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Abstract

We introduce a meta-heuristic to combine simulated annealing with local search methods
for CO problems. This new class of Markov chains leads to significantly more powerful
optimization methods than either simulated annealing or local search. The main idea is
to embed deterministic local search techniques into simulated annealing so that the chain
explores only local optima. It makes large, global changes, even at low temperatures, thus
overcoming large barriers in configuration space. We have tested this meta-heuristic for
the traveling salesman and graph partitioning problems. Tests on instances from public
libraries and random ensembles quantify the power of the method. Our algorithm is able
to solve large instances to optimality, improving upon state of the art local search methods
very significantly. For the traveling salesman problem with randomly distributed cities in a
square, the procedure improves on 3-opt by 1.6%, and on Lin-Kernighan local search by 1.3%.
For the partitioning of sparse random graphs of average degree equal to 5, the improvement
over Kernighan-Lin local search is 8.9%. For both CO problems, we obtain new champion
heuristics. A parallelized version of the algorithm is available electronically.

1 Introduction

In many science and engineering problems, one must find the minimum of a function of many
variables, hereafter called the cost function, where the arguments may be subject to specified
constraints. For some problems, there exist very efficient algorithms such as linear programming
for obtaining the optimal solution; however, for many combinatorial optimization (CO) problems,
no such efficient algorithms are known. Then it may be necessary to use heuristic algorithms:
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perhaps none of the exact algorithms can be used because of one’s computational limitations; or
simply, a good upper bound on the optimum may be adequate and obtaining a good sub-optimal
feasible solution is enough.

For these “hard” problems, the state of the art heuristics are often “simulated annealing”
and “local search” approaches. We have combined these two families of heuristic methods
into one, arriving at a much more powerful class of algorithms which we call “Chained Local
Optimization”. This meta-heuristic is very general since simulated annealing and local search
are viable techniques for most CO problems. It is also flexible, enabling the incorporation of
problem specific aspects of the CO problem. We have implemented the method [1, 2, 3, 4] for two
graph-based problems, the traveling salesman and the graph partitioning problems (TSP and
GPP). The results are significant performance gains for both the TSP and the GPP. Our method
improves the state of the art TSP and GPP local search heuristics, leading to new “champion”
heuristics. Furthermore, the algorithms can be and have been implemented efficiently in parallel.
The interested reader can obtain through ftp a code using the PVM [5, 6] protocol which will
run the algorithm on a network of workstations.

In section 2 we review the status of heuristics for the TSP and the GPP. Section 3 shows
how it is possible to combine simulated annealing and local searches. In practice, it is necessary
to adapt our meta-heuristic to the CO problem of interest; some of the problem specific aspects
are illustrated in section 4 in the case of the TSP and the GPP. Sections 5 and 6 summarize
the performances obtained. Section 7 explains how the algorithm was implemented in parallel.
Finally, definitions of the TSP and the GPP, along with specific details concerning the state of
the art local searches, can be found in two appendices.

2 Status of TSP and GPP heuristics

Traveling salesman heuristics

The important exact algorithms for TSP are branch and bound methods, and more recently
branch and cut methods [7]. These methods have progressed tremendously in the last ten years,
so that instances with N of several thousand have now been solved to optimality [8]. A library
of solved instances is available electronically [9], enabling users to test their algorithms.

In terms of heuristics, many methods have been proposed, such as direct tour construction,
local search [10, 11], simulated annealing [12, 13], genetic algorithms [14], and neural network
approaches [15]. The present consensus [16] is that the heuristic which leads to the best solutions
is a local search method due to Lin and Kernighan [11] (L-K). L-K is essentially a breadth-first
search (3-opt) followed by a depth-first search (using greedy 2-changes). It is the benchmark
against which all heuristics are tested. Simulated annealing (S-A) also gives very good tours,
but it is many times slower than L-K [16].

Graph partitioning heuristics

Exact methods for GPP are not as highly developed as for the TSP, and only recently has there
been an efficient integer linear programming approach [17]. Numerous heuristic methods have
been proposed, ranging from the general purpose simulated annealing [12] approach to methods
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such as the recursive spectral bisection [18] and compaction methods [19] which are best adapted
to graphs which have a built-in geometric structure. For generic (random) graphs, the consensus
[20] is that the “best” heuristics are simulated annealing [12] and a variable depth search due to
Kernighan and Lin [21], hereafter referred to as K-L.

Discussion

For most CO problems, and certainly for the TSP and the GPP, as the characteristic size N of
the instance grows, the number of configurations (feasible solutions) which are locally optimal
under a given local search method grows very quickly with N. For many instance ensembles,
the distribution of costs (per city or per vertex) found by local search (from a random start)
is a Gaussian of decreasing width as N becomes very large. This means that multiple tries of
algorithms such as L-K and K-L are less and less effective in improving the best found solution,
as IV grows. If lower cost solutions are truly desirable, it is necessary to improve the average
(e.g., the per city average) performance of the heuristic. There are two natural ways to do
this. First, one can try to extend the neighborhood that the local search considers, just as L-K
extends the neighborhood used in Lin’s local searches. Second, instead of sampling the locally
optimal configurations in a random way as is done by applying the local searches from random
starts, it might be possible to sample locally optimal configurations in a more efficient way. An
example is to sample the configurations along a Markov chain with a bias in favor of the lower
cost configurations. This type of sampling gives power to simulated annealing: in a long run,
one improves an already very good solution, one that probably has many features in common
with the exact optimum. The standard L-K and K-I algorithms, on the contrary, continually
restart from scratch, throwing away possibly useful information. Fortunately, it is possible to
combine the good features of simulated annealing and of local search to get the best of both
worlds.

3 Chained Local Optimization (C-L-O)

Simulated annealing does not take advantage of local search heuristics, so that instead of sam-
pling locally optimal configurations as does L-K or L-K, the Markov chain samples all config-
urations. The heart of our meta-heuristic comes from the realization that it would be a great
advantage to restrict the sampling of the Markov chain to the locally optimal configurations
only. Then the bias which the Markov chain provides would enable one to sample the best
locally optimal configurations more efficiently than local search repeated from random starts.
To do this, one has to find a way to go from one locally optimal configuration to another. This
is problem specific and will be discussed in the next section. For the moment, we give a generic,
problem-independent, viewpoint.

The algorithm proceeds as follows. Suppose the configuration is currently locally optimal
(according to some local search algorithm). This is labeled Start in figure 1. Now apply a
perturbation or “kick” to this configuration so as to significantly change Start. After the kick,
we reach the configuration labeled Intermediate in the figure. Standard simulated annealing
would impose the accept / reject procedure directly to Intermediate. Instead, we notice that it
is much better to first improve Intermediate by a local search and apply the accept / reject test
only afterwards. The local search takes us from Intermediate to the configuration labeled Trial
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Figure 1: Schematic representation of the objective function and of the configuration modifica-
tion procedure used in chained local optimization.

in figure 1. Now apply the accept / reject test. If Trialis accepted, one has managed to find an
interesting large change to Start. If Trial is rejected, return to Start.

The iteration of this procedure is what we call chained local optimization (C-L-O). It can be
thought of as a large-step Markov chain generalization of simulated annealing. The approach
allows one to do much better than simulated annealing — as shown in figure 1, the accept /
reject step is only applied after the configuration is returned to a local minimum. Many of
the barriers (the “ridges”) of the cost landscape are jumped over in one step by the algorithm.
Effectively, these barriers are smoothed or eliminated from the landscape. Simulated annealing,
by contrast, must climb over each of these ridges in a series of small steps, passing the accept /
reject test many times.

To implement the above methodology for an arbitrary problem requires two things: a good
local search method and a choice for the kick which is appropriate to the specific CO problem.
The first requirement is usually met by one of the widely used local search algorithms for the
problem of interest. For the TSP, we have chosen to use the Lin-Kernighan local search, and for
the GPP, the Kernighan-Lin local search. Both are the best general local search methods for
those problems. The second requirement, a choice of kick, should be adapted to both the CO
problem and to the local search method used. For the TSP, we have used a special 4-change
move because it is a topologically important modification which is missing in the L-K local
search; for the GPP, we do a large k-exchange using a semi-greedy procedure and a connectivity
constraint. Details are given in the next section. With these choices, the methodology gives rise
to major improvements over both simulated annealing and local search methods, leading to the
state of the art heuristics for the TSP and the GPP. Comparable improvements should occur
for other CO problems as long as the biased sampling of the Markov chain is more efficient than
random sampling. This will generally be possible whenever local search heuristics are useful.

Weaker forms of this meta-heuristic have been proposed. In [22], Li and Scheraga imple-
mented a Markov chain with a kick followed by a quench for a protein folding problem. The



algorithm did lead to some cost improvement, but the authors did not consider it a general
optimization method. Also, contrary to their claim, their algorithm does not satisfy detailed
balance, so a Boltzmann distribution of solutions is not obtained.? Baum ([23] and unpublished)
introduced the meta-heuristic as an optimization method applicable to CO problems exhibiting
“ultrametric” structure. He called his method iterated descent. Unfortunately, his choice of
local search and kick were inadequate, so he was not able to give compelling evidence that the
meta-heuristic was powerful. In a different spirit, a number of authors have embedded local
searches inside genetic algorithms (GA). In the earliest such work of which we are aware [14],
Muhlenbein et. al. used 2-opt to improve children configurations in a TSP before evaluating
the cost function. This enabled them to partly overcome the difficulty of combining two parents
to create a child of good quality. In [1], we show how the use of many parents can alleviate
this difficulty. The method was called a “post reduction procedure” because it is not totally
faithful to the GA approach. Finally, note that the C-L-O algorithm can be thought of as a
parthenogenetic algorithm: reproduction is done with a single parent. This restriction makes
it much easier to create good children, and so one can think of C-L-O, and especially parallel

C-L-O (Section 7), as a GA algorithm.

4 Adapting the kick to a specific CO problem

We begin with the TSP where the choice of a kick is clear-cut, elegant, and effective. Suppose for
simplicity that the local search embedded in C-L-O is 3—opt. If a kick consisting of a 3—change
is used, the 3—opt search will usually bring us back to the previous tour with no change. Thus it
is probably a good idea to go to at least a 4—change for the kick when the local search is 3—opt.
For other local search algorithms, a good choice for the kick would be a k—change that does not
occur in the local search. Surprisingly, it turns out that 2-opt, 3—opt, and especially L-K are
structured so that there is one kick choice that is natural for all of them. To see this, it is useful
to go back to the paper by Lin and Kernighan where they define sequential changes. It can be
shown that the check—out time for sequential k—changes can be completed in O(N) steps. All 2
and 3 changes are sequential, and the first non—sequential change occurs at k=4. We call it a
double-bridge change because of what it does to the tour (see figure 2). It can be constructed
by first doing a 2—change which disconnects the tour; the second 2—change must then reconnect
the two parts. The double-bridge change is the only non—sequential 4-change which cannot be
obtained by composing changes which are both sequential and leave the tour connected. The
motivation for this kick is evident from figure 2: it allows a peninsula to hop from one place in
the tour to another without much of an increase in the tour length. The double bridges can be
generated randomly, or with some bias towards allowing only nearby peninsulas to hop.

Note that if one includes this double-bridge change in the definition of the neighborhood
for a local search, check—out time requires O(N?) steps (essentially a factor N for each bridge).
Rather than considering these changes as part of the local search, we include such changes
stochastically through the kick, keeping a fast algorithm. Thus we can conclude that an analysis
of the changes used in local searches leads to a natural candidate for the kick.

We have been not able to obtain such an elegant solution in the case of the GPP, but
nevertheless the kick procedure leads to an effective algorithm. Let us first motivate the choice of

2See [1] for an explanation.



Figure 2: Example of a double-bridge kick (shown in dashed lines). The bridges rearrange the
connectivity of the tour on large scales.

kick appropriate for geometric graphs (see section 6). Upon visualizing the partitions obtained
by K-L using random starts, one sees immediately that K-I generates partitions with many
“islands”: the subsets A and B usually end up being highly disconnected, the partition is
fragmented. This suggests using a kick that exchanges vertices between these islands, and
motivates the following procedure for generating a kick. First, in each subset A and B, randomly
choose a vertex on a cut edge. These two vertices will be the “seeds”. Let X and Y be the set
of vertices in A and B which are going to be exchanged by the kick. The sets X and Y are
generated by growing a cluster around each seed: one adds sequentially to each cluster vertices
which belong to the “other” subset but which are nearest-neighbors of the current cluster. The
size of X and Y is chosen randomly ahead of time, but if one cluster can no longer grow (as
happens when the seed is in an island), then the cluster growth is stopped and one takes that
as the kick. It turns out that this choice of kick is very effective, not only for geometric graphs,
but also for random graphs as discussed in section 6.

5 Results for the TSP

We originally tested [1, 2] C-L-O on randomly generated instances with N points in a unit
square. For N up to 200, we were able to determine the optimum tour using a branch and
bound program. Then we ran chained local optimization using Lin-Kernighan as the embedded
local search. In all cases, the optimum tour was found rather quickly. (The average time for
finding the optimum was less than one minute on a Sun-SPARCstation for N < 200.) Then we
considered much larger instances where (our) exact method no longer found the optimum. For
those instances, we compare C-1-O with local search methods repeated from random starts. We
find that chained local optimization improves 3-opt by over 1.6%, and improves L-K by 1.3%.



Just how far C-L-O (with L-K) is from finding the true optimum is subject to debate, but the
Held-Karp lower bound shows that the average excess length is at most 0.84%. Previously, when
L-K was the champion heuristic, it was believed that the exact optimum was at 1% or more
above the Held-Karp bound, but C-L-O has lowered this number.

Finally, we tested the C-L-O algorithm on large, specific instances solved to optimality by
other groups and available [9]. These instances were: (1) LIN-318 [24]; (2) AT&T-532 [25]; and
(3) RAT-783 [26]. The numbers denote the number of cities, and the references give the authors
who first solved the problem to optimality using branch and cut methods. We found that C-L-O
was able to find the optimum solution to LIN-318 in minutes, and the solution to AT&T-532 and
RAT-783 in an hour on a Sun-SPARCstation. It is the only heuristic able to find the optimum
for these problems.

One of the most interesting results of the simulations is that for “moderate” sized problems
(such as the AT&T 532 or the 783 instances mentioned above), no “annealing” seems to be
necessary. It is observed that just setting the temperature to zero (no uphill moves at all) gives
an algorithm which can often find the exact optimum. The implication is that, for C-L-O, the
effective energy landscape has only one (or just a few) local minima! Almost all of the local
minima have been modified to saddle points by the extended neighborhood structure of the
algorithm.

6 Results for the GPP

In [3, 4], we compare C-L-O to K-I and to improvements to K-L. K-L is known to be significantly
better than simulated annealing for certain types of sparse graphs of relevance to load-balancing,
while being less good for random graphs [20]. Here we give the performances of our algorithm for
“geometric” graphs and for sparse random graphs. In [3], we also compare with graphs obtained
from real world load balancing instances. Again, the C-L-O algorithm improves significantly on
local search.

Performance on geometric graphs

This ensemble of graphs is motivated by load balancing problems. To construct a “geometric”
graph, vertices are placed at random inside the unit square; two vertices are connected if and
only if they are at a distance < R. (See figure 3 for an example). As R increases, the connectivity
as measured by d, the average degree of a vertex, increases. Neglecting boundary effects, one has
d = TR®N. Johnson et. al. [20] did a thorough comparison of local search, K-L, and simulated
annealing for these types of graphs. They found that a certain improvement to K-L, which they
called Line-K-L (L-K-L), in which one starts K-L. on a non-random partition, was by far the
best method.

We have compared the performance of L-K-I. and C-L-O. For conciseness, we consider only
the results for runs where 7" was set to 0 (zero temperature quenching). For our benchmarks,
five geometric graphs were randomly generated with d = 6 for each value N = 100, 250,500, and
1000. (We chose d = 6 because it is the average degree of two-dimensional unstructured meshes.)
For each graph, we ran L-K-L 2000 times, and did 20 C-L-O runs, each one consisting of 100 kicks
followed by a K-L. For “small” geometric graphs, (N = 100), both algorithms quickly found the
same best solution, so it is likely that the exact optimum is obtained for such small values of V.
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Figure 3: A geometric graph with N = 500 vertices and d = 10.

As N increased, C-L-O rapidly improved over L-K-L. Call “best ever” the best solution found
by any method. For ¥ = 250, 2000 L-K-Ls were not enough to find the best ever in 3 of the 5
graphs, and L-K-L never found the best ever for the N = 500 and 1000 graphs. C-L-O on the
other hand always found the best ever among its 20 runs for each graph. One can also compare
the average performances, taking into account the different speeds of the algorithms. One run
of 100 steps of C-L-O takes about the same computation time as 100 L-K-Ls. Thus from the
2000 L-K-L data points, we obtained, following the method described in [20], the distribution
of the best cut found in 100 independent trials. The mean and standard deviation were then
compared with the corresponding moments of the best found in each of the C-L-O runs. This
put L-K-L under a better light, but C-L-O was still the champion, and all the more so as N
increased. In particular, for N = 500, the average cut obtained by C-L-O was better than the
average best cut found with 100 L-K-Ls; and for N = 1000, the C-L-O cuts were almost always
better than the best cut found among the 2000 L-K-Ls.

This gives an idea of the relative performances of the algorithms on geometric graphs, and
shows that C-1-O is better than L-K-L. Note that we have not tried to fine-tune the temperature
to improve the performance of C-L-O. (We chose to present here the 7" = 0 results because the
annealing schedule is then parameter free.)

Performance on sparse random graphs

Random graphs (c.f. Appendix II) are universally used for benchmarks in graph partitioning
studies. There are two regimes. When the average degree of random graphs is small, the
min cut size does not grow linearly with N. When d becomes large on the other hand, the



relative difference in performance of algorithms decreases as 1/d, so that most algorithms perform
well on dense graphs. Thus we have chosen an intermediate value, d = 5, which leads to
cut sizes which scale with N at large N and which enables us to compare our results with
those in [20]. Denoting the cut size per vertex for the various algorithms by C(N), we find
Cr_r(500) = 0.49 £ 0.01. The error is quite large because the fluctuations from instance to
instance are important. Interestingly, we have found that the relative performance of algorithms
can be found to much higher accuracy because fluctuations in the performance ratios are about
20 times smaller. For N = 500, Johnson et. al. find Cs_4/Cx_r = 0.918, i.e., simulated
annealing (using their implementation) leads on average to an 8.2% improvement over K-L from
random starts. However, this does not take into the much greater cpu times necessary for S-A;
each S-A run represented about 100 K-Ls. Thus as above, we also compared the expected best
of 100 K-Ls: Cioox-1/Cr-1 = 0.925 £ 0.006. The parameter free (7' = 0) runs of C-L-O used
100 K-Ls, so again the time is roughly comparable with that of S-A and 100 random starts of
K-L. We find Ce_r,—0/Ck—1, = 0.909 £ 0.005 (the average is over five instances, each with 20
random starts of C-L-O). Thus at N = 500, C-L-O is almost 1% better than S-A and 9.1%
better than K-L. (Note that we get an additional 0.5% improvement by going to an annealing
schedule.) The same number of runs for N = 1000 confirm these numbers. We find for that size
Co—r—0/Cx—r = 0.911 £ 0.002, so that C-L-O improves K-L. by 8.9%. Note however, that in
taking the large N limit, it is necessary to scale the number of K-Ls used in C-L-O with N. Thus
the above result is for 200 K-Ls for each C-L-O run. This requirement is simply due to the fact
that each vertex should be successively considered as the starting point of the kick construction.
For reference, the relative performance keeping the number of K-Ls at 100 is 0.9157 £ 0.002. We
also find Cioox—1,/Cr—1 = 0.944 £ 0.003 and Cyoox—1./Cr—1, = 0.9404+0.003. Not surprisingly,
this confirms that repeated random starts is ineffective as N becomes large.

7 Parallel C-L-O

There are a number of problems where local optimizations parallelize well, but the TSP and the
GPP do not because the constraint of maintaining a feasible solution is not readily implemented
in a distributed system. Thus we have only considered implementations where a given processor
has a complete configuration in local memory. We work in the framework of a distributed
memory architecture and have implemented the codes on a network of workstations under the
PVM [5, 6] protocol.

The simplest way to parallelize chained local optimization is to have each processor run
independent Markov chains. This is analogous to running multiple random starts on a single
processor. If we have P processors, at any given time we should have a population of at least
P configurations. However, independent runs are not optimal because one should be able to
use the mutual information available in the current population. Thus we have implemented
branching and pruning among the configurations on the different processors (also called Dar-
winian selection for genetic algorithms and diffusion Monte Carlo in physics). This means that
the best configurations are duplicated at the expense of the worst ones. Branching and prun-
ing events occur relatively rarely (as measured in cpu time) so we obtain an efficient parallel
algorithm. Two processors may contain copies of the same configuration, but they are given
distinct random number seeds and so perform independent searches for profitable kick moves.



The resulting TSP and GPP codes, which have been made available through ftp, were written
to work in a heterogeneous environment. Thus all machines are used to near maximum capacity,
load balancing is achieved, and parallel speed-up (at least for tens of processors) is near-linear.

8 Conclusion

Many heuristic algorithms have been proposed for the TSP and the GPP. Nevertheless, the
standard general purpose algorithms, simulated annealing and local search (L-K and K-L), have
been the most effective methods, exceptions occurring only when the instances have special
structure which can be taken advantage of with other methods. In this paper, we showed how
it is possible to improve on these by combining them, leading to what we call Chained Local
Optimization, C-L-O. Rather than start each local search from scratch, one perturbs the current
configuration by a “kick” and then applies local search. Our algorithm samples only locally
optimal configurations, considerably reducing the search space. For the sampling to be effective,
it is necessary to adapt the “kick” to the kind of problem of interest, the smarter the choice
of kick, the better the performance. We have shown how to choose good kicks in the context
of the TSP and the GPP. For more general CO problems, the “kick” should correspond to a
modification of the configuration which is not easily accessible to the local search moves and
which is likely to maintain the low cost of the configuration. In our experience, chained local
optimization surpasses simulated annealing and local search methods, leading to a state of the
art optimization method both for speed and for solution quality. Finally, note that the C-L-O
meta-heuristic, being general, avoids brittleness, and can be very rapidly implemented once the
local search algorithm is coded.

Appendix I: The Traveling Salesman Problem

Given N cities labeled by ¢« = 1,...N, separated by distances d;;, the traveling salesman problem
(TSP) consists in finding the shortest tour, i.e., the shortest closed path visiting every city
exactly once. We consider only the symmetric TSP where d;; = d;;. The problem of finding the
optimum tour is NP-complete. The main exact algorithms are branch and bound methods, and
branch and cut methods. See Lawler et. al. for an overview [7]. These methods have progressed
tremendously in the last ten years, so that instances with IV of several thousand have now been
solved to optimality [8]. A library of solved instances is available electronically [9], enabling us
to test our algorithm.

Many heuristic methods have been proposed for the TSP, among them direct tour con-
struction, local search [10, 11], simulated annealing [12, 13], genetic algorithms [14], and neural
network approaches [15]. It is generally recognized that the heuristic which leads to the best
solutions is a local search method due to Lin and Kernighan [11] (L-K). Simulated annealing
(S-A) also gives very good tours, but it is many times slower than L-K [16]. Since our work
builds on both L-K and S-A, we give some further details below.

The Lin-Kernighan local search

L-K is a variable depth local search. One begins with a notion of a neighborhood structure on
the set of all feasible solutions (tours). Define the neighborhood of a tour, T', to be all those
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tours which can be obtained by changing at most k& edges of 7. One can search for local k-opt
tours [10] by starting with a random tour T} and constructing a sequence of tours T, T, ... Each
tour is obtained from the previous one by performing a k-change, i.e., by deleting k links and
reconnecting the loose ends so as to still have a tour. The k-changes are required to decrease the
length of the tour. When the process stops at a tour for which there is no possible improvement
under a k-change, the tour is k-opt. Lin [10] introduced and studied the case of k=2 and k=3,
and showed that one could get quite good tours quickly. In order to find the globally optimum
tour, he suggested repeating the search from many random starts. Later, Lin and Kernighan [11]
realized it was better to let k be variable. Essentially, their algorithm (L-K) is a breadth-first
search (3-opt) followed by a depth-first search (using greedy 2-changes). It is the benchmark
against which all heuristics are tested.

To quantify performances, one can measure the distribution of lengths obtained by running
heuristics on a number of instances. The “standard” instances are: (1) instances with cities
randomly distributed in the unit square; (2) instances with random distance matrices d;;; and (3)
publicly available instances solved to optimality by branch and cut methods [9]. The performance
of L-K on these problems has been studied [16, 27, 1, 2]. As N becomes large, the distribution
of lengths (normalized to the minimum) of tours found by L-K becomes Gaussian with a width
decreasing as N~1/2. Thus the performance of L-K is essentially described by the mean value of
this distribution. For instances in category (1), the mean of L-K is probably about 1.5% above
the minimum. For category (2) instances, it is theoretically known that the minimum length is
O(1) for large N. Interestingly, all local search methods except for L-K are rather poor for this
category, giving rise to a mean length which increases with N [27].

Simulated Annealing

Simulated annealing has been applied with success to the TSP [12, 13, 16, 20]. One starts by
constructing a sequence of tours Ty, T, etc... Each step of this chain is obtained by doing a
k-change (moving to a neighboring tour). Usually, k is 2 or 3. The stochastic construction of a
sequence of T’s can be viewed as a modification of local search to include “noisiness.” For the
TSP, S-A is significantly slower than Lin-Kernighan, but it has the advantage that one can run
for long times and slowly improve the quality of the solutions [28], eventually getting comparable
or even better results than L-K. (See for instance the studies of Johnson et. al. [16].) In the
simplest version of S-A, the elementary move when going from 7T, to T}, 41 is a random 2-change.
A number of studies have considered more complicated moves, and also non-random ways of
choosing the 2-changes. Indeed, if one uses only 2-changes, the final tour (when the temperature
has reached 0) is only guaranteed to be 2-opt. By including both 2 and 3-changes, the final tour
becomes 3-opt, leading to significant improvements [28].

Appendix II: The Graph Partitioning Problem

Consider an un-oriented graph G=(V,E), i.e., a collection of vertices V;, ¢ = 1,...N, and edges
E; ; (E; ; joins vertices V; and V;). The graph partitioning problem consists in finding a partition
of V into two subsets A and B of specified sizes so that the number of “cut” edges is minimized.
An edge I ; is cut if its endpoints belong to different subsets. We concentrate on the “standard”
formulation of the the graph partitioning problem in which NV is even and A and B are of equal
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size. (One then talks of the graph bi-partitioning problem, hereafter referred to simply as the
GPP.) This is not a significant restriction as unequal sizes can also be dealt with using the same
heuristics [21].

The GPP has great practical importance: it is a major ingredient in the problem of cell place-
ment for VLSI [29], chip layout, and program segmentation [30]. These optimization problems
use some form of graph partitioning or generalizations thereof [31] in their solution.

The GPP is NP-complete; exact methods are less developed than for the TSP, so that there
are few large instances which have been solved to optimality. For heuristics, the situation is quite
analogous to that for the TSP. The two “best” heuristics are a variable depth search heuristic
due to Kernighan and Lin [21] (K-L), and simulated annealing [12]. Again, these two algorithms
are comparable in terms of “quality” of solution, but S-A is substantially slower. However, these
algorithms as not very good for many practical instances such as occur in load balancing and
layout problems, so much effort has been spent finding problem specific improvements.

The Kernighan-Lin local search and extensions

Just as in the discussion on Lin-Kernighan, it is possible to introduce a notion of a k-change.
One calls a 1-change an exchange of one element of A against an element of B. It turns out that
1-opt is a mediocre algorithm, and that going to higher k-opt is very expensive and does not
lead to much improvement. Kernighan and Lin [21] suggested a variable k-change algorithm
which is much more effective than either 1-opt or 2-opt while being quite fast. Their algorithm
is essentially a greedy tabu l-exchange sweep of sets A and B: at each step, one exchanges the
most favorable (or least unfavorable) pair of elements. During the sweep, if one element has
already been exchanged, it can no longer be considered (it is tabu) for further exchange during
that sweep. If the cut size does not decrease during the sweep, the partition is defined to be
K-L optimal. If it does decrease, one takes the partition with the smallest cut during the sweep
and uses that as the starting point for another sweep. The cut size is a decreasing function of
sweep number, and one quickly reaches a locally optimal partition.

The performance of K-I. depends to a large extent on the ensemble of graphs one considers.
A natural ensemble of graphs is G(N, p) the ensemble of random graphs of N vertices, each pair
(Vi,V;) being connected with probability p. If p is kept N independent, the average min cut size
at large N is given by [32]:

< MinCut >= pN?/4 — UN*/?[p(1 - p)]"/?/2 U =0.38...

The first term is simply the contribution from a random cut; the second term is the improvement
due to the optimization. For sparse graphs, (e.g., p = O(1/N)), with an average degree d =
p(N — 1), the min cut size is proportional to N, < MinCut >= C(d)N. Most algorithms
perform well on the dense graphs, and less well on the sparse ones. The performances on this
last ensemble can be compared on the basis of the C'(d) obtained by the algorithms, i.e., on the
basis of the cut size per vertex. We find that K-L gives Cx_r(5) = 0.49 £ 0.01. See section 6
for further details.

For graphs which have an embedded structure such as occurs in load balancing applications,
K-L and S-A behave much more poorly. Thus quite a bit of effort has been spent on trying to
improve K-L for these types of graphs. One method, called compaction [19], combines pairwise
nearby vertices and runs K-L on the half-sized problem. Then the solution is unpacked to get
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a new trial partition which itself will be K-L-opted. This procedure can be done recursively,
giving rise to a hierarchical or multiple scales algorithm [33]. A second approach consists in
using better than random starting partitions. In particular, Berger and Bokhari [34], and later
Johnson et. al. [20] proposed using a dividing line for the initial partition, and applied K-L to
such starts. The resulting algorithm, called L-K-L, gives for “geometric” graphs (c.f. section
6) as good results as a hierarchical compaction approach while being much simpler. Thus in

that section we have restricted ourselves to presenting comparisons of our algorithm to K-L and
L-K-L.

Simulated Annealing

In S-A for the GPP, the natural choice is to exchange pairs of vertices between A and B. Another
possibility is to move one element at a time, but never let the imbalance be greater than one
or k elements [35]. Or, one can simply accept any imbalance, but include an extra penalty cost
which grows with the imbalance, so that on average the imbalance stays small [12]. It turns out
that moves consisting in exchanging elements pairwise are not efficient; it is simpler and faster
to allow any imbalance, and usually this is done in conjunction with a penalty which is quadratic
in the imbalance. Relaxing this hard constraint into a soft one gives the system new routes to
escape from local minima. Also, it has the advantage of reducing the size of neighborhoods from
N(N —1)/2 to N. A comparison of S-A and K-L was made in [20]: S-A is better than K-L for
random graphs, (they find for random graphs of average degree d = 5, Cs_4/Cg_1, = 0.918),
but significantly worse than K-L for “geometric” graphs.
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