
A Semantics of Compile�time Re�ection

James Hook and Tim Sheard�

Oregon Graduate Institute� Box ������ Portland� Oregon �����

fhook�sheardg�cse�ogi�edu

Abstract

A new language incorporating both ML�style type checking and a limited form of re�ec�

tion is de�ned by giving an interpreter and showing how this interpreter may be interpreted

as a compositional denotational semantics� The resulting language has a partial function as

a compiler� but if the compiler terminates without a type error there will be no type�errors

at runtime� Typing issues and �rst�class environments are discussed as well�

� Introduction

Traditionally re�ection and strong typing are found on di�erent sides of the schism that di�
vides the lisp and functional programming communities� This paper introduces Compile�time
Re�ective ML �CRML�� a re�ective language with compile�time type checking and run�time
type safety	
��� CRML provides a bridge between two rich cultures�

When developing CRML� the goal was to create a system that was both expressive and
useful� supported higher abstraction mechanisms� and that could be completely type checked
at compile�time� The implementation largely succeeded in meeting these goals this paper asks
the question �What nature of beast have we created��

As the name suggests� CRML supports only that re�ection which can be resolved at compile�
time� This paper presents a formal semantics of compile�time re�ection� Its development has led
to a better understanding of the CRML system� led to an improved understanding of re�ective
systems in general �and the re�ective tower in particular�� and led to generalizations of the
CRML language that make it more uniform� and that allow it to solve problems not originally
considered� These generalizations will be the basis for a second� improved implementation�

� Why Re�ection�

Re�ection allows the implementation of abstraction mechanisms not possible in ordinary lan�
guages	

� �� ��� The most familiar use of re�ection is the powerful notion of macro found in lisp
dialects� As a simple example consider writing a single function that maps an n�ary function
over n lists� In a typed language such a function is impossible because it cannot be typed�
Yet given n� it is easy to imagine a function that computes a data structure representing the

�Hook was supported in part by a grant from the NSF �CCR��������	
 Both authors were supported in part
by a contract with Air Force Material Command �F��������C�����	







datatype pat �

Pvar of string

� Ptuple of pat list

� Pcon of string � pat

� Pstring of string�

datatype exp �

Var of string

� App of exp � exp

� StringC of string

� Abs of 	pat � exp
 list

� Tuple of exp list

� Quote of exp

� Escape of exp�

Figure 
� Mini�CRML Abstract Syntax

n�way map function� If we could re�ect over this data structure obtaining the actual function
we would have solved the problem�

Exploring re�ection in typed languages has led us to a new paradigm of programming based
on writing meta�programs that operate on types and the declaration of type constructors as
well as writing macros that operate on expressions� For example� consider de�ning structural
equality functions over freely constructed data types� It is easy to give �blackboard rules� for
constructing the equality function systematically from the data type declaration� Re�ection al�
lows the rules to be written as a meta�program from the type of type declaration representations
to the type of function declaration representations�

The description of the new paradigm of programming that CRML supports is beyond the
scope of this paper� Applications of CRML are listed in the bibliography	
�� 
�� 
�� ���

� A brief introduction to Mini�CRML

CRML is a variant of Standard ML� The implementation is based on Appel and MacQueen�s
SMLNJ	
�� This paper de�nes a small subset that illustrates the fundamental features of the
language� Naively� CRML is a meta�language for Standard ML� Programs written in CRML
are meta�programs� Meta�programs are programs that manipulate object programs� Object
programs are written in an applicative subset of the �core� language of Standard ML�

In the Mini�CRML meta�language� the object�language is represented by two datatypes�
exp for expressions� and pat for patterns� These types are given in Figure 
� Full CRML also
represents types and declarations�

Programs manipulating program representations may either be expressed directly with the
constructors or with an �object�language� extension to ML�s syntax� Text within the object�
language quotation brackets ��� ��� is parsed but not compiled� Its representation is returned
as the value� Meta�language expressions may be included in the object�language text by �escap�
ing� them with a backquote �anti�quotation� character ��� Examples illustrating the object�
language notation are given in Figure �� To disambiguate the types� the quotation bracket
�p� �� is used for patterns�

�



Concrete syntax Constructor based Quote based

x Var �x� �� x ��

f x App	Var �f��Var �x�
 �� f x ��

App	g�y
 �� g y ��

	x�y
 Tuple � Var �x�� Var �y� � �� 	x�y
 ��

Tuple �x� y� �� 	x�y
 ��

	
 Tuple �� �� 	
 ��

fn x �� y Abs	Pvar �x��Var �y�
 �� fn x �� y ��

Abs	s�t
 �� fn s �� t ��

Figure �� Constructing Type and Expression Representations in CRML

To illustrate meta�programming� consider writing a single function that maps an n�ary
function over n lists� When n � � we expect�

fun map� f 	Cons	x��xs�
�Cons	x��xs�
�Cons	x��xs�



�� Cons	f 	x��x��x�
� map� f 	xs��xs��xs�



� map� f � �� ���

At the meta�level it is easy to describe the generation of this function for arbitrary n� To
manage variable names in the development� we assume the two functions� add index and
iota� The add index function concatenates its numeric argument to its string argument� and
iota generates the list of integers between its two numeric arguments�

The meta�program generating the n�ary map follows� It builds the pattern for the �rst
clause of the de�nition using the object language template �p�Cons	 � � �
��� meta�language
escapes to calculate the appropriate identi�ers for the template� and the constructors Ptuple
and Pvar to glue things together� The body of the de�nition is constructed similarly� Finally�
an object�language expression serves as the template for the entire function de�nition�

fun mapN n �

let val nconses � Ptuple	map 	fn n �� �p�Cons		Pvar 	add�index �x� n

�

	Pvar 	add�index �xs� n


��


	iota � n



val nheads � Tuple	map 	fn n �� Var	add�index �x� n

 	iota � n



val ntails � Tuple	map 	fn n �� Var	add�index �xs� n

 	iota � n



in ��let fun mapNfun f nconses �� Cons	f nheads� mapNfun f ntails


� mapNfun f � �� ��

in mapNfun end��

end�

Using this meta�program the simple object�program below calculates an equivalent decla�
ration to the one given at the beginning of this example�

�



datatype value �

stringV of string

� closureV of 	value �� value maybe
 list

� tupleV of value list

� constructionV of string � value

� constructorV of string�

Figure �� Semantic Domain for Mini�CRML

val map� � 	mapN �
�

In this example there is a clear distinction between the meta�language and the object
language� In reality� both languages are the same� they are both CRML� In particular� this
means that object�language brackets may appear in object�language expressions and meta�
language escapes may appear in meta�language expressions� One consequence of this is that
there is a potentially unbounded hierarchy of �meta�languages�� The sections that follow
describe how this power is restricted to a form that is meaningful at compile�time�

� A semantics for Mini�CRML

This section develops a denotational semantics for CRML by �rst presenting a recursive inter�
preter that fails to be compositional and then showing how this interpreter may be strati�ed
into a compositional denotational semantics�

The domain of values is described by the ML datatype declaration value in Figure �� To
simplify the examples� strings are used for identi�ers� constructor tags� and basic constant
values� It is important that there be a primitive type that can be interpreted as an identi�er
name� All other uses of strings could be satis�ed by any countable �at domain�

Pattern based function de�nition �as found in HOPE and ML� is supported by representing
closures as a list of functions from value to value maybe� Each element of the list corresponds
to a separate clause of the function de�nition� Details of the encoding are given below� The
semantics does not assign a meaning to functions that are not exhaustive in this case the
interpreter raises an exception in ML at runtime�

In the formal semantics it is assumed that a suitable domain has been constructed satisfying
the domain equation implicit in the value datatype declaration� The details of the construction
of this domain are not signi�cant to the thesis of this work�

��� Expansion and Rei�cation

The meaning of programs is determined in two separable phases� corresponding to elaboration
time and run time in Standard ML� The �rst phase is called expansion and rei�cation� It takes
a mini�CRML program expressed with Quote and Escape and produces a quote free program

�



in which all uses of the object�language quotation mechanism have been replaced by explicit
constructions of values of type exp and pat� The second phase� evaluation� is a traditional ML
interpreter augmented with a clause to de�ne Escape�

Expansion and rei�cation is de�ned by four functions� an expansion function that transforms
expressions to expressions� and three rei�cation functions for the types list� pat� and exp�
The expansion function acts as the identity on all program fragments except those that are
quoted� which it rei�es� The rei�cation functions each take an object of the appropriate type
and return an expression that� when evaluated� will denote that object� For example� the
rei�cation of the pattern �x� y�� which is represented in the abstract syntax as PTuple	�Pvar
�x�� Pvar �y��
 would be the expression�

App	Var �Ptuple�� App	Var �Cons�� Tuple �Pvar �x��App	Var �Cons��

Tuple �Pvar �y��App 	Var �Nil�� Tuple ��
�
�



The de�nitions of the expansion and rei�cation functions are given in Figure �� Note that the
only clause in the de�nitions of reify and expand that fails to be compositional �i�e� where the
meaning of a phrase isn�t expressed in terms of the meaning of its constituent subphrases� is
in the clause de�ning the rei�cation of a quoted expression� This is the �rst case in which the
interpreter fails to be a valid denotational semantics�

��� Evaluation

The evaluation function� eval� takes two environments and an expression and produces a value�
The �rst environment� called the global environment� is passed unmodi�ed to all subexpressions
it makes the top level environment available to the re�ection operators� This requires that the
global environment for interpretation of functions include the types exp and pat and their
associated constructor functions� The second environment is the traditional environment used
to interpret variables� It is updated by the binding mechanism used in patterns and function
de�nitions� The eval function and its elementary support functions are given in Figure ��

As in Standard ML� functions are de�ned by a sequence of pattern�action pairs� The
patterns are built out of constructors� free variables� and constants� If a value conforms to the
pattern� the free variables in the pattern are bound to the associated components of the value�
These bindings are available in the associated action� which is an expression� To compute the
value of a function on an argument� the patterns are matched against the argument in the
order in which they appear in the text� The value of the function is the value of the action
corresponding to the �rst pattern that it matches�

To support this de�nition� the semantics must �rst assign a meaning to patterns� This
is done with the function bind� which maps a pattern�value pair and an environment to a
new environment� if the pattern matches� and which signals failure otherwise� This failure
mechanism is provided by a maybe type��

The meaning of patterns is used to construct the meaning of pattern�action clauses in
the function matchcl� It takes a pattern�action pair and buils a function that uses bind to

�Following Spivey����� datatype �a maybe � Just of �a � Nothing
 SMLNJ calls this type option


�



fun reifyl f �� � App	Var �Nil��Tuple ��


� reifyl f 	x��xs
 � App	Var �Cons��Tuple�f x�reifyl f xs�
�

fun reifyp 	Pvar s
 � App	Var �Pvar��StringC s


� reifyp 	Ptuple l
 � App	Var �Ptuple��reifyl reifyp l


� reifyp 	Pcon	c�p

 � App	Var �Pcon��Tuple�StringC c�reifyp p�


� reifyp 	Pstring s
 � App	Var �Pstring��StringC s
�

fun reify 	Var s
 � App	Var �Var��StringC s


� reify 	App	x�y

 � App	Var �App�� Tuple�reify x� reify y�


� reify 	StringC s
 � App	Var �StringC��StringC s


� reify 	Abs	m

 � App	Var �Abs��reifyl 	fn 	p�e
 �� Tuple�reifyp p�reify e�
 m


� reify 	Tuple l
 � App	Var �Tuple��reifyl reify l


� reify 	Quote e
 � reify 	reify e


� reify 	Escape x
 � expand x

and expand 	Var s
 � Var	s


� expand 	App	x�y

 � App	expand x� expand y


� expand 	StringC s
 � StringC	s


� expand 	Abs	m

 � Abs	map 	fn 	p�e
 ��	p�expand e

 m


� expand 	Tuple l
 � Tuple	map expand l


� expand 	Quote e
 � 	reify e


� expand 	Escape x
 � Escape	expand x
�

Figure �� Rei�cation and Expansion functions

analyze its argument and� if a match occurs� evaluates the action expression in the appropriate
environment� Again� the maybe type mechanism is used to signal success or failure� In this way
each clause is encoded by a function of type value �� value maybe� The clauses are collected
into a ClosureV value�

Application is de�ned by the two functions apply and match� The apply function deter�
mines if the function being applied is a closure value or a constructor function� If it is a closure
value then the match function is used to systematically attempt each clause in the closure and
project the resulting value out of the maybe type� If it is a constructor then the appropriate
construction is generated�

With the exception of the Quote and Escape clauses the eval function is otherwise straight�
forward and compositional� The meaning of Quote is unde�ned because it is assumed all Quotes
were removed by the expansion phase that corresponds to compile�time� The meaning of Escape
is expressed in terms of two calls to eval and one call to embed� which is described below� This
is the second violation of the principle of compositionality in the interpreter�

�



fun bind 	Pvar s�v
 f � just	fn x �� if x�s then v else f x


� bind 	Ptuple l�tupleV m
 f �

if 	length l
 � 	length m


then 	fold 	fn 	pair�just g
 �� 	bind pair g
 � 	��nothing
 �� nothing


	zip l m
 	just f



else nothing

� bind 	Pcon	s�p
�constructionV	t�v

 f � if s�t then bind 	p�v
 f else nothing

� bind 	Pstring s�stringV t
 f � if s�t then just f else nothing

� bind � f � nothing

fun match �� x � raise no�match

� match 	f��m
 x �

	case 	f x
 of nothing �� match m x � just v �� v
�

fun apply 	closureV	m

 x � match m x

� apply 	constructorV c
 x � constructionV	c�x


� apply � � � raise not�function�

fun eval global env x �

let fun matchcl 	p�e
 x �

case 	bind 	p�x
 env
 of

nothing �� nothing

� just env� �� just	eval global env� e


in case x of

Var s �� env s

� App	f�x
 �� apply 	eval global env f
 	eval global env x


� StringC c �� stringV c

� Abs	m
 �� closureV	map matchcl m


� Tuple l �� tupleV 	map 	eval global env
 l


� Quote e �� raise not�possible

� Escape e �� eval global env 	embed 	eval global global e



end�

fun meaning env x � eval env env 	expand x
�

Figure �� Eval and core support functions

�



��� The embedding function

The embedding function maps a value representing an expression into an expression� That is� in
the meta�language in which we are giving semantics� it has the type value �� exp� Mappings
of this sort are quite rare in semantics� The function itself is quite straightforward it is given
in Figure �� When applied to a value of type expression it constructs the expression encoded
by that value� Muller calls this function R�� 	
���

In this version of embed the embedding function is unde�ned on the re�ection operators
Quote and Escape� This restriction forces the re�ection to occur at compile�time it is the
distinguishing feature of CRML�style re�ection� If expressions involving Quote were generated
by embed� then the evaluation function would have to be modi�ed to deal with dynamically
occurring Quotes� If expressions involving Escape were in the domain of embed then either
embed would have to invoke eval to interpret the escaped expression or embed would return
an expression that still potentially contained Escapes� Both of these changes would make it
impossible to use the simple strati�cation of the semantics given in the next section to convert
the interpreter into a denotational semantics� Instead� a tower of interpreters of unbounded
depth would be required for the semantics� This would also interfere with the compile�time
type checking strategy described in Section ��

��� From the interpreter to the denotational semantics

The interpreter fails to be a valid denotational de�nition for just two reasons� �
� the de�nition
of reify is not compositional� and ��� the de�nition of eval is not compositional� This section
strati�es the language to solve these two problems�

Both of the o�ending cases have the same basic structure� The function being de�ned is
applied twice� �rst to a constituent subexpression� and then to an expression of apparently
unbounded complexity� The inner application is compositional it is valid in a denotational
semantics� The outer application is not� The strati�cation is made by carefully characterizing
the domain and range of the function being de�ned so that the outer application may be
replaced by a previously de�ned function� The case of eval is considered �rst�

In eval the o�ending clause is�

� Escape e �� eval global env 	embed 	eval global global e



Since it is known that e has been expanded and rei�ed� the inner eval will only be applied to
quote�free expressions� Inspection of eval and embed show that they preserve quote�freeness�
Furthermore� the output of embed will not have any escapes� So the input to the outer eval
will be strictly in the core language� which is re�ection free�

Thus� to make eval compositional� �rst de�ne evalCore on the re�ection�free core language
in the manner in which eval is currently de�ned� This is a compositional de�nition� Then
modify the de�nition of the meaning of Escape by replacing the outer eval with an evalCore�

� Escape e �� evalCore global env 	embed 	eval global global e



�



fun embedp 	constructionV	�Pvar�� stringV s

 � Pvar s

� embedp 	constructionV	�Ptuple�� L

 � Ptuple	embedpL L


� embedp 	constructionV	�Pcon�� tupleV�stringV c�p�

 � Pcon	c�embedp p


� embedp 	constructionV	�Pstring�� stringV s

 � Pstring s

� embedp � � raise no�embedding

and embedpL 	constructionV	�Nil��tupleV ��

 � ��

� embedpL 	constructionV	�Cons��tupleV�x�y�

 � 	embedp x
 �� 	embedpL y


� embedpL � � raise no�embedding�

fun embed 	constructionV	�Var�� stringV s

 � Var s

� embed 	constructionV	�App�� tupleV�f�c�

 � App	embed f�embed c


� embed 	constructionV	�StringC�� stringV s

 � StringC s

� embed 	constructionV	�Abs�� ms

 � Abs	embedpairL ms


� embed 	constructionV	�Tuple��L

 � Tuple	embedL L


� embed 	constructionV	�Quote��v

 � raise no�embedding

� embed 	constructionV	�Escape��v

 � raise no�embedding

� embed � � raise no�embedding

and embedL 	constructionV	�Nil��tupleV ��

 � ��

� embedL 	constructionV	�Cons��tupleV�x�y�

 � 	embed x
 �� 	embedL y


� embedL � � raise no�embedding

and embedpairL 	constructionV	�Nil��tupleV ��

 � ��

� embedpairL 	constructionV	�Cons��tupleV�tupleV�p�e��y�

 �

	embedp p�embed e
 �� 	embedpairL y


� embedpairL � � raise no�embedding�

Figure �� Embedding functions

The resulting de�nition of eval is now compositional�
The strati�cation of reify is similar� Inspection of reify and expand shows that the

output of both functions is quote�free� Thus again it is possible to de�ne a reifyCore function
that acts on quote�free expressions� The rei�cation of Quote then becomes�

� reify 	Quote e
 � reifyCore 	reify e


��� Compile�time	 Run�time and Re
ection

The de�nition of the meaning function in Figure � suggests a natural compile�time�run�time
distinction� Expansion occurs at compile�time and evaluation occurs at run�time� However�
the de�nition of evaluation above refers to the Escape operator so re�ection has not yet been
restricted to compile time�

In this section the de�nition of compilation is enriched so that evalCore can serve as
the evaluation function at both compile�time and run�time� This requires that an embedding

�



fun reflect env x �

case x of

Var s �� Var s

� App	f�x
 �� App	reflect env f� reflect env x


� StringC c �� StringC c

� Abs	m
 �� Abs	map 	fn 	p�e
 �� 	p�reflect env e

 m


� Tuple l �� Tuple 	map 	reflect env
 l


� Quote e �� raise not�possible

� Escape e �� 	embed 	evalCore env e

�

fun meaning env x � evalCore env 	reflect env 	expand x

�

Figure �� Re�ection function and its use in the meaning function

phase be introduced at compile�time to interpret the Escape operators� We call this embedding
re�ection� The interpretation of the Escapes requires some form of evaluation� Thus� to achieve
compile�time re�ection� some evaluation will occur at compile time� The de�nition of reflect
is given in Figure ��

This is a radical change to the meaning of compile�time� since it is changing the compilation
function from a total function to a partial one� The critical property of compilation that is
preserved� however� is that all type errors are detected at compile time� Thus CRML inherits
from both cultures� like other languages with re�ection compilation is partial� but� true to
the ML philosophy� compiled code will not exhibit run�time type errors� Type checking issues
are discussed below in the next section� Based on our experience with an implementation of
compile�time re�ection in this manner� we believe it is a worthwhile extension to the notion of
compile�time�

� Typing CRML

The semantics gives a meaning to compile�time re�ective programs� but it doesn�t present rules
to determine which programs it applies to� This is traditionally the role of a type system� This
section explores some of the issues related to typing CRML�

The core language of CRML is Standard ML� with its well known Hindley�Milner type
system	�� ��� In the current implementation CRML type checking is achieved by invoking ML
type checking at those points where the semantics refers to evalCore� All invocations of the
type checker occur at compile�time thus any program accepted by the compiler is type�correct
in the sense that nothing goes �wrong� at run�time	���

This is a very strange notion of type checking� however� First� in full CRML� which can
express divergent meta�programs� type checking and compilation are not guaranteed to termi�
nate� Second� there is not a direct type system for meta�programs only for the object�programs


�



that they produce� That is� there is not a simple set of rules for abstracting the computational
invariants of the meta�programs that determine type correctness� This section explores some
of the issues that arise in attempts to give CRML a more traditional type system�

The construction of a natural type checker for CRML must give types to the re�ection
operators� Giving a type to Quote is straightforward� If an expression can be parsed in the
current environment then the quoted value has type exp� Similarly� the domain of applicability
of Escape is those expressions of type exp that� when evaluated in the appropriate environment�
produce a term typeable in the current environment� The appropriate environment is the envi�
ronment of the corresponding Quote or the top level environment if there is no corresponding
Quote operator�

This scheme for typing Escape is unsatisfactory for two related reasons� it appeals to a
semantic equality and it is not clear in what environment �or family of environments� the
equality is to be interpreted� To see how fundamental these defects are� recall the map�n
example from Section �� In that example� for every value of n the expression 	mapN n
 has
a di�erent type� This suggests that the rule be recast as� Let � be the type assignment of the
appropriate environment for every ��compatible environment� �� there exists a term e

� and
type � such that e �� hhe

�ii and � � e
� � � �

The situation is even more complex when the body of the function de�ning mapN is examined�
Consider the information necessary to reason about the type correctness of the �rst clause in
the declaration of mapNfun� It is critical that nconses� nheads and ntails are all derived
from iota � n� It is also critical that number �x� n and number �xs� m are always distinct�
Finally� it is necessary to capture exactly how nconses builds an environment binding all
identi�ers in nheads and ntails� All three of these properties appear to be non�trivial to
deduce and require induction to prove�

It is easy to form a reduction argument showing that the set of terms accepted by the current
type checking strategy of CRML is not recursive� It is more di�cult to answer the question �Is
there a useful recursive type system for a CRML subset�� Based on our experience to date�
we are not optimistic about �nding a useful CRML subset with a decidable type system� Type
checking meta�programs is proving correctness of programs in a Turing�complete notation� We
will continue to look at type systems and correctness proofs that describe meta�programs at
the very least we desire a theory of the correctness of meta�programs�

	 Extensions to CRML

This semantic exercise revealed several issues not fully resolved in the current CRML implemen�
tation� These issues revolve around the environment in which escaped expressions are re�ected�
The current implementation �and semantics� re�ects residual escaped expressions �i�e� those
that survive expansion� in the global environment existing at the lexical point where the global
declaration containing the expression resides� This treatment of escape is not uniform� Escapes
eliminated by expansion are interpreted in the lexical scope of their associated quote� Residual
escapes are interpreted in a global environment�

A more satisfactory solution would support re�ection in an explicit� arbitrary environment�







This requires a mechanism for capturing lexical environments and passing them around as �rst
class objects� in much the same manner that call�cc captures continuations�

If a language were to provide lexical environment capture to support compile�time re�ection�
one could imagine an even richer language where expressions could not only be re�ected in an
arbitrary environment but also evaluated in an arbitrary environment� Such a language would
provide precisely the tools necessary to elegantly solve the variable capture problems implicit
in many macro systems 	��� We are currently investigating the possibility of building a second
version of CRML based upon this model�

The modi�cations to the interpreter�semantics necessary to make this change to the lan�
guage de�nition are given in the appendix�


 Relationship to Other Work

Current models of re�ection are built upon an in�nite tower of interpreters each interpreted by
the levels below it	�� 

� �� ��� By limiting the tower to � levels the strati�cation is particularly
simple� This of course means that we cannot give semantics to re�ective programs involving
more than two levels� These are precisely the programs that cannot be typechecked at compile�
time� This is the tradeo� between the �exibility of general re�ection for bene�ts of strong
typing�

It is straightforward to extend the interpreter to the in�nite tower� The embedding function
requires modi�cation to handle quoted and escaped expressions as follows�

fun embed ��� � ���

� embed 	constructionV	�Quote��v

 � reify 	Quote	embed v



� embed 	constructionV	�Escape��v

 � embed 	eval env 	embed v



Unfortunately both reify and eval are no longer compositional� To stratify this semantics re�
quires an indexed family of functions corresponding to the in�nite tower of re�ective languages�

� Conclusions

CRML represents a new breed of typed re�ective languages� It builds on two very rich traditions
that were previously thought incompatible� The tensions between these traditions have required
the careful balancing of several tradeo�s� most notably limiting re�ection to compile time and
making the compiler and type checker partial functions�

Like many evolving programming languages� CRML is moving through a life cycle of think�
implement� experiment� and then think again� This paper is a product of re�ection on ex�
perience with an implementation� and is the basis of the next cycle of implementation and
experimentation�

CRML exists� and all of the semantic functions used in this paper can be executed as
Standard ML programs� Copies of CRML and these programs may be obtained by anonymous
ftp from the directory �pub�pacsoft on cse�ogi�edu�


�



Acknowledgements

We would like to thank Dick Kieburtz and Je� Lewis for many helpful discussions about the
design of CRML� Leonidas Fegaras and Jef Bell provided helpful comments on earlier drafts of
this paper�

References

	
� Andrew W� Appel and David B� MacQueen� A Standard ML compiler� August 
����
Distributed as documentation with the compiler�

	�� Olivier Danvy and Karoline Malmkj�r� Intensions and extensions in a re�ective tower�
In Proceedings of the ���� ACM Conference on Lisp and Functional Programming� pages
��� ��
� ACM Press� 
����

	�� Matthias Felleisen� Daniel Friedman� Eugene Kohlbecker� and Bruce Duba� A syntactic
theory of sequential control� Theoretical Computer Science� ��������� ���� 
����

	�� D� P� Friedman and M� Wand� Rei�cation� Re�ection without metaphysics� In Proc� ����
ACM Symposium on Lisp and Functional Programming� pages ��� ���� ACM� August

����

	�� D� P� Friedman and M� Wand� The mystery of the tower revealed� A non�re�ective
description of the re�ective tower� In Proc� ���	 ACM Symposium on Lisp and Functional
Programming� pages ��� ���� ACM� August 
����

	�� James Hook� Richard Kieburtz� and Tim Sheard� Generating programs by re�ection� Tech�
nical Report ����
�� Department of Computer Science and Engineering� Oregon Graduate
Institute� July 
����

	�� Robin Milner� A theory of type polymorphism in programming� Journal of Computer and
System Sciences� 
����� ���� 
����

	�� Robin Milner and Mads Tofte� Commentary on the De
nition of Standard ML� MIT
Press� Cambridge� Massachusetts� 
����

	�� Robin Milner� Mads Tofte� and Robert Harper� The De
nition of Standard ML� MIT
Press� Cambridge� Massachusetts� 
����

	
�� Robert Muller� M�LISP� Its natural semantics and equational logic� In Proceedings of
the Symposium on Partial Evaluation and Semantics�Based Program Manipulation� pages
��� ���� ACM Press� June 
��
�

	

� Jim des Rivieres and Brian Cantwell Smith� The implementation of procedurally re�ective
languages� In Proceedings of the ���� Lisp and Functional Programming Conference� ACM�

����


�



	
�� Tim Sheard� Type parametric programming� Technical Report ����
�� Department of
Computer Science and Engineering� Oregon Graduate Institute� November 
����

	
�� Tim Sheard and Leonidas Fegaras� A fold for all seasons� In Proceedings of the conference

on Functional Programming and Computer Architecture� Copenhagen� June 
����

	
�� Timothy Sheard� Guide to using CRML� Compile�time Re�ective ML� Technical report�
Department of Computer Science and Engineering� Oregon Graduate Institute� November

����

	
�� Mike Spivey� A functional theory of exceptions� Science of Computer Programming� 
���� 
��� 
����

A First Class Environments

To extend the system developed in Section � to support explicit environment capture de�ned
in Section � enrich the exp type by adding two new constructors for explicit evaluation and
lexical capture� and by making escaped expressions contain an explicit lexical environment�
Enrich the domain of values by adding an environment value constructor�

datatype exp � ���

� Capture of string � exp

� Eval of exp � 	string �� value


� Escape of exp � 	string �� value


and value � ���

� enV of string �� value�

Rei�cation and expansion need to be extended to handle the new constructors and to handle
rei�cation of escaped expressions di�erently since escapes now include an explicit environment�

fun reify ���

� reify 	Eval �
 � raise not�reifiable

� reify 	Capture	s�e

 � App	Var �Capture��Tuple�StringC s�reify e�


� reify 	Escape	x�e

 � Eval	expand x�e


and expand ���

� expand 	Eval	x�e

 � Eval	expand x�e


� expand 	Capture	s�e

 � Capture	s�expand e


� expand 	Escape	x�e

 � Escape	expand x�e
�

The evalCore function is extended to evaluate the two new constructors�

fun evalCore env x �

let fun matchcl 	p�e
 x � ���

in case x of ���


�



� Capture	s�e
 �� evalCore 	fn x �� if x�s then enV env else env x
 e

� Eval	x�e
 �� evalCore e x

� Quote e �� raise not�possible

� Escape e �� raise not�possible

end�

The embed function is extended to embed values into expressions built by the new constructors�

fun embed ��� � ���

� embed 	constructionV	�Eval��tupleV�x�enV e�

 � Eval	embed x�e


� embed 	constructionV	�Capture��tupleV�stringV s�x�

 � Capture	s�embed x


The re�ection operator must remove embedded escapes in the new constructors� and re�ect
escapes in their explicit environments� Since re�ection is done in explicit environments� the
re�ect operation no longer needs to carry the global environment around as a parameter�

fun reflect x �

case x of ���

� Eval	x�e
 �� Eval	reflect x�e


� Capture	s�e
 �� Capture	s�reflect e


� Quote e �� raise not�possible

� Escape	x�env
 �� 	embed 	evalCore env x

�

Finally the meaning an expression can be found by expansion and rei�cation� followed by
re�ection� followed by evaluation�

fun meaning env x � evalCore env 	reflect 	expand x

�


�


