurring types of expressions, but the trends shown hold for all expressions. 

Ignoring the forms containing variant terms, two-thirds (67%) of the invariant expressions 

are known constants or single-variable linear forms. Only 18% have unknown symbolic 

quantities. 

Of the subscripts with linear expressions, figure 9 shows the 85% most frequent forms 

encountered (k represents a coefficient not equal to  1). Again ignoring variant expressions, 

half the subscript expressions are of the simple form c f lh .  Less than 10% have unknown 

variables. We have also found that of those linear coefficients not equal to &I, the majority 

are small integers, making tests for integer solutions easier in some dependence tests [SLY9O]. 



Figure 7: Subscript classifications 

Figure 8: Subscript classifications by dimension 
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linear 
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Figure 9: Invariant forms 

c f  kh 
c f  v & l h  

One quarter of the subscripts have expressions which cannot be classified. We have 

identified two causes. Four percent of all the variant expressions result from the subscript 

expression containing a variable passed to  a subroutine. Interprocedural analysis may be 

able to  determine if these variables are not modified within the called routine. More signif- 

icantly, we have found that many codes contain indexed array references, such as A ( B ( i ) ) .  

In SPICE, which has the most variant expressions, 60% are caused by indexed references. 

Other codes average approximately 20%. Without user assertions, a compiler cannot elim- 

inate these sources of variance. The remainder of the variant subscripts (three-quarters) 

have not been specifically identified by cause. In general, nodes in the SSA graph are clas- 

sified as variant due to  fetches of non-integer values and nontrivial SCRs not matching one 

of the induction variable forms. 

Other researchers have recently examined various aspects of subscript expressions 

[SLYSO, Haggo], with similar results. These results represent a first approximation to  help 

determine what types of data dependence tests should be applied. Further study is needed, 

particularly in analyzing pairwise comparisons of references to the same array at all levels 

in each loop nest. 

c f v  
c f  hi f hj 
c & v f  k h i f k h j  
c f v f h i f h ,  
other 
contains variant term 

8 
0 
0 
0 
1 
15 

n/a 
4 
4 
3 
3 

14 

. 



5 Related Work 

Induction variable detection for strength reduction, particularly of array expressions, is 

well covered in the literature. The usual approach is to  use reaching definition information 

within a loop body and search for assignments of the form i := i f c, where c is loop 

invariant. This defines i as a basic induction variable . Other assignments of the form j : = 

c*i  + k, where c and k are loop invariant (possibly 0), associate with j the tuple ( i ,  c, k), 

putting j in the family of i [ASU86]. 

Mutually defined induction variables cannot be found by this algorithm, however, since 

the other variable on the right-hand is not known to be in any family of induction variables. 

Kennedy et al [ACK81] present a comprehensive treatment of strength reduction by recog- 

nizing more general linear cases. In the PTRAN compiler [ABC+88], such cases are solved 

by a dataflow technique which initially assumes all variables are linear induction variables 

until a contradiction exists. 

Abstract interpretation has been used to  recognize recurrence relations. In [AI90], 

a method is presented in which abstract interpretation is used to  associate each variable 

assigned within a loop a symbolic expression; these symbolic expressions are then compared 

against known patterns representing recurrence relations. 

The Parafrase-2 compiler uses a symbolic interpreter for its optimizations; for the 

recognition of induction variables, a scheme has been proposed whereby the compiler will 

solve a system of recurrence relations that describe the behavior of variables within loops 

[HP92]. In some respects, the approach used in Parafrase-2 is similar to  ours: the symbolic 

interpretation approach determines a symbolic expression for each variable at each node 

of the program's flow graph by interpreting the expressions within that node, based on 

symbolic expressions of predecessor nodes. The key difference is that the Parafrase approach 

translates all induction variables into recurrence relations to  be solved. With our technique, 

linear induction variables are classified directly. Our treatment of polynomial and geometric 

IVs is closer to  Parafrase's. 

A chart is presented in [HP92] listing 10 forms of induction expressions and sym- 



bolic substitutions. Four compilers are compared using a test-suite containing these forms: 

Parafrase-2 recognizes all 10, the Titan compiler recognizes 2, and both the KAP compiler 

and the VAST-2 compiler recognize none. We are pleased to  report Nascent scores 6 as of 

this writing. The remaining four are within the scope of our approach and are currently 

being incorporated; we anticipate no problems in this regard. 

In [EHLP92], Eigenmann et a1 discuss their experiences in hand-parallelizing four of 

the Perfect benchmarks. They note the importance of having compilers detect generalized 

induction variables (GIVs) (referred to in this work as polynomial and geometric IVs). A 

factor of 8 speedup was obtained in one case by replacing a geometric induction variable 

with its closed form in terms of the loop index. 

6 Conclusions 

This paper has discussed the implementation of an SSA-based algorithm for detecting sev- 

eral forms of induction variables. In particular, we have presented some details needed 

for implementation and outlined experimental results showing the effectiveness of our tech- 

nique. 

We have added 7-functions to  the standard SSA form in our compiler to  provide gates 

for exit value expressions. The overall cost of 7-functions is comparatively small in both time 

and space, and no new phases have been added to  the compiler for postexit node insertion 

in the CFG or 7 node insertion in the SSA graph. There is some cost in creating exit value 

expression trees, but this is dominated by the cost of the induction variable procedure as 

a whole. At present we attempt to  build an exit value for every variable assigned within a 

loop, increasing the size of our intermediate form by about 10%. This approach is overly 

conservative: we do not need 7 expressions in all cases, but as a consequence of our flow 

graph algorithms, the value at each 7 is considered used. The side-effect of providing a 

convenient method to  propagate exit values may prove useful, although this has not yet 

been measured; in the worst case the 7-function's value expression can be treated as dead 

code. 



To provide the most precise exit values, the compiler must be able to  perform forward 

substitution of symbolic values and lower bounds. Local constant propagation and forward 

substitution is a natural extension of this work; the support for symbolic algebra we are im- 

plementing in our compiler for improved induction expression representation will contribute 

here. 

We have improved upon the treatment of geometric forms and periodic forms. In the 

former case, the original definition was clearly inadequate. In the latter case, we wished 

to  show our technique was as powerful as others. While such cases are not at all common, 

there are cases where their recognition has been an important step in parallelizing scientific 

programs. 

Finally, we have begun to  measure the characteristics of subscript expressions in scien- 

tific Fortran codes, and have found that the number of distinct forms may suggest the data 

dependence problem may not be as difficult as had been feared. This data may eventually 

provide insight into the directions for future research in dependence tests. Further analysis 

of the causes of variant expressions in general will result in better classification of subscript 

expressions. 

SSA-based induction variable analysis has several advantages over previous methods. 

It is clearly a more general solution than traditional pattern matching and we have shown 

in our implementation that it can recognize the same types of expressions as other proposed 

schemes. Perhaps most importantly, this technique can be readily incorporated into exist- 

ing compilers that use internal representations similar to  SSA. For strength reduction, all 

linear induction expressions can be detected very quickly with only one pass over the SSA 

graph. With as much support added for symbolic forms as desired, compilers that require 

dependence information for subscripts will be able to  detect linear dependences as well as 

more complex forms. 
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