
A User�Level Process Package for Concurrent Computing

Ravi Konuru� Steve Otto� Jonathan Walpole� Robert Prouty� Jeremy Casas
fkonuru� otto� walpole� prouty� casasg�cse�ogi�edu

TR�������

Department of Computer Science 	 Engineering
Oregon Graduate Institute of Science 	 Technology

���� NW Walker Road� P� O� Box ������ Portland OR ��
�������

Abstract

A lightweight user�level process�ULP� package for parallel computing is described� Each
ULP has its own register context� stack� data and heap space and communication with other
ULPs is performed using locally synchronous� location transparent� message passing primitives�
The aim of the package is to provide support for lightweight over�decomposition� optimized
local communication and transparent dynamic migration� The package supports a subset of the
Parallel Virtual Machine�PVM� interface�Sun�	
�

� Introduction

A user�level library implementing a new abstraction called ULP is currently being developed�
Each ULP has a unique ULP identi�er� a register context� a stack� data� and a heap space much
like a UNIX process� ULPs of the same application execute within a single protection domain�
Message passing is the only means of communication among ULPs and is achieved through locally
synchronous�� location transparent primitives� The aim of the package is to provide support for�

� Static virtualization of processors� Programs can be coded assuming a static number of ULPs
irrespective of the availability of the physical processors� In addition� the number of processors
available to an application can vary dynamically during application execution� A key goal is
to maintain simplicity of message based application programming using static parallelism�

� Over�decomposition� An application can be mapped onto more number of ULPs than the
maximum number of physical processors available�

� Overlap of communication with computation� An over�decomposed application can achieve
overlap of communication with computation when more than one ULP is mapped to a physical
processor�multi�threading�� When a ULP blocks on a remote communication� other ULPs of
the application on the same processor can be scheduled for computation� This scheduling� in
e	ect� achieves the function of overlap� Since ULPs are user�level entities� their scheduling

�A return from a message send primitive implies that the bu�er used in the send can can be reused� A return

from a message receive primitive implies that the the requested message has been received�

and context switch requires no kernel intervention� Further� multi�threading through over�
decomposition avoids the use of asynchronous message based programming and therefore
greatly decreases the complexity of applications�FM���

� Transparent migration� The ULP layer provides support for transparent migration of ULPs
that perform all their non�computation related functions through the ULP interface� A higher
level policy module� co�existing with the ULP package� can invoke the ULP package to perform
ULP migration�

Note that the ULP abstraction de�nes a distributed memory programming model unlike a
thread abstraction that is based on shared memory� A ULP de�nes a distinct register context�
stack� data and heap space� On the other hand� a thread de�nes only a register context and stack�
Having a ULP abstraction that clearly delineates the data manipulated by a ULP makes it an
easier model to implement transparent migration�

This paper describes the design of a proto�type ULP package on a network of HP series �������
workstations� The rest of this paper is organized as follows� The ULP programming model is
described in section � The design of the ULP package is presented in section �� The mapping of
PVM interface�Sun��� to ULP operations and the scope for further optimizations is presented in
section �� The engineering choices made in the implementation of the ULP package raises several
design and implementation issues and some of these are discussed in section �� Finally� preliminary
conclusions are presented in section ��

� ULP programming model

The programming model supported is SPMD�Single Program Multiple Data� with static physical
parallelism� i�e�� an application is coded as a single program and is instantiated into a statically
speci�ed number of ULPs�� An example SPMD program in pseudo�code is given in �gure
� Each
instance of this SPMD program corresponds to an ULP� Each ULP has a unique identity and the
send and receive primitives supported are locally synchronous�

Theoretically� the ULP programming model can support both SPMD and MIMD applications
that exhibit dynamic physical parallelism� Further� the constraint that a ULP communicate only
using locally synchronous message passing primitives can be relaxed to allow other semantics such
as rendezvous or asynchronous message passing� The simpler SPMD programming model was
adopted for the proto�type implementation as the model covers a large class of scienti�c programs
and is more amenable to implementation�

� Design of the ULP package

The ULP package is designed as a library that is linked to the application program� A static view
of an SPMD executable using the ULP package is shown in �gure � The interface used by the
program�PVM in this case� is mapped to the machine independent ULP interface by a machine
independent layer� The implementation of the ULP interface however is machine dependent�

The number of virtual processors�ULPs� required by the SPMD application is speci�ed by user
as command line option in addition to the actual application arguments� The library uses this

�The number of ULPs to be created is speci�ed as an extra command line option to the SPMD program being

executed in addition to the program speci�c arguments

Figure
� SPMD program� A stylized example

�� Global Variables of the program ��

id�t id�

data�t data�CHUNKSIZE��

extern int numproc� �� Number of ULPs created ��

result�t result�value�

result�t total�result�

�� Main Program ��

Begin Main Program

id � get�my�identity�	�

if � even�id	 	 begin

result�value � process�even�data�id	�

globalsum�result�value
 �total�result	�

end

else begin

result�value � process�odd�data�id	�

globalsum�result�value
 �total�result	�

end

End Main Program

number in the creation and the management of ULPs� The overall design is discussed under the
following subsections�

� Initialization � address space layout

� ULP Interface

� ULP descriptor structure

� Scheduling policy

� Context switching mechanism

� Migration mechanism

��� Initialization � address space layout

The application program is compiled and linked to the ulp package� The application is then executed
by typing

application name �nu number of ULPS �application arguments�

�

 AppLication code

ULP interface

Machine dependent ULP library

Machine Independent layer

PVM* + Clib Interface

Figure � Static view of an SPMD executable using a ULP package

The ULP library initialization code is �rst executed before any code of the application� The
initialization code performs partial ULP package data structure initialization and replicates the
application program on a certain number of physical nodes based on the available resources� Each
replica is a UNIX process consisting of the ULP library code and data structures in addition to
the application speci�c code and data� The ULP library in each of these replicas has information
on the con�guration of the virtual machine and the host from which the application was started
is recognized as a home node� The initialization code in each of these processes� then calculates
the number of ULPs to be allocated on the corresponding host node� creates the ULPs and places
them on the scheduling queue� Each ULP occupies a unique� per application� network wide virtual
memory region as shown in �gure �� The �gure shows an application divided into � ULPs on
processor nodes� ULPs per processor� Note that each ULP occupies a unique virtual memory
region� This region comprises the data segment� stack segment and the heap space of the ULP�
Although the �gure shows the virtual memory region to be a contiguous segment� this is not
a necessary condition� The emphasis is on uniqueness rather than contiguity� The code region
however is shared among all the ULPs within a UNIX process� This sharing is possible as the
application is SPMD� The address space layout of ULPs was chosen to ease the process of ULP
migration�see section �����

Once the ULPs are created� the initial threads of control in each of the processes are then
transformed into the �rst executing ULPs of the application� This completes the initialization
process� Except for this initialization step which is pre�determined� the ULP library code is invoked
during the application execution only under the following conditions�

� A ULP invokes a primitive that is either implemented by the machine independent layer or
directly by the machine dependent ULP layer�

� A ULP invokes routines such as for memory allocation�deallocation that are implemented in
the C library and have inherent assumptions of executing within the context of a UNIX process
rather than in the context of a ULP� The memory management routines use sbrk�� system
call which manipulates the per UNIX process heap space� Since each ULP has its own heap
space� use of these routines yields incorrect results� The memory management routines are
the only few that are supported and are re�implemented within the ulp library� Implementing
the entire UNIX interface is outside the scope of this research and is not supported in the
proto�type�see section ���

�

 Ulibspace

Low Virtual Address

High Virtual address

Processes

Node A Node B

Ulp0 Heap

Ulp0 Stack

Ulp1 Data Segment

Ulp0 Data Segment

Ulp1 Heap

Ulp1 Stack

Ulp2 Data Segment

Ulp2 Heap

Ulp2 Stack

Ulp3 Data segment

Ulp3 Heap

Ulp3 Stack

SPMD code SPMD Code

 Ulibspace

Figure �� Address space partitioning of user level processes

� An asynchronous event is delivered to an ULP package by the operating system� Examples of
such events are completion of I�O� timer expiration� urgent message on socket� workstation
preemption� etc� The handling may result in the invocation of the scheduler�

In addition to the space used by the ULPs� there is a certain amount of virtual address space
that is used by the ULP library itself� This space�ulibspace� contains various ULP tables� memory
management data structures and scheduling queues� The same region of virtual address space is
used by all the instances of the ULP library�one per physical processor�� Note that this space is
not directly migratable�

When a ULP is created certain variables in its data segment are initialized to point to data
structures within the ulibspace� These variables can be thought of as type constant since once
initialized� these variables are not modi�ed by the ULP library nor the application� Examples of
such variables are pointers to ULP tables� ULP run queue� ULP blocked queue� etc� These variables
allow the ULP library to easily access its data structures irrespective of the ULP currently scheduled�

This design imposes the following requirements on the target platform� It must support a�
a compiler that can generate position independent code and b� the ability to dynamically load
and link object modules into an executing program� Requirement �b� is not necessary for SPMD

�

applications�

��� ULP interface

The ULP library exports a small and simple interface to ULPs� The functions in the ULP interface
can be divided into four categories�process control� memory management� inter ULP communica�
tion� and �le operations�

����� Functions for process control

There are three functions in this category�

� ulpGetid��� return the ulp identity of self�

� ulpExit��� terminate self�

� ulpYield� ulpId�� This call blocks the calling ULP and selects a new ULP to execute based
on the value of the formal parameter ulpId� If the value of ulpId is ULP ANY then the new
ULP is selected based on the underlying scheduling policy� If ulpId is the identity of a local
ULP then the local ULP is scheduled for execution� If ulpId is not a valid identity an error
is returned to the calling ULP�

����� Functions for communication management

There are two functions in this category�

� char� ulpMalloc� size�� If there is su�cient unused per�ULP heap space� size bytes are
allocated and a pointer is returned to the calling ULP� Otherwise a NULL value is returned�

� ulpFree�addr�� The space allocated to the ULP starting from addr is returned to the heap�
An invalid value of addr is ignored�

����� Functions for communication management

There are four functions in this category�

� ulpCbuf�size�� A message bu	er of size size bytes is allocated from ulibspace and a bu	er
identity is returned to the calling ULP� If there is no space an error is returned�

� ulpKbuf�bufId�� The bu	er corresponding to this bufId is deallocated from the ULP name
space� Usage of bufId after this call results in an error�

� ulpSend� ulpId� bu	d�� The message in the bu	er is queued for transmission to the ULP
with identity ulpId� The bu	er can be reused on returning from the call�

� ulpRecv� ulpId�� The calling ULP is blocked until a message from ulpId arrives� The
message is accepted into a ULP library bu	er and the blocked ULP is unblocked and put
back on the scheduling queue� The identity of the message bu	er is returned to the calling
ULP�

�

����
 Functions for 	le operations

These functions behave exactly like the standard unix �le system calls except that in addition� they
preserve location independence� The following functions are supported�

� ulpOpen�char �	lename� int o�ag �� mode t mode�

� ulpClose�int fd�

� ulpLseek�int fd� o�set t o�set� int whence�

� ulpRead�int fd� char� buf� unsigned nbytes�

� ulpWrite�int fd� char� buf� unsigned nbytes�

��� ULP descriptor structure

The ULP descriptor is shown as a C struct in �gure �� The �elds id� locn� state are self�
explanatory� Host points the node on which the ULP was last known to be present� Sstart�
dstart� tstart� treturn point to the beginning of the per�ulp stack� per�ulp data segment� code
entry and exit addresses respectively� Since we are implementing an SPMD model� the code entry
and exit addresses of ULPs are identical� All the other �elds mentioned above contain distinct
values�

Rc points to the machine dependent register context� Heap is manipulated by the routines
ulpMalloc�� and ulpFree��� Ftab is a per�ulp �le table and is manipulated through ulp �le manip�
ulation routines� Btab is a per�ulp table and is manipulated by the communication management
routines� The pointer �elds are used to link the ulp descriptor into various queues�

��� Scheduling

Scheduling among ULPS on the same processor is non�preemptive and occurs when

� a ULP makes a blocking call �for example� a blocking receive�� If the data is already available
the blocking call returns immediately� Otherwise the ULP is put on a blocked queue� If the
source ULP of a blocking receive is located on the same processor� the the source ULP is next
scheduled �hand�o	 scheduling�� If the source ULP is remote� the �rst ULP in the run queue
is scheduled for execution�FIFO��

� a ULP terminates� If there are runnable ULPs� the �rst ULP on the run queue is scheduled
for execution� Otherwise the ULP library waits until a local ULP becomes unblocked� or the
number of active ULPs in the application is greater than zero� or until an ULP is migrated
to its processor�

When the number of active ULPs in an application becomes zero �all ULPs have terminated�� the
ULP library exits terminating the entire application�

��� Context switching Mechanism

Context switching between ULPs does not require kernel intervention� Further� since context
switches occurs in a non�preemptive scheduling framework� relatively less state �callee�save regis�
ters� needs to be saved and restored� Since a ULP context switch involves one more register�the base

�

Figure �� ULP descriptor

typedef struct ulp�

UlpId id�

Locn locn� �� Local or remote ��

State state� �� Execution state ��

Node� host�

Regs �rc� �� Register context ��

unsigned sstart� �� Stack begin ��

unsigned dstart� �� Data segment begin ��

unsigned tstart� �� Code Entry point ��

unsigned treturn� �� Code Exit point ��

Heap heap� �� heap management structure ��

int argc�

char�� argv�

FileDesc ftab�MAXULPFDS�� �� ulp file table ��

BufDesc btab�MAXULPBDS�� �� buffer identity table ��

struct ulp� self� �� pointer to this structure ��

struct ulp� next� �� used when linked on queues ��

struct ulp� prev� �� used when linked on queues ��

 Ulp�

register that points to the data segment of the ULP� than a user�level thread�ULT� implementation�
the context switch performance of ULPs and ULTs is almost identical�

��� Migration mechanism

In implementing transparent migration of ULPs� there are issues related to both policy and mech�
anism that need to be speci�ed or isolated behind certain interfaces� The policy related issues of
migration are�

� What are the constraints on ULP migration �

� When should a ULP be migrated from a workstation �

� Where should the ULP migrate to �

A process executing on a UNIX like platform has access to the entire system call interface
exported by the operating system� In our proto�type implementation� we restrict transparent
migration to those processes that use ULP interface for all communication and �le operations�
All other process related functions �for example� signals� resource usage timers� pid� ppid� are not
supported�

All policy issues related to detecting migration points and destination nodes for migration are
handled by a global job scheduler in conjunction with a load monitor that runs as a separate process
in the system �see �g ���

Whenever migration is necessary�Op���� the global job scheduler asynchronously informs the
ULP library that migration has to be performed and the destination of migration� It is the respon�
sibility of the ULP library to implement the mechanisms for achieving migration�

�

PVM+Clib Interface

ULP library

PVM+Clib Interface

ULP library

Load
Monitor

Load
Monitor

Operating System Operating System

Network

Figure �� Software architecture of an ULP based system

Our algorithm for migration is based on ideas similar to those of Mike Powell et al�PM��� and
Jonathan Smith et al�SI���� A level of indirection is maintained by the ULP library between the
�le operations executed by the application and the �le operations implemented by the operating
system� i�e�� there is an indirection �le descriptor table maintained by the ULP library� An outline
of the migration procedure is given below�

� if the ULP library is not in critical section� start ULP migration� Otherwise update migration
�ag and information� All ULPs that attempt to send to this migrating ULP are blocked for
the duration of migration�

� Initiate communication with the destination node� This might involve creating an operating
system level process in the case when that particular node is not being used by the application�
The ULP library in the destination node initializes itself and receives the migrating ULP�s
descriptor� �le indirection table� register context� text and data segments�

�� The ULP library on the source node drains the kernel bu	ers for any messages that were
intended for this ULP into ulibspace� These bu	ers are then sent to the destination node�s
ULP library� The forwarding address for the migrating ULP is set to that of the destination
node�

�� The destination ULP library re�establishes connections for remote communications with other
processes transparently to the ULPs� It uses the register context in resuming the ULP�
The information in the �le indirection table is used to either communicate with the source
workstation for �le i�o or perform direct communication in presence of a location independent
�le system�

�� If the number of ULPs at a node is zero� the ULP library blocks until all ULPs of an application
terminate or it needs to participate in an ULP migration� If all ULPs terminate� the ULP
library terminates which in turn leads to the termination of the parallel application�

� Implementing the PVM interface

To use existing applications� A subset of the PVM interface has been chosen for implementation
on top of the ULP library� The functions supported are�

�

� pvm mytid��

� pvm exit��

� pvm mkbuf��

� pvm initsend��

� pvm freebuf��

� pvm send��

� pvm recv��

� pvm pk���

� pvm unpk���

� pvm set�buf��

� pvm get�buf��

All communication is handled through bu	ers allocated in the PVM library� Applications refer
to these bu	ers by bu�er identi�er only and not by a memory address�

Sending a message involves three steps� First a send bu	er must be initialized by a call to
pvm initsend�� or pvm mkbuf��� Second a message should be �packed� into this bu	er by various
packing routines provided� Then the send can be performed by a pvm send�

Receiving a message involves specifying the source task and message tag in the pvm recv�� call�
A wild card for the source can also be speci�ed� The task is blocked until the message is received�
On completion of the call the identity of the bu	er containing the received message is returned�

��� Basic implementation

The ULP library implements ULP creation� termination� scheduling� context switch and local
communication at user level� Thus all the above operations do not need kernel intervention and
this in turn implies that ULPs do not incur the costs of entering the kernel and cross�protection
domain communication�

Scheduling strategy is non�preemptive� This implies that state of ULP is saved only at well
de�ned points �where the ULP executes blocking calls�� This implies that the procedure calling
conventions of the architecture and operating system can be used to reduce the amount of state�
In other words� only the callee savee registers need to be saved�

In the special case of SPMD applications� the code segment is the same on all participating
nodes� In this case� migration of a ULP from one participating node to another can be reduced
only to movement of the data segment and the register context of the ULP at the source node to
the destination node� This avoids the need and the operating system costs to create a new process
on the destination node with the required execution context�

�

��� Optimized Implementation

There are several optimizations that can be applied to ULP scheduling and message passing within
the ULP library� These stem from the characteristics of the PVM message passing interface�
The PVM interface manipulates message bu	ers in terms of bu	er identi�ers only� The actual
bu	er addresses are not used� Each bu	er has an associated encoding that can be speci�ed by
the application� The encoding can be PvmDataDefault� PvmDataRaw� PvmDataInPlace� The �rst
two encodings determine how data is formatted before packing into the message bu	er� The third
encoding speci�es that the data should be copied directly out of user memory rather than making
an explicit copy of the data in the message bu	er� Any message packing routines invoked result in
recording the pointers to the source data in the message bu	er� Any modi�cations of the source
data after �packing� and before a pvm send�� will be re�ected in the sent message� Given these
semantics� we now discuss some potential optimizations that can be performed in the ULP library�

If the encoding is PvmDataDefault or PvmDataRaw� a message send to one or more local ULPs
can be achieved without actual copy of bytes to the destination ULP�s� by sharing the bu	er read�
only among all the ULP�s� involved in the communication� However� bu	er management should be
done carefully so that the message passing semantics are maintained� For example� if the sending
process needs to send a new message using the same bu	er id� a new bu	er should be allocated
transparently and by maintaining a level of indirection between the bu	er identities seen by the
process and the actual bu	er identities managed by the ULP library�

The encoding PvmDataInPlace poses a di	erent kind of problem� Since the actual data is
in user space and not in the message bu	er� the process can change this data unnoticed by the
library� In this case� one approach is to perform an explicit copy of the message at the invocation
of pvm send�� or pvm mcast��� However� there is still some scope for optimization� First� a new
bu	er can be allocated and followed by explicit user level copy� If the message is being multi�cast
and more than one ULP happens to be local� then this bu	er can be shared between the multiple
local ULPS�

Another approach to handling �PvmDataInPlace� that can potentially avoid a copy all together
is to switch to the local receiving ULP �L� on the send operation from a local ULP�L
�� Since L

does not execute� it cannot modify its data� L can then copy the message directly into its own
variables� However� there are problems with this approach� It is not clear when L is done with
reading the received message� It is possible that the L reads only a subset of the message� or it
does not do an explicit pvm freebuf�� to convey to the library that it has completed processing
the received message� In these extreme cases� the L
 may have to be blocked until the receiving
process terminates� If L in turn performs a pvm send�� to L
 before doing a pvm receive�� �this is
a valid sequence according to the synchronous message passing semantics�� we then have a deadlock
situation� We can recover from this dead lock by performing an explicit copy of the message into
a newly allocated message bu	er� update the bu	er identity indirection table and resuming the
ULP L
� Since this deadlock situation can occur when multiple ULPs form ring communication
with sends followed by receives� there should be enough information recorded in the ULP library
to e�ciently detect and recover from this deadlocks�

� Unresolved Issues � Discussion

The idea of user�level processes address the issues of light weight over�decomposition and transpar�
ent migration for message based communicating processes� However there are several other issues
that have been glossed over while describing the design of the ULP library and are discussed below�

��� Supporting a truly user	level process

Supporting a truly user�level process implies that all functionality and interface supported by an
operating system level process should be exported to the programmer� This implies that interfaces
such as signals� process identi�ers� scheduling assumptions �pre�emptive scheduling�� resource usage
timers� etc� need to be supported� Further� an operating system level process abstraction de�nes
a protection domain� A ULP on the other hand shares its protection domain with other ULPs
of the application� However� supporting all this functionality at user�level would add overheads
for those applications that do not need this full generality� Ideally the ULP abstraction should
be implemented in such a way so that extending the functionality of a ULP is a straight forward
activity�

��� Heterogeneity

ULP migration is performed between workstation architectures that are binary compatible� Het�
erogeneity is possible but restricted in the ULP environment� An application can be executed such
that some its workstations are of say� type A and others are of say� type B� Then the ULP library
maintains two virtual address space partitionings� one for type A� and one for type B and allow the
migration of ULPs among the same type� This design raises questions about boundary conditions�
what happens when there is only one machine of a type and it has to be evacuated �

There can be several solutions to this problem� These include a� Terminate the entire parallel
application b� The ULPs on the workstation can be suspended until the workstation is available for
reuse� This would potential halt the entire parallel application�s progress� The job scheduler can
reallocate these workstations to another application� c� Suspend the ULPs on the workstation and
send a signal to the user program allowing the users to specify their own application speci�c recovery�
Among these three options� option �c� seems to be the best but least transparent� Availability of
application speci�c information to the ULP library through some higher level entity such as a
compiler would remove the drawback of loosing transparency�

Shared libraries present yet another problem for migration even within a binary compatible
environment� These libraries are shared read�only by multiple executing processes on a workstation�
When a process starts executing� certain variables within the user process are initialized by the
dynamic loader so that user can access these shared libraries� However on migration� these variables
are usually not valid and can lead to unpredictable results� Currently we restrict the scope of
migration to programs that perform static linking�

��� Portability

A practical aspect that needs to be considered in using any package is its portability to new archi�
tectures� Ideally� the porting process should involve only a compilation on the target workstation
with the appropriate switches� However� it is not as easy with the ULP package� The tasks that
need to be done can be divided into those that are speci�c to the portability of the ULP package
and those that are necessary for the correct operation of the ULP package�

The compilers on target workstation should be able to generate position independent code with
respect to some user accessible general register so that the object code can be loaded into any region
of a process virtual address space� Further� the operating system should provide for an interface
to dynamically load and link code and data modules into an existing virtual address space� Once
these tools and interface are available� routines then need to written for the the machine dependent
parts of ULP creation� termination� and context switch�

In addition� the target workstation should be con�gured with a load monitor daemon that
communicates with a global job scheduler� This provides the hook for the ULP library to perform
transparent migration�

��� Protection
 Debugging and Programming language

ULPs of an application execute within the same protection domain unlike operating system level
processes of an application� This brings up the issues of programming language and debugging�
Since this a user�level package� a normal operating system process debugger does not recognize
these ULPs reducing the ease in debugging of an application�

If the application is programmed in a language like C that allows language level pointer manip�
ulation� a buggy program could corrupt the contents of the ULP library or the context of another
local ULP leading to unpredictable bugs that are di�cult to isolate� However� if an application is
programmed in a language like FORTRAN that that does not allow pointer manipulation� then it
is much easier to isolate the bugs caused by one ULP from another� This argument about language
and protection can be extended to include the whole programming system� i�e�� given a language
that guarantees correctness and safety� it should be possible to have the operating system and all
applications to execute within a single protection domain� This goal of having a single protection
domain programming system however is outside the scope of this research�

� Conclusions

A user level process package is presented that aims to perform light weight over decomposition
and transparent migration for message passing parallel applications on shared multi�computers�
The application is expected to be programmed in terms virtual processors based on maximum
application level parallelism� The ULP package in conjunction with a load monitor and global
scheduler performs migration and recon�guration when necessary�

The design of the ULP package has been outlined and important issues that arise due this design
have been discussed� The package is currently being implemented on a network of HP ��������
series workstations�

References

�ABLL�
� T� E� Anderson� B� N� Bershad� E� D� Lazowska� and H� M� Levy� Scheduler activations�
E	ective kernel support for user�level management of parallelism� In Proceedings of the
��th ACM Symposium on Operating Systems Principles� pages ���
��� Paci�c Grove�
CA� October
��
� ACM�

�AE��� R� Agrawal and A� K� Ezzat� Processor sharing in NEST� A network of computer
workstations� In The �st International Conference on Computer Workstations� pages

������ IEEE�
����

�CAL���� J� Chase� F� Amador� E� Lazowska� H� Levy� and R� Little�eld� The Amber system�
Parallel programming on a network of multiprocessors� Technical Report �������
� Dept
of Computer Science and Engineering� University of Washington�
���� Also in
th
ACM SOSP�

�

�FM�� E� W� Felten and D� McNamee� Improving the performance of message passing appli�
cations by multithreading� Technical Report �������� Dept of Computer Science and
Engineering� University of Washington�
���

�LLM��� M� Litzkow� M� Livny� and M� Mutka� Condor a hunter of idle workstations� In The
�th International Conference on Distributed Computing Systems� pages
���

� San
Jose� CA� June
���� IEEE�

�MSLM�
� B� D� Marsh� M� L� Scott� T� J� LeBlanc� and E� P� Markatos� First�class user�level
threads� In Proceedings of the ��th ACM Symposium on Operating Systems Principles�
pages ���
��� Paci�c Grove� CA� October
��
� ACM�

�Op��� Ogi�pvm� A distributed load manager for shared workstation networks� Technical
report� Oregon Graduate Institute of Sci� � Tech��
���� In Preparation�

�PKB��
� M� L� Powell� S� R� Kleiman� S� Barton� D� Shah� D� Stein� and M� Weeks� SunOS
multi�thread architecture� In Usenix Symposium Proceedings� pages
�
�� Dallas� TX�
January
��
� USENIX�

�PM��� M� L� Powell and B� P� Miller� Process migration in DEMOS�MP� In Proceedings of

the �th Symposium on Operating System Principles� pages

��

�� October
����

�SCSK��� M� Swanson� T� Critchlow� L� Stoller� and R� Kessler� The design of the schizophrenic
workstation system� In Usenix Symposium Proceedings� pages �
����� Santa Fe� NM�
April
���� USENIX�

�SI��� J� M� Smith and J� Ioannidis� Implementing remote fork�� with checkpoint�restart�
IEEE Technical Committee on Operating Systems Newsletter� ��
��
��
�� Winter
����

�Sun��� V� S� Sunderam� PVM� A framework for parallel distributed computing� Concurrency	
Practice and Experience� �����
������ December
����

�

