Type Parametric Programming

Tim Sheard
Pacific Software Research Center
Oregon Graduate Institute of Science & Technology
20000 NW Walker Road
Portland, OR 97291-1000

sheard@cse.ogi.edu

November 30, 1993

Abstract

We introduce a new abstraction mechanism, type parametric combinators, which sup-
ports abstraction over type constructors defined by datatype declarations found in func-
tional languages such as Miranda, Haskell, and ML. This mechanism allows the definition
and use of high level abstractions not possible in traditional languages and could be used
to define user programmable derived instance declarations for type classes in Haskel. We
illustrate 1ts use in an actual programming language by giving examples in the ML dialect

CRML.

1 Introduction

Abstraction is the key to effective programming. Abstracting over values leads to functions,
abstracting over type parameters leads to parametric polymorphism. The thesis of this paper
is that abstracting over type constructors leads to even more effective programming.

The datatype declaration in ML introduces a new type constructor and a set of value con-
structors which have instances of this type constructor as their range. Type parametric pro-
gramming allows programmers to construct algorithms which operate over values of large classes
of datatypes where the class has some particular properties. For example, a structural equal-
ity function can be defined for datatypes whose value constructors have no functions in their
domain.

Such ideas were originated by category theorists. They define types as the least fixed point of
a functor, then use this functor to capture recursion patterns over that type[4, 3, 9]. In our work
we define types using recursive type equations, in the manner of functional programmers, and
then derive the functor using type parametric combinators. This has the distinct advantage of
being familiar to a larger audience, and allows a richer class of recursion patterns to be defined,
notably binary functions.

Type parametric combinators allow higher level abstractions than found in traditional lan-
guages, and unify several ad hoc methods found in existing languages such as eg-types in ML,

and derivable type classes in Haskell. These ad hoc methods are limited becuase they cannot
be extended by the programmer.

In Sections 2 and 3 we define a class of types and define the notion of type parametric
combinators for this class. In Section 4 we use these combinators to construct templates for
a number of interesting classes of functions. In Section 5 we illustrate how theorems can be
proved for all functions generated by a particular template. In Section 6 we illustrate how type
parametric combinators could be used to address the longstanding problem of equality types
in ML and extend derived type classes in Haskell. In Section 7 we extend our techniques to
mutually recursive types. In Section 8 we illustrate how these techniques can be easily added
to traditional functional languages by the use of a phase distinction. We illustrate this by
describing an implementation we have built on top of ML we call CRML. Finally, in Section 9
we conclude.

2 Types

Definition 1 (Type Constructors and Datatypes) The datatypes we consider are tagged
sums defined by recursive type equations of the form:

T(al,...,ap):Cl(tl) | |Cn(tn)

where T is the type constructor, aq,...,a, denote type variables, the C; : t; — T(aq,...,ap)
are names of value constructors (the tags), and the t; are either:

e primitive types such as int or string

o type variables (in the set oq,...,a,)

e type formulas constructed using cross, (t1 X t3), and arrow, (t; — t3)

o instantiations of defined types other than T

o the instantiation, T(oq, ..., ap), of T itself.
and the type T(aq,. .., a,) appears in only positive positions in each t;.

These types correspond to a large subset of the valid datatypes definable in ML. For example,
the following are tagged sum type definitions:

list(a) = Nil | Cons(a x list(a))

tree(a, 3) = Tip(a) | Node(f X tree(a, 3) X tree(a, 3))

bush(a) = Leaf(a) | Fork(list(bush(a)))

nat = Zero | Succ(nat)

term(e) = Var(e) | Lam(a x term(a)) | Apply(term(a) X term(a))

We assume that nullary constructors, like N[, have domain, 1, the type of the unique value of
the empty product ().

3 Combinators, Functors

A combinator is an operator that combines or transforms functions to create new functions.
Composition, f o g, is an example of an infix combinator.

A combinator, C(f1,..., fn),is a functor if it preserves identities and composition. That is:

Clidy, ... id,) = id A
C(flv'"7fn)oc(glv"'7gn) = C(floglv"'vfnogn)

A type parametric combinator is a combinator that takes a type as a parameter in addition
to its functional parameters and combines its functional parameters in ways that depend upon
its type parameter. Their intended use is as compile-time operators that construct functions
applicable to objects with a fixed static type. For example consider the simple combinator over
the functional parameters f and g:

C[fvgvtlx---th] = f
Clf,g,u— 7] =9
Clf.g, -] = ud

It returns f if its type parameter is a product, ¢ if it is an arrow, and the identity function
otherwise. A type parametric functor is a type parametric combinator that preserves identities
and composition for all types ¢:

Clid,t) = id A
C(f,t)oC(g,t) C(fog,t)

3.1 The Functor E

We are interested in using type parametric combinators to describe patterns of recursion for
an arbitrary type. Functions over T are typically defined by using n equations, one for each
constructor of 7. Consider the type: list(a) = Nil | Cons(a x list(a)). A function g over
lists often has 2 equations, one of which has the form:

g (Cons(z,zs)) = ... (gxs) ...

For any constructor function C; the functor F;(f,g) (which we will define shortly) captures
precisely this notion of “pushing” the function g onto C}’s recursive parameters. An intuitive
understanding of F can be obtained by inspecting the formulas:

list(a) =
Nil | Ena(f,g) = idy
Cons(a x list(a)) | Feons(f,9) = f X g

For each constructor C;, the right-hand side of the definition of F; is formed from C';’s domain
as follows: each constant type t is replaced by id;, each occurence of list(«) is replaced by g,
each occurence of a is replaced by f. The operator X is lifted to operate on functions as well
as types by the rule (hy X ... X hy)(21,...2,) = (k1 @1,...,h, 2,). Note the two styles of

subscripting. For a fixed constructor we often subscript £ with the constructor name rather
than with its index. For example, writing F;; rather than Fq, using F; when we talk about
an arbitrary constructor.

This construction is captured precisely for all tagged sum types by the type parametric
combinator M.

Definition 2 (The Type Parametric Combinator M) Let T(@) be the left hand side of
some type equation then MT@ is defined by:

MT®[T g 0] = fu (1)

MIO[F g 7(@)] = g 2)
MT(E)[?vgas(tly...,tq)] = mapS (MT(E)[Tvgvtl]v'"7MT(E)[7797tq]) (3)
MI@[F g tix...xt,] = (MT®[F,g,t1]) x ... x (MTE[F, g,t,]) (4)
MO F g =] = Ab (MO g ulyoho (M Fgal) (5)

MT@[F.g,] = id (6)

where @ is ay, ... ap, and [is fi,..., [p, and S(t1,...,t,) is the instantiation of some (previ-

ously) defined type other than T.

Note that Equation 3 depends upon map®, which we have not yet defined. The map for S can
be defined for any tagged sum type. We will do this shortly in Definition 4.

For a given constructor function, C; : t; — T(@), both T'(@) and the domain, ¢;, are fixed.
By abstracting over this information we obtain F that will “push” each f; into the components
with type «;, and ¢ into the component with type T'(@) [5, 1, 13].

Definition 3 (The Functor E) For each constructor, C; : t; — T(@), of T we define:
Ef(F.9) = MT®[], g,]

When it is clear from the context, or we are talking about an arbitrary type T, we often omit
the superscript, writing F; rather than EI.

Theorem 1 (Both M and E are functors) If for all constructors, C; : t; — T, T appears
only covariantly in t; [10, 2], then the type parametric combinator, M™, is a functor, and ET
s a functor as well.

Proof: That M is a functor can be shown by induction over the structure of the types t
(omitted). Then since each F; is defined to be M with some fized parameter, F is a functor
too.

A function over a value of type T', where T" has N value constructors, can be defined by N
recursive equations. Type parametric combinators, like M, are used to “push” the recursive
calls onto the correct arguments. A Template is a pattern which describes each equation in an
manner which abstracts over the type constructors.

4 Templates

We use combinators and functors in templates to define a class of functions for large classes of
tagged sum types. The functor £* is used to generate the map for S (that was used in equation
3).

Definition 4 (The Map Template) The template for map® is:
(maps(foqv .- '7fozp)) o Cz = Cz o (Ezs(foqv .- '7fozp7maps(foz17 .- '7fozp)))

We call the equation above a template, since it describes how to construct the equations
that make up the functions body.

list(a) =
Nl | Exa(fq) = idn map® h (Nil() = Vil
Cons(a x list(a)) | Eoons(fo9)=f X g map” h (Cons(z,y)) = Cons(h z,map” h y)
bush(a) =
Leafla) | Erear(fo9)=f map® h (Leaf x) = Leaf(h)
Fork(list(bush(a))) | Epori(f,g) = map'*t g | map® h (Fork L) = Fork(map"*(map® h) L)

Note that the map template and M are mutually recursive. Since no type may be defined
in terms of a type not yet defined, this recursion is well founded. See Section 7 for methods of
handling mutually recursive types.

Ocasionally a single pattern in a template will not suffice to define a class of functions. We
illustrate this for the class we call the zero replacement functions. If a datatype definition has a
unique nullary constructor, Z, (Nil or Zero are examples of zeroes for types described above)
then a zero replacement, ZR y z, replaces all zeros in & with y.

Definition 5 (The Zero Replacement template) The template for ZR® is:

(ZR*y)oZ = (Ky)
(ZR% y)o C; = Cio(E(id, IR y)

where Z is the unique nullary constructor and K is the constant combinator such that: K y z =
Y.

This example extends the template notation to one which is composed of a sequential list of
template patterns. For each constructor the template mechanism attempts to match the pat-
terns in the constructor position of the applicable template equation to the actual constructors.
If this is accomplished then the template equation is applied. If this fails the template mecha-
nism moves onto, and tries, the next template equation. It is an error for all template equations
to fail.

Note that the function append is a zero replacement for list, and that natural number
addition is a zero replacement for nat.

The well known fold or reduce function for lists can be generalized for any type by the use
of templates.

Definition 6 (The Fold Template) The generic fold (catamorphism [9]) for T is defined by
the following set of equations, one for each constructor C; of T':

foldT(R) o C; = h; o (EF (id, fold (7))

where h = hy, ..., h, and id is the vector of identity functions id,,, .. iy,
list(a) =
Nil | Ena(f,g) = idy fold h Nil = hn()

Cons(a x list(a)) | Eoons(f,9) = f X g fold h (Cons(z,y)) = hoons(z, fold h y)
where i = (hnit, hoons)

bush(a) =
Leafla) | Erear(fo9)=f fold h (Leaf) = hp(2)
Fork(list(bush(a))) | Eror(f,g) = map't g | fold h (Fork(L)) = hp(map"*t(fold h) L)
where h = (hp,hF)

5 Theorems About Type Parametric Programs

When a type paramtetric combinator has particular properties, complex theorems can often
be proven about all functions defined using that combinator. For example, because H and F
are functors, we may prove a number of interesting things about functions defined in templates
using F.

Theorem 2 (map® is a Functor) For each type constructor, S, the function generated by
the map template, map®, is a functor.

Proof: We need to prove map id = id and (map f)o(map g) = map(fog). Let C; be an
arbitrary constructor of S, assume as induction hypothesis E;(f, map id) = E;(f,id) then:

(map id) o C;

= C;o E;(id,mapid) definition
= (0 Fi(id,id) ind. hyp.
= Cio01d FE; is a functor
= property of id

Assume as induction hypothesis E;(h,map (fog)) = Ei(h,(map f)o (map g)) then:

(map (fog))oC;

= CioFEi(fog,map(foyg)) definition
= CioEi(fog,(map f)o(mapyg)) ind. hyp.
= Cio Ei(f,map f)o Ei(g,mapg) FE; is a functor

oCyo Fi(g,mapg) definition
o (map g)o C; definition

(
P
3
Q
3
~
R e

For a template with multiple patterns, like Z R, we will need two cases one for each of the
patterns in the template. Consider all functions h such that h(z,y) = (ZR y x). It is easy to
prove that all such functions are assoicative, i.e. h(h(z,y),z) = h(z,h(y,z)). This can be cast

in terms of ZR as (ZR z)(ZRyz) = (ZR(ZR z y)).

Theorem 3 (ZR® is associative) Let C; be an arbitrary constructor of S. Then we need to
prove for all w: (ZR z)(ZR y (C; w)) = (ZR (ZR z y) (C; w)) or (ZR z)o(ZR y)o C; =
(ZR (ZR z y)) o C;

Proof: Case 1: C; = z where z is the unique nullary constructor.

= (ZRz)o(ZRy)oz

= (ZR z)o (K y) definition
= K(ZR zy) pointwise reasoning about K & Z R
= (ZR(ZR zy))oz

Case 2: C; is any other constructor. Assume as induction Hypothesis Fi(f,(ZR z) o
(ZRy)) = E(f.(ZR (ZR 2 y)))

= (ZR z)o (ZRy) o C;

= (ZR z)o C; o E(id, ZRy) definition ZR
= CioFi(id, ZR z) o E(id, Z Ry) defintion ZR
= CioFi(idoid,(ZR z)o (ZRy)) F is a functor
= CioFi(id,(ZR (ZR z y))) induction Hypothesis
= (ZR(ZR z y))o C; definition ZR

6 Extending Deriveable Type Classes

In ML, equality functions are generated automatically for the the eg-types. In Haskel[8] equality
is one of the derivable type classes[12] that can be automatcially generated. In both cases
such capability is built into the compiler and is not extendable by the programmer. Type
parametric combinators can provide a user extendible mechanism. To illustrate this we give a
type parametric combinator and template the derives equality functions for all datatypes not
containg functions.

6.1 Equality

Consider an equation for a function that recurses over a pair of constructed arguments simul-
taneously, such as an equality function. One of its parameters will be a pair of constructors,
(Ciz, C;y). A a binary template for such a function will contain a product of constructors,
(Ci x (). For a type with N constructors, the template will describe N * N equations, one for
each distinct pair of constructors.

An equality function for a type T'(@) will be parametrically polymorphic, and will take a
vector of equality functions, f, as an argument as well as a pair of objects being compared.

These parameter functions test equality over the types @. For example consider the list equality
function:

equal”™ (f) (Nil, Nil) = true

equal’™ (f) (Cons(z,xs),Cons(y,ys)) = flz,y)A equal™t (f) (zs,ys)
equal’™t (f) (Cons(z,xs), Nil) = false

equal®™t (f) (Nil,Cons(y,ys)) = false

A template for this class of functions will be built upon a type parametric combinator, H,
defined below. Let C; : d — T(@) be a constructor of T'. Define Fi(f,g) = (HT(E) [f,g,d]). The

following template will generate a set of NV * N equations that defines the equality function for

T: _ _ _
(equal f)o(C;x Cy) = F(/f,(equal [))
(equal f)o(C;x C;) = K false

In the template above the first template equation matches only if the constructors are identical.
In this case the combinator F; is used. Otherwise, the second equation, which returns the
constant function that always returns false, is used.

The type parametric combinator, H, is given below. Note that is not a total function, it
does not handle arrow types. Thus the template for equalities is applicable to a large class of
constructed types, but not all types.

Let eqint, €qboor, and €qsiing be the equality functions for the primitive types:

HT® [f,g,int] = eqns (7

H" (], g, string] = eqsiring (8
HT®)[F. g.bool] = eqpool (9
HT@)[10

—_
—_

e’ e’ e e e e’ e N

=g
= equal® (HT [F.g.t). . T(a)[f g: 1))
= (7))o (HT®[F,g,t:] ><HT [T, 9.ta])

—
[N)

]

]

]
fig,01] = fa,
g]

]

]

— =
S oo

o~~~ o~

where we extend the x notation to binary functions: (fi xX...X f)((@1,.. ., 20), (Y1, -+, Yn)
(fi(z1,91)s -y fal@n,yn)), and the distribution function, 7, is defined by 7\ (z1,...,2,) =
R ANN AN

We have used templates to define text based printing functions, and binary-format input and
output of arbitrary (function free) data structures. In addition we have used binary templates
and type parametric combinators to define generalized zip and unification functions as well.

7 Mutually Recursive Types

Type parametric combinators and templates may be extended to mutually recursive types in
a straight-forward manner. Consider the mutually recursive types exp and dec below. These

types might be used to represent expressions and declarations in a simple ML like language
with only variables, applications, and let expressions:

\ exp(a) = Var(a) | Let(dec(a) x exp(a)) | Apply(exp(a) X exp(a))
dec(a) = Val(a x exp(a)) | Fn(string x a X exp(a))

The free type variable a represents the carrier type for variables, for example it might be

string. A type parametric combinator for a set of n mutually recursive types, Ti(aq, ..., ap),
., Th(aq,. .., a,) each with p type Variables will need to “combine” n + p functions. In this
section we will represent these functions as f,q, which stand for f1,..., f, and ¢g1,...,¢,. Thus

to extend the combinator M of Definition 2 we need only modify Equation 2:
MEE 1] 5 Tw) =

Invocation of a template maps the template equations over all constructors of each of the
mutually recursive types. Thus the ordinary map for exp and dec is:

mapeggp (f) (VQT $) = Var(f $)

map=® (f) (Let(d,e)) = Let(map® (f)d, map™® (f)e)

map™? (f) (Apply(g,e)) = Apply(map*™® (f) g, map™® (f)e)
A

map™ (f) (Val(s,e)) = Val(s, map™? (f)e)

mapdec (f) (Fn(sv €, 6))

Fn(s, [o, map™? (f)e)

8 Compile-time Reflection

Type parametric combinators and templates have been implemented in the compile-time re-
flective subset of ML we call CRML (Compile-time Reflective ML).

Language tools usually consist of an object language in which the programs that are being
manipulated are expressed, and a meta language that is used to describe the manipulation. A
compile time reflective language has features that allow it to be its own meta-language. In
CRML the object language is “encoded” (represented) in an ML datatype. There is a datatype
for each syntactic feature of ML. Object language manipulations are described by manipulations
of this “representation” datatype. CRML contains syntactic sugar (object brackets << >>,
and escape ‘) for constructing and pattern matching program representations that mirror
the corresponding actual programs. Thus, meta programs manipulating object programs may
either be expressed directly with the explicit constructors of the representation type or with
this “object-language” extension to ML’s syntax. Text within the object-language brackets (<<
>>) is parsed but not compiled. Its representation is returned as the value. Meta-language
expressions may be included in the object-language text by “escaping” them with a backquote
character (¢). Samples of this feature are illustrated in the table below:

10

Object bracket based ‘

‘ Concrete syntax ‘ Constructor based

X I4d "x" <L x >

f x App(Id "£",Id "x") << £ x>
App(g,y) < ‘g ‘y »

(x,y) Tuple [Id "x", Id "y" 1 | << (x,y) >
Tuple [x, yl << fx o*x ‘y >

By using reflection, generic operators, such as map and fold, have straight-forward im-
plementations by computing over the representations of datatype declarations. In CRML a
template defines a function which, when invoked, is mapped over all the constructors (and their
corresponding types) of a datatype declaration, constructing the object language value for the
representation of a function declaration. For example the template below defines a function
Gen.map that generates the representation of a function declaration from a string (representing
the name of a type constructor).

fun template Gen_map T =
map £ ((Ci of d -> r) xbar) = ‘Ci (‘(M r <<£>> <<map £>> d) ‘xbar);

The expression in the constructor position of the function definition, ((Ci of d -> r) xbar),
is treated as a pattern. Thus upon invocation of the template the variables in this pattern will
be bound to object language values particular to each constructor. Ci is bound to an object
language expression for the constructor function, xbar to an object language tuple expression
(of the appropriate “shape” to be Ci’s argument), d to the object language type of Ci’s domain,
and r to the object language type of Ci’s range (which is the type T).

The rest of the expression is taken “literally” to generate one of the equations defining a
function, except that escaped expressions are evaluated at invocation time and “spliced” into
the equation. In this template M is an ML version of the combinator M dicussed in the previous
sections, except it computes over the representations of types and expressions.

While an escape character inside object brackets or a template definition allows the results
of meta computations to be “spliced” into object programs, an unbracketed, escaped expression
is a simple interface to compile-time reflection. It indicates that the escaped expression should
be evaluated (at compile-time) to compute the expression (or type, pattern, declaration, etc.)
that replaces the escaped expression (much like macro expansion).

Thus, using the Gen_map meta program, defined above, the program below calculates and
defines the map for list:

val maplist = let ‘(Gen_map "list") in map end;
as if the user had typed the following instead:

val maplist = let fun map f Nil = Nil
| map £ (Cons(al,a2)) = Cons(f al,map f a2)
in map end;

In this section we have given a taste of how compile-time reflection is used to provide type
parametric programming capabilites. We have not attempted to give any formal semantics to
CRML. A semantics for compile-time reflection can be found elsewhere [7].

11

8.1 Single use Combinators

In the this section we give an illustration of the use of CRML to solve a problem which illustrates
an additional use for type parametric combinators beyond the generation of functions for a large
class of type constructors. When a type has many constructors it is often easier to construct a
function for such a type using a template than to code it by hand.

For example consider the type below which could encode the abstract syntax for a subset
of expressions in ML.

datatype ‘’a exp =

Var of ’a (x x *)
I Intconst of int (x 5 *)
I Boolconst of bool (* true *)
I Stringconst of string (x tat *)
| Apply of ’a exp * ’a exp (x £ x *)
| Prod of (’a exp) list (x (1,"z") *)
| Fn of (pat * ’a exp) list (* fn x => x+1 *)
| Case of ’a exp * (pat * ’a exp) list; (% case x of ... %)

A function which computes a list of variables which appears free in an exp could be code
by hand or by using a template. Here we construct a combinator which is intended to be used
only once, for this particular function. It describes what happens at each “point”, and lets the
template and type parametric combinator provide the plumbing which “connects” the points
together.

For this example we assume the existence of a function bound_in_pat which returns a list
of variables bound by a pattern. This function could be generated by a template as well but
choose to assume it to keep the size of the example manageable.

fun bind pat xlist =
listdiff (bound_in_pat pat) xlist;

Thus if x1ist is a list of variable free in x, and x appears in case “guarded” by the pattern p
the function bind computes those variables free in that clause of the case.

The type parametric combinator tpc computes a function for each type that appears in the
definition of exp. The template Free use the combinator to construct a function.

fun tpc t £ = case t of
<t<’a>> => «<fn x => [x]>>
| <t<’a exp>> => £
| <t<pat * ’a exp>> => <<fn (p,e) => bind p (‘f e)>>
| <t<‘t list>> => <<concatl o (map ‘(tpc t £))>>
| <t<ft * ‘8>> => <<fn (x,y) => (‘(tpc t £) x) @ (‘(tpc s £) y)>>
| _ => <«fn _ => [1>>;

fun template Free T =
free ((C of d -> r) X) = ‘(tpc d <<free>>) ‘X;

12

The function constructed by ¢(Free "exp") follows:

fun free (Var al) = [al]

| free (Intconst al) = []

| free (Boolconst al) = []

| free (Stringconst al) = []

| free (Apply (al,a2)) = (free al @ free a2)

| free (Prod al) = concatl (map free al)

| free (Fn al) = concatl (map (fn (p,e) => patbound p (free e)) al)

| free (Case2 (al,a2)) = (free al @ concatl (map (fn (b1,b2) => patbound bl (free b2)) a2

The template Free connects all the “points” to construct a complete function. For larger types
this can be quite advantageous. We have used such techniques extensively in our implementa-

tion of CRML.

9 Conclusion

Abstraction is the key to functional programming. Abstraction over type constructors leads to
style of programming that can be quite effective. Programming language designers have known
this for a long time, and ad-hoc, limited methods of providing this functionality have appeared
in a number of languages. Type parametric programming provides a user extendible, unifying
mechanism to supplant these ad-hoc methods. In addition type parametric combinators provide
a high level mechanism to prove properties about all functions generated by a particlar template.

Our experience in using these mechanisms to bootstrap our CRML system supports these
contentions, and we imagine a much more limited version of reflection could be used to imple-
ment these ideas effectively in other more traditional languages.

10 Acknowledgements

The author would like to thank Category Dick Kieburtz and Type-Safe Jim Hook for many
long conversations which help clarify these ideas.

References

[1] J. Cockett and D. Spencer. Strong Categorical Datatypes I. In R. Seely, editor, Inter-
national Meeting on Category Theory 1991, Canadian Mathematical Society Proceedings,
Vol. 13, pp 141-169. AMS, Montreal, 1992.

[2] H. Dybkjeer. Category Theory, Types, and Programming Languages. Ph.D. thesis, De-
partment of Computer Science, University of Copenhagen (DIKU), May 1991.

[3] M.M. Fokkinga Law and Order in Algorithmics Ph.D. thesis, University of Twente, Dept.
INF, Enschede, The Netherlands. 1992.

13

[4] M.M. Fokkinga Calculate Categorically! Formal Aspects of Computing(1992) Vol 4, pp
673-692.

[5] T. Hagino. A Categorical Programming Language. Ph.D. thesis, University of Edinburgh,
1987.

[6] J. Hook, R. Kieburtz, and T. Sheard. Generating Programs by Reflection. Oregon Grad-
uate Institute Technical Report 92-015.

[7] J. Hook and T. Sheard. A Semantics of Compile-time Reflection. Oregon Graduate
Institute Technical Report 93-019.

[8] P. Hudak, S.P. Jones, P. Wadler, et.al. Report on the Programming Language Haskell.
ACM Sigplan Notices, Volume 27, No. 5, May 1992

[9] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses,
Envelopes and Barbed Wire. In Proceedings of the 5th ACM Conference on Functional
Programming Languages and Computer Architecture, Cambridge, Massachusetts, pp 124—
144, August 1991.

[10] Ross Paterson. Control Structures from Types, 1993. Unpublished paper. Imperial College
and Queen Mary and Westfield College, University of London, London

[11] T. Sheard, and L. Fegaras. A Fold for All Seasons. In Conference on Functional Program-
ming Languages and Computer Architecture, Copenhagen, June 1993. pp 233-242

[12] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Proceedings
of the 16th ACM Symposium on Principles of Programming Languages. pp 60-76, Austin,
Texas, Jan. 1989

[13] G. C. Wraith. A note on categorical datatypes. In D. H. Pitt, D. E. Rydeheard, P. Dybjer,
A. M. Pits and A. Poigné, editors, Category Theory and Computer Science, volume 389 of
Lecture Notes in Computer Science, pp 118-127. Springer Verlag, 1989.

