
Type Parametric Programming

Tim Sheard
Paci�c Software Research Center

Oregon Graduate Institute of Science � Technology
����� NW Walker Road
Portland� OR ����	
	���

sheard�cse�ogi�edu

November ��� 	���

Abstract

We introduce a new abstraction mechanism� type parametric combinators� which sup�

ports abstraction over type constructors de�ned by datatype declarations found in func�

tional languages such as Miranda� Haskell� and ML� This mechanism allows the de�nition

and use of high level abstractions not possible in traditional languages and could be used

to de�ne user programmable derived instance declarations for type classes in Haskel� We

illustrate its use in an actual programming language by giving examples in the ML dialect

CRML�

� Introduction

Abstraction is the key to e�ective programming� Abstracting over values leads to functions�
abstracting over type parameters leads to parametric polymorphism� The thesis of this paper
is that abstracting over type constructors leads to even more e�ective programming�

The datatype declaration in ML introduces a new type constructor and a set of value con�
structors which have instances of this type constructor as their range� Type parametric pro�
gramming allows programmers to construct algorithms which operate over values of large classes
of datatypes where the class has some particular properties� For example� a structural equal�
ity function can be de�ned for datatypes whose value constructors have no functions in their
domain�

Such ideas were originated by category theorists� They de�ne types as the least �xed point of
a functor� then use this functor to capture recursion patterns over that type��� 	� 
�� In our work
we de�ne types using recursive type equations� in the manner of functional programmers� and
then derive the functor using type parametric combinators� This has the distinct advantage of
being familiar to a larger audience� and allows a richer class of recursion patterns to be de�ned�
notably binary functions�

Type parametric combinators allow higher level abstractions than found in traditional lan�
guages� and unify several ad hoc methods found in existing languages such as eq�types in ML�

�






and derivable type classes in Haskell� These ad hoc methods are limited becuase they cannot
be extended by the programmer�

In Sections 
 and 	 we de�ne a class of types and de�ne the notion of type parametric
combinators for this class� In Section � we use these combinators to construct templates for
a number of interesting classes of functions� In Section � we illustrate how theorems can be
proved for all functions generated by a particular template� In Section � we illustrate how type
parametric combinators could be used to address the longstanding problem of equality types
in ML and extend derived type classes in Haskell� In Section � we extend our techniques to
mutually recursive types� In Section � we illustrate how these techniques can be easily added
to traditional functional languages by the use of a phase distinction� We illustrate this by
describing an implementation we have built on top of ML we call CRML� Finally� in Section 

we conclude�

� Types

De�nition � �Type Constructors and Datatypes� The datatypes we consider are tagged
sums de�ned by recursive type equations of the form�

T ���� � � � � �p� � C��t�� j � � � j Cn�tn�

where T is the type constructor� ��� � � � � �p denote type variables� the Ci � ti � T ���� � � � � �p�
are names of value constructors �the tags�� and the ti are either�
� primitive types such as int or string
� type variables �in the set ��� � � � � �p�
� type formulas constructed using cross� �t� � t��� and arrow� �t� � t��
� instantiations of de�ned types other than T

� the instantiation� T ���� � � � � �p�� of T itself�
and the type T ���� � � � � �p� appears in only positive positions in each ti�

These types correspond to a large subset of the valid datatypes de�nable in ML� For example�
the following are tagged sum type de�nitions�

list��� � Nil j Cons��� list����
tree��� �� � Tip��� j Node�� � tree��� ��� tree��� ���
bush��� � Leaf��� j Fork�list�bush�����
nat � Zero j Succ�nat�
term��� � Var��� j Lam��� term���� j Apply�term���� term����

We assume that nullary constructors� like Nil� have domain� �� the type of the unique value of
the empty product ���

� Combinators� Functors

A combinator is an operator that combines or transforms functions to create new functions�
Composition� f � g� is an example of an in�x combinator�



	

A combinator� C�f�� � � � � fn�� is a functor if it preserves identities and composition� That is�

C�id�� � � � � idn� � id �
C�f�� � � � � fn� � C�g�� � � � � gn� � C�f� � g�� � � � � fn � gn�

A type parametric combinator is a combinator that takes a type as a parameter in addition
to its functional parameters and combines its functional parameters in ways that depend upon
its type parameter� Their intended use is as compile�time operators that construct functions
applicable to objects with a �xed static type� For example consider the simple combinator over
the functional parameters f and g�

C�f� g� t�� � � �� tn� � f

C�f� g� u� v� � g

C�f� g� � � id

It returns f if its type parameter is a product� g if it is an arrow� and the identity function
otherwise� A type parametric functor is a type parametric combinator that preserves identities
and composition for all types t�

C�id� t� � id �
C�f� t� � C�g� t� � C�f � g� t�

��� The Functor E

We are interested in using type parametric combinators to describe patterns of recursion for
an arbitrary type� Functions over T are typically de�ned by using n equations� one for each
constructor of T � Consider the type� list��� � Nil j Cons�� � list����� A function g over
lists often has 
 equations� one of which has the form�

g �Cons�x� xs�� � � � � �g xs� � � �

For any constructor function Ci the functor Ei�f� g� �which we will de�ne shortly� captures
precisely this notion of �pushing� the function g onto Ci�s recursive parameters� An intuitive
understanding of E can be obtained by inspecting the formulas�

list��� �
Nil j ENil�f� g� � id�
Cons��� list���� ECons�f� g� � f � g

For each constructor Ci� the right�hand side of the de�nition of Ei is formed from Ci�s domain
as follows� each constant type t is replaced by idt� each occurence of list��� is replaced by g�
each occurence of � is replaced by f � The operator � is lifted to operate on functions as well
as types by the rule �h� � � � �� hn��x�� � � �xn� � �h� x�� � � � � hn xn�� Note the two styles of



�

subscripting� For a �xed constructor we often subscript E with the constructor name rather
than with its index� For example� writing ENil rather than E�� using Ei when we talk about
an arbitrary constructor�

This construction is captured precisely for all tagged sum types by the type parametric
combinator M �

De�nition � �The Type Parametric Combinator M� Let T ��� be the left hand side of
some type equation then MT ��� is de�ned by�

MT ����f� g� �k� � fk ���

MT ����f� g� T ���� � g �
�

MT ����f� g� S�t�� � � � � tq�� � mapS �MT ����f� g� t��� � � � �M
T ����f� g� tq�� �	�

MT ����f� g� t�� � � �� tn� � �MT ����f� g� t��� � � � � � �MT ����f� g� tn�� ���

MT ����f� g� u� v� � � h� �MT ����f� g� v�� � h � �MT ����f� g� u�� ���

MT ����f� g� � � id ���

where � is ��� � � � � �p� and f is f�� � � � � fp� and S�t�� � � � � tq� is the instantiation of some �previ�
ously� de�ned type other than T �

Note that Equation 	 depends upon mapS � which we have not yet de�ned� The map for S can
be de�ned for any tagged sum type� We will do this shortly in De�nition ��

For a given constructor function� Ci � ti � T ���� both T ��� and the domain� ti� are �xed�
By abstracting over this information we obtain E that will �push� each fi into the components
with type �i� and g into the component with type T ��� ��� �� �	��

De�nition � �The Functor E� For each constructor� Ci � ti � T ���� of T we de�ne�

ET
i �f� g� � MT ���� f� g� ti �

When it is clear from the context� or we are talking about an arbitrary type T � we often omit
the superscript� writing Ei rather than ET

i �

Theorem � �Both M and E are functors� If for all constructors� Ci � ti � T � T appears
only covariantly in ti 	
�� �
� then the type parametric combinator� MT � is a functor� and ET

is a functor as well�
Proof� That M is a functor can be shown by induction over the structure of the types t

�omitted�� Then since each Ei is de�ned to be M with some �xed parameter� E is a functor
too�

A function over a value of type T � where T has N value constructors� can be de�ned by N

recursive equations� Type parametric combinators� like M � are used to �push� the recursive
calls onto the correct arguments� A Template is a pattern which describes each equation in an
manner which abstracts over the type constructors�



�

� Templates

We use combinators and functors in templates to de�ne a class of functions for large classes of
tagged sum types� The functor ES is used to generate the map for S �that was used in equation
	��

De�nition � �The Map Template� The template for mapS is�

�mapS�f�� � � � � � f�p�� � Ci � Ci � �E
S
i �f�� � � � � � f�p�mapS�f�� � � � � � f�p���

We call the equation above a template� since it describes how to construct the equations
that make up the functions body�

list��� �
Nil j ENil�f� g� � id� mapS h �Nil ��� � Nil��
Cons��� list���� ECons�f� g� � f � g mapS h �Cons�x� y�� � Cons�h x�mapS h y�

bush��� �
Leaf��� j ELeaf�f� g� � f mapS h �Leaf x� � Leaf�h x�
Fork�list�bush����� EFork�f� g� � maplist g mapS h �Fork L� � Fork�maplist�mapS h� L�

Note that the map template and M are mutually recursive� Since no type may be de�ned
in terms of a type not yet de�ned� this recursion is well founded� See Section � for methods of
handling mutually recursive types�

Ocasionally a single pattern in a template will not su�ce to de�ne a class of functions� We
illustrate this for the class we call the zero replacement functions� If a datatype de�nition has a
unique nullary constructor� Z� �Nil or Zero are examples of zeroes for types described above�
then a zero replacement� ZR y x� replaces all zeros in x with y�

De�nition 	 �The Zero Replacement template� The template for ZRS is�

�ZRS y� �Z � �Ky�

�ZRS y� �Ci � Ci � �E
S
i �id�ZR

S y�

where Z is the unique nullary constructor and K is the constant combinator such that� K y z �
y�

This example extends the template notation to one which is composed of a sequential list of
template patterns� For each constructor the template mechanism attempts to match the pat�
terns in the constructor position of the applicable template equation to the actual constructors�
If this is accomplished then the template equation is applied� If this fails the template mecha�
nism moves onto� and tries� the next template equation� It is an error for all template equations
to fail�

Note that the function append is a zero replacement for list� and that natural number
addition is a zero replacement for nat�

The well known fold or reduce function for lists can be generalized for any type by the use
of templates�



�

De�nition 
 �The Fold Template� The generic fold �catamorphism 	�
� for T is de�ned by
the following set of equations� one for each constructor Ci of T �

foldT �h� � Ci � hi � �E
T
i �id� fold

T �h���

where h � h�� � � � � hn and id is the vector of identity functions id�� � � � � � id�p�

list��� �
Nil j ENil�f� g� � id� fold h Nil � hNil��
Cons��� list���� ECons�f� g� � f � g fold h �Cons�x� y�� � hCons�x� fold h y�

where h � �hNil� hCons�

bush��� �
Leaf��� j ELeaf�f� g� � f fold h �Leaf x� � hL�x�
Fork�list�bush����� EFork�f� g� � maplist g fold h �Fork�L�� � hF �maplist�fold h� L�

where h � �hL� hF �

� Theorems About Type Parametric Programs

When a type paramtetric combinator has particular properties� complex theorems can often
be proven about all functions de�ned using that combinator� For example� because H and E

are functors� we may prove a number of interesting things about functions de�ned in templates
using E�

Theorem � �mapS is a Functor� For each type constructor� S� the function generated by
the map template� mapS� is a functor�

Proof� We need to prove map id � id and �map f� � �map g� � map�f � g�� Let Ci be an
arbitrary constructor of S� assume as induction hypothesis Ei�f�map id� � Ei�f� id� then�

�map id� � Ci

� Ci �Ei�id�map id� de�nition
� Ci �Ei�id� id� ind� hyp�
� Ci � id Ei is a functor
� Ci property of id

Assume as induction hypothesis Ei�h�map �f � g�� � Ei�h� �map f� � �map g�� then�

�map �f � g�� � Ci

� Ci �Ei�f � g�map�f � g�� de�nition
� Ci �Ei�f � g� �map f� � �map g�� ind� hyp�
� Ci �Ei�f�map f� �Ei�g�map g� Ei is a functor
� �map f� � Ci �Ei�g�map g� de�nition
� �map f� � �map g� � Ci de�nition



�

For a template with multiple patterns� like ZR� we will need two cases one for each of the
patterns in the template� Consider all functions h such that h�x� y� � �ZR y x�� It is easy to
prove that all such functions are assoicative� i�e� h�h�x� y�� z� � h�x� h�y� z��� This can be cast
in terms of ZR as �ZR z��ZR y x� � �ZR �ZR z y� x��

Theorem � �ZRS is associative� Let Ci be an arbitrary constructor of S� Then we need to
prove for all w� �ZR z��ZR y �Ci w�� � �ZR �ZR z y� �Ci w�� or �ZR z� � �ZR y� � Ci �
�ZR �ZR z y�� � Ci

Proof� Case 
� Ci � z where z is the unique nullary constructor�

� �ZR z� � �ZR y� � z
� �ZR z� � �K y� de�nition
� K�ZR z y� pointwise reasoning about K � ZR

� �ZR �ZR z y�� � z

Case �� Ci is any other constructor� Assume as induction Hypothesis Ei�f� �ZR z� �
�ZR y�� � Ei�f� �ZR �ZR z y���

� �ZR z� � �ZRy� �Ci

� �ZR z� � Ci �Ei�id� ZRy� de�nition ZR

� Ci �Ei�id� ZR z� �E�id� ZRy� de�ntion ZR

� Ci �Ei�id � id� �ZR z� � �ZRy�� E is a functor
� Ci �Ei�id� �ZR �ZR z y��� induction Hypothesis
� �ZR �ZR z y�� � Ci de�nition ZR

� Extending Deriveable Type Classes

In ML� equality functions are generated automatically for the the eq�types� In Haskel��� equality
is one of the derivable type classes��
� that can be automatcially generated� In both cases
such capability is built into the compiler and is not extendable by the programmer� Type
parametric combinators can provide a user extendible mechanism� To illustrate this we give a
type parametric combinator and template the derives equality functions for all datatypes not
containg functions�

��� Equality

Consider an equation for a function that recurses over a pair of constructed arguments simul�
taneously� such as an equality function� One of its parameters will be a pair of constructors�
�Ci �x� Cj �y�� A a binary template for such a function will contain a product of constructors�
�Ci�Cj�� For a type with N constructors� the template will describe N �N equations� one for
each distinct pair of constructors�

An equality function for a type T ��� will be parametrically polymorphic� and will take a
vector of equality functions� �f � as an argument as well as a pair of objects being compared�



�

These parameter functions test equality over the types �� For example consider the list equality
function�

equallist �f� �Nil�Nil� � true

equallist �f� �Cons�x� xs�� Cons�y� ys�� � f�x� y�� equallist �f� �xs� ys�
equallist �f� �Cons�x� xs�� Nil� � false

equallist �f� �Nil� Cons�y� ys�� � false

A template for this class of functions will be built upon a type parametric combinator� H �
de�ned below� Let Ci � d � T ��� be a constructor of T � De�ne Fi�f� g� � �HT ���� �f� g� d��� The
following template will generate a set of N �N equations that de�nes the equality function for
T �

�equal �f� � �Ci � Ci� � Fi� �f� �equal �f ��
�equal �f� � �Ci � Cj� � K false

In the template above the �rst template equation matches only if the constructors are identical�
In this case the combinator Fi is used� Otherwise� the second equation� which returns the
constant function that always returns false� is used�

The type parametric combinator� H � is given below� Note that is not a total function� it
does not handle arrow types� Thus the template for equalities is applicable to a large class of
constructed types� but not all types�

Let eqint� eqbool� and eqstring be the equality functions for the primitive types�

HT ����f� g� int� � eqint ���

HT ����f� g� string� � eqstring ���

HT ����f� g� bool� � eqbool �
�

HT ����f� g� �k� � f�k ����

HT ����f� g� T ���� � g ����

HT ����f� g� S�t�� � � � � tq�� � equalS �HT ����f� g� t��� � � � � H
T ����f� g� tq�� ��
�

HT ����f� g� t�� � � �� tn� � ���n � � �H
T ����f� g� t��� � � ��HT ����f� g� tn�� ��	�

����

where we extend the � notation to binary functions� �f��� � ��fn���x�� � � � � xn�� �y�� � � � � yn�� �
�f��x�� y��� � � � � fn�xn� yn��� and the distribution function� ��n is de�ned by ��n �x�� � � � � xn� �
x� � � � �� xn�

We have used templates to de�ne text based printing functions� and binary�format input and
output of arbitrary �function free� data structures� In addition we have used binary templates
and type parametric combinators to de�ne generalized zip and uni�cation functions as well�

� Mutually Recursive Types

Type parametric combinators and templates may be extended to mutually recursive types in
a straight�forward manner� Consider the mutually recursive types exp and dec below� These






types might be used to represent expressions and declarations in a simple ML like language
with only variables� applications� and let expressions�

exp��� � V ar��� j Let�dec���� exp���� j Apply�exp���� exp����
V

dec��� � V al��� exp���� j Fn�string � �� exp����

The free type variable � represents the carrier type for variables� for example it might be
string� A type parametric combinator for a set of n mutually recursive types� T����� � � � � �p��
� � � � Tn���� � � � � �p� each with p type variables will need to �combine� n � p functions� In this
section we will represent these functions as f � g� which stand for f�� � � � � fp and g�� � � � � gn� Thus
to extend the combinator M of De�nition 
 we need only modify Equation 
�

MT���������Tn����f� g� Ti���� � gi

Invocation of a template maps the template equations over all constructors of each of the
mutually recursive types� Thus the ordinary map for exp and dec is�

mapexp �f� �V ar x� � V ar�f x�
mapexp �f� �Let�d� e�� � Let�mapdec �f� d� mapexp �f� e�
mapexp �f� �Apply�g� e�� � Apply�mapexp �f� g� mapexp �f� e�

V

mapdec �f� �V al�s� e�� � V al�s� mapexp �f� e�
mapdec �f� �Fn�s� x� e�� � Fn�s� f x� mapexp �f� e�

	 Compile
time Re�ection

Type parametric combinators and templates have been implemented in the compile�time re�
�ective subset of ML we call CRML �Compile�time Re�ective ML��

Language tools usually consist of an object language in which the programs that are being
manipulated are expressed� and a meta language that is used to describe the manipulation� A
compile time re�ective language has features that allow it to be its own meta�language� In
CRML the object language is �encoded� �represented� in an ML datatype� There is a datatype
for each syntactic feature of ML� Object language manipulations are described by manipulations
of this �representation� datatype� CRML contains syntactic sugar �object brackets �� ���
and escape �� for constructing and pattern matching program representations that mirror
the corresponding actual programs� Thus� meta programs manipulating object programs may
either be expressed directly with the explicit constructors of the representation type or with
this �object�language� extension to ML�s syntax� Text within the object�language brackets ���
��� is parsed but not compiled� Its representation is returned as the value� Meta�language
expressions may be included in the object�language text by �escaping� them with a backquote
character ���� Samples of this feature are illustrated in the table below�



��

Concrete syntax Constructor based Object bracket based

x Id �x� �� x ��

f x App�Id �f�	Id �x�
 �� f x ��

App�g	y
 �� �g �y ��

�x	y
 Tuple � Id �x�	 Id �y� � �� �x	y
 ��

Tuple �x	 y� �� �x 
 �y ��

By using re�ection� generic operators� such as map and fold� have straight�forward im�
plementations by computing over the representations of datatype declarations� In CRML a
template de�nes a function which� when invoked� is mapped over all the constructors �and their
corresponding types� of a datatype declaration� constructing the object language value for the
representation of a function declaration� For example the template below de�nes a function
Gen map that generates the representation of a function declaration from a string �representing
the name of a type constructor��

fun template Gen�map T �

map f ��Ci of d �� r
 xbar
 � �Ci ���M r ��f�� ��map f�� d
 �xbar
�

The expression in the constructor position of the function de�nition� ��Ci of d �� r
 xbar
�
is treated as a pattern� Thus upon invocation of the template the variables in this pattern will
be bound to object language values particular to each constructor� Ci is bound to an object
language expression for the constructor function� xbar to an object language tuple expression
�of the appropriate �shape� to be Ci�s argument�� d to the object language type of Ci�s domain�
and r to the object language type of Ci�s range �which is the type T��

The rest of the expression is taken �literally� to generate one of the equations de�ning a
function� except that escaped expressions are evaluated at invocation time and �spliced� into
the equation� In this template M is an ML version of the combinatorM dicussed in the previous
sections� except it computes over the representations of types and expressions�

While an escape character inside object brackets or a template de�nition allows the results
of meta computations to be �spliced� into object programs� an unbracketed� escaped expression
is a simple interface to compile�time re�ection� It indicates that the escaped expression should
be evaluated �at compile�time� to compute the expression �or type� pattern� declaration� etc��
that replaces the escaped expression �much like macro expansion��

Thus� using the Gen map meta program� de�ned above� the program below calculates and
de�nes the map for list�

val maplist � let ��Gen�map �list�
 in map end�

as if the user had typed the following instead�

val maplist � let fun map f Nil � Nil

� map f �Cons�a�	a�

 � Cons�f a�	map f a�


in map end�

In this section we have given a taste of how compile�time re�ection is used to provide type
parametric programming capabilites� We have not attempted to give any formal semantics to
CRML� A semantics for compile�time re�ection can be found elsewhere ����



��

��� Single use Combinators

In the this section we give an illustration of the use of CRML to solve a problem which illustrates
an additional use for type parametric combinators beyond the generation of functions for a large
class of type constructors� When a type has many constructors it is often easier to construct a
function for such a type using a template than to code it by hand�

For example consider the type below which could encode the abstract syntax for a subset
of expressions in ML�

datatype �a exp �

Var of �a �
 x 



� Intconst of int �
 � 



� Boolconst of bool �
 true 



� Stringconst of string �
 �a� 



� Apply of �a exp 
 �a exp �
 f x 



� Prod of � �a exp
 list �
 ��	�z�
 



� Fn of �pat 
 �a exp
 list �
 fn x �� x�� 



� Case of �a exp 
 �pat 
 �a exp
 list� �
 case x of ��� 



A function which computes a list of variables which appears free in an exp could be code
by hand or by using a template� Here we construct a combinator which is intended to be used
only once� for this particular function� It describes what happens at each �point�� and lets the
template and type parametric combinator provide the plumbing which �connects� the points
together�

For this example we assume the existence of a function bound in pat which returns a list
of variables bound by a pattern� This function could be generated by a template as well but
choose to assume it to keep the size of the example manageable�

fun bind pat xlist �

listdiff �bound�in�pat pat
 xlist�

Thus if xlist is a list of variable free in x� and x appears in case �guarded� by the pattern p

the function bind computes those variables free in that clause of the case�
The type parametric combinator tpc computes a function for each type that appears in the

de�nition of exp� The template Free use the combinator to construct a function�

fun tpc t f � case t of

�t��a�� �� ��fn x �� �x���

� �t��a exp�� �� f

� �t�pat 
 �a exp�� �� ��fn �p	e
 �� bind p ��f e
��

� �t��t list�� �� ��concatl o �map ��tpc t f

��

� �t��t 
 �s�� �� ��fn �x	y
 �� ���tpc t f
 x
 � ���tpc s f
 y
��

� � �� ��fn � �� �����

fun template Free T �

free ��C of d �� r
 X
 � ��tpc d ��free��
 �X�



�


The function constructed by ��Free �exp�
 follows�

fun free �Var a�
 � �a��

� free �Intconst a�
 � ��

� free �Boolconst a�
 � ��

� free �Stringconst a�
 � ��

� free �Apply �a�	a�

 � �free a� � free a�


� free �Prod a�
 � concatl �map free a�


� free �Fn a�
 � concatl �map �fn �p	e
 �� patbound p �free e

 a�


� free �Case� �a�	a�

 � �free a� � concatl �map �fn �b�	b�
 �� patbound b� �free b�

 a�

The template Free connects all the �points� to construct a complete function� For larger types
this can be quite advantageous� We have used such techniques extensively in our implementa�
tion of CRML�

� Conclusion

Abstraction is the key to functional programming� Abstraction over type constructors leads to
style of programming that can be quite e�ective� Programming language designers have known
this for a long time� and ad�hoc� limited methods of providing this functionality have appeared
in a number of languages� Type parametric programming provides a user extendible� unifying
mechanism to supplant these ad�hoc methods� In addition type parametric combinators provide
a high level mechanism to prove properties about all functions generated by a particlar template�

Our experience in using these mechanisms to bootstrap our CRML system supports these
contentions� and we imagine a much more limited version of re�ection could be used to imple�
ment these ideas e�ectively in other more traditional languages�

�
 Acknowledgements

The author would like to thank Category Dick Kieburtz and Type�Safe Jim Hook for many
long conversations which help clarify these ideas�

References

��� J� Cockett and D� Spencer� Strong Categorical Datatypes I� In R� Seely� editor� Inter�
national Meeting on Category Theory 
��
� Canadian Mathematical Society Proceedings�
Vol� �	� pp ������
� AMS� Montreal� �


�

�
� H� Dybkj�r� Category Theory� Types� and Programming Languages� Ph�D� thesis� De�
partment of Computer Science� University of Copenhagen �DIKU�� May �

��

�	� M�M� Fokkinga Law and Order in Algorithmics Ph�D� thesis� University of Twente� Dept�
INF� Enschede� The Netherlands� �


�



�	

��� M�M� Fokkinga Calculate Categorically� Formal Aspects of Computing��


� Vol �� pp
��	��

�

��� T� Hagino� A Categorical Programming Language� Ph�D� thesis� University of Edinburgh�
�
���

��� J� Hook� R� Kieburtz� and T� Sheard� Generating Programs by Re�ection� Oregon Grad�
uate Institute Technical Report 

�����

��� J� Hook and T� Sheard� A Semantics of Compile�time Re�ection� Oregon Graduate
Institute Technical Report 
	���
�

��� P� Hudak� S�P� Jones� P� Wadler� et�al� Report on the Programming Language Haskell�
ACM Sigplan Notices� Volume 
�� No� �� May �




�
� E� Meijer� M� Fokkinga� and R� Paterson� Functional Programming with Bananas� Lenses�
Envelopes and Barbed Wire� In Proceedings of the �th ACM Conference on Functional
Programming Languages and Computer Architecture� Cambridge� Massachusetts� pp �
� 
���� August �

��

���� Ross Paterson� Control Structures from Types� �

	� Unpublished paper� Imperial College
and Queen Mary and West�eld College� University of London� London

���� T� Sheard� and L� Fegaras� A Fold for All Seasons� In Conference on Functional Program�
ming Languages and Computer Architecture� Copenhagen� June �

	� pp 
		�
�


��
� P� Wadler and S� Blott� How to make ad hoc polymorphism less ad hoc� In Proceedings
of the 
�th ACM Symposium on Principles of Programming Languages� pp ������ Austin�
Texas� Jan� �
�


��	� G� C� Wraith� A note on categorical datatypes� In D� H� Pitt� D� E� Rydeheard� P� Dybjer�
A� M� Pits and A� Poign!e� editors� Category Theory and Computer Science� volume 	�
 of
Lecture Notes in Computer Science� pp �����
�� Springer Verlag� �
�
�


